Chapter 14

Autoencoders

An autoencoder is a neural network that is trained to attempt to copy its input

to its output. Internally, it has a hidden layer h that describes a code used to
represent the input. The network may be viewed as consisting of two parts: an
encoder function h = f(x) and a decoder that produces a reconstruction r = g(h).
This architecture is presented in Fig. 14.1. If an autoencoder succeeds in simply
learning to set g(f(x)) = x everywhere, then it is not especially useful. Instead,
autoencoders are designed to be unable to learn to copy perfectly. Usually they are
restricted in ways that allow them to copy only approximately, and to copy only
input that resembles the training data. Because the model is forced to prioritize
which aspects of the input should be copied, it often learns useful properties of the
data.

Modern autoencoders have generalized the idea of an encoder and a de-
coder beyond deterministic functions to stochastic mappings Pencoder (1 | x) and
Pdecoder (x | h).

The idea of autoencoders has been part of the historical landscape of neural
networks for decades (, ; , ; ,

). Traditionally, autoencoders were used for dimensionality reduction or
feature learning. Recently, theoretical connections between autoencoders and
latent variable models have brought autoencoders to the forefront of generative
modeling, as we will see in Chapter 20. Autoencoders may be thought of as being
a special case of feedforward networks, and may be trained with all of the same
techniques, typically minibatch gradient descent following gradients computed
by back-propagation. Unlike general feedforward networks, autoencoders may
also be trained using recirculation (,), a learning
algorithm based on comparing the activations of the network on the original input

505

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning

applications.

£ g
Figure 14.1: The general structure an autoencoder, mapping an input X to an output

(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to

T).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

506

CHAPTER 14. AUTOENCODERS

nately, if the encoder and decoder are allowed too much capacity, the autoencoder
can learn to perform the copying task without extracting useful information about
the distribution of the data. Theoretically, one could imagine that an autoencoder
with a one-dimensional code but a very powerful nonlinear encoder could learn to
represent each training example x® with the code i. The decoder could learn to
map these integer indices back to the values of specific training examples. This
specific scenario does not occur in practice, but it illustrates clearly that an autoen-
coder trained to perform the copying task can fail to learn anything useful about
the dataset if the capacity of the autoencoder is allowed to become too great.

14.2 Regularized Autoencoders

Undercomplete autoencoders, with code dimension less than the input dimension,
can learn the most salient features of the data distribution. We have seen that
these autoencoders fail to learn anything useful if the encoder and decoder are
given too much capacity.

A similar problem occurs if the hidden code is allowed to have dimension equal
to the input, and in the overcomplete case in which the hidden code has dimension
greater than the input. In these cases, even a linear encoder and linear decoder
can learn to copy the input to the output without learning anything useful about
the data distribution.

Ideally, one could train any architecture of autoencoder successfully, choosing
the code dimension and the capacity of the encoder and decoder based on the
complexity of distribution to be modeled. Regularized autoencoders provide the
ability to do so. Rather than limiting the model capacity by keeping the encoder
and decoder shallow and the code size small, regularized autoencoders use a loss
function that encourages the model to have other properties besides the ability
to copy its input to its output. These other properties include sparsity of the
representation, smallness of the derivative of the representation, and robustness
to noise or to missing inputs. A regularized autoencoder can be nonlinear and
overcomplete but still learn something useful about the data distribution even if
the model capacity is great enough to learn a trivial identity function.

In addition to the methods described here which are most naturally interpreted
as regularized autoencoders, nearly any generative model with latent variables
and equipped with an inference procedure (for computing latent representations
given input) may be viewed as a particular form of autoencoder. Two generative
modeling approaches that emphasize this connection with autoencoders are the
descendants of the Helmholtz machine (,), such as the variational

507

CHAPTER 14. AUTOENCODERS

autoencoder (Sec. 20.10.3) and the generative stochastic networks (Sec. 20.12).
These models naturally learn high-capacity, overcomplete encodings of the input
and do not require regularization for these encodings to be useful. Their encodings
are naturally useful because the models were trained to approximately maximize
the probability of the training data rather than to copy the input to the output.

14.2.1 Sparse Autoencoders

A sparse autoencoder is simply an autoencoder whose training criterion involves a
sparsity penalty Q(h) on the code layer h, in addition to the reconstruction error:

L(x, g(f(x))) + Q(h) (14.2)

where g(h) is the decoder output and typically we have h = f(x), the encoder
output.

Sparse autoencoders are typically used to learn features for another task such
as classification. An autoencoder that has been regularized to be sparse must
respond to unique statistical features of the dataset it has been trained on, rather
than simply acting as an identity function. In this way, training to perform the
copying task with a sparsity penalty can yield a model that has learned useful
features as a byproduct.

