Chapter 17

Monte Carlo Methods

Randomized algorithms fall into two rough categories: Las Vegas algorithms and
Monte Carlo algorithms. Las Vegas algorithms always return precisely the correct
answer (or report that they failed). These algorithms consume a random amount

of resources, usually memory or time. In contrast, Monte Carlo algorithms return
answers with a random amount of error. The amount of error can typically be

reduced by expending more resources (usually running time and memory). For any
fixed computational budget, a Monte Carlo algorithm can provide an approximate

answer.

Many problems in machine learning are so difficult that we can never expect to
obtain precise answers to them. This excludes precise deterministic algorithms and
Las Vegas algorithms. Instead, we must use deterministic approximate algorithms
or Monte Carlo approximations. Both approaches are ubiquitous in machine
learning. In this chapter, we focus on Monte Carlo methods.

17.1 Sampling and Monte Carlo Methods

Many important technologies used to accomplish machine learning goals are based
on drawing samples from some probability distribution and using these samples to
form a Monte Carlo estimate of some desired quantity.

17.1.1 Why Sampling?

There are many reasons that we may wish to draw samples from a probability
distribution. Sampling provides a flexible way to approximate many sums and

593

CHAPTER 17. MONTE CARLO METHODS

integrals at reduced cost. Sometimes we use this to provide a significant speedup to
a costly but tractable sum, as in the case when we subsample the full training cost
with minibatches. In other cases, our learning algorithm requires us to approximate
an intractable sum or integral, such as the gradient of the log partition function of
an undirected model. In many other cases, sampling is actually our goal, in the
sense that we want to train a model that can sample from the training distribution.

17.1.2 Basics of Monte Carlo Sampling

When a sum or an integral cannot be computed exactly (for example the sum
has an exponential number of terms and no exact simplification is known) it is
often possible to approximate it using Monte Carlo sampling. The idea is to view
the sum or integral as if it was an expectation under some distribution and to

approximate the expectation by a corresponding average. Let

s= x POFX)=E ,[f(x)] (17.1)

or
s= Z pOf(x)dx=E p[f(x)] (17.2)

be the sum or integral to estimate, rewritten as an expectation, with the constraint
that p is a probability distribution (for the sum) or a probability density (for the
integral) over random variable x.

We can approximate s by drawing n samples x(V, ..., x ™ from p and then
forming the empirical average
1 n
p = — 0]
Sn = 7 X f(x). (17.3)
i=1
This approximation is justified by a few different properties. The first trivial
observation is that the estimator S is unbiased, since

1" . 1"
EEn]l= —x E[fx ")]= ~y s=s. (17.4)
n- n <
i=1 i=1
But in addition, the law of large numbers states that if the samples x® are i.i.d.,

then the average converges almost surely to the expected value:

lim s, =s, (17.5)

n—oo

594

CHAPTER 17. MONTE CARLO METHODS

provided that the variance of the individual terms, Var[f (x)], is bounded. To see
this more clearly, consider the variance of §, as n increases. The variance Var[sy]
decreases and converges to 0, so long as Var[f(x @)] < o0

n

Var[s] = n% x Var[f(x)] (17.6)
i=1
_ Var[f(x)]
= " . (17.7)

This convenient result also tells us how to estimate the uncertainty in a Monte
Carlo average or equivalently the amount of expected error of the Monte Carlo
approximation. We compute both the empirical average of the f(x V) and their
empirical variance, ! and then divide the estimated variance by the number of
samples n to obtain an estimator of Var[,]. The central limit theorem tells us that
the distribution of the average, <., converges to a normal distribution with mean s
and variance \ﬂmnﬁ— This allows us to estimate confidence intervals around the
estimate s , using the cumulative distribution of the normal density.

However, all this relies on our ability to easily sample from the base distribution
p(x), but doing so is not always possible. When it is not feasible to sample from
p, an alternative is to use importance sampling, presented in Sec. 17.2. A more
general approach is to form a sequence of estimators that converge towards the
distribution of interest. That is the approach of Monte Carlo Markov chains
(Sec. 17.3).

17.2 Importance Sampling

An important step in the decomposition of the integrand (or summand) used by
the Monte Carlo method in Eq. 17.2 is deciding which part of the integrand should
play the role the probability p(x) and which part of the integrand should play the
role of the quantity f(x) whose expected value (under that probability distribution)
is to be estimated. There is no unique decomposition because p(x)f (x) can always
be rewritten as

PXf(x)

P)f(x) = q(x) v

: (17.8)

where we now sample from q and average ;Lf. In many cases, we wish to compute
an expectation for a given p and an f, and the fact that the problem is specified

! The unbiased estimator of the variance is often preferred, in which the sum of squared

differences is divided by n—1 instead of n.

595

CHAPTER 17. MONTE CARLO METHODS

from the start as an expectation suggests that this p and f would be a natural
choice of decomposition. However, the original specification of the problem may
not be the the optimal choice in terms of the number of samples required to obtain
a given level of accuracy. Fortunately, the form of the optimal choice g* can be
derived easily. The optimal g* corresponds to what is called optimal importance
sampling.

Because of the identity shown in Eq. 17.8, any Monte Carlo estimator

n
$p= - x OB (17.9)
i=1,x © ~p

can be transformed into an importance sampling estimator

L1 p(x M)f(x V)
Sg= ~ ¥ ——— . (17.10)
n qx)

i=1,x ® ~q
We see readily that the expected value of the estimator does not depend on q:
EqEq] = E (p] =s. (17.11)

However, the variance of an importance sampling estimator can be greatly sensitive
to the choice of q. The variance is given by

. P)f(x)
Var[s q] = Var[—— |/n. (17.12)
! q(x)
The minimum variance occurs when q is
qr(x) = PR, (17.13)

where Z is the normalization constant, chosen so that g*(x) sums or integrates to
1 as appropriate. Better importance sampling distributions put more weight where

the integrand is larger. In fact, when f(x) does not change sign, VarFq.] = 0,
meaning that a single sample is sufficient when the optimal distribution is
used. Of course, this is only because the computation of g* has essentially solved
the original problem, so it is usually not practical to use this approach of drawing

a single sample from the optimal distribution.

Any choice of sampling distribution q is valid (in the sense of yielding the
correct expected value) and qg* is the optimal one (in the sense of yielding minimum
variance). Sampling from qg* is usually infeasible, but other choices of q can be
feasible while still reducing the variance somewhat.

596

CHAPTER 17. MONTE CARLO METHODS

Another approach is to use biased importance sampling , which has the
advantage of not requiring normalized p or g In the case of discrete variables, the
biased importance sampling estimator is given by

p((i)) ;
) p 1 gom (&)
SBIS = N 0 (17.14)
P =l oqx®)
p((i)) ;
p ?:1 q(; M) f(x (1))
= — (17.15)
P =l dx @)
~o () .
P ?21 %f(x (1))
- e ; (17.16)
P Eldax @)

where p and § are the unnormalized forms of p and qand the x® are the samples
from q. This estimator is biased because E[$ps] § S, except asymptotically when
n —» oo and the denominator of Eq. 17.14 converges to 1. Hence this estimator is
called asymptotically unbiased.

Although a good choice of q can greatly improve the efficiency of Monte Carlo
estimation, a poor choice of ¢ can make the efficiency much worse. Going back
to Eq. 17.12, we see that if there are samples of q for which 4;@96414%%94— is large,
then the variance of the estimator can get very large. This may happen when
q(x) is tiny while neither p(x) nor f(x) are small enough to cancel it. The q
distribution is usually chosen to be a very simple distribution so that it is easy
to sample from. When x is high-dimensional, this simplicity in q causes it to
match p or plf] poorly. When q(x®) “p (x®)|f (x(i))|, importance sampling
collects useless samples (summing tiny numbers or zeros). On the other hand, when
q(x (i))Ap (x®)|f (x(i))|, which will happen more rarely, the ratio can be huge.
Because these latter events are rare, they may not show up in a typical sample,
yielding typical underestimation of s, compensated rarely by gross overestimation.
Such very large or very small numbers are typical when x is high dimensional,
because in high dimension the dynamic range of joint probabilities can be very
large.

