coefs_
is a list of weight matrices. The $ith$ matrix is the weights between layer $i$ and $i+1$.intercepts_
is a list of bias vectors. The $ith$ vector is the biases added to layer $i+1$.partial_fit
.from sklearn.neural_network import MLPClassifier as MLPC
X,y = [[0., 0.], [1., 1.]], [0, 1]
clf = MLPC(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)
clf.fit(X, y)
print(clf.predict([[2., 2.], [-1., -2.]]))
[1 0]
clf_coefs_
contains the weight matrix.[coef.shape for coef in clf.coefs_]
[(2, 5), (5, 2), (2, 1)]
cross-entropy
loss function which returns a vector of probability estimates $P(y|x)$ (via predict_proba
).clf.predict_proba([[2., 2.], [1., 2.]])
array([[1.96718015e-04, 9.99803282e-01], [1.96718015e-04, 9.99803282e-01]])
X,y = [[0., 0.], [1., 1.]], [[0, 1], [1, 1]]
clf = MLPC(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(15,), random_state=1)
clf.fit(X, y)
print(clf.predict([[1., 2.]]))
print(clf.predict([[0., 0.]]))
[[1 1]] [[0 1]]
learning_rate_init
.import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier as MLPC
from sklearn.preprocessing import MinMaxScaler as MMS
from sklearn import datasets
from sklearn.exceptions import ConvergenceWarning
# different learning rate schedules and momentum parameters
params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0,
'learning_rate_init': 0.2},
{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
'nesterovs_momentum': False, 'learning_rate_init': 0.2},
{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
'nesterovs_momentum': True, 'learning_rate_init': 0.2},
{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0,
'learning_rate_init': 0.2},
{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
'nesterovs_momentum': True, 'learning_rate_init': 0.2},
{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
'nesterovs_momentum': False, 'learning_rate_init': 0.2},
{'solver': 'adam', 'learning_rate_init': 0.01}]
labels = ["constant",
"constant/momentum",
"constant/momentum/nesterov",
"inv-scaling",
"inv-scaling/momentum",
"inv-scaling/momentum/nesterov",
"adam"]
plot_args = [{'c': 'red', 'linestyle': '-'},
{'c': 'green', 'linestyle': '-'},
{'c': 'blue', 'linestyle': '-'},
{'c': 'red', 'linestyle': '--'},
{'c': 'green', 'linestyle': '--'},
{'c': 'blue', 'linestyle': '--'},
{'c': 'black', 'linestyle': '-'}]
def plot_on_dataset(X, y, ax, name):
ax.set_title(name)
X = MMS().fit_transform(X)
mlps = []
if name == "digits": # digits is larger but converges fairly quickly
max_iter = 15
else:
max_iter = 400
for label, param in zip(labels, params):
mlp = MLPC(random_state=0, max_iter=max_iter, **param)
# some combinations will not converge as can be seen on the
# plots so they are ignored here
'''
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=ConvergenceWarning, module="sklearn")
'''
mlp.fit(X, y)
mlps.append(mlp)
print("Training score: %f" % mlp.score(X, y))
print("Training loss: %f" % mlp.loss_)
for mlp, label, args in zip(mlps, labels, plot_args):
ax.plot(mlp.loss_curve_, label=label, **args)
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
iris = datasets.load_iris()
X_digits, y_digits = datasets.load_digits(return_X_y=True)
data_sets = [(iris.data, iris.target),
(X_digits, y_digits),
datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
datasets.make_moons(noise=0.3, random_state=0)]
for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits',
'circles', 'moons']):
plot_on_dataset(*data, ax=ax, name=name)
fig.legend(ax.get_lines(), labels, ncol=3, loc="upper center")
plt.show()
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.980000 Training loss: 0.096950 Training score: 0.980000 Training loss: 0.049530 Training score: 0.980000 Training loss: 0.049540 Training score: 0.360000 Training loss: 0.978444 Training score: 0.860000 Training loss: 0.503452
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn( /home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.860000 Training loss: 0.504185 Training score: 0.980000 Training loss: 0.045311
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (15) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.956038 Training loss: 0.243802
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (15) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.992766 Training loss: 0.041297
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (15) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.993879 Training loss: 0.042898
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (15) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.638843 Training loss: 1.855465
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (15) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.912632 Training loss: 0.290584
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (15) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.909293 Training loss: 0.318387
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (15) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.991653 Training loss: 0.045934
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.840000 Training loss: 0.601052
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.940000 Training loss: 0.157334
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.940000 Training loss: 0.154453 Training score: 0.500000 Training loss: 0.692470 Training score: 0.500000 Training loss: 0.689143 Training score: 0.500000 Training loss: 0.689751 Training score: 0.940000 Training loss: 0.150527 Training score: 0.850000 Training loss: 0.341523 Training score: 0.850000 Training loss: 0.336188 Training score: 0.850000 Training loss: 0.335919 Training score: 0.500000 Training loss: 0.689015
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.830000 Training loss: 0.512595
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.830000 Training loss: 0.513034
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (400) reached and the optimization hasn't converged yet. warnings.warn(
Training score: 0.930000 Training loss: 0.170087
from sklearn.neural_network import MLPRegressor as MLPR
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split as TTS
X, y = make_regression(n_samples=200, random_state=1)
X_train, X_test, y_train, y_test = TTS(X, y, random_state=1)
regr = MLPR(random_state=1, max_iter=5000).fit(X_train, y_train)
print(regr.predict(X_test[:2]))
print(regr.score(X_test, y_test))
[8.69448846 6.5006531 ] 0.5209157440819883
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap as LCM
from sklearn.model_selection import train_test_split as TTS
from sklearn.preprocessing import StandardScaler as SS
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier as MLPC
from sklearn.pipeline import make_pipeline
h = .02 # step size in the mesh
alphas = np.logspace(-1, 1, 5)
classifiers = []
names = []
for alpha in alphas:
classifiers.append(make_pipeline(
SS(),
MLPC(
solver='lbfgs', alpha=alpha, random_state=1, max_iter=2000,
early_stopping=True, hidden_layer_sizes=[100, 100],
)
))
names.append(f"alpha {alpha:.2f}")
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=0, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable]
figure = plt.figure(figsize=(17, 9))
i = 1
for X, y in datasets:
X_train, X_test, y_train, y_test = TTS(X, y, test_size=.4)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = LCM(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
# training & testing points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1
# iterate over classifiers
for name, clf in zip(names, classifiers):
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
# Plot the decision boundary.
if hasattr(clf, "decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
# training & testing points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='black', s=25)
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors='black', s=25)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
size=15, horizontalalignment='right')
i += 1
figure.subplots_adjust(left=.02, right=.98)
plt.show()
/home/bjpcjp/.local/lib/python3.8/site-packages/sklearn/neural_network/_multilayer_perceptron.py:500: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)