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What is NAND flash memory? 

NAND flash memory is a type of non-volatile storage technology that does not require 

power to retain data. An important goal of NAND flash development has been to reduce the 

cost per bit and to increase maximum chip capacity so that flash memory can compete with 

magnetic storage devices, such as hard disks. NAND flash has found a market in devices to 

which large files are frequently uploaded and replaced. MP3 players, digital cameras and 

USB flash drives use NAND technology. 

NAND flash saves data as blocks and relies on electric circuits to store data. When power is 

detached from NAND flash memory, a metal-oxide semiconductor will provide an extra 

charge to the memory cell, keeping the data. The metal-oxide semiconductor typically used 

is a floating-gate transistor (FGT). The FGTs are structured similar to NAND logic gates. 

NAND memory cells are made with two types of gates, control and floating gates. Both gates 

will help control the flow of data. To program one cell, a voltage charge is sent to the control 

gate. 

 

For many consumers audio and video products, NAND flash memory is a better storage 

choice than a hard drive, especially in low-capacity applications (4 Gbytes or less). As the 

quest continues for lower power, lighter, more robust products, NAND is proving to be very 

attractive. 

The NAND flash array is grouped into a series of 128-kbyte blocks, which are the smallest 

erasable entity in a NAND device. Erasing a block sets all bits to “1” (all bytes to FFh). 

Programming is necessary to change erased bits from a 1 to a 0. The smallest entity that can 

be programmed is a byte. Some NOR Flash memory can perform read-while-write 

operations (Figure.1). Although NAND can’t perform read and write simultaneously, it can 

accomplish this at a system level using a method called shadowing, which has been used on 

PCs for years by loading the BIOS from the slower ROM into the higher-speed RAM. 

NAND efficiencies are due to the lack of metal contacts in the NAND string. NAND flash cell 

size is smaller than NOR, 4F2 verses 10F2, due to the fact that NOR cells require a separate 

metal contact for each cell. 

NAND is similar to a hard-disk drive. It’s sector-based (page-based) and suited for storing 

sequential data such as pictures, audio, or PC data. Although random access can be 



accomplished at the system level by shadowing the data to RAM, doing so requires 

additional RAM storage. Also, like a hard disk, NAND devices have bad blocks, and require 

error-correcting code (ECC) to maintain data integrity. 

 

Figure 1 comparison of various flash cells. 

Due to the decrease in die area resulting from the small cell size, NAND provides the larger 

capacities required for today’s low-cost consumer market. NAND flash is used in almost all 

removable memory cards. NAND’s multiplexed interface provides a similar pin-out for all 

recent devices and densities. This pin-out lets designers use small densities and migrate to 

larger densities without any hardware changes to the PCB. 

NAND vs. NOR 

NAND’s advantages are fast write (program) and erase operations, while NOR’s advantages 

are random access and byte write capability (Figure. 2) . NOR’s random access ability allows 

for execute in place (XiP) capability, which is often a requirement in embedded applications. 

The disadvantages for NAND are slow random access, while NOR is hampered by are slow 

write and erase performance. NAND is better suited for file applications. However, more 

processors include a direct NAND interface and can boot directly from NAND (without NOR). 

 

Figure 2 he random access time for NOR flash is specified at 0.12 Μs, whereas NAND random access is significantly slower 
for the first byte. Once the initial access is made, however, the remaining 2111 bytes are shifted out of NAND at only 0.03 

Μs/byte. 



The real benefits for NAND are faster program and erase times, as NAND provides over 5 

Mbytes/s of sustained write performance. The block erase times are an impressive 2 ms for 

NAND versus 750 ms for NOR. Clearly, NAND has several significant positive attributes. 

However, it’s not well-suited for direct random access. 

NOR flash requires around 41 I/O pins for a 16-bit device, while NAND devices requires only 

24 pins for a comparable interface. This pin savings comes from NAND’s multiplexed 

command, address, and data bus. A benefit of the multiplexed interface is that larger NAND 

devices can be supported using the same hardware design and pcb. Because the common 

TSOP-1 package has been used for many years, this feature lets customers migrate to higher-

density NAND devices on the same pcb. Another advantage of NAND is evident in it’s 

packaging options: NAND offers a monolithic 2-Gbit die or can support up to four stacked 

die, allowing an 8-Gbit device in the same TSOP-1 package. This enables one package and 

interface to support higher densities in the future. 