In spite of this danger, importance sampling and its variants have been found
very useful in many machine learning algorithms, including deep learning algorithms.
For example, see the use of importance sampling to accelerate training in neural
language models with a large vocabulary (Sec. 12.4.3.3) or other neural nets
with a large number of outputs. See also how importance sampling has been
used to estimate a partition function (the normalization constant of a probability

597

CHAPTER 17. MONTE CARLO METHODS

distribution) in Sec. 18.7, and to estimate the log-likelihood in deep directed models
such as the variational autoencoder, in Sec. 20.10.3. Importance sampling may
also be used to improve the estimate of the gradient of the cost function used to
train model parameters with stochastic gradient descent, particularly for models
such as classifiers where most of the total value of the cost function comes from a
small number of misclassified examples. Sampling more difficult examples more
frequently can reduce the variance of the gradient in such cases (,).

17.3 Markov Chain Monte Carlo Methods

In many cases, we wish to use a Monte Carlo technique but there is no tractable
method for drawing exact samples from the distribution pmodel (X) or from a good
(low variance) importance sampling distribution q(x). In the context of deep
learning, this most often happens when ppo4el (X) is represented by an undirected
model. In these cases, we introduce a mathematical tool called a Markov chain to
approximately sample from pmodel (X). The family of algorithms that use Markov
chains to perform Monte Carlo estimates is called Markov chain Monte Carlo
methods (MCMC). Markov chain Monte Carlo methods for machine learning are
described at greater length in (). The most standard,
generic guarantees for MCMC techniques are only applicable when the model
does not assign zero probability to any state. Therefore, it is most convenient

to present these techniques as sampling from an energy-based model (EBM)

P(X) « exp(-E(x)) S described in Sec. 16.2.4. In the EBM formulation, every
state is guaranteed to have non-zero probabilityy. MCMC methods are in fact
more broadly applicable and can be used with many probability distributions that
contain zero probability states. However, the theoretical guarantees concerning the
behavior of MCMC methods must be proven on a case-by-case basis for different
families of such distributions. In the context of deep learning, it is most common
to rely on the most general theoretical guarantees that naturally apply to all
energy-based models.

To understand why drawing samples from an energy-based model is difficult,
consider an EBM over just two variables, defining a distribution p(a,b). In order
to sample a, we must draw a from p(, b), and in order to sample b, we must
draw it from p(|). It seems to be an intractable chicken-and-egg problem.
Directed models avoid this because their graph is directed and acyclic. To perform
ancestral sampling one simply samples each of the variables in topological order,
conditioning on each variable’s parents, which are guaranteed to have already been
sampled (Sec. 16.3). Ancestral sampling defines an efficient, single-pass method of

598

CHAPTER 17. MONTE CARLO METHODS

obtaining a sample.

In an EBM, we can avoid this chicken and egg problem by sampling using a
Markov chain. The core idea of a Markov chain is to have a state x that begins
as an arbitrary value. Over time, we randomly update x repeatedly. Eventually
x becomes (very nearly) a fair sample from p(x). Formally, a Markov chain is
defined by a random state x and a transition distribution T(x0 |) specifying
the probability that a random update will go to state x 0 if it starts in state Xx.
Running the Markov chain means repeatedly updating the state X to a value x0
sampled from T (x 0| X).

To gain some theoretical understanding of how MCMC methods work, it is
useful to reparametrize the problem. First, we restrict our attention to the case
where the random variable x has countably many states. In this case, we can
represent the state as just a positive integer ~ x. Different integer values of x map
back to different states x in the original problem.

Consider what happens when we run infinitely many Markov chains in parallel.
All of the states of the different Markov chains are drawn from some distribution
q® (x), where t indicates the number of time steps that have elapsed. At the
beginning, g is some distribution that we used to arbitrarily initialize ~ x for each
Markov chain. Later, q is influenced by all of the Markov chain steps that have
run so far. Our goal is for q¢ ® (x) to converge to p(x).

