Linear Models

  1. Ordinary Least Squares (OLS)
  2. Non-Negative Least Squares (NNLS)
  3. Ridge Regression (penalized coefficient sizes)
  4. Ridge Classification
  5. Ridge Regression with Built-in Cross Validation
  6. Lasso (sparse coefficients)

Ordinary Least Squares (OLS)

Least Squares (Non-Negative)

Ridge regression

Ridge Classification

Ridge Regression with built-in Alpha Cross Validation

Lasso Regression

lasso_path (API call)

Model selection using Info criteria techniques

Multitask Lasso Regression

Elastic-Net

Elastic-Net (Multitask)

Elastic-Net (Multitask w/ Cross Validation)

Least Angle Regression (LARS)

LARS Lasso

example: compute Lasso path vs regularization using the LARS algorithm

Orthogonal Matching Pursuit (OMP)

Example: Sparse signal recovery from a noisy measurement - encoded with a dictionary

Bayesian Regression

Example: Bayesian Ridge Regression - synthetic dataset

Example: Use polynomial feature expansion to plot BRR prediction & error

Example: Curve fit using BRR

Generalized Linear Regression (GLM)

GLM / Tweedie Model Regression

Example: log-linear Poisson regression vs LSE-based regression

Stochastic Gradient Descent (SGD)

Perceptron

Passive-Aggressive Algos (ref: JMLR paper)

Robustness: Outliers & Modeling Errors

Example: RANSAC

Example: Theil Sen regression

Example: Huber vs Ridge Regression - artificial dataset with strong outliers

Polynomial Regression & Basis Functions

example: solve XOR with a linear classifier.

example - approximate n-degree polynomial with ridge regression