NAND basic operation 

The 2-Gbit NAND device is organized as 2048 blocks, with 64 pages per block (Figure. 3) . 

Each page has 2112 bytes total, comprised of a 2048-byte data area and a 64-byte spare 

area. The spare area is typically used for ECC, wear-leveling information, and other software 

overhead functions, although it’s physically no different from the rest of the page. NAND 

devices are offered with either an 8- or 16-bit interface. Host data is connected to the NAND 

memory through a bidirectional data bus, 8 or 16 bits wide. In 16-bit mode, commands and 

addresses use only the lower 8 bits. The upper 8 bits are only used during data-transfer 

cycles. 

 

 

Figure 3 The 2-Gbyte NAND device is organized as 2048 blocks. 

 

Erasing a block requires about 2 ms. Once the data is loaded in the register, programming a 

page requires about 300 µs. A page read requires approximately 25 µs, in which the page is 



accessed from the array and loaded into the 16,896-bit register. The register is then available 

for the user to clock out the data. 

In addition to the I/O bus, the NAND interface is comprised of six major control signals: 

• Chip enable (CE#): If CE is not asserted, the NAND device will remain in standby 

mode and not respond to any control signals. 

• Write enable (WE#): WE# is responsible for clocking data, address, or commands into 

the NAND. 

• Read enable (RE#): RE# will enable the output data buffers. 

• Command latch enable (CLE): When CLE is high, commands are latched into the 

NAND command register on the rising edge of the WE# signal. 

• Address latch enable (ALE): When ALE is high, addresses are latched into the NAND 

address register on the rising edge of the WE# signal. 

• Ready/busy (R/B#): If the NAND device is busy, the R/B# signal will be asserted low. 

This signal is open drain and needs a pull-up resistor. 

Data is shifted into or out of the NAND register 16 or 8 bits at a time. When doing a Program 

operation, the data to be programmed is clocked into the data register on the rising edge of 

the WE#. Special commands are used to randomly access or move data around within the 

register to make random access easier. 

Data is output from the data register in a similar fashion using the RE# signal, which is 

responsible for outputting the current data and incrementing to the next location. The WE# 

and RE# clocks can run as fast as 30 ns. When RE# or CE# aren’t asserted low, the output 

buffers will be tri-stated. This combination of CE# and RE# enables the output buffers, 

allowing NAND flash to share the data bus with other types of memory like NOR, SRAM, or 

DRAM. This feature is sometimes called “chip enable don’t care.” The primary purpose of 

this reference is to accommodate older NAND devices, which require CE# to be asserted for 

the entire cycle.All NAND operations start supplying a command cycle (Table 1) . This is 

accomplished by placing the command on I/O bits 7:0, driving CE# low and CLE high while 

issuing a WE# clock. Note that commands, address, or data are clocked into the NAND 

device on the WE# signal’s rising edge. Table 1 also shows that Most commands require a 

number of address cycles followed by a second command cycle. Note that with the 

exception of the Reset or Read Status commands, new commands shouldn’t be issued if the 

device is busy. 



Table 1 

 

 

Looking at the addressing scheme for 2Gb NAND devices, the first and second address cycles 

specify the column address, which specifies the starting byte within the page (Table 2) . Note 

that because the last column location is 2112, the address of this last location would be 08h 

(in the second byte) and 3Fh (in the first byte). PA5:0 specify the page address within the 

block and BA16:6 specify the block address. While the full 5-byte address is required for 

most Program and Read operations, only the first and second bytes are needed for 

operations that randomly access data within the page. The Block Erase operation only 

requires the three most significant bytes (third, fourth, and fifth) to select the block. 

Table 2 

 

Reset Operation 

As discussed previously, CE# must be low for all NAND activities. The simplest NAND 

command is the Reset (FFh), which doesn’t require any address or second cycle. Simply 

assert CLE and issue a write pulse with FFh on the data bus, and a Reset operation is 

performed. Reset is one of two commands that can be issued while the NAND device is busy. 

If it’s busy processing a previous command, issuing a Reset aborts the previous operation. 

Note that if the previous operation was an Erase or Program command, issuing a Reset 

aborts the command prematurely, and the desired operation doesn’t complete. Because 

Erase and Program can be time-consuming operations, they can be aborted with a Reset and 

re-issued later. 



Read ID Operation 

The Read ID (90h) command requires one dummy address cycle (00h), but doesn’t need a 

second command cycle (Table 1, again) . After issuing the command and dummy address, 

the ID data can be read out by keeping CLE and ALE low and toggling the RE# signal for each 

byte of ID. 