Because we have reparametrized the problem in terms of positive integer X, We
can describe the probability distribution q using a vector v, with

qx=1)=v i. (17.17)

Consider what happens when we update a single Markov chain’s state X to a
new state x 0. The probability of a single state landing in state x 0is given by

"V x9= x Ty (17.18)

Using our integer parametrization, we can represent the effect of the transition
operator T using a matrix A. We define A so that

Aij =T =i x=j). (17.19)
Using this definition, we can now rewrite Eq. 17.18. Rather than writing it in
terms of q and T to understand how a single state is updated, we may now use v

and A to describe how the entire distribution over all the different Markov chains
run in parallel shifts as we apply an update:

v = Ay D) (17.20)
599

CHAPTER 17. MONTE CARLO METHODS

Applying the Markov chain update repeatedly corresponds to multiplying by the
matrix A repeatedly. In other words, we can think of the process as exponentiating
the matrix A:

v =A VO, (17.21)

The matrix A has special structure because each of its columns represents a
probability distribution. Such matrices are called stochastic matrices. If there is
a non-zero probability of transitioning from any state X to any other state x0 for
some power t, then the Perron-Frobenius theorem (, ; ,)
guarantees that the largest eigenvalue is real and equal to 1. Over time, we can
see that all of the eigenvalues are exponentiated:

v = &V diag(L)V -1 .t v® =V diag) 'v-1v©. (17.22)

This process causes all of the eigenvalues that are not equal to 1 to decay to
zero. Under some additional mild conditions, A is guaranteed to have only
one eigenvector with eigenvalue 1. The process thus converges to a stationary
distribution, sometimes also called the equilibrium distribution. At convergence,

v0=Av =v, (17.23)

and this same condition holds for every additional step. This is an eigenvector
equation. To be a stationary point, v must be an eigenvector with corresponding
eigenvalue 1. This condition guarantees that once we have reached the stationary
distribution, repeated applications of the transition sampling procedure do not
change the distribution over the states of all the various Markov chains (although
transition operator does change each individual state, of course).

If we have chosen T correctly, then the stationary distribution q will be equal
to the distribution p we wish to sample from. We will describe how to choose T
shortly, in Sec. 17.4.

Most properties of Markov Chains with countable states can be generalized
to continuous variables. In this situation, some authors call the Markov Chain
a Harris chain but we use the term Markov Chain to describe both conditions.
In general, a Markov chain with transition operator T will converge, under mild
conditions, to a fixed point described by the equation

PxY=E T y), (17.24)

which in the discrete case is just rewriting Eq. 17.23. When x is discrete, the
expectation corresponds to a sum, and when X is continuous, the expectation
corresponds to an integral.

600

CHAPTER 17. MONTE CARLO METHODS

Regardless of whether the state is continuous or discrete, all Markov chain
methods consist of repeatedly applying stochastic updates until eventually the state
begins to yield samples from the equilibrium distribution. Running the Markov
chain until it reaches its equilibrium distribution is called “burning in” the Markov
chain. After the chain has reached equilibrium, a sequence of infinitely many
samples may be drawn from from the equilibrium distribution. They are identically
distributed but any two successive samples will be highly correlated with each other.
A finite sequence of samples may thus not be very representative of the equilibrium
distribution. One way to mitigate this problem is to return only every n successive
samples, so that our estimate of the statistics of the equilibrium distribution is
not as biased by the correlation between an MCMC sample and the next several
samples. Markov chains are thus expensive to use because of the time required to
burn in to the equilibrium distribution and the time required to transition from
one sample to another reasonably decorrelated sample after reaching equilibrium.
If one desires truly independent samples, one can run multiple Markov chains
in parallel. This approach uses extra parallel computation to eliminate latency.
The strategy of using only a single Markov chain to generate all samples and the
strategy of using one Markov chain for each desired sample are two extremes; deep
learning practitioners usually use a number of chains that is similar to the number
of examples in a minibatch and then draw as many samples as are needed from
this fixed set of Markov chains. A commonly used number of Markov chains is 100.