We can think of the penalty Q(h) simply as a regularizer term added to
a feedforward network whose primary task is to copy the input to the output
(unsupervised learning objective) and possibly also perform some supervised task
(with a supervised learning objective) that depends on these sparse features.
Unlike other regularizers such as weight decay, there is not a straightforward
Bayesian interpretation to this regularizer. As described in Sec. 5.6.1, training
with weight decay and other regularization penalties can be interpreted as a
MAP approximation to Bayesian inference, with the added regularizing penalty
corresponding to a prior probability distribution over the model parameters. In
this view, regularized maximum likelihood corresponds to maximizing p(y | x),
which is equivalent to maximizing logp(x K)+ logp(0). The logp(y | g) term
is the usual data log-likelihood term and the logp(0) term, the log-prior over
parameters, incorporates the preference over particular values of 0. This view
was described in Sec. 5.6. Regularized autoencoders defy such an interpretation
because the regularizer depends on the data and is therefore by definition not a
prior in the formal sense of the word. We can still think of these regularization
terms as implicitly expressing a preference over functions.

Rather than thinking of the sparsity penalty as a regularizer for the copying
task, we can think of the entire sparse autoencoder framework as approximating

508

CHAPTER 14. AUTOENCODERS

maximum likelihood training of a generative model that has latent variables.
Suppose we have a model with visible variables x and latent variables h, with
an explicit joint distribution podel (X,h) = Pmodel (h)Pmodel (x | h). We refer to
Pmodel (h) as the model’s prior distribution over the latent variables, representing

the model’s beliefs prior to seeing x. This is different from the way we have
previously used the word “prior,” to refer to the distribution p(®) encoding our
beliefs about the model’s parameters before we have seen the training data. The
log-likelihood can be decomposed as

1ngmodel (X) = 10g X Pmodel (ha X)- (14-3)
h

We can think of the autoencoder as approximating this sum with a point estimate

for just one highly likely value for h. This is similar to the sparse coding generative
model (Sec. 13.4), but with h being the output of the parametric encoder rather
than the result of an optimization that infers the most likely h. From this point of
view, with this chosen h, we are maximizing

log Pmodel (h, X) = 1ng model (h) + logp model (X | h) (]4.4)

The log p model (h) term can be sparsity-inducing. For example, the Laplace prior,

A A
Pmodel (hi) = Ee‘Mh 1, (14.5)

corresponds to an absolute value sparsity penalty. Expressing the log-prior as an
absolute value penalty, we obtain

Qh) =% x |ni| (14.6)
i
A
—log p model (h) = X @m i| - log 5@ = Q(h) + const (14.7)

where the constant term depends only on A and not h. We typically treat A as a
hyperparameter and discard the constant term since it does not affect the parameter
learning. Other priors such as the Student- t prior can also induce sparsity. From
this point of view of sparsity as resulting from the effect of pmodel (h) on approximate
maximum likelihood learning, the sparsity penalty is not a regularization term at

all. It is just a consequence of the model’s distribution over its latent variables.
This view provides a different motivation for training an autoencoder: it is a way

of approximately training a generative model. It also provides a different reason for

509

CHAPTER 14. AUTOENCODERS

why the features learned by the autoencoder are useful: they describe the latent
variables that explain the input.

Early work on sparse autoencoders (, ,) explored
various forms of sparsity and proposed a connection between the sparsity penalty
and the logZ term that arises when applying maximum likelihood to an undirected
probabilistic model p(x)= zlp” (x). The idea is that minimizing logZ prevents a
probabilistic model from having high probability everywhere, and imposing sparsity
on an autoencoder prevents the autoencoder from having low reconstruction
error everywhere. In this case, the connection is on the level of an intuitive
understanding of a general mechanism rather than a mathematical correspondence.
The interpretation of the sparsity penalty as corresponding to log pmodel (h) in a

directed model p model (h)P model (x | h) is more mathematically straightforward.

One way to achieve actual zeros in h for sparse (and denoising) autoencoders
was introduced in (). The idea is to use rectified linear units to
produce the code layer. With a prior that actually pushes the representations to
zero (like the absolute value penalty), one can thus indirectly control the average
number of zeros in the representation.

14.2.2 Denoising Autoencoders

Rather than adding a penalty Q to the cost function, we can obtain an autoencoder
that learns something useful by changing the reconstruction error term of the cost
function.

Traditionally, autoencoders minimize some function

L(x, g(f(x))) (14.8)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the L? norm of their difference. This encourages gof to learn to be merely an
identity function if they have the capacity to do so.

A denoising autoencoder or DAE instead minimizes

L(x, g(f(%)), (14.9)

where X is a copy of x that has been corrupted by some form of noise. Denoising
autoencoders must therefore undo this corruption rather than simply copying their
input.

Denoising training forces f and g to implicitly learn the structure of pgata (X),
as shown by () and (). Denoising

510

CHAPTER 14. AUTOENCODERS

autoencoders thus provide yet another example of how useful properties can emerge
as a byproduct of minimizing reconstruction error. They are also an example of
how overcomplete, high-capacity models may be used as autoencoders so long
as care is taken to prevent them from learning the identity function. Denoising
autoencoders are presented in more detail in Sec. 14.5.

14.2.3 Regularizing by Penalizing Derivatives

Another strategy for regularizing an autoencoder is to use a penalty € as in sparse
autoencoders,
L(x, g(f(x))) + Q(h, x), (14.10)

but with a different form of Q:

Q) =1 x |V xhi||2. (14.11)

This forces the model to learn a function that does not change much when X
changes slightly. Because this penalty is applied only at training examples, it forces

the autoencoder to learn features that capture information about the training
distribution.