Read status Operation 

Read Status (70h) is the second command that can be issued while the NAND device is busy. 

This command doesn’t require an address or second command cycle. The NAND device’s 

status can be interrogated by issuing the RE# clock signal. If the Read Status command is 

used to monitor the device’s ready state, the command should only be issued one time and 

the status re-read by re-issuing the RE# clock. Alternatively, the RE# signal can be kept low 

waiting for the appropriate status bit. Read Status also includes the status of the write 

protect pin as well as the pass/fail status of the previous Program or Erase operations. It’s 

mandatory that successful status be attained on Program or Erase operations to ensure 

proper data integrity. 

The Block Erase (60h) operation erases an entire block of 64 pages or 128 bytes total. To 

issue this operation, use the WE# signal to clock in the Erase command (60h) with CLE 

asserted. Next, clock in three address cycles, keeping ALE asserted for each address byte. 

The three address cycles are the most significant address cycles of Table 2, which includes 

the block and page addresses. The page address portion (the low order 6 bits of the third 

address cycle) is ignored, and only the block address portion of the three most significant 

bytes is used. Once the address is input completely, issue the second command (command 

cycle 2) of D0h, which also gets clocked in with WE# while CLE is being asserted. This 

confirms the erase operation, and the device goes busy for roughly 2 ms. When this 

operation completes, the device is ready for another command. Notice the Read Status 

command can be issued at any time, even when the device is busy during the erase. The 

processor or controller could interrogate the device using the read status command. 

Program Operations 

Program operations can only program bits to 0, and assume that you started with a 

previously-erased block. If you don’t want to program a bit, keep it in its erased state by 

setting that particular bit (or group of bits) to 1. When the Program Page (80h) command is 

received, the input register is reset to all 1s (internally). This lets the user input only data 

bytes that he wants to program with 0 bits. The Program operation starts with the 80h 

command, with CLE asserted (Figure. 4) . Next, drop CLE and assert ALE to input the full five 

address cycles. 



 

Figure 4 When the Program Page (80h) command is received, the input register is internally reset to all 1s, letting the user 
input only data bytes that he wants to program with 0 bits. 

After the command and address are input, data is input to the register. Once all the data has 

been input, we issue the confirm command (10h) and start the programming operation. A 

Program operation typically requires 300 μs, although it may require up to 700 μs. It’s 

mandatory that you read the status and check for successful operation. If the operation isn’t 

successful, log the block and don’t use it in the future. Move all data from the block to a 

good block. 

Random data input Operation 

The next command is the random data input command (85h). This command only requires 

two bytes of address followed by the data (Figure. 5). It’s useful when you want to jump 

around within a page, to access ECC d)., for example. Random data input can be used to 

jump to the end of the page and write the ECC data. You can input as many address and data 

combinations as needed. It’s only when the program confirm command (10h) is issued that 

the data is actually programmed to the selected page. 

 

Figure 5 Show is the Program command with random data input. The highlighted section shows that this command only 
requires two bytes of address followed by the data. 



Due to the NAND page’s large size, partial page programming is needed to store smaller-

sized data. Each NAND page could accommodate four PC-sized 512-byte sectors. The spare 

area of each page provides additional storage for ECC and other information. While it’s 

advantageous to write all four sectors at once, it’s not always possible. An example of this is 

when you are appending a file. The file might start out as 512 bytes, with additional data 

coming later, making it 1024 bytes. In this case, writing the second 512 bytes would require 

a second page program operation to the NAND device. The maximum specification for 

partial page programming is eight; this would accommodate four data sectors and ECC, each 

programmed separately. 

There are two common methods for storing data and spare information in the same page 

(Figure. 6) . The first contains a data area of 512 bytes with the spare area directly adjacent 

to it). he spare area in this case is 16 bytes. Therefore, a 2112-byte page could contain four 

528-byte elements. The second implementation involves storing the data and spare 

information separately. This means the 512-byte data is stored first, and the respective spare 

information for that data is stored at the end of the array starting at the beginning of the 

spare area. The second 512 bytes is stored next to the first 512, and the associated spare 

area for the second 512 is stored in the next 16-byte spare area. This continues until all four 

512-byte sectors are stored with their respective 16-byte spare areas. 

 

Figure 6 Typical storage methods are shown. 