Another difficulty is that we do not know in advance how many steps the
Markov chain must run before reaching its equilibrium distribution. This length of
time is called the mixing time. It is also very difficult to test whether a Markov
chain has reached equilibrium. We do not have a precise enough theory for guiding
us in answering this question. Theory tells us that the chain will converge, but not
much more. If we analyze the Markov chain from the point of view of a matrix A
acting on a vector of probabilities v, then we know that the chain mixes when A
has effectively lost all of the eigenvalues from A besides the unique eigenvalue of 1.
This means that the magnitude of the second largest eigenvalue will determine the
mixing time. However, in practice, we cannot actually represent our Markov chain
in terms of a matrix. The number of states that our probabilistic model can visit
is exponentially large in the number of variables, so it is infeasible to represent
v, A, or the eigenvalues of A. Due to these and other obstacles, we usually do
not know whether a Markov chain has mixed. Instead, we simply run the Markov
chain for an amount of time that we roughly estimate to be sufficient, and use
heuristic methods to determine whether the chain has mixed. These heuristic
methods include manually inspecting samples or measuring correlations between
successive samples.

601

CHAPTER 17. MONTE CARLO METHODS

17.4 Gibbs Sampling

So far we have described how to draw samples from a distribution ~ q(x) by repeatedly
updating , . 0 _ 7(x0 | x). However, we have not described how to ensure that
q(x) is a useful distribution. Two basic approaches are considered in this book.
The first one is to derive T from a given learned pmodel , described below with the
case of sampling from EBMs. The second one is to directly parametrize =~ T and
learn it, so that its stationary distribution implicitly defines the Pmodel Of interest.
Examples of this second approach are discussed in Sec. 20.12 and Sec. 20.13.

In the context of deep learning, we commonly use Markov chains to draw
samples from an energy-based model defining a distribution pmodel (X). In this case,
we want the q(x) for the Markov chain to be ppodel (X). To obtain the desired
q(x), we must choose an appropriate T (x 0| X).

A conceptually simple and effective approach to building a Markov chain
that samples from pmodel (X) 1s to use Gibbs sampling, in which sampling from
T(x0 |) 1s accomplished by selecting one variable x;i and sampling it from pPmodel
conditioned on its neighbors in the undirected graph G defining the structure of
the energy-based model. It is also possible to sample several variables at the same
time so long as they are conditionally independent given all of their neighbors. As
shown in the RBM example in Sec. 16.7.1, all of the hidden units of an RBM may
be sampled simultaneously because they are conditionally independent from each
other given all of the visible units. Likewise, all of the visible units may be sampled
simultaneously because they are conditionally independent from each other given
all of the hidden units. Gibbs sampling approaches that update many variables
simultaneously in this way are called block Gibbs sampling.

Alternate approaches to designing Markov chains to sample from Pmodel are
possible. For example, the Metropolis-Hastings algorithm is widely used in other
disciplines. In the context of the deep learning approach to undirected modeling,
it is rare to use any approach other than Gibbs sampling. Improved sampling
techniques are one possible research frontier.

17.5 The Challenge of Mixing between Separated Modes

The primary difficulty involved with MCMC methods is that they have a tendency
to mix poorly. Ideally, successive samples from a Markov chain designed to sample
from p(x) would be completely independent from each other and would visit many
different regions in x space proportional to their probability. Instead, especially
in high dimensional cases, MCMC samples become very correlated. We refer

602

CHAPTER 17. MONTE CARLO METHODS

to such behavior as slow mixing or even failure to mix. MCMC methods with
slow mixing can be seen as inadvertently performing something resembling noisy
gradient descent on the energy function, or equivalently noisy hill climbing on the
probability, with respect to the state of the chain (the random variables being
sampled). The chain tends to take small steps (in the space of the state of the
Markov chain), from a configuration x (1) to a configuration x), with the energy
E(x®) generally lower or approximately equal to the energy E (x(t-1)), with a
preference for moves that yield lower energy configurations. When starting from a
rather improbable configuration (higher energy than the typical ones from p(x)),
the chain tends to gradually reduce the energy of the state and only occasionally
move to another mode. Once the chain has found a region of low energy (for
example, if the variables are pixels in an image, a region of low energy might be

a connected manifold of images of the same object), which we call a mode, the
chain will tend to walk around that mode (following a kind of random walk). Once

in a while it will step out of that mode and generally return to it or (if it finds

an escape route) move towards another mode. The problem is that successful
escape routes are rare for many interesting distributions, so the Markov chain will
continue to sample the same mode longer than it should.