An autoencoder regularized in this way is called a contractive autoencoder
or CAE. This approach has theoretical connections to denoising autoencoders,
manifold learning and probabilistic modeling. The CAE is described in more detail
in Sec. 14.7.

14.3 Representational Power, Layer Size and Depth

Autoencoders are often trained with only a single layer encoder and a single layer
decoder. However, this is not a requirement. In fact, using deep encoders and
decoders offers many advantages.

Recall from Sec. 6.4.1 that there are many advantages to depth in a feedforward
network. Because autoencoders are feedforward networks, these advantages also
apply to autoencoders. Moreover, the encoder is itself a feedforward network as
is the decoder, so each of these components of the autoencoder can individually
benefit from depth.

One major advantage of non-trivial depth is that the universal approximator
theorem guarantees that a feedforward neural network with at least one hidden
layer can represent an approximation of any function (within a broad class) to an

511

CHAPTER 14. AUTOENCODERS

arbitrary degree of accuracy, provided that it has enough hidden units. This means

that an autoencoder with a single hidden layer is able to represent the identity

function along the domain of the data arbitrarily well. However, the mapping from
input to code is shallow. This means that we are not able to enforce arbitrary
constraints, such as that the code should be sparse. A deep autoencoder, with at

least one additional hidden layer inside the encoder itself, can approximate any
mapping from input to code arbitrarily well, given enough hidden units.

Depth can exponentially reduce the computational cost of representing some
functions. Depth can also exponentially decrease the amount of training data
needed to learn some functions. See Sec. 6.4.1 for a review of the advantages of
depth in feedforward networks.

Experimentally, deep autoencoders yield much better compression than corre-
sponding shallow or linear autoencoders (,).

A common strategy for training a deep autoencoder is to greedily pretrain
the deep architecture by training a stack of shallow autoencoders, so we often
encounter shallow autoencoders, even when the ultimate goal is to train a deep
autoencoder.

14.4 Stochastic Encoders and Decoders

Autoencoders are just feedforward networks. The same loss functions and output
unit types that can be used for traditional feedforward networks are also used for
autoencoders.

As described in Sec. 6.2.2.4, a general strategy for designing the output units
and the loss function of a feedforward network is to define an output distribution
p(y | x) and minimize the negative log-likelihood ~logp (y | x). In that setting, y
was a vector of targets, such as class labels.

In the case of an autoencoder, x is now the target as well as the input. However,
we can still apply the same machinery as before. Given a hidden code h, we may
think of the decoder as providing a conditional distribution Pdecoder (x | h). We
may then train the autoencoder by minimizing —log p decoder (x | h) - The exact
form of this loss function will change depending on the E)rm of Pdecoder - As with
traditional feedforward networks, we usually use linear output units to parametrize
the mean of a Gaussian distribution if x is real-valued. In that case, the negative
log-likelihood yields a mean squared error criterion. Similarly, binary = x values
correspond to a Bernoulli distribution whose parameters are given by a sigmoid
output unit, discrete x values correspond to a softmax distribution, and so on.

512

CHAPTER 14. AUTOENCODERS

Typically, the output variables are treated as being conditionally independent
given h so that this probability distribution is inexpensive to evaluate, but some
techniques such as mixture density outputs allow tractable modeling of outputs
with correlations.

Pencoder (h | v\ Pdecoder (v | h\

Figure 14.2: The structure of a stochastic autoencoder, in which both the encoder and the
decoder are not simple functions but instead involve some noise injection, meaning that
their output can be seen as sampled from a distribution, Pencoder (| x) for the encoder

and pdecoder (x | h) for the decoder.

To make a more radical departure from the feedforward networks we have seen
previously, we can also generalize the notion of an encoding function f(x) to an

encoding distribution p encoder (h | x), as illustrated in Fig. 14.2.
Any latent variable model p model (h, X) defines a stochastic encoder

Pencoder (h|x)=p model (h|x) (14.12)

and a stochastic decoder

Pdecoder (x| h)=p model (x| h). (14.13)
In general, the encoder and decoder distributions are not necessarily conditional
distributions compatible with a unique joint distribution Pmodel (X, h).
() showed that training the encoder and decoder as a denoising autoencoder

will tend to make them compatible asymptotically (with enough capacity and
examples).

14.5 Denoising Autoencoders

The denoising autoencoder (DAE) is an autoencoder that receives a corrupted data
point as input and is trained to predict the original, uncorrupted data point as its
output.

The DAE training procedure is illustrated in Fig. 14.3. We introduce a
corruption process C (X | <) Which represents a conditional distribution over

513

CHAPTER 14. AUTOENCODERS

C(Tin

Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version X.
This is accomplished by minimizing the loss L = _ g p decoder (x 'h =~ f (X)), where
X is a corrupted version of the data example x, obtained through a given corruption
process C(yx I x). Typically the distribution pgecoder 1 @ factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples X, given a data sample x. The autoencoder then learns a

reconstruction distribution Preconstruct (x | X) estimated from training pairs (X, X),
as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version X from C(§ | x = X).

