Obviously Awesome

Math:

Tags:
additive basis function models    algorithm theory    approximations    association rules    bagging    bandit algorithms    bayes    biclustering    boosting    bootstrap confidence intervals    calculus    calibration    cheatsheets    cliques    clustering    complete books    component analysis    covariance    cross decomposition    cross validation    data structures    datasets    decision theory    decision trees    deep learning architectures    deep learning math    density estimation    differential equations    dimensionality    discriminant analysis    dynamic programming    ensembles    expection maximization    feature engineering    feature selection    gaussian mixtures    gaussian models    geometry    glossaries    graphs    greedy algorithms    hyperparameters    inference    interviewing    kernels    learning    linear algebra    linear models    machine learning tutorials    manifolds    markov    matrix math    max likelihood estimation    metrics-scoring    mixture models    multiclass-multioutput    natural language processing    nearest neighbors    novelty & outlier detection    number theory    optimization    other    parallelism    perceptrons    performance    planning algorithms    polynomials    probability, statistics    queues    randomization    rbms    recommenders    recursion    regression    regression (isotonic)    regression (kernel ridge)    regression (linear models)    regression (logistic regression)    reinforcement learning    sampling    search-sort    set theory    signal processing    singular value decomposition    sorting    spatial data    stochastic processes    streams    strings    supervised learning    support vector machines    survival analysis    symbolic math    tbd    time series    tools    tree structures    unsupervised learning    use cases    visualization    
additive basis function models
association rules
biclustering
bootstrap confidence intervals
calibration
cheatsheets
cliques
component analysis
cross decomposition
decision theory
decision trees
density estimation
differential equations
discriminant analysis
dynamic programming
expection maximization
feature selection
gaussian models
greedy algorithms
hyperparameters
interviewing
max likelihood estimation
multiclass-multioutput
natural language processing
novelty & outlier detection
parallelism
planning algorithms
regression (isotonic)
regression (kernel ridge)
regression (linear models)
regression (logistic regression)
sampling
singular value decomposition
spatial data
stochastic processes
streams
supervised learning
survival analysis
symbolic math
unsupervised learning