This is very clear when we consider the Gibbs sampling algorithm (Sec. 17.4).
In this context, consider the probability of going from one mode to a nearby
mode within a given number of steps. What will determine that probability is
the shape of the “energy barrier” between these modes. Transitions between two
modes that are separated by a high energy barrier (a region of low probability)
are exponentially less likely (in terms of the height of the energy barrier). This is
illustrated in Fig. 17.1. The problem arises when there are multiple modes with
high probability that are separated by regions of low probability, especially when
each Gibbs sampling step must update only a small subset of variables whose
values are largely determined by the other variables.

As a simple example, consider an energy-based model over two variables a and
b, which are both binary with a sign, taking on values _ T and 1. If E (a,b) = _,5p
for some large positive number w, then the model expresses a strong belief that a
and b have the same sign. Consider updating b using a Gibbs sampling step with
a = 1. The conditional distribution over b is given by P(b =1 la = 1)= o(w).
If w is large, the sigmoid saturates, and the probability of also assigning b to be
1 is close to 1. Likewise, if a= _ 1, the probability of assigning b to be _1 is
close to 1. According to P ,04e (@,b), both signs of both variables are equally likely.
According to P ogel (5 | b)» both variables should have the same sign. This means
that Gibbs sampling will only very rarely flip the signs of these variables.

603

CHAPTER 17. MONTE CARLO METHODS

Figure 17.1: Paths followed by Gibbs sampling for three distributions, with the Markov
chain initialized at the mode in both cases. (Left) A multivariate normal distribution
with two independent variables. Gibbs sampling mixes well because the variables are
independent. (Center) A multivariate normal distribution with highly correlated variables.
The correlation between variables makes it difficult for the Markov chain to mix. Because
each variable must be updated conditioned on the other, the correlation reduces the rate
at which the Markov chain can move away from the starting point. (Right) A mixture of
Gaussians with widely separated modes that are not axis-aligned. Gibbs sampling mixes
very slowly because it is difficult to change modes while altering only one variable at a
time.

In more practical scenarios, the challenge is even greater because we care not
only about making transitions between two modes but more generally between
all the many modes that a real model might contain. If several such transitions
are difficult because of the difficulty of mixing between modes, then it becomes
very expensive to obtain a reliable set of samples covering most of the modes, and
convergence of the chain to its stationary distribution is very slow.

Sometimes this problem can be resolved by finding groups of highly dependent
units and updating all of them simultaneously in a block. Unfortunately, when
the dependencies are complicated, it can be computationally intractable to draw a
sample from the group. After all, the problem that the Markov chain was originally
introduced to solve is this problem of sampling from a large group of variables.

In the context of models with latent variables, which define a joint distribution
Pmodel (X, h), we often draw samples of x by alternating between sampling from
Pmodel (x |h) and sampling from ppyodel (| x). From the point of view of mixing
rapidly, we would like pmodel (1, | x) to have very high entropy. However, from the
point of view of learning a useful representation of h, we would like h to encode

604

CHAPTER 17. MONTE CARLO METHODS

b

y
i

el el Gl Bl e e e] e
Alalalafaglbldh]la]an]a
NN ENENE N E S N BN
N NI EN RSN ESEES
N N e eSSBS

E]
A
|
9
3
=2
2
?
d

NIRRT O L S el)

Li9|s |00 |t oc|w
S0 WO RN

SO Y N B=1 BN | WL N BV R
LIOIN N =N~
W o|—sqlsl0olelN] & |

KA R
117
113
312
|7
1|9
0|7
F O
17
G

{
1
i
+
+
4
4
{
1
4

NI

Figure 17.2: An illustration of the slow mixing problem in deep probabilistic models.
Each panel should be read left to right, top to bottom. (Left) Consecutive samples from
Gibbs sampling applied to a deep Boltzmann machine trained on the MNIST dataset.
Consecutive samples are similar to each other. Because the Gibbs sampling is performed
in a deep graphical model, this similarity is based more on semantic rather than raw visual
features, but it is still difficult for the Gibbs chain to transition from one mode of the
distribution to another, for example by changing the digit identity. (Right) Consecutive
ancestral samples from a generative adversarial network. Because ancestral sampling
generates each sample independently from the others, there is no mixing problem.

enough information about x to reconstruct it well, which implies that h and x
should have very high mutual information. These two goals are at odds with each
other. We often learn generative models that very precisely encode x into h but
are not able to mix very well. This situation arises frequently with Boltzmann
machines—the sharper the distribution a Boltzmann machine learns, the harder

it is for a Markov chain sampling from the model distribution to mix well. This
problem is illustrated in Fig. 17.2.

