CHAPTER

4

LINEAR WIRE ANTENNAS

4.1 INTRODUCTION

Wire antennas, linear or curved, are some of the oldest. simplest, cheapest. and in
many cases the most versatile for many applications. It should not then come as a
surprise to the reader that we begin our analysis of antennas by considering some of
the oldest. simplest, and most basic configurations. Initially we will try to minimize
the complexity of the antenna structure and geometry to keep the mathematical details
to a minimum.

4.2 INFINITESIMAL DIPOLE

An infinitesimal linear wire (/ <<A) is positioned symmetrically at the origin of the
coordinate system and oriented along the z axis, as shown in Figure 4.1(a). Although
infinitesimal dipoles are not very practical, they are used to represent capacitor-plate
(also referred to as top-hat-loaded) antennas. In addition, they are utilized as build-
ing blocks of more complex geometries. The wire, in addition to being very small
(I < A), is very thin (¢ << A). The current is assumed to be constant and given by

](Z') = ﬁ;]() (4‘”

where /, = constant.

4.2.1 Radiated Fields

To find the fields radiated by the current element, the two-step procedure of Figure
3.1 is used. It will be required to determine first A and F and then find the E and H.
The functional relation between A and the source J is given by (3-49), (3-51). or
(3-53). Similar relations are available for F and M, as given by (3-50), (3-52),
and (3-54).

Since the source only carries an electric current L. 1, and the potential function
F are zero. To find A we write

—jkR

R

Aty 7y = & f L(x',y. 2) —ar (4-2)
41 ..
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{b) Electric field orientation

Figure 4.1 Geometrical arrangement of an infinitesimal dipole and its associated electric
field components on a spherical surface.

where (x, v, ) represent the observation point coordinates, (x', v', I') represent the
coordinates of the source, K is the distance from any point on the source to the
observation point. and path C is along the length of the source. For the problem of
Figure 4.1

L'y, 2 = aly (4-3a)
¥ =y =7 =0 (infinitesimal dipole) (4-3b)
R=AVx—=xVP+(v—VvP P+ -2V =VE+ ¥+ 7

= r = constant (4-3¢)

dl' = d7' (4-3d)
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so we can write (4-2) as

Fi2
A“ ¥, 7) = a_ ”10 —jkrj dz' #“,Ole—jkr (4-4)
Trr ~12 “4ar

The next step of the procedure is to find H, using (3-2a} and then E, using (3-15)
or (3-10) with J = 0. To do this, it is often much simpler 1o transform (4-4) from
rectangular to spherical components and then use (3-2a) and (3-15) or (3-10) in
spherical coordinates to find H and E.

The transformation between rectangular and spherical components is given. in
matrix form, by (see Appendix VII)

A, sin fcos ¢ sin fsin¢  cos 8 A,
Ag| = |cos fcos¢p cosfsing —sin @ || A, (4-5)
Ay —sin ¢ cos ¢ 0 A.
For this problem. A, = A, = 0, so (4-5) using (4-4) reduces to
Iole ™
A, =A.cos =52 cosp (4-6a)
A7r
Il —jkr
Ap= —A.sing = —E2C " Gno (4-6b)
47r
A, =0 (4-6¢)

Using the symmetry of the problem (no variations in ¢), (3-2a) can be expanded
in spherical coordinates and written in simplified form as

. 1 0A,
H = 4, o [ (rA ) 89] (4-7)
Substituting (4-6a)—(4-6¢) into (4-7) reduces it to
H =H,=0 (4-8a)
Cklylsin 8 ! .
H,=j—— + — jkr -
o =J dar [l jkr]e (4-8b)

The electric field E can now be found using (3-15) or (3-10) with J = 0. That
is.

1 ]
E=E,= —jwA —j—V(V'A)=—VxH (4-9)
WHLE Jjwe
Substituting (4-6a)—(4-6¢) or (4-8a)—(4-8b) into (4-9) reduces it to
fyl cos 8 N -

_ + — | ot 4-10

Er=m 27 [l jki]e (4-100)
kIl sin 8 1 | e
Ep=jp—— |1 + — — — |ei* -

o = INT oy [1 jkr (kr)z:l ¢ (4-100)
E,=0 (4-10c)
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The E- und H-field components are valid everywhere, except on the source itself,
and they are sketched in Figure 4.1(b) on the surface of a sphere of radius r. It is a
straightforward exercise to verify Equations (4-10a)~(4-10c¢). and this is left as an
exercise to the reader (Prob. 4.9).