 

 

 

Read Operation 

A read operation starts with a command (00h), followed by five address cycles, followed by 

the read confirm (30h). After the read transfer time (tR) of approximately 25 μs, the data is 

loaded into the register and ready for output. Issuing the read enable (RE#) clock lets the 

NAND output the first byte corresponding to the column address specified in the address. 

Subsequent RE# transitions output successive locations. When RE# is high (not asserted), the 



I/O lines are tri-stated. Also, reading past the end of the device (byte 2112 or word 1056) 

results in reading invalid data. Random data can be directly accessed by issuing the (05h) 

command, two address cycles, and a (E0h) confirmation cycle. Once the page has been read 

from the array, this command provides rapid access to the data.The NAND device actually 

has two registers: a data register and a cache register (Figure. 7) . The Page read cache mode 

command lets you pipeline the next sequential access from the array while outputting the 

previously-accessed data. This double-buffered technique allows you to hide the read access 

time (tR). Data is first transferred from the NAND array to the data register. If the cache 

register is available (not busy), the data is quickly moved from the data register to the cache 

register. Once it’s been transferred to the cache register, the data register is available and 

can start to load the next sequential page from the NAND array. 

 

 

Figure 7 Shown is the page read cache mode. 

A 33% performance improvement can be achieved on an 8-bit I/O device, resulting in up to 

31 Mbytes/s of throughput. With the16-bit I/O device, throughput can be increased to 37 

Mbytes/s, a 40% improvement over the normal Page read operation. Read cache can be 

especially useful during system boot-up, when large amounts of data are typically read from 

NAND and start-up time is critical. 

 

Program page cache mode command 

Program page cache mode provides performance improvement over normal Program page 

operations. This double-buffered technique lets the controller input data directly to the 

cache register and uses the data register as a holding register to supply the programming of 

the array. This frees the cache register so that the next sequential page operation can be 

loaded in parallel. In many applications, the programming time (tPROG) can be completely 

hidden. Like the page read cache mode command, the data register maintains the data 



through the entire programming cycle. This frees up the cache register so that it can start 

receiving the next page of data from the controller. 

Read for internal data move (00h, 35h), or copy back, is another useful system-level 

command. It provides the ability to move data from one page to another internally without 

leaving the NAND device. The Read for internal data move operation transfers the data read 

from the NAND array to the cache register. It can then be programmed into another page of 

the NAND device. This is beneficial in cases where the controller needs to move data out of a 

block before erasing that block. It’s also possible to modify the data read before the program 

operation starts. This could be useful if you wanted to change the data before programming. 

This feature allows data to be moved around within the NAND device without tying up the 

processor or the I/O bus. 

 

Connecting NAND to a processor 

There are significant advantages to selecting a processor or a controller with a built-in NAND 

interface. If this option isn’t available, it’s possible to design a glueless interface between the 

NAND and almost any processor. The main difference between NAND and NOR flash is the 

multiplexed address and data bus. This bus is used to specify commands, address, or data. 

The CLE signal specifies command cycles, while the ALE signal specifies address cycles. Using 

these two control signals, it’s possible to select a command, address, or data cycle. 

Connecting ALE to the processor’s address bit five and CLE to the processor’s address bit 

four enables the selection of either command, address, or data simply by changing the 

address that the processor outputs. This allows CLE and ALE to be asserted automatically at 

the appropriate time. 

To supply a command, the processor outputs the intended command on the data bus and 

output address 0010h. To supply any number of address cycles, the processor simply needs 

to output the intended NAND address sequence to processor address 0020h. Note that 

many processors can specify several timing parameters around the processor’s write signal, 

which is critical for proper timing. Using this technique, you can access commands, address, 

and data directly from the processor without any glue logic. In this case, ECC would have to 

be handled in the software. 

Multi-level cell 

A Multi-level cell (MLC) stores two bits per cell, versus traditional SLCs that can only store 

one bit. There are obvious density advantages for MLC technology. However, it doesn’t offer 

the speed or reliability of its SLC counterpart (Table 3) . Because of this, SLC is used in most 

media cards and wireless applications, while MLC devices are typically found in consumer 

and other low-cost products. 



Table 3 

 

 

 

As mentioned, NAND requires ECC to ensure data integrity. NAND flash includes extra 

storage on each page. The extra storage is the spare area of 64 bytes (16 bytes per 512-byte 

sector). This area can store the ECC code as well as other information like wear-leveling or 

logical-to-physical block-mapping. ECC can be performed in hardware or software, but 

hardware implementation provides an obvious performance advantage. During a 

programming operation, the ECC unit calculates the error-correcting code based on the data 

stored in the sector. The ECC code for the respective data area is then written to the 

respective spare area. When the data is read out, the ECC code is also read, and the reverse 

operation is applied to check that the data is correct. 

It’s possible for the ECC algorithm to correct data errors. The number of errors that can be 

corrected depends on the correction strength of the algorithm used. Including ECC in 

hardware or software provides a robust system-level solution. Simple Hamming codes 

provide the easiest hardware implementation but can only correct single-bit errors. Reed-

Solomon codes can provide a more robust error correction and are used on many of today’s 

controllers. Also, BCH codes are becoming popular due to their improved efficiency over 

Reed-Solomon. 

Software is needed to perform the NAND flash’s block management. This software is 

responsible for wear-leveling or logical-to-physical mapping. The software may also provide 

the ECC code if the processor does not include ECC hardware. 

It’s important to read the status register after a program or erase operation, as it confirms 

successful completion of the operation. If the operation wasn’t successful, the block should 

be marked bad and no longer used. Previously programmed data should be moved out of 

the bad block into a new (good) block. The spec for a 2-Gbyte NAND device states that it 

could have up to 40 bad blocks, a number that applies throughout the device’s life 



(nominally 100,000 program/erase cycles). Due mostly to their large die size, NAND devices 

can ship from the factory with some bad blocks. The software managing the device is 

responsible for mapping the bad blocks and replacing them with good blocks. 

The factory marks these blocks in such a way that the software can scan all the blocks to 

determine which are good and which aren’t. The bad-block mark is fixed at the first location 

in the spare area (column location 2048). If location 2048 in either page 0 or 1 is “non-FF,” 

then the block should be considered bad and mapped out of the system. The initialization 

software simply needs to scan through all blocks to determine which are bad and then build 

a table of these bad blocks for future reference. 

It’s important to take special care not to erase the bad-block marks. The factory tests NAND 

over a wide range of temperatures and voltages. Some blocks that are marked bad by the 

factory may be functional at certain temperatures or voltages but could fail in the future. If 

the bad-block information is erased, it can’t be recovered. 

There are several third party software offerings on the market today. Many of these provide 

several features, including automatic power fail recovery, PC-file compatibility, ECC, bad-

block management, directory support, and wear-leveling. Some third-party NAND software 

vendors include Datalight (www.datalight.com), CMX (www.cmx.com), HCC (www.hcc-

embedded.com), and Blunk Microsystems (www.blunkmicro.com). 

Pros and Cons of NAND Flash Memory 

 

Figure 8 Pros and Cons of NAND Flash Memory 



NAND flash Memory Industry and Top Manufacturers 

Most of the leading technology industries like Samsung are producing these NAND flash 

memories and are also using them in their own electronic devices like mobile phones. Here 

are some of the leading NAND flash memory industry and top manufacturers: 

• Kioxia 

• Samsung Electronics 

• SK Hynix 

• Micron Technology 

• Western Digital (WD) Corporation 

• Intel 

 

Applications of Flash Memory 

Flash memory is widely used for storage and data transfer in consumer devices, industrial 

applications, and enterprise systems. 

In terms of consumer devices, Flash memory is often used in portable devices such as cell 

phones, digital cameras, tablets, and printers for fast and easy information storage. Flash 

memory is ideal for such electronics because it allows for mobility and miniaturization of the 

devices. With Flash memory, these devices can store data such as text, pictures, audio, and 

video files, and perform certain functions without the need for a traditional hard drive. 

Additionally, since Flash memory is non-volatile, these devices can store data without power, 

making it more efficient for consumers. 

Flash memory is also often used in industrial computing applications, including scientific 

instrumentation, industrial robotics, space exploration, and medical electronics. Industrial 

systems often use Single-Level Cell (SLC) NAND Flash due to its reliability and endurance and 

its lessened susceptibility to power fluctuations. Incorporating such industrial-grade Flash 

storage is vital in these critical use cases as it minimizes risk of failures. 

In enterprise applications, Flash storage refers to the use of solid-stage drives (SSDs) 

comprised of Flash memory for the mass storage of data or files. Enterprise computing 

platforms such as data centers benefit from SSDs as they offer high data throughput and low 

transaction latency. With the growth of hybrid and all-flash arrays, SSD storage serves 

intensive workloads with very high I/O performance. 
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