All this could make MCMC methods less useful when the distribution of interest
has a manifold structure with a separate manifold for each class: the distribution
is concentrated around many modes and these modes are separated by vast regions
of high energy. This type of distribution is what we expect in many classification
problems and would make MCMC methods converge very slowly because of poor
mixing between modes.

17.5.1 Tempering to Mix between Modes

When a distribution has sharp peaks of high probability surrounded by regions of
low probability, it is difficult to mix between the different modes of the distribution.

605

CHAPTER 17. MONTE CARLO METHODS

Several techniques for faster mixing are based on constructing alternative versions
of the target distribution in which the peaks are not as high and the surrounding
valleys are not as low. Energy-based models provide a particularly simple way to
do so. So far, we have described an energy-based model as defining a probability
distribution

p(x) « exp (—E(x)). (17.25)
Energy-based models may be augmented with an extra parameter B controlling
how sharply peaked the distribution is:

PB(x) « exp (—BE(x)). (17.26)
The P parameter is often described as being the reciprocal of the temperature,
reflecting the origin of energy-based models in statistical physics. When the
temperature falls to zero and P rises to infinity, the energy-based model becomes
deterministic. When the temperature rises to infinity and B falls to zero, the
distribution (for discrete x) becomes uniform.

Typically, a model is trained to be evaluated at B = 1. However, we can make
use of other temperatures, particularly those where 3 < 1. Tempering is a general
strategy of mixing between modes of p | rapidly by drawing samples with B < 1.

Markov chains based on tempered transitions (,) temporarily sample
from higher-temperature distributions in order to mix to different modes, then
resume sampling from the unit temperature distribution. These techniques have
been applied to models such as RBMs (,). Another approach is
to use parallel tempering (Iba,), in which the Markov chain simulates many
different states in parallel, at different temperatures. The highest temperature
states mix slowly, while the lowest temperature states, at temperature 1, provide
accurate samples from the model. The transition operator includes stochastically
swapping states between two different temperature levels, so that a sufficiently high-
probability sample from a high-temperature slot can jump into a lower temperature
slot. This approach has also been applied to RBMs (, ;

,). Although tempering is a promising approach, at this point it has not
allowed researchers to make a strong advance in solving the challenge of sampling
from complex EBMs. One possible reason is that there are critical temperatures
around which the temperature transition must be very slow (as the temperature is
gradually reduced) in order for tempering to be effective.

17.5.2 Depth May Help Mixing

When drawing samples from a latent variable model p(h,x), we have seen that if
p(h | x) encodes x too well, then sampling from p(y |h) will not change x very

606

CHAPTER 17. MONTE CARLO METHODS

much and mixing will be poor. One way to resolve this problem is to make h be a

deep representation, that encodes x into h in such a way that a Markov chain in

the space of h can mix more easily. Many representation learning algorithms, such

as autoencoders and RBMs, tend to yield a marginal distribution over h that is

more uniform and more unimodal than the original data distribution over x . It can

be argued that this arises from trying to minimize reconstruction error while using

all of the available representation space, because minimizing reconstruction error

over the training examples will be better achieved when different training examples

are easily distinguishable from each other in h-space, and thus well separated.
() observed that deeper stacks of regularized autoencoders or

RBMs yield marginal distributions in the top-level h-space that appeared more

spread out and more uniform, with less of a gap between the regions corresponding

to different modes (categories, in the experiments). Training an RBM in that

higher-level space allowed Gibbs sampling to mix faster between modes. It remains

however unclear how to exploit this observation to help better train and sample

from deep generative models.

Despite the difficulty of mixing, Monte Carlo techniques are useful and are
often the best tool available. Indeed, they are the primary tool used to confront
the intractable partition function of undirected models, discussed next.

607