4.2.2 Power Density and Radiation Resistance

The input impedance of an antenna. which consists of real and imaginary parts, was
discussed in Section 2.13. For a lossless antenna, the real part of the input impedance
was designated as radiation resistance. It is through the mechanism of the radiation
resistance that power is transferred from the guided wave to the free-space wave. To
find the inpul resistance for a lossless antenna, the Poynting vector is formed in terms
of the E- and H-fields radiated by the antenna. By integrating the Poynting vector
over a closed surface (usually a sphere of constant radius), the total power radiated
by the source is found. The real part of it is related to the input resistance.

For the infinitesimal dipole, the complex Poynling vector can be written using
(4-8a)—(4-8b) and (4-10a)-(4-10c) as

W =1(E x H¥) = 1(@&,E, + &,E,) x (4, HF)
= (@,E\Hz* — 8,EH) (4-11)

whose radial W, and transverse Wy components are given, respectively, by

n |1,1]2 sin® @ o
wo= 2R Ty 4-12;
8 1A re [ I kry (a-12a)
. klIyl|* cos Osin 8 1
W, = - I + 3 -

The complex power moving in the radial direction is obtained by integrating (4-11)-
(4-12b) over a closed sphere of radius . Thus it can be written as

P = #W cds = J“_ L (a,W, + 4,W,) -4, sin 0 d8do (4-13)
s

2 )
[l —j(_k'_):,] (4-14)

The transverse component W, of the power density does not contribute to the
integral. Thus (4-14) does not represent the total complex power radiated by the
antenna. Since W,, as given by (4-12b), is purely imaginary. it will not contribute to
any real radiated power. However, it does contribute to the imaginary (reactive) power
which along with the second term of (4-14) can be used to determine the total reactive
power of the antenna. The reactive power density, which is most dominant for small
values of kr, has both radial and transverse components. It merely changes between
outward and inward directions to form a standing wave at a rate of twice per cycle.
It also moves in the transverse direction as suggested by (4-12b).

which reduces to

N

A

m

2n ru
— W .2 si — —_
P J;) J;’ 4o sin 8dBdd = 7 3
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Equation (4-13), which gives the real and imaginary power that is moving out-
wardly, can also be written as [4]
_IH e {7\ [tl] o1
P-—2 g ExH ds—n(B) 1 J(kr)"
= Pl‘ad + _iZ(U(W,,, - We-) (4'15)

A

-

where

P = power (in radial direction)
P, = lime-average power radiated

W,, = time-average magnetic energy density (in radial direction)

-

W. = time-average electric energy density (in radial direction)
2w(W,, — W,) = time-average imaginary (reactive) power (in radial direction)

From (4-14)
T Inl 2
Pus = 0|z |~ 4-16
T} n(3) A ( )
and
« - A\ L 1 |
2(U(Wm - wl.') = ‘77(3) _‘AL (kl')3 (4-17)

It is clear from (4-17) that the radial electric energy must be larger than the radial
magnetic energy. For large values of kr (kr > 1 or r 2> A), the reactive power
diminishes and vanishes when kr = x.

Since the antenna radiates its real power through the radiation resistance, for the
infinitesimal dipole it is found by equating (4-16) to

™
Prnd = 71(5)

where R, is the radiation resistance. Equation (4-18) reduces to

m=ﬂlﬂq=mfgy (4-19)
YAR A

for a free-space medium (n = 120m). It should be pointed out that the radiation
resistance of (4-19) represents the total radiation resistance since (4-12b) does not
contribute to it.

For a wire antenna to be classified as an infinitesimal dipole. its overall length
must be very small (usually / = A/50).

2

Iyl

A

Lo
= 5 IR, (4+-18)

Example 4.1

Find the radiation resistance of an infinitesimal dipole whose overall length is
[ = A50.
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SOLUTION
Using (4-19)

2 2
R, = 80n> (i) = 807 (L) = 0.316 ohms
A 50
Since the radiation resistance of an infinitesimal dipole is about 0.3 ohms. it will
present a very large mismatch when connected Lo practical transmission lines, many
of which have characteristic impedances of 50 or 75 ohms. The reflection efficiency
(e,) and hence the overall efficiency (e,) will be very small.

The reactance of an infinitesimal dipole is capacitive. This can be illustrated by
considