
Design and Analysis of Soft-Error Resilience
Mechanisms for GPU Register File

Sparsh Mittal⋆, Haonan Wang†, Adwait Jog†, Jeffrey S. Vetter§
⋆IIT Hyderabad, India, †College of William and Mary, USA, §Oak Ridge National Laboratory, USA

Email: sparsh@iith.ac.in, {hwang07,adwait}@cs.wm.edu, vetter@computer.org

Abstract—Modern graphics processing units (GPUs) are
using increasingly larger register file (RF) which occupies
a large fraction of GPU core area and is very frequently
accessed. This makes RF vulnerable to soft-errors (SE). In this
paper, we present two techniques for improving SE resilience
of GPU RF. First, we propose compressing the RF values
for reducing the number of vulnerable bits. We leverage
value similarity and the presence of narrow-width values to
perform compression at warp or thread-level, respectively.
Second, we propose selective hardening to design a portion of
register entry with SE immune circuits. By collectively using
these techniques, higher resilience can be provided with lower
overhead. Without hardening, our warp and thread-level
compression techniques bring 47.0% and 40.8% reduction
in SE vulnerability, respectively.

I. INTRODUCTION

Recent trends in processor design have aggravated the
occurrence of faults in modern processors.. Ongoing volt-
age scaling accompanied with feature size scaling reduces
the critical charge required to flip a bit. This allows even
lower-energy particles to cause soft errors. Due to these
reasons, soft-error rate at 16nm is expected to be more
than 100 times that at 180nm [1]. As GPUs become main-
stream computing systems, improving soft-error reliability
of GPUs has become extremely important.

Out of different GPU components, RF is particularly vul-
nerable to soft-errors due to its large size and performance-
optimized design. For example, a recent study performed
on Titan supercomputer showed that over a period of 2
years, out of five GPU components (L1/L2 cache, texture
memory, device memory and RF), 86% and 14% of double
bit errors occurred in device memory and RF, respectively
[2]. Further, as shown in Table I, the total RF size on
GPUs is much larger than that of L1/L2 caches and has
been increasing in recent GPU generations (SM = streaming
multiprocessor). Similarly, AMD Radeon HD 7970 GPU
has 16 KB L1 cache in each of 32 computing units and
a total of 8.25 MB RF and 768 KB shared L2 cache [3].
By comparison, CPUs possess tiny RF and much larger
caches, e.g., Intel’s 32 nm Itanium 9560 processor has

S. Mittal contributed to this paper while working at ORNL. S. Mittal
and J. Vetter acknowledge support from U.S. Dept. of Energy, Office
of Science, Advanced Scientific Computing Research. H. Wang and A.
Jog acknowledge the start-up grant from the College of William and
Mary. We use warp-register (or register) to denote the architectural
register referenced by a warp and thread-register to denote the register
corresponding to each thread in the warp.

22 KB integer RF and 20 KB floating point RF and 32
MB L3 cache [4]. Clearly, due to performance-criticality
and vulnerability of GPU RF, along with its fundamental
differences with CPU RF, novel mechanisms are required
to improve its resilience.
TABLE I: Size of L1/L2 cache and RF on NVIDIA GPUs
[5–8] (Sizes in KB, CC = compute capability, ⋆maximum
size of L1 cache, †size of unified L1/texture cache)

Archi- CC L1 size L2 size RF size # of Total RF
tecture per SM per SM SMs size

G80 Tesla 1.0 None None 32 16 512
GT200 Tesla 1.3 None None 64 30 1920
GF100 Fermi 2.0 48⋆ 768 128 16 2048
GK110 Kepler 3.5 48⋆ 1536 256 15 3840
GK210 Kepler 3.7 48⋆ 1536 512 15 7680
GM204 Maxwell 5.2 48† 2048 256 16 4096
GP100 Pascal 6.0 48† 4096 256 56 14336

In this paper, we present two techniques to reduce
SE vulnerability (SEV) of GPU RF. First, we propose
compressing the register values which reduces the number
of bits required for storing a value and thus, reduces the
number of vulnerable bits. We do not use compression to
store more data in registers and thus, we forgo the capacity
advantage of compression in favor of reliability [9]. Second,
we propose selective hardening, i.e., designing a portion
of RF with radiation-hardened (i.e., SE immune) memory.
Compression and hardening are dynamic and static tech-
niques, respectively and they can be used individually or
together. We propose performing compression at the level
of each warp or each thread. For warp-level compression
(WarpC), we use the insight that due to value similarity,
many thread-registers store values which are identical, have
low dynamic range or are zero. By exploiting this redun-
dancy, thread-registers of a warp are compressed using
base-delta immediate (BDI) compression [10]. However,
we do not use WarpC for divergent warps due to its higher
complexity and lower benefits for them (§III-A).

Our thread-level compression technique (ThreadC) com-
presses each thread-register value individually. For a 4B
thread-register, it determines the effective width (K) as the
smallest among four possible values, viz. 0B, 1B, 2B and
4B (uncompressed). Only K bytes are read from thread-
registers which reduces the number of vulnerable bits.

ThreadC can be applied to individual active threads
of divergent instructions and thus, it is especially useful
for applications with many divergent warps. However,



ThreadC does not exploit value similarity and hence, for
non-divergent applications, it provides smaller benefit than
WarpC. Thus, our work reveals the importance of account-
ing for GPU application characteristics for choosing the
optimal compression approach. Our key contributions are:
1. By detailed characterization of many GPU applications,
we show that SEV of GPU RF can be significantly reduced
via compression. However, performing compression either
at warp-level or thread-level alone may not give optimal
SEV reduction for all applications.
2. We propose that higher reduction in SE vulnerability can
be obtained by leveraging the warp divergence properties of
GPU applications to decide between warp and thread-level
compression techniques at runtime.
3. For further reduction in SEV, we propose selective hard-
ening and show the potential of compression in reducing
the requirement of hardening for achieving a desired level
of protection. To the best of our knowledge, this is the first
work that collectively considers compression at warp and
thread-level, and selective hardening for protecting RF for
a wide range of GPU applications with minimal overheads.
4. Micro-architectural simulations using a cycle-accurate
GPGPU simulator and diverse range of workloads have
shown that without hardening, WarpC and ThreadC bring
47.0% and 40.8% reduction in SEV respectively. With in-
creasing amount of hardening, SEV can be further reduced.

II. MOTIVATION AND BACKGROUND

A. Existing RF protection techniques

Recent commercial GPUs, such as Fermi, Kepler and
Pascal use single-error-correction double-error-detection
(SEC-DED) ECC for protecting RF, L1/L2 caches, shared
memories and DRAM [5, 11, 12]. However, due to high fre-
quency of RF access, computing/checking ECC incurs large
energy overhead. Further, multi-bit ECCs incur extremely
high overhead and ECC also fails to exploit characteristics
of GPU applications. Our technique protects RF by using
compression to leverage redundancy present in GPU execu-
tion. Also, designing RF with hardened memory provides
protection from multi-bit errors.

Palframan et al. [13] propose a precision-aware RF
protection technique for RF which hardens the sign and
exponent bits corresponding to single-precision FP values.
To also provide protection to integer values, they store them
in FP-like format. This, however, requires changing the data
storage format. Tan et al. [14] use compiler to observe the
lifetime (number of instructions between the write and last
read) of register values and map long-lived and short-lived
values to STT-RAM and SRAM, respectively in the SRAM-
STTRAM hybrid RF. However, due to major differences
between SRAM and STT-RAM technologies, designing
such hybrid RF may incur significant design complexity.

B. Measuring soft-error vulnerability

We measure soft-error vulnerability of RF based on the
idea of architectural vulnerability factor (AVF) [15] as it

captures soft-error characteristics independent of raw error
rate. AVF shows the fraction of time RF is vulnerable
to soft errors. A register value which propagates to other
components is considered critical and the time period
during which an error in a register propagates to other
components is called critical time. Specifically, a register
value is critical between write-to-read and read-to-read and
not between write-to-write and read-to-write.

Then, AVF of RF is the average critical time of all critical
registers. Let M and R be number of critical registers and
total registers, respectively, and bpR be number of bits in
the register. CTi shows critical time of a critical register
and TT shows total execution time. Also, failure rates of all
bits are assumed to be linearly uncorrelated. Then, AV F =
(
∑M

i=1 CTi)/(TT ·R) and SEV is computed as

SEV = R · bpR ·AV F = (bpR ·
M∑
i=1

CTi)/TT (1)

Thus, relative reduction in SEV due to a technique is
shown as SEVbaseline/SEVtechnique and a higher value is
better. It is clear that RF SEV can be reduced by (1) reduc-
ing number of bits in a critical register (2) designing RF
with SE immune memory (e.g., non-volatile memory [14]
or radiation-hardened memory [16, 17]) and (3) reducing
critical time of register (e.g., by instruction rescheduling
[1]). In this work, we exploit (1) and (2).

III. DESIGN OF RESILIENCE MECHANISMS

Figure 1 shows the GPU RF architecture assumed in
this paper [18, 19]. Each RF entry is 128B wide and
provides 32-bit operands to all 32 threads of a warp. Section
IV-C discusses how our technique can work in other RF
architectures. We follow CUDA terminology in this paper.

Bank 

0

Bank 

15

Bank 

7

Crossbar network

Operand collectors

……….

Execution units

SFUs ALUs LDST

Register file

……..……..

REG 0
REG 1

REG 63

1024 bits

RF bank
Register

IDs
Compressor

Decompressor

Read

Queue

0 - 15

Ready

warps

Arbiter

………….

…………. ………….

………….

……….

………….………….

Fig. 1: GPU RF architecture assumed in the paper

A. Warp-level compression

Key observation: Value similarity in GPU RF: In
SIMT (single instruction multiple thread) execution model
of GPUs, RF provides 32 times the number of source
operands to the execution unit for any warp instruction,
since there are 32 threads/warp. In this execution model,
the thread registers of a warp may show significant value
similarity due to multiple reasons. For several applications,
the values operated by different threads may be similar



(e.g., initialization by a constant, using a fixed number of
iterations, etc.) or have low dynamic range. Also, many
kernels assign data portions to different threads which
access their data portions using thread indices. Since thread
indices differ by one, a warp register which accesses such
data shows value similarity. Further, register values may
be zero due to initialization, nature of program inputs (e.g.,
absence of any object in an image) and outputs (e.g., binary
classification), operating on sparse matrices, etc.

Compression approach and algorithm: WarpC exploits
value similarity to compress register values using BDI
compression [10]. Register values with zero data are also
compressed. This reduces the effective number of bits
required for storing the data and hence, reduces the number
of vulnerable bits. Compression and decompression are per-
formed during RF write and read operations, respectively.

The BDI algorithm [10] attempts compression with base
2B, 4B and 8B. Denoting a compression state as BxDy,
BDI uses B2D1, B4D1, B4D2, B8D0 (i.e. repeated values),
B8D1, B8D2, B8D4 and AllZero states, where x and y
are widths of base and delta in bytes, respectively. BDI
compression was originally proposed for last level caches
in CPU, where a large latency of (de)compression can be
tolerated. However, since RF exists as the topmost level in
memory hierarchy and is accessed very frequently, explor-
ing multiple compression states at RF level can lead to large
performance overhead. Also, since each thread-register is
4B, the value locality is best exploited on using a base size
of 4B. For these reasons, we use three compression states:
AllZero, B4D0 and B4D1. Thus, a register can be in either
these three or the uncompressed state and only 2 bits are
required to store this information.

A previous RF compression technique used B4D0,
B4D1, B4D2 states [20]. We choose AllZero state since
a large fraction of RF values are compressed to this state
(§V). For registers with AllZero state, actual read/write to
RF are not performed since the actual value can be recov-
ered based on compression encoding only and thus, their
SEV is reduced completely. Also, we do not choose B4D2
state to reduce metadata overhead and because including
it provides only small additional benefit (§V-C). We now
discuss challenges in ensuring effective use of compression.

1. Accounting for Criticality of Base: During decom-
pression, the original data is obtained by adding the delta
values to the base. Due to this, any error in the base during
compressed state can spread to all the thread-registers and
thus, even a single-bit error in base can manifest as a
multi-bit error. Clearly, due to compression, the base value
becomes crucial in terms of reliability and hence, naively
applying compression may not achieve a right tradeoff
between compression ratio and reliability improvement.

To address this, WarpC stores two copies of the base.
This leads to a slight increase in the compressed width,
but provides higher protection to the base. In this work,
we only assume single-bit error model [21] and leave
addressing multi-bit error to future work. We assume that

any single-bit error can be detected by using a parity bit
at byte granularity. For base value, correction can also
be performed by leveraging two copies. For this, during
decompression, an error in one copy can be detected by
consulting the parity bit. Assuming single-bit errors, the
same bit position in both copies of the base are unlikely
to have errors. Thus, on detecting an error, the other copy
can be taken as correct base value. This allows immediate
recovery of base without raising an exception.

We do not duplicate the base when hardening is per-
formed since at least 4B are always hardened (§III-C) and
thus, base is always stored in hardened memory.

2. Handling Divergent Warps: When a divergent warp
reaches writeback stage, the thread-registers of only active
warps are written. Since we use delta compression on all
threads of a warp, compressing divergent warps presents
additional challenges. There are some ways to address this:

(i) Assuming that active threads are contiguous, one
option is that only active threads are compressed. How-
ever, with decreasing number of active-threads in a warp,
benefit from compression reduces. Also, the active threads
of a divergent warp may not be contiguous, e.g., for
needle (NED) benchmark, the active mask of one warp
is [02, 1, 0, 1, 02, 13, 0, 12, 019], where 0k or 1k denote k-
consecutive 0s and 1s, respectively. Similarly, for gaus-
sian (GSS) benchmark, an example of active mask is
[03, 1, 03, 1, 03, 1, 03, 1, 016]. For such cases, compressing
only active threads causes fragmentation since base and
delta can no longer be placed in contiguous manner.

(ii) Since compressing divergent warps requires dealing
with different number and position of active threads, it
increases the complexity of (de)compressor circuits and
their metadata and timing overheads, e.g., the compressor
would need to account for active mask, and decompressed
values would need to be transferred to different positions
based on active mask. Also, an increase in the latency of
BDI compression may make it unacceptable for RF.

(iii) Another option is to read the thread-registers of
inactive threads also and then compress all the 32 threads.
However, since these thread-registers are written by differ-
ent warp-instructions, they are likely to have much smaller
value locality. In BDI algorithm, even if one delta has larger
than the specified width, the entire value is incompressible.

For these reasons, WarpC does not compress divergent
warps. During RF write, if stored data is compressed, it is
first decompressed and then a write is performed.

B. Thread-level Compression

ThreadC compresses each thread-register value individ-
ually and thus, requires 32 compressors. Hence, we use
a simple compression approach, specifically, we exploit
narrow values. Narrow values occur when a large size data
type may be reserved for handling the worst-case scenario
but the actual value may require fewer bytes [22], e.g., only
1B data may be stored in a 4B integer. ThreadC determines
the width K of a value from 4 possible values, viz. 0B,



1B, 2B and 4B (uncompressed) and from this, the smallest
width is chosen. On a register read, only lower K bytes are
read which reduces the number of vulnerable bits.

Note that WarpC and ThreadC have different strengths
and limitations. WarpC exploits value similarity and zero
values whereas ThreadC leverages narrow and zero values.
WarpC cannot benefit divergent warps, whereas ThreadC
can compress both non-divergent and (active threads of)
divergent warps. However, ThreadC does not exploit value
similarity and hence, it cannot compress values with low
dynamic range. Due to this, for non-divergent applications,
it is less effective in compressing data than WarpC.

To achieve the best of both WarpC and ThreadC, we
propose the following approach. Since warps retain the
same divergence behavior for long execution periods, the
divergence behavior of an application can be recorded for
first 1M cycles. Based on it, for highly-divergent applica-
tions, WarpC can be disabled and ThreadC can be used.
Conversely, WarpC can be used for regular applications.

C. Selective Hardening

Since many real-world GPU applications show irregular
behavior or have wide data values, another technique is also
required for benefitting all the applications. We propose
selective hardening of registers, i.e., left-most H bytes
are designed with radiation-hardened circuits, where H is
a multiple of 4. For example, with no compression and
H=16B, only 112B (=128-16) remain vulnerable. With
B4D0 compression (compressed size of 4B) and H=16B,
entire register is stored in hardened memory and its SEV
is reduced to zero. Note that designing entire RF with SE
immune memory (i.e., H = 128B) would incur unaccept-
ably large overheads, e.g., replacing an SRAM RF with
an STT-RAM RF can reduce performance by 70% [14].
Clearly, by only performing selective hardening and also
using compression, our technique incurs lower hardware
and latency costs. Also, while Palframan et al. [13] harden
selected bits of all the thread registers, our technique
hardens all the bits of selected thread registers. Further,
WarpC exploits value similarity to compress the thread
registers for preferentially storing them in hardened byte,
whereas Palframan et al. do not exploit this opportunity.

IV. IMPLEMENTATION AND OVERHEAD ASSESSMENT

A. Implementation of Compression

For ThreadC, both divergent and non-divergent warps
are considered compressible, whereas, for WarpC, only
non-divergent warps are compressible and the divergent
warps bypass the (de)compressor and thus, do not incur
corresponding latency overheads. Compressor and decom-
pressor are both implemented in pipelined manner and
have one port for each bank which allows serving all
banks in one cycle. For WarpC, serving both compressible
and incompressible warps at the same cycle can cause
additional conflicts since requests from different cycles will
request the bank at the same cycle. To address this, we use

two reservation arrays in the arbiter to solve the conflict
for request to the compressor and request to the register
banks separately. When the requests for compressible and
incompressible data meet at the register bank, compressible
writes are prioritized over incompressible writes and they
are prioritized over reads. This ensures stall-free operation.

Latency overhead: WarpC uses BDI compression which
takes 2 and 1 cycles for compression and decompression,
respectively [10]. ThreadC uses narrow value detection
(NVD) and since NVD circuits are much simpler than a
compressor [22], ThreadC compression takes 1 cycle. Note
that BDI compressor itself uses NVD circuit to find the
width of each delta [10]. Decompression in ThreadC incurs
no additional latency since it only involves reading lower
K bytes of a narrow value. Thus, latency and hardware
overhead of ThreadC are lower than that of WarpC.

Storage overhead: To store the compression state,
WarpC uses 2 bits/warp and ThreadC uses 2 bits/thread
(i.e., 64 bits/warp). By virtue of using compression, our
technique reduces data access and wire movement energy
[20]. Especially for AllZero data, read/write to RF are com-
pletely avoided. Further, BDI circuit and NVD circuit only
involve addition/subtraction and/or bit-comparison [10, 22]
and since our technique reduces SEV significantly, its minor
energy loss is easily justified.

B. Implementation of Hardened memory

As for hardened memory, we use the 10T SRAM cell
[16] which showed 98% less SE rate than the standard 6T
SRAM cell and thus, data stored in this cell is assumed
to be invulnerable. Compared to 6T cell, 10T cell has
7%, 72%, 43% and 40% overhead in write time, static
power, dynamic power and area, respectively [17], e.g., on
hardening 32 out of 128 bytes, overhead in static power,
dynamic power and area are 18%, 11%, 10%, respectively.
These overheads are comparable to that incurred with ECC
[13]. Further, 10T cell provides 14% less SE rate than the
ECC-protected SRAM [16]. When using (de)compression,
the additional latency of hardened memory can be hidden
with that of (de)compression and in other cases, 1 cycle
penalty is incurred. The compression state encoding bits are
also stored in hardened memory in the arbiter and due to
their small size, their overhead is assumed to be negligible.

C. Implementation on Other GPU RF Architectures

Since the exact details of RF in commercial products are
not known, previous work has assumed different RF organi-
zations. One RF design [23] assumes that registers are split
in 32 banks. Each bank is 4B wide and provides data only
to one thread within the warp. Each bank provides data to
one processing element (PE) only. In another organization
[24], four PEs form a cluster and each cluster has its own
RF which is 16B wide. The RF provides four 32b values to
four PEs associated with it. Our technique can easily work
with these RF organizations since they all read/write to 32
registers associated with a warp. Also, hardening can be



done at bank-granularity and WarpC reduces the number
of banks consulted for accessing a data value.

V. RESULTS AND ANALYSIS

We use GPGPUSim v3.2.2 simulator [25] and a config-
uration similar to NVIDIA Fermi GTX480 GPU. There are
15 SMs, each runs up to 48 warps. SM frequency is 700
MHz and ‘greedy then oldest’ (GTO) scheduling policy
is used. RF has 16 banks and 128KB size. We simulate
a diverge range of workloads from Lonestar, ISPASS09,
Rodinia, Parboil, and CUDA SDK suites. In total, we
simulate 20 workloads and they are shown in Table II.

TABLE II: Workloads and their acronyms

mst (MST), sp (SUP), sssp (SSP), bfs (BFS), LPS (LPS)
NN (NEN), NQU (NQU), gaussian (GSS), heartwall (HWA)

hotspot(HOS), needle (NED), particlefilter (PFL), pathfinder (PAF)
cutcp(CUT), mri-q(MRQ), tpacf(TPF), alignedtypes (ALT)

matrixmul (MML), reduction (RDC), streams (STR)

A. Results on Compression Techniques

Figure 2(a) shows the percentage of non-divergent warps
and SEV reduction. Figure 2(b) shows percentage of RF
writes compressed using each state to give insight into
compressibility of RF values. The SEV reduction for any
application depends on the fraction of non-divergent warps
(for WarpC) and compressibility of RF values. For several
applications, most instructions are non-divergent and hence,
WarpC provides larger SEV reduction than ThreadC, e.g.,
MST, PAF, CUT, MRQ, TPF, ALT, RDC, STR, etc.

However, for some applications, most warps are diver-
gent, e.g., for NED, GSS, SSP and BFS, 100%, 99.7%,
97.5% and 97.1% (respectively) warps are divergent. NED
(Needleman-Wunsch) has limited parallelism in every itera-
tion due to dependencies of processing data values in diag-
onal strip manner [26]. In NED, no warp has more than 16
active threads. GSS (Gaussian elimination) solves system of
equations using Gaussian elimination approach and requires
synchronization between iterations [26]. In BFS (breadth
first search), the connectivity and distance of a node depend
on the input graph and in SSP (single-source shortest paths),
the shortest distance of a node depends on input graph. Due
to these, both show irregular memory access pattern [27].
Hence, these applications do not benefit from WarpC. For
these and a few other applications, e.g., NQU, HWA, HOS,
etc., ThreadC provides larger SEV reduction than WarpC.
Clearly, although WarpC on average performs better than
ThreadC, a single compression technique cannot be taken
as optimal for all applications.

From Figure 2(b), WarpC and ThreadC can compress
50.1% and 49.3% of writes on average. In ALT and
STR, WarpC compresses all the writes and several other
applications are also highly compressible, e.g., LPS, PAF,
CUT, TPF, etc. For ThreadC, compressibility depends on
presence of narrow values, e.g., for many applications,
many RF values are zero, e.g. MST, SUP, LPS, PFL, etc.

Figure 2(c) shows the RF critical time (refer §II-B) aver-
aged over entire execution . Clearly, RF critical times can

be very high, for example, for SUP and BFS, critical times
are 2662 and 1092 cycles, respectively and on average,
the critical time is 459 cycles. Thus, RF values remain
vulnerable for long periods which highlights the importance
of reducing their SEV. Previous works (e.g., [18]) have
also observed that RF inter-access times (the time period
between two RF accesses) range in hundreds of cycles.
Finally, as shown in Figure 2(d), our techniques incur less
than 1% performance loss compared to a baseline that does
not use any RF protection scheme or hardening. This is
in acceptable range and is comparable to that with other
reliability techniques, such as ECC.

B. Results on Hardening

To see the benefit from using both compression and
hardening, for each application, we show the number of
bytes required to be hardened to reduce SEV by P%
compared to the baseline. Without compression, hardening
(P × 128)/100 bytes can reduce SEV by P% for a fully
non-divergent application. We look for ability of compres-
sion to reduce this requirement.

Figure 3 shows these results for P = 50% and P = 90%.
On average, without compression, 62 and 110 bytes need
to be hardened for reducing SEV by 50% and 90% and
WarpC can reduce this to 18 and 74 bytes, and ThreadC
can reduce this to 21 and 102 bytes, respectively. For
several benchmarks, compression alone can reduce SEV
by at least 50%, obviating the need of hardening. For
WarpC, this happens for MST, LPS, HWA, PAF, CUT,
MRQ, ALT, MML, RDC, STR, etc. Even for reducing SEV
by 90%, several benchmarks require only few hardened
bytes on using compression. For WarpC, the examples of
such benchmarks are ALT (4B), STR (20B), CUT (28B).
For divergent applications, ThreadC reduces requirement
of hardening more than WarpC, e.g., for 90% reduction
with ThreadC, SSP, NED and GSS require 112B, 56B and
52B, respectively, which are smaller than that required for
WarpC. On using hardening, the smaller benefit of ThreadC
compared to WarpC is because WarpC stores the regis-
ter in left-aligned manner to preferentially use hardened
memory, whereas ThreadC stores each thread-register in
its own place. Thus, by combining hardening with WarpC
or ThreadC, stronger protection can be provided to a wide
variety of GPU applications with only small overhead.

C. Parameter Sensitivity Results

Including B4D2 state in WarpC: On including B4D2
state in WarpC, average SEV reduction increases from
47.01% to 48.00%, although the metadata requirement
of WarpC increases from 2 bits/warp to 3 bits/warp. On
average, 2.6% RF writes are compressed with B4D2 and
a highest value of 24.7% is seen in RDC. Thus, for our
workloads, including B4D2 state leads to only small benefit
which confirms our choice of not using B4D2 state.

Using only one fixed width in ThreadC: We experiment
with using a fixed width in ThreadC (called ‘ThreadC-



 0

 20

 40

 60

 80

 100

 120

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

(a) % Non-divergent warps and % Decrease in Vulnerability (Higher is better) %NonDivergentWarps WarpC ThreadC

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

WarpC ThreadC(b) Compression state distribution Uncompr B4D1 B4D0 AllZero K=2B K=1B

 0

 200

 400

 600

 800

 1000

 1200

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

2662
(c) Average critical time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

(d) Relative Performance (Higher is better) WarpC ThreadC

Fig. 2: Results with WarpC and ThreadC: (a) percentage of divergent warps and SEV reduction (b) compression states
(K=2B and K=1B are 2B and 1B narrow values in ThreadC) (c) average critical times and (d) relative performance (IPC)

0B
16B
32B
48B
64B
80B
96B

112B
128B

MST SUP SSP BFS LPS NEN NQU GSS HWA HOS NED PFL PAF CUT MRQ TPF ALT MML RDC STR Avg

WarpC ThreadCNoCompression 90% 50%

Fig. 3: Hardening requirement for reducing SEV by 50% and 90% (value for 90% is the height of the whole bar)

single’), such that, if the width of a value is at most K
bytes, it is considered narrow, otherwise it is taken as wide,
e.g., for K = 0B, only 0B values are considered as narrow
and others as wide. For K = 0B, 1B and 2B, ThreadC-
single provides SEV reduction of 22.99%, 24.96% and
24.63%, which are much lower than 40.77% achieved with
ThreadC. Clearly, ThreadC finds the most compact width
for a narrow value The benefit of ThreadC-single, however,
it is that it uses simpler compressor circuit and only requires
1 bit/thread compared to 2 bit/thread in ThreadC.

VI. CONCLUSION

In this paper, we presented compression and selective
hardening to reduce SE vulnerability of GPU RF and
demonstrated its effectiveness over a range of workloads.

REFERENCES
[1] S. Mittal et al., “A Survey of Techniques for Modeling and Improv-

ing Reliability of Computing Systems,” IEEE TPDS, 2015.
[2] D. Tiwari et al., “Reliability lessons learned from GPU experience

with the Titan supercomputer at Oak Ridge leadership computing
facility,” in SC, 2015, p. 38.

[3] AMD HD7000 Graphics, http://goo.gl/PZBjLN, 2012.
[4] Intel Itanium Processor 9500, http://goo.gl/xy5m7G, 2012.
[5] NVIDIA Fermi, http://goo.gl/X2AI0b, 2009.
[6] “GeForce GTX Titan X,” http://goo.gl/XajvIj, 2015.
[7] NVIDIA Maxwell, http://goo.gl/8NV82n, 2014.
[8] S. Mittal, “A Survey of Techniques for Architecting and Managing

GPU Register File,” IEEE TPDS, 2016.
[9] S. Mittal et al., “Reducing Soft-error Vulnerability of Caches using

Data Compression,” GLSVLSI, pp. 197–202, 2016.

[10] G. Pekhimenko et al., “Base-delta-immediate compression: practical
data compression for on-chip caches,” in PACT, 2012, pp. 377–388.

[11] NVIDIA GP100 Pascal, http://goo.gl/D2KrVM, 2016.
[12] NVIDIA Kepler GK110, http://goo.gl/111YOz, 2014.
[13] D. Palframan et al., “Precision-aware soft error protection for GPUs,”

in HPCA, 2014, pp. 49–59.
[14] J. Tan et al., “Soft-error reliability and power co-optimization for

GPGPUS register file using resistive memory,” in DATE, 2015.
[15] S. S. Mukherjee et al., “A systematic methodology to compute the

architectural vulnerability factors for a high-performance micropro-
cessor,” in International Symposium on Microarchitecture, 2003.

[16] S. M. Jahinuzzaman et al., “A soft error tolerant 10T SRAM bit-cell
with differential read capability,” IEEE TNS, 2009.

[17] G. Zhang et al., “A novel single event upset hardened CMOS SRAM
cell,” IEICE Electronics Express, vol. 9, no. 3, pp. 140–145, 2012.

[18] M. Abdel-Majeed et al., “Warped register file: A power efficient
register file for GPGPUs,” in HPCA, 2013, pp. 412–423.

[19] J. Leng et al., “GPUWattch: enabling energy optimizations in
GPGPUs,” ISCA, pp. 487–498, 2013.

[20] S. Lee et al., “Warped-compression: enabling power efficient GPUs
through register compression,” ISCA, pp. 502–514, 2015.

[21] A. Chakraborty et al., “E < MC2: less energy through multi-copy
cache,” in CASES, 2010, pp. 237–246.

[22] J. Hu et al., “On the exploitation of narrow-width values for
improving register file reliability,” IEEE TVLSI, 2009.

[23] W. Yu et al., “SRAM-DRAM hybrid memory with applications to
efficient register files in fine-grained multi-threading,” ISCA, 2011.

[24] M. Gebhart et al., “Energy-efficient mechanisms for managing thread
context in throughput processors,” in ISCA, 2011, pp. 235–246.

[25] A. Bakhoda et al., “Analyzing CUDA workloads using a detailed
GPU simulator,” in IEEE ISPASS, 2009, pp. 163–174.

[26] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in IISWC, 2009.

[27] M. Burtscher et al., “A quantitative study of irregular programs on
GPUs,” in IISWC, 2012.