3. Use (x, X) as a training example for estimating the autoencoder reconstruction

distribution preconstruct (x | X) = Pdecoder (x |h) with h the output of encoder
f(X) and p gecoder typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such

as minibatch gradient descent) on the negative log-likelihood — _; decoder (x | b)-
. o © logp X |

So long as the encoder is deterministic, the denoising autoencoder is a feedforward

network and may be trained with exactly the same techniques as any other

feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

—E x~pdaa (%) E£~C(X[x) log pdecoder (x | h=f(X)) (14.14)

where P gata (X) is the training distribution.

514

CHAPTER 14. AUTOENCODERS

Figure 14.4: A denoising autoencoder is trained to map a corrupted data point % back to
the original data point x. We illustrate training examples x as red crosses lying near a
low-dimensional manifold illustrated with the bold black line. We illustrate the corruption
process C (x I x) with a gray circle of equiprobable corruptions. A gray arrow demonstrates
how one training example is transformed into one sample from this corruption process.
When the denoising autoencoder is trained to minimize the average of squared errors
Ie(F (X)) —| 2., the recongtruction g(f (X)) estimates E'X’X- an CC 30 [x X]. The vector
g%f (X)) _ X points approximately towards the nearest point on the mam#ofd, since g(f (X))
estimates the center of mass of the clean points x which could have given rise to X. The
autoencoder thus learns a vector field — g(f(x)) _ indicated by the green arrows. This
vector field estimates the score 7 x l0g pyaa (X) up to a multiplicative factor that is the
average root mean square reconstruction error.

515

CHAPTER 14. AUTOENCODERS

14.5.1 Estimating the Score

Score matching (,) is an alternative to maximum likelihood. It
provides a consistent estimator of probability distributions based on encouraging
the model to have the same score as the data distribution at every training point
x. In this context, the score is a particular gradient field:

v x log p(x). (14.15)

Score matching is discussed further in Sec. 18.4. For the present discussion
regarding autoencoders, it is sufficient to understand that learning the gradient
field of logpgara 18 One way to learn the structure of p gu itself.

A very important property of DAEs is that their training criterion (with
conditionally Gaussian p(y | h)) makes the autoencoder learn a vector field
(g(f(x)) —) that estimates the score of the data distribution. This is illustrated
in Fig. 14.4.

Denoising training of a specific kind of autoencoder (sigmoidal hidden units,
linear reconstruction units) using Gaussian noise and mean squared error as the
reconstruction cost is equivalent (,) to training a specific kind of
undirected probabilistic model called an RBM with Gaussian visible units. This
kind of model will be described in detail in Sec. 20.5.1; for the present discussion
it suffices to know that it is a model that provides an explicit pmodel (X;0). When
the RBM is trained using denoising score matching (,),
its learning algorithm is equivalent to denoising training in the corresponding
autoencoder. With a fixed noise level, regularized score matching is not a consistent
estimator; it instead recovers a blurred version of the distribution. However, if
the noise level is chosen to approach 0 when the number of examples approaches
infinity, then consistency is recovered. Denoising score matching is discussed in
more detail in Sec. 18.5.

Other connections between autoencoders and RBMs exist. Score matching
applied to RBMs yields a cost function that is identical to reconstruction error
combined with a regularization term similar to the contractive penalty of the
CAE (,). () showed that an autoen-
coder gradient provides an approximation to contrastive divergence training of
RBMs.

For continuous-valued x, the denoising criterion with Gaussian corruption and
reconstruction distribution yields an estimator of the score that is applicable to
general encoder and decoder parametrizations (,). This
means a generic encoder-decoder architecture may be made to estimate the score

516

CHAPTER 14. AUTOENCODERS

by training with the squared error criterion

~ 2
le(f(%)~ x| (14.16)
and corruption
~ ~ ~. _ _ 2
C(x= x[x) = N (x;u=x,2=0c °I) (14.17)
with noise variance o 2. See Fig. 14.5 for an illustration of how this works.
T 1 T T T
:: S N A T T T T 2 T 2 R T I
Pt ATV S L L
RS EN d TI I SE
s oo % Y 4 7]
- b TXAS M&///,« -
s & ok \\\:}‘ /‘//&// i :
i iR ‘\‘\\\\ /// i
A e TR \.‘m\\\\\
,-“‘._‘._-“-.“-.\‘-.\\\\ if//
R . i UL N 8 R A
i g '.-r—-'/-//"////
b o o o= = - —---""—"""/ //f’r
R ek o “\‘__.....f'/"/’/'///_'-
- e - - //}' \\ H......-—-/////—-'.-r.—
P ///j \\\\‘,,///z,-ﬂ.-
- e v /// \\x‘_#’l.ﬂ'r’.-’-—f—-—q-
R A h // \H\‘.r"’—'——-—b—pﬂb
- e e F o P// }|- o FF S e e e
- X X g L _’:£ 1‘.-"' @ T e e e e R B
- . T B ' A 4 T T T T e
. T e e R T O S R
R B " " B R R S R S T T O S s N M
A 2.2 e B T R B N N L S T T S v e Al &
b o . e w o o 4 4 4 4 4 4 &k i el e S e 4
L r v . - - r ¢ v ¥ ¥ ¥ £ 4 4 2 D 0 e A w % ow s -
T A A O R T T BT * I T N i
L SN T S T T TN SR N BT T T S S S R T N W T W W S -
ML PP E VNN NN sy s g

Figure 14.5: Vector field learned by a denoising autoencoder around a 1-D curved manifold
near which the data concentrates in a 2-D space. Each arrow is proportional to the
reconstruction minus input vector of the autoencoder and points towards higher probability
according to the implicitly estimated probability distribution. The vector field has zeros
at both maxima of the estimated density function (on the data manifolds) and at minima
of that density function. For example, the spiral arm forms a one-dimensional manifold of
local maxima that are connected to each other. Local minima appear near the middle of
the gap between two arms. When the norm of reconstruction error (shown by the length
of the arrows) is large, it means that probability can be significantly increased by moving
in the direction of the arrow, and that is mostly the case in places of low probability.
The autoencoder maps these low probability points to higher probability reconstructions.
Where probability is maximal, the arrows shrink because the reconstruction becomes more
accurate.

In general, there is no guarantee that the reconstruction g(f (x)) minus the
input x corresponds to the gradient of any function, let alone to the score. That is

517

CHAPTER 14. AUTOENCODERS

why the early results (,) are specialized to particular parametrizations
where g(f(x)) _y may be obtained by taking the derivative of another function.
() generalized the results of () by

identifying a family of shallow autoencoders such that g(f(x))_y corresponds to
a score for all members of the family.

So far we have described only how the denoising autoencoder learns to represent
a probability distribution. More generally, one may want to use the autoencoder as
a generative model and draw samples from this distribution. This will be described
later, in Sec. 20.11.

14.5.1.1 Historical Perspective

The idea of using MLPs for denoising dates back to the work of ()
and (). () also used recurrent networks to denoise
images. Denoising autoencoders are, in some sense, just MLPs trained to denoise.
However, the name “denoising autoencoder” refers to a model that is intended not
merely to learn to denoise its input but to learn a good internal representation
as a side effect of learning to denoise. This idea came much later (

, ,). The learned representation may then be used to pretrain a
deeper unsupervised network or a supervised network. Like sparse autoencoders,
sparse coding, contractive autoencoders and other regularized autoencoders, the
motivation for DAEs was to allow the learning of a very high-capacity encoder
while preventing the encoder and decoder from learning a useless identity function.

Prior to the introduction of the modern DAE, ()
explored some of the same goals with some of the same methods. Their approach
minimizes reconstruction error in addition to a supervised objective while injecting
noise in the hidden layer of a supervised MLP, with the objective to improve
generalization by introducing the reconstruction error and the injected noise.
However, their method was based on a linear encoder and could not learn function
families as powerful as can the modern DAE.

14.6 Learning Manifolds with Autoencoders

Like many other machine learning algorithms, autoencoders exploit the idea

that data concentrates around a low-dimensional manifold or a small set of such
manifolds, as described in Sec. 5.11.3. Some machine learning algorithms exploit
this idea only insofar as that they learn a function that behaves correctly on the
manifold but may have unusual behavior if given an input that is off the manifold.

518

CHAPTER 14. AUTOENCODERS

Autoencoders take this idea further and aim to learn the structure of the manifold.

To understand how autoencoders do this, we must present some important
characteristics of manifolds.

An important characterization of a manifold is the set of its tangent planes. At
a point x on a d-dimensional manifold, the tangent plane is given by d basis vectors
that span the local directions of variation allowed on the manifold. As illustrated
in Fig. 14.6, these local directions specify how one can change x infinitesimally
while staying on the manifold.

All autoencoder training procedures involve a compromise between two forces:

1. Learning a representation h of a training example x such that x can be
approximately recovered from h through a decoder. The fact that x is drawn
from the training data is crucial, because it means the autoencoder need
not successfully reconstruct inputs that are not probable under the data
generating distribution.

2. Satisfying the constraint or regularization penalty. This can be an architec-
tural constraint that limits the capacity of the autoencoder, or it can be
a regularization term added to the reconstruction cost. These techniques
generally prefer solutions that are less sensitive to the input.

Clearly, neither force alone would be useful—copying the input to the output
is not useful on its own, nor is ignoring the input. Instead, the two forces together
are useful because they force the hidden representation to capture information
about the structure of the data generating distribution. The important principle
is that the autoencoder can afford to represent only the variations that are needed
to reconstruct training examples. If the data generating distribution concentrates
near a low-dimensional manifold, this yields representations that implicitly capture
a local coordinate system for this manifold: only the variations tangent to the
manifold around x need to correspond to changes in h = f(x). Hence the encoder
learns a mapping from the input space X to a representation space, a mapping that
is only sensitive to changes along the manifold directions, but that is insensitive to
changes orthogonal to the manifold.

A one-dimensional example is illustrated in Fig. 14.7, showing that by making
the reconstruction function insensitive to perturbations of the input around the
data points we recover the manifold structure.

