CHAPTER

RADIATION INTEGRALS AND
AUXILIARY POTENTIAL
FUNCTIONS

3.1 INTRODUCTION

In the analysis of radiation problems. the usual procedure is to specify the sources
and then require the fields radiated by the sources. This is in contrast to the synthesis
problem where the radiated fields are specified, and we are required to find the sources.

It is a very common practice in the analysis procedure to introduce auxiliary
functions, known as vector potentials, which will aid in the solution of the problems.
The most common vector potential functions are the A (magnetic vector potential)
and F (electric vector potential). Another pair is the Hertz potentials II, and TII,,.
Although the electric and magnetic field intensities (E and H) represent physically
measurable quantities, among most engineers the potentiuls are strictly mathematical
tools. The introduction of the potentials often simplifies the solution even though it
may require determination of additional functions. While it is possible to calculate
the E and H fields directly from the source-current densities J and M, as shown in
Figure 3.1, it is usuvally much simpler to calculate the auxiliary potential functions
first and then determine the E and H. This two-step procedure is also shown in Figure
3

The one-step procedure. through path 1, relates the E and H fields to J and M
by integral relations. The two-step procedure, through path 2, relates the A and F (or
1, and I1,) potentials to J and M by integral relations. The E and H are then
determined simply by differentiating A and F (or I1, and I1,). Although the two-step
procedure requires both integration and differentiation, where path [ requires only
integration, the integrands in the two-step procedure are much simpler.

The most difficult operation in the two-step procedure is the integration to deter-
mine A and F (or [1, and I1,). Once the vector potentials are known, then E and H
can always be determined because any well-behaved function, no matter how complex,
can always be differentiated.
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Figure 3.1 Block diagram for computing radiated fields from electric and
magnetic sources.

The integration required to determine the potential functions is restricted over the
bounds of the sources J and M. This will result in the A and F (or I1, and I1,) to be
functions of the observation point coordinates: the differentiation to determine E and
H must be done in terms of the observation point coordinates. The integration in the
one-step procedure also requires that its limits be determined by the bounds of the
sources.

The vector Hertz potential I1, is analogous to A and II, is analogous to F. The
functional relation between them is a proportionality constant which is a function of
the frequency and the constitutive parameters of the medium. In the solution of a
problem. only one set, A and F or Il and I1,,. is required. The author prefers the use
of A and F. which will be used throughout the book. The derivation of the functional
relations between A and I1,, and F and IT, are assigned at the end of the chapter as
problems. (Problems 3.1 and 3.2),

3.2 THE VECTOR POTENTIAL A FOR AN
ELECTRIC CURRENT SOURCE J

The vector potential A is useful in solving for the EM field generated by a given
harmonic electric current J. The magnetic flux B is always solenoidal; that is,
VB = 0. Therefore, it can be represented as the curl of another vector because it
obeys the vector wdentity

V-VxA=0 (3-1)
where A is an arbitrary vector. Thus we define
By = uHy = Vx A (3-2)
or
H, = L] VxA (3-2a)
i

where subscript A indicates the field due to the A potential. Substituting (3-2a) into
Maxwell’s curl equation

V X E."p = _‘J.w#HA (3'3]
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reduces it to

VxE, = —jouH, = —joV x A (3-4)
which can also be written as
V x [E4 + jwA]l = 0 (3-5)
From the vector identity
Vx(-Vé)=0 (3-6)
and (3-5), it follows that
E, + jwA = =V ¢, 3-7)
or
E,= -V¢, — jwA (3-7a)

The scalar function ¢, represents an arbilrary efectric scalar potential which is a
function of position.
Taking the curl of both sides of (3-2) and using the vector identity

VxVxA=VV-A)-V2A {3-8)
reduces it to
Vx(uH,) =VV-:-A) - VA (3-8a)
For a homogeneous medium, {3-8a) reduces to
wV x H, = V(V-A) - V3A (3-9)
Equating Maxwell’s equation
VxH, =]+ jweE, (3-10)
to (3-9) leads to
pl + joueE, = V(V-A) — VA (3-11)

Substituting (3-7a) into (3-11) reduces it to

VA + A = =] + V(V+ A) + V(joued,)

(3-12)
= —pJ + V(U A + joped,)

where & = w’ue.
In (3-2), the curl of A was defined. Now we are at liberty to define the divergence
of A. which is independent of its curl. In order to simplify (3-12), let

]
VA = —jueud. 2, = ——— V- A (3-13)

which is known as the Lorentz condition. Substituting (3-13) into (3-12) leads to

VA + PA = —pud (3-14)
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In addition. (3-7a) reduces 10

I
E, = —Vdé, — joA = —jwA — j— V(V-A) (3-15)
WILE

Once A is known, H, can be found from (3-2a) and E, from (3-15). E, can just
as easily be found from Maxwell’s equation (3-10) with J = 0. It will be shown later
how to find A in terms of the carrent density J. It will be a solution to the inhomo-
gencous Helmholtz equation of (3-14).

3.3 THE VECTOR POTENTIAL F FOR A
MAGNETIC CURRENT SOURCE M

Although magnetic currents appear to be physically unrealizable, equivalent magnetic
currents arise when we use the volume or the surface equivalence theorems. The fields
generated by a harmonic magnetic current in a homogeneous region, with J = 0 but
M # (. must satisfy V + D = 0. Therefore, E, can be expressed as the curl of the
vector potential F by

E, = -»lev x F (3-16)

Substituting (3-16) into Maxwell's curl equation
V x H;: = jweE,. (3-17)
reduces it to
V x (Hf + joF) =0 (3-18)

From the vector identity of (3-6), it follows that

HI;' = _V(bm - _i(l)F (3']9)

where ¢, represents an arbilrary magnetic scalar potential which is a function of
position. Taking the curl of (3-16)

VxEF=—leVxF=—1€[VV-F—VZF] (3-20)
€
and equating it to Maxwell’s equation
VxE:= -M — jwuHf (3-21)
leads to
VF + jwoueHr = VV-F — eM (3-22)

Substituting (3-19) into (3-22) reduces il to

VF+KF = —eM + YV F) + V(wued,) (3-23)
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By letting
V'F = —jowped, = ¢, = —- V-F (3-24)
Jw€
reduces (3-23) to
VF+KF=-eM (3-25)
and (3-19) 10
H, = —joF ~ - 9V-F) (3-26)
WUE

Once F is known, Er can be found from (3-16) and Hy from (3-26) or (3-21) with
M = 0. Tt will be shown later how to find F once M is known. It will be a solution
to the inhomogenecus Helmholtz equation of (3-25).

3.4 ELECTRIC AND MAGNETIC FIELDS FOR
ELECTRIC (J) AND MAGNETIC (M) CURRENT
SOURCES

In the previous two sections we have developed equations that can be used to find
the electric and magnetic fields generated by an electric current source J and a
magnetic current source M. The procedure requires that the auxiliary potential func-
tions A and F generated, respectively, by J and M are found first. In turn, the
corresponding electric and magnetic fields are then determined (E,, H, due to A and
Er. Hy due to F). The total fields are then obtained by the superposition of the
individual fields due to A and F (J and M).

In summary form, the procedure that can be used to find the fields is as follows:

Summary

1. Specify J and M (electric and magnetic current density sources).
2. a. Find A (due to J) using

[l e
A= Z;‘_LU-J R dv (3-27)
which is a solution of the inhomogeneous vector wave equation of (3-14),

b. Find F (due to M) using

€ e MR
= E,ﬂfM ikl (3-28)
v

which is a solution of the inhomogeneous vector wave equation of (3-25). In
(3-27) and (3-28), ¥* = w’ue and R is the distance from any point in the
source to the observation point. In a latter section, we will demonstrate that
(3-27) is a solution to (3-14) as (3-28) is to (3-25).
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3. a. Find H, using (3-2a) and E, using (3-15). E4 can also be found using Max-
well's equation of (3-10) with J = 0,
b. Find E, using (3-16) and H using (3-26). H, can also be found using Max-
well's equation of (3-21) with M = 0.
4. The total tields are then given by

|
E=E, +E = —jowA - j——I—V(V ‘A)--VxF (3-29)
(WULE €
or
|
E = EA + EI;‘ = ‘_‘V X H_/\ - lV x F (3"293)
Jwe €
and
! |
H=H,+H,=~-VxA - joF — j—V(V-F) (3-30)
“ WHLE
or
1 |
H=H,+H,=-VxA - —VxE; (3-30a)
m jop

Whether (3-15) or (3-10) is used to find E,; and (3-26) or (3-21) to find H,
depends largely upon the problem. In many instances one may be more complex than
the other or vice versa. In computing fHelds in the far-zone, it will be casier to use
(3-15) for E, and (3-26) for H, because, as it will be shown. the second term in each
expression becomes negligible in that region.

3.5 SOLUTION OF THE INHOMOGENEOUS
VECTOR POTENTIAL WAVE EQUATION

In the previous section we indicated that the solution of the inhomogeneous vector
wave equation of (3-14) is (3-27),

To derive it, let us assume that a source with current density J.. which in the limit
is an infinitesimal source, is placed at the origin of a x, ¥, z coordinate system, as
shown in Figure 3.2(a). Since the current density is directed along the z-axis (J.), only
an A. component will exist. Thus we can write (3-14) as

V2A. + KA. = — ud. (3-31)
At points removed from the source (J. = 0), the wave equation reduces o
VA, + K°A. = 0 (3-32)

Since in the limit the source is a point, it requires that A. is not a function of direction

(6 and ¢): in a spherical coordinate system. A. = A.(r) where r 1s the radial distance.
Thus (3-32) can be written as

2 M I o i

VAW + KA = =s—|r

r-or

dA.(r)

or

] + KAL) =0 (3-33)
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(x.y.z)

x,y.z" R (x.y.2)

Lo

X

(b) Source not at origin
Figure 3.2 Coordinate systems for computing radiating fields.

vhich when expanded reduces to
d’ALn) | 2dALn)
dr rodr
Fhe partial derivative has been replaced by the ordinary derivative since A is only a

unction of the radial coordinate.
The differential equation of (3-34) has two independent solutions

+ KA =0 (3-34)

e—jkr'

A:l = Cl r (3-35)
e v jkr

As = G, (3-36)

iquation (3-35) represents an outwardly (in the radial direction) traveling wave and
3-30) describes an inwardly traveling wave (assuming an e/ time variation). For
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this problem. the source is placed at the origin with the radiated fields traveling in the
outward radial direction. Therefore, we choose the solution of (3-35). or

e—jl\'r
A_- = A:| = C| , (3“37)
In the static case (w = 0, k = 0), (3-37) simplifies to
A, = G (3-38)
r

which is a solution to the wave equation of (3-32), (3-33), or (3-34) when k = (.
Thus at points removed from the source, the time-varying and the static solutions of
(3-37) and (3-38) ditTer only by the ¢ " factor; or the time-varying solution of (3-
37) can be obtained by multiplying the static solution of (3-38) by ¢ /",

In the presence of the source (J. # () and & = 0 the wave equation of (3-31)
reduces to

VA, = —pl. (3-39)

This equation is recognized 1o be Poisson’s equation whose solution is widely docu-
mented. The most familiar equation with Poisson’s form is thut relating the scalar
electric potential ¢ to the electric charge density p. This is given by

Vig = —= (3-40)

whose solution is

¢=LJ’H’—’W (3-41)
4qre ’ r

where r is the distance from any point on the charge density to the observation point.
Since (3-39) is similar in form to (3-40). its solution is similar to (3-41), or

J.
A= f f f = gy (3-42)
47 o

Equation (3-42) represents the solution to (3-31) when & = 0 (static case). Using the
comparative analogy between (3-37) and (3-38). the t'une-varyingl solution of (3-31)
can be obtained by multiplying the static solution of (3-42) by ¢ ~*", Thus

u e
Sy
/

which is a solution to (3-31).
If the current densities were in the v- and y-directions (J/, and J,), the wave
equation for each would reduce 10

VA, + KA, = —ud, (3-44)
ViA, + KA, = —ud, (3-45)
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with corresponding solutions similar in form to (3-43), or

Py
Ac= oo ) S v (3-46)
I e
Ay == fﬂ S (3-47)
v

The solutions of (3-43), (3-46). and (3-47) allow us to write the solution to the
vector wave equation of (3-14) as

m e—jl(r ,
A= aﬂf =& (3-48)
Vv

If the source is removed from the origin and placed at a position represented by
the primed coordinates (x, y’, z'), as shown in Figure 3.2(b), (3-48) can be written as

n e ¥
A, v, 2) = ry ﬂ f Jix', y'. ') R av’ (3-49)
1’4

where the primed coordinates represent the source, the unprimed the observation
point, and R the distance from any point on the source to the observation point. In a
similar fashion we can show that the solution of (3-25) is given by

e IR

Fix,v,.2) = '51 ﬂ] M@, v, Z')—R— dv’ (3-50)
v

[f J and M represent linear densities (m ™ 1}, (3-49) and (3-50) reduce to surface
integrals, or

"L L) [} [ e—JkR !
A=4_ﬂ_fj-]s(x g,V,Z)_R"-dS (3'51)
S
€ ] t ] e—ij !
F = ;rﬂ M, ', 2") R ds (3-52)
s

For electric and magnetic currents I, and L, they in turn reduce to line integrals of
the form

~jkR

R

e

A=EL f L',y 2)—dI (3-53)
4ar Jc
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.~ ikR

€
F=— f L. v,z dr’ 3-54
ypl) SR ZE R R (3-54)

3.6 FAR-FIELD RADIATION

The fields radiated by antennas of finite dimensions are spherical waves. For these
radiators. a general solution to the vector wave equation of (3-14) in spherical com-
ponents, ecach as a function of r, 8, ¢, takes the general form of

A= 8,A.(r 6. ¢) + 8,A)r 0. D) + a4Aur. 0, B) (3-55)

The amplitude variations of r in each component of (3-55) are of the form 1/r",
n = 1,2....[1]. Neglecting higher order terms of 1/r" (1/r" = 0, n = 2,3,..))
reduces (3-55) to

e—jkr

A = [4,A/(0. ) + 8pA0, d) + A,4AL0. B)] r—so  (3-56)

r L)
The r variations are separable from those of 8 and ¢. This will be demonstrated in

the chapters that follow by many examples.
Substituting (3-56) into (3-15) reduces it to

1 .
E = ~{—jwe "[8(0) + 8)AL0. ) + 8,Au0 SN} + ,—lj{- R R )

The radial E-field component has no 1/r terms, because its contributions from the first
and second terms of (3-15) cancel each other.
Similarly, by using (3-56), we can write (3-2a) as

| ) I .
H = ;{jge'-f"[ﬁr(m + 8,A4(0, ) — 8,AK0, cb)]} sl O I (3-57a)

where 7 = \/w/e is the intrinsic impedance of the medium.
Neglecting higher order terms of 1/r". the radiated E- and H-fields have only 6
and ¢ components. They can be expressed as

Far-Field Region

E. =0
E,= —jwA, | o Ei= —jowA (3-58a)
Ey= —johy | (for the @ and ¢ components only
since E, = ()
H, =
W Ey
Hy=+j—A, = —— A,
v n¢ n o |Hy= ZxE = —j%43 xA | (3-580)
w E n L)
H,= —j—A,= +—
¢ gt n (for the # and ¢ components only since H, = 0)

Radial field components exist only for higher order terms of 1/r".
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In a similar manner, the far-zone fields due to a magnetic source M (potential F)
can be written as

Far-Field Region
H =0
Hy= —joFy } =|H,=—jwF (3-59a)
H,= —jwF, -
(for the # and ¢ components only
since H, = ()
E, =0
Ey= —jonFy=nH, | o|E.= —73, x H, = joni, x F | (3-59b)
= - PR
E Jonky H, ) (for the @ and ¢ components only since E, = ()

Simply stated, the corresponding far-zone E- and H-field components are or-
thogonal to each other and form TEM ( to r) mode fields. This is a very useful relation,
and it will be adopted in the chapters that follow for the solution of the far-zone
radiated fields. The far-zone (far-field) region for a radiator is defined in Figure 2.5.
Its smallest radial distance is 2D*A where D is the largest dimension of the radiator.

3.7 DUALITY THEOREM

When two equations that describe the behavior of two different variables are of the
same mathematical form. their solutions will also be identical. The variables in the
two equations that occupy identical positions are known as dual quantities and a
solution of one can be formed by a systematic interchange of symbols to the other.
This concept is known as the duality theorem.

Comparing Equations (3-2a), (3-3), (3-10), (3-14), and (3-15) 10 (3-16), (3-17),
(3-21), (3-25), and (3-26), respectively, it is evident that they are to each other dual
equations and their variables dual quantities. Thus knowing the solutions to one set
(i.e., J # 0. M = 0), the solution to the other set (J = 0. M % 0) can be formed by
a proper interchange of quantities. The dual equations and their dual quantities are
listed in Tables 3.1 and 3.2 for electric and magnetic sources, respectively. Duality

Table 3.1 DUAL EQUATIONS FOR ELECTRIC (J) AND MAGNETIC

(M) CURRENT SOURCES
Electric Sources (J # 0, M = 0) Magnetic Sources (J = O, M # 0)
vV x E4 = -jwp.HA ¥V x Hp = j(DEEF
VXH,\=J+jw€EA -VXE,‘=M+ij.LHr
VA + IPA = — ] VF + k'F = —eM
—JkR —JkR
s s ln e
= i 1) F=— M '
A 47 .[U" R v 41 R d
v v
HA=leA Ef-=—leF
I €

1 1
E, —ij—jw—M;V(V'A) HI.-=—_[.€UF“_,‘"(‘IEV(V'F)
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Table 3.2 DUAL QUANTITIES FOR ELECTRIC (J) AND MAGNETIC
(M) CURRENT SOURCES

Electric Sources (J # 0. M = () Magnetic Sources (J = 0. M = ()

E, H,
H, -E
J M
A F
€ Iz
M €
k k
Ui I/
i/m n

only serves as a guide to form mathematical solutions. [t can be used in an abstract
manner to explain the motion of magnetic charges giving rise t0 magnetic currents,
when compared to their dual quantities of moving electric charges creating electric
currents. 1t must, however, be emphasized that this is purely mathematical in nature
since it is known as of today. that there are no magnetic charges or currents in nature.

3.8 RECIPROCITY AND REACTION THEOREMS

We are all well familiar with the reciprocity theorem, as applied to circuits, which
states that **in any network composed of linear, bilateral. lumped elements. if one
places a constant current (voltage) generator between two nodes (in any branch) and
places a voltage (current) meter between any other two nodes (in any other branch),
makes observation of the meter reading, then interchanges the locations of the source
and the meter, the meter reading will be unchanged™ [2]. We want now 0 discuss
the reciprocity theorem as it applies to electromagnetic theory. This is done best by
the use of Maxwell’s equations.

Let us assume that within a linear and isotropic medium. but not necessarily
homogeneous. there exist two sets of sources J;. M, and J.. M, which are allowed
to radiate simultaneously or individually inside the same medium at the frequency
and produce fields Ey, H; and E,, Ha, respectively. It can be shown [1]. [3] that the
sources and ficlds satisfy

-V-(E;xH, ~E;xH)=E-J,+ H.-M, - E;-J, - H-M, (3-60)

which is called the Lorentz Reciprocity Theorem in differential form.
Taking a volume integral of both sides of (3-60) and using the divergence theorem
on the left side, we can write it as

—ﬁ (E] X H_:: - Eg X H|)'dS'
5

= J-ﬂ (E| '.lg + Hz' M| - E2°J1 - H| 'Mz) v’ (3-61)

which is designated as the Lorentz Reciprocity Theorem in integral form.
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For 4 source-free (J, = J» = M, = M; = 0) region, (3-60) and (3-61) reduce,
respectively, to

V-(E,xH; — E.xH)) =0 (3-62)

and

@ (E| X Hg - Eg X H|) eds' =0 (3'63)
k)

Equations (3-62) and (3-63) are special cases of the Lorentz Reciprocity Theorem
and must be satisfied in source-free regions.

As an example of where (3-62) and (3-63) may be applied and what they would
represent, consider a section of a waveguide where two different modes exist with
fields E,, H, and E,, H.. For the expressions of the fields for the two modes to be
valid, they must satisfy (3-62) and/or (3-63).

Another useful form of (3-61) is to consider that the fields (E,, H,, E,, H,) and
the sources (J,, M. Jo. M,) are within a medium that is enclosed by a sphere of
infinite radius. Assume that the sources are positioned within a finite region and that
the ficlds are observed in the far field (ideally at infinity). Then the left side of (3-61)
is equal to zero, or

@ (E| b 4 H;l_ - Ez X H}) «ds’ =0 (3-64)
h

which reduces (3-61) to

ff (Ei*bh + H,»M ~Ex;- Jy ~ H - Mp)dv' =0 (3-65)
ot

Equation 3-65 can also be written as

ﬂ (Eq+Jo — Hi-Mp) v = H (E;+J, — Hy- M) ov' (3-66)
v v

The reciprocity theorem, as expressed by (3-66), is the most useful form.

A close observation of (3-61) will reveal that it does not, in general. represent
relations of power because no conjugates appear, The same is true for the special
cases represented by (3-63) and (3-66). Each of the integrals in (3-66) can be inter-
preted as a coupling between a set of fields and a set of sources, which produce
another set of lields. This coupling has been defined as Reaction [4] and each of the
integrals in (3-66) are denoted by

(1.2) = J] (Ey+J; — H - M;) dv (3-67)
V

(2. l) = J’ff (Eg 'J| - H2 . Ml) dv (3-68)
V
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The relation (1. 2) of (3-67) relates the reaction (coupling) of fields (E,, H,),
which are produced by sources J,, M, to sources (J., M,), which produce fields E,,
H,; (2, 1) relates the reaction (coupling) of fields (E,, H») to sources (J,, M,). For
reciprocity to hold. it requires that the reaction (coupling) of one set of sources with
the corresponding fields of another set of sources must be equal to the reaction
(coupling) of the second set of sources with the corresponding fields of the first set
of sources, and vice versa. In equation form, it is written as

(1.2) = 2. ) (3-69)

3.8.1 Reciprocity for Two Antennas

There are many applications of the reciprocity theorem. To demonstrate its potential,
an antenna example will be considered. Two antennas, whose input impedances are
Z, and Z,, are separated by a linear and isotropic (but not necessarily homogeneous)
medium, as shown in Figure 3.3. One antenna (#1) is used as a transmitter and the
other (#2) as a receiver. The equivalent network of each antenna is given in Figure
3.4. The internal impedance of the generator Z, is assumed to be the conjugate of the
impedance of antenna #1 (Z, = Zf = R, — jX,) while the load impedance Z, is
equal to the conjugate of the impedance of antenna #2 (Z, = Z5 = R, — jX;). These
assumptions are made only for convenience.
The power delivered by the generator to antenna #1 is given by

| 1 V,Z, 1% \Z5
= - R VI = — & & = 4 '70
Py =5 RelVilt] =3 Re[ Z, + z,) @ + z\m] 8R, (3-70)

If the transfer admittance of the combined network consisting of the generator im-
pedance. antennas, and load impedance is Y3, the current through the load is V, Yy,
and the power delivered to the load is

Py = L Re[ZAV, Y2 )(V,Ya))*] = § Ry V3| Y22 (3-71)
The ratio of (3-69) to (3-68) is

P" ]
}7- = 4R \R:|Ya|? (3-72)
|

In a similar manner. we can show that when antenna #2 is transmitting and #1

is receiving, the power ratio of P/P; is given by
P
P—‘ = 4R.R\|Y 1l (3-73)

2

2z, -ﬁ—/\NV\-—
Ve vy #|
T \M"

Figure 3.3 Transmitting and receiving antenna systems.
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A (¢
/..'ﬁTR] = iX) mam O
GD il £ =Ry +iXy £y =Ry +1X2 Zy =Ry —1X,
Fown —C
B D

Figure 3.4 Two antenna systems with conjugate loads.

Under conditions of reciprocity (Y,» = Ya;), the power delivered in either direction
is the same.

3.8.2 Reciprocity for Radiation Patterns

The radiation patlern is a very important antenna characteristic. Although it is usually
most convenient and practical to measure the pattern in the receiving mode, it is
identical, because of reciprocity, to that of the transmitting mode.

Reciprocity for antenna patterns is general provided the materials used for the
antennas and feeds. and the media of wave propagation are linear. Nonlinear devices.
such as diodes, can make the antenna system nonreciprocal. The antennas can be of
any shape or size, and they do not have to be matched to their corresponding feed
lines or loads provided there is a distinct single propagating mode at each port. The
only other restriction for reciprocity to hold is for the antennas in the transmit and
receive modes are polarization matched, including the sense of rotation. This is
necessary so that the antennas can transmit and receive the same field components,
and thus total power. If the antenna that is used as a probe to measure the fields
radiated by the antenna under test is not of the same polarization, then in some
situations the transmit and receive patterns can still be the same. For example. if the
transmit antenna is circularly polarized and the probe antenna is linearly polarized.
then if the linearly polarized probe antenna is used twice and it is oriented one time
o measure the ¢-component and the other the ¢-component, then the sum of the two
components can represent the pattern of the circularly polarized antenna in either the
transmit or receive modes. During this procedure, the power level and sensitivities
must be held constant.

To detail the procedure and foundation of pattern measurements and reciprocity,
let us refer to Figures 3.5(a) and (b). The antenna under test is #1 while the probe
antenna (#2) is oriented to transmit or receive maximum radiation. The voltages and
currents V. /, at terminals 1-1 of antenna #1 and V5, [, at terminals 2-2 of antenna
#2 are related by

Vi =2\ + Zyals (3-74)
Vo = Zoly + Zosls
where

Z,, = self-impedance of antenna # |
self-impedance of antenna #2
Z,s. Z»; = mutual impedances between antennas #1 and #?2

il
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Figure 3.5 Antenna arrangement for pattern measurements and reciprocity theorem.

If a current /, is applied at the terminals 1-1 and voltage V. (designated as Vs,,.)
is measured at the open (I, = 0) terminals of antenna #2, then an equal voltage V,,
will be measured at the open (I, = 0) terminals of antenna #1 provided the current
I, of antenna #2 is equal to ;. In equation form, we can write

V"-' W ’

Zﬂl = —= {3-753:‘
O
V o

Z, = 2 (3-75b)
Iy {t=0

If the medium between the two antennas is linear, passive, isotropic, and the
waves monochromatic, then because of reciprocity

V"nr Vi:rr -
L .. = — 8 = Z (3-76)
& I |n=0 L [i=0 !
If in addition /, = [, then
"Jlm.' = Vlur_' (3-?7)

The above are valid for any position and any mode of operation between the two
antennas.

Reciprocity will now be reviewed for two modes ol operation. In one mode,
antenna # 1 is held stationary while #2 is allowed to move on the surface of a constant
radius sphere, as shown in Figure 3.5(a). In the other mode. antenna #?2 is maintained
stationary while #1 pivots about a point, as shown in Figure 3.5(b).

In the mode of Figure 3.5(a), antenna #1 can be used either as a transmitter or
receiver. In the transmitting mode, while antenna #2 is moving on the constant radius
sphere surface, the open terminal voltage V., is measured. In the receiving mode, the
open terminal voltage V. is recorded. The three-dimensional plots of V,,, and V.,
as a function of @ and ¢, have been defined in Section 2.2 as freld parterns. Since the
three-dimensional graph of V., is identical to that of V,,. (due to reciprocity), the
transmitting (Vs,,.) and receiving (V) field patterns are also equal. The same con-
clusion can be arrived at if antenna #2 is allowed to remain stationary while #1
rotates, as shown in Figure 3.5(b).
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The conditions of reciprocity hold whether antenna #1 is used as a transmitter
and #2 as a receiver or antenna #2 as a transmitter and #1 as a receiver. In practice,
the most convenient mode of operation is that of Figure 3.5(b) with the test antenna
used as a receiver, Antenna #2 is usually placed in the far-field of the test antenna
(#1), and vice-versa, in order that its radiated fields are plane waves in the vicinity
of #1.

The receiving mode of operation of Figure 3.5(b) for the test antenna is most
widely used to measure antenna patterns. because the transmitting equipment is in
most cases bulky and heavy while the receiver is small and lightweight. In some
cases, the receiver is nothing more than a simple diode detector. The transmitting
equipment usually consists of sources and amplitiers. To make precise measurements,
especially at microwave frequencies, it is necessary 10 have frequency and power
stabilities. Therefore, the equipment must be placed on stable and vibration-free
platforms. This can best be accomplished by allowing the transmitting equipment to
be held stationary and the receiving equipment to rotate.

An excellent manuscript on test procedures for antenna measurements of ampli-
tude, phase, impedance, polarization, gain, directivity, efficiency, and others has been
published by TEEE [5]. A condensed summary of it is found in |6}, and a review is
presented in Chapter 15 of this text.
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PROBLEMS
31, IfH, = jweV x 11, where I, is the electric Hertzian potential. show that
. , N ,
(a) v-I1, + kI, = ";J (b) E, = k11, + WV -1IL)

(cy M. = —j——l—A
WLE

32. WE, = —jouV x 11, where I, is the magnetic Hertzian potential, show that

) . ' 2y
(@) v, + £, = jaM (by H, =&, + v(v-11,)

1
(C) nh = —J—F
WE

3.3, Verify that (3-35) and (3-36) are solulions to (3-34).

3.4. Show that {3-42) is a sotution to (3-39) and (3-43) is a solution to (3-31).
3.5. Verify (3-57) and (3-57a).

3.6. Derive (3-60) and (3-61).