To understand why autoencoders are useful for manifold learning, it is instruc-
tive to compare them to other approaches. What is most commonly learned to
characterize a manifold is a representation of the data points on (or near) the

519

CHAPTER 14. AUTOENCODERS

Figure 14.6: An illustration of the concept of a tangent hyperplane. Here we create a
one-dimensional manifold in 784-dimensional space. We take an MNIST image with 784
pixels and transform it by translating it vertically. The amount of vertical translation
defines a coordinate along a one-dimensional manifold that traces out a curved path
through image space. This plot shows a few points along this manifold. For visualization,
we have projected the manifold into two dimensional space using PCA. An n -dimensional
manifold has an n-dimensional tangent plane at every point. This tangent plane touches
the manifold exactly at that point and is oriented parallel to the surface at that point.

It defines the space of directions in which it is possible to move while remaining on
the manifold. This one-dimensional manifold has a single tangent line. We indicate an
example tangent line at one point, with an image showing how this tangent direction
appears in image space. Gray pixels indicate pixels that do not change as we move along
the tangent line, white pixels indicate pixels that brighten, and black pixels indicate pixels
that darken.

520

CHAPTER 14. AUTOENCODERS

1.0 T 1 1 -
. -
os L Identity - - |
‘ — Optimal reconstruction ——
o= |
0.6 [- | .
— -
o) =1 |
-
04 L =2 -
- 1 |
s -
o2 F o | |]
g% - | | |
0.0] |]
X0 X1 X2

Figure 14.7: If the autoencoder learns a reconstruction function that is invariant to small
perturbations near the data points, it captures the manifold structure of the data. Here

the manifold structure is a collection of 0-dimensional manifolds. The dashed diagonal
line indicates the identity function target for reconstruction. The optimal reconstruction
function crosses the identity function wherever there is a data point. The horizontal
arrows at the bottom of the plot indicate the r(x)_, reconstruction direction vector
at the base of the arrow, in input space, always pointing towards the nearest “manifold”

(a single datapoint, in the 1-D case). The denoising autoencoder explicitly tries to make
the derivative of the reconstruction function r(x) small around the data points. The
contractive autoencoder does the same for the encoder. Although the derivative of r(x)is
asked to be small around the data points, it can be large between the data points. The
space between the data points corresponds to the region between the manifolds, where
the reconstruction function must have a large derivative in order to map corrupted points
back onto the manifold.

manifold. Such a representation for a particular example is also called its em-
bedding. It is typically given by a low-dimensional vector, with less dimensions
than the “ambient” space of which the manifold is a low-dimensional subset. Some
algorithms (non-parametric manifold learning algorithms, discussed below) directly
learn an embedding for each training example, while others learn a more general
mapping, sometimes called an encoder, or representation function, that maps any
point in the ambient space (the input space) to its embedding.

Manifold learning has mostly focused on unsupervised learning procedures that
attempt to capture these manifolds. Most of the initial machine learning research
on learning nonlinear manifolds has focused on non-parametric methods based on
the nearest-neighbor graph. This graph has one node per training example and
edges connecting near neighbors to each other. These methods (,

9 9 b 9 b 9 9

521

CHAPTER 14. AUTOENCODERS

Figure 14.8: Non-parametric manifold learning procedures build a nearest neighbor graph
whose nodes are training examples and arcs connect nearest neighbors. Various procedures
can thus obtain the tangent plane associated with a neighborhood of the graph as well
as a coordinate system that associates each training example with a real-valued vector
position, or embedding. It is possible to generalize such a representation to new examples
by a form of interpolation. So long as the number of examples is large enough to cover
the curvature and twists of the manifold, these approaches work well. Images from the
QMUL Multiview Face Dataset (,).

, ; ,) associate each of nodes with a
tangent plane that spans the directions of variations associated with the difference
vectors between the example and its neighbors, as illustrated in Fig. 14.8.

A global coordinate system can then be obtained through an optimization or
solving a linear system. Fig. 14.9 illustrates how a manifold can be tiled by a
large number of locally linear Gaussian-like patches (or “pancakes,” because the
Gaussians are flat in the tangent directions).

However, there is a fundamental difficulty with such local non-parametric
approaches to manifold learning, raised in (): if the
manifolds are not very smooth (they have many peaks and troughs and twists),
one may need a very large number of training examples to cover each one of these
variations, with no chance to generalize to unseen variations. Indeed, these methods

522

CHAPTER 14. AUTOENCODERS

Figure 14.9: If the tangent planes (see Fig. 14.6) at each location are known, then they
can be tiled to form a global coordinate system or a density function. Each local patch
can be thought of as a local Euclidean coordinate system or as a locally flat Gaussian, or
“pancake”, with a very small variance in the directions orthogonal to the pancake and a
very large variance in the directions defining the coordinate system on the pancake. A
mixture of these Gaussians provides an estimated density function, as in the manifold
Parzen window algorithm (,) or its non-local neural-net based
variant (,).

can only generalize the shape of the manifold by interpolating between neighboring
examples. Unfortunately, the manifolds involved in Al problems can have very
complicated structure that can be difficult to capture from only local interpolation.
Consider for example the manifold resulting from translation shown in Fig. 14.6. If
we watch just one coordinate within the input vector, x;, as the image is translated,
we will observe that one coordinate encounters a peak or a trough in its value
once for every peak or trough in brightness in the image. In other words, the
complexity of the patterns of brightness in an underlying image template drives
the complexity of the manifolds that are generated by performing simple image
transformations. This motivates the use of distributed representations and deep
learning for capturing manifold structure.

523

CHAPTER 14. AUTOENCODERS

14.7 Contractive Autoencoders

The contractive autoencoder (, ,b) introduces an explicit regularizer
on the code h = f (x), encouraging the derivatives of f to be as small as possible:

of 2
Q(h) =1 ﬂ . (14.18)
3 0x I

The penalty Q(h) is the squared Frobenius norm (sum of squared elements) of the
Jacobian matrix of partial derivatives associated with the encoder function.

There is a connection between the denoising autoencoder and the contractive
autoencoder: () showed that in the limit of small Gaussian
input noise, the denoising reconstruction error is equivalent to a contractive
penalty on the reconstruction function that maps x to r = g (x)). In other
words, denoising autoencoders make the reconstruction function resist small but
finite-sized perturbations of the input, while contractive autoencoders make the
feature extraction function resist infinitesimal perturbations of the input. When
using the Jacobian-based contractive penalty to pretrain features f (x) for use
with a classifier, the best classification accuracy usually results from applying the
contractive penalty to f(x) rather than to g(f (x)). A contractive penalty on f (x)
also has close connections to score matching, as discussed in Sec. 14.5.1.

The name contractive arises from the way that the CAE warps space. Specifi-
cally, because the CAE is trained to resist perturbations of its input, it is encouraged
to map a neighborhood of input points to a smaller neighborhood of output points.
We can think of this as contracting the input neighborhood to a smaller output
neighborhood.

To clarify, the CAE is contractive only locally—all perturbations of a training
point x are mapped near to f(x). Globally, two different points x and x0 may be
mapped to f(x) and f(x0) points that are farther apart than the original points.

It is plausible that f be expanding in-between or far from the data manifolds (see
for example what happens in the 1-D toy example of Fig. 14.7). When the Q(h)
penalty is applied to sigmoidal units, one easy way to shrink the Jacobian is to
make the sigmoid units saturate to 0 or 1. This encourages the CAE to encode
input points with extreme values of the sigmoid that may be interpreted as a
binary code. It also ensures that the CAE will spread its code values throughout
most of the hypercube that its sigmoidal hidden units can span.

We can think of the Jacobian matrix J at a point x as approximating the
nonlinear encoder f(x) as being a linear operator. This allows us to use the word
“contractive” more formally. In the theory of linear operators, a linear operator

524

CHAPTER 14. AUTOENCODERS

is said to be contractive if the norm of Jx remains less than or equal to 1 for
all unit-norm x. In other words, J is contractive if it shrinks the unit sphere.
We can think of the CAE as penalizing the Frobenius norm of the local linear
approximation of f(x) at every training point x in order to encourage each of
these local linear operator to become a contraction.

As described in Sec. 14.6, regularized autoencoders learn manifolds by balancing
two opposing forces. In the case of the CAE, these two forces are reconstruction
error and the contractive penalty QQ(h). Reconstruction error alone would encourage
the CAE to learn an identity function. The contractive penalty alone would
encourage the CAE to learn features that are constant with respect to x. The
compromise between these two forces yields an autoencoder whose derivatives
a—fa%)— are mostly tiny. Only a small number of hidden units, corresponding to a

small number of directions in the input, may have significant derivatives.

The goal of the CAE is to learn the manifold structure of the data. Directions
x with large Jx rapidly change h, so these are likely to be directions which
approximate the tangent planes of the manifold. Experiments by ()
and () show that training the CAE results in most singular values
of J dropping below 1 in magnitude and therefore becoming contractive. However,
some singular values remain above 1, because the reconstruction error penalty
encourages the CAE to encode the directions with the most local variance. The
directions corresponding to the largest singular values are interpreted as the tangent
directions that the contractive autoencoder has learned. Ideally, these tangent
directions should correspond to real variations in the data. For example, a CAE
applied to images should learn tangent vectors that show how the image changes as
objects in the image gradually change pose, as shown in Fig. 14.6. Visualizations of
the experimentally obtained singular vectors do seem to correspond to meaningful
transformations of the input image, as shown in Fig. 14.10.

One practical issue with the CAE regularization criterion is that although it
is cheap to compute in the case of a single hidden layer autoencoder, it becomes
much more expensive in the case of deeper autoencoders. The strategy followed by

() is to separately train a series of single-layer autoencoders, each
trained to reconstruct the previous autoencoder’s hidden layer. The composition
of these autoencoders then forms a deep autoencoder. Because each layer was
separately trained to be locally contractive, the deep autoencoder is contractive
as well. The result is not the same as what would be obtained by jointly training
the entire architecture with a penalty on the Jacobian of the deep model, but it
captures many of the desirable qualitative characteristics.

Another practical issue is that the contraction penalty can obtain useless results

525

CHAPTER 14. AUTOENCODERS

Input Tangent vectors
point

Contractive autoencoder

Figure 14.10: Illustration of tangent vectors of the manifold estimated by local PCA
and by a contractive autoencoder. The location on the manifold is defined by the input

image of a dog drawn from the CIFAR-10 dataset. The tangent vectors are estimated

by the leading singular vectors of the Jacobian matrix % of the input-to-code mapping.

Although both local PCA and the CAE can capture local tangents, the CAE is able to

form more accurate estimates from limited training data because it exploits parameter
sharing across different locations that share a subset of active hidden units. The CAE
tangent directions typically correspond to moving or changing parts of the object (such as
the head or legs).

if we do not impose some sort of scale on the decoder. For example, the encoder
could consist of multiplying the input by a small constant @and the decoder
could consist of dividing the code by ® As @pproaches 0, the encoder drives the
contractive penalty Q(h) to approach 0 without having learned anything about the
distribution. Meanwhile, the decoder maintains perfect reconstruction. In Rifai

et al. (2011a), this is prevented by tying the weights of f and g. Both f and g are
standard neural network layers consisting of an affine transformation followed by

an element-wise nonlinearity, so it is straightforward to set the weight matrix of g
to be the transpose of the weight matrix of f.

14.8 Predictive Sparse Decomposition

Predictive sparse decomposition (PSD) is a model that is a hybrid of sparse

coding and parametric autoencoders (Kavukcuoglu et al., 2008). A parametric
encoder is trained to predict the output of iterative inference. PSD has been
applied to unsupervised feature learning for object recognition in images and video
(Kavukcuoglu et al., 2009, 2010; Jarrett et al., 2009; Farabet et al., 2011), as well

as for audio (Henaff et al., 2011). The model consists of an encoder f (x) and a
decoder g(h) that are both parametric. During training, h is controlled by the

526

CHAPTER 14. AUTOENCODERS

optimization algorithm. Training proceeds by minimizing

2 2
[x—g®)|| ~+Ah T+ylh—fx)| (14.19)

Like in sparse coding, the training algorithm alternates between minimization with
respect to h and minimization with respect to the model parameters. Minimization
with respect to h is fast because f(x) provides a good initial value of h and the
cost function constrains h to remain near f (x) anyway. Simple gradient descent
can obtain reasonable values of h in as few as ten steps.

The training procedure used by PSD is different from first training a sparse
coding model and then training f(x) to predict the values of the sparse coding
features. The PSD training procedure regularizes the decoder to use parameters
for which f(x) can infer good code values.

Predictive sparse coding is an example of learned approximate inference. In Sec.
19.5, this topic is developed further. The tools presented in Chapter 19 make it
clear that PSD can be interpreted as training a directed sparse coding probabilistic
model by maximizing a lower bound on the log-likelihood of the model.

In practical applications of PSD, the iterative optimization is only used during
training. The parametric encoder f is used to compute the learned features when
the model is deployed. Evaluating f is computationally inexpensive compared to
inferring h via gradient descent. Because f is a differentiable parametric function,
PSD models may be stacked and used to initialize a deep network to be trained
with another criterion.

14.9 Applications of Autoencoders

Autoencoders have been successfully applied to dimensionality reduction and infor-
mation retrieval tasks. Dimensionality reduction was one of the first applications
of representation learning and deep learning. It was one of the early motivations
for studying autoencoders. For example, () trained
a stack of RBMs and then used their weights to initialize a deep autoencoder
with gradually smaller hidden layers, culminating in a bottleneck of 30 units. The
resulting code yielded less reconstruction error than PCA into 30 dimensions and
the learned representation was qualitatively easier to interpret and relate to the
underlying categories, with these categories manifesting as well-separated clusters.

Lower-dimensional representations can improve performance on many tasks,
such as classification. Models of smaller spaces consume less memory and runtime.
Many forms of dimensionality reduction place semantically related examples near

527

CHAPTER 14. AUTOENCODERS

each other, as observed by () and
(). The hints provided by the mapping to the lower-dimensional space aid
generalization.

One task that benefits even more than usual from dimensionality reduction
is information retrieval, the task of finding entries in a database that resemble a
query entry. This task derives the usual benefits from dimensionality reduction
that other tasks do, but also derives the additional benefit that search can become
extremely efficient in certain kinds of low dimensional spaces. Specifically, if
we train the dimensionality reduction algorithm to produce a code that is low-
dimensional and binary , then we can store all database entries in a hash table
mapping binary code vectors to entries. This hash table allows us to perform
information retrieval by returning all database entries that have the same binary
code as the query. We can also search over slightly less similar entries very
efficiently, just by flipping individual bits from the encoding of the query. This
approach to information retrieval via dimensionality reduction and binarization

is called semantic hashing (, s), and has
been applied to both textual input (, ,) and
images (9 ; 9 ; 9)'

To produce binary codes for semantic hashing, one typically uses an encoding
function with sigmoids on the final layer. The sigmoid units must be trained to be
saturated to nearly O or nearly 1 for all input values. One trick that can accomplish
this is simply to inject additive noise just before the sigmoid nonlinearity during
training. The magnitude of the noise should increase over time. To fight that
noise and preserve as much information as possible, the network must increase the
magnitude of the inputs to the sigmoid function, until saturation occurs.

The idea of learning a hashing function has been further explored in several
directions, including the idea of training the representations so as to optimize
a loss more directly linked to the task of finding nearby examples in the hash
table (,).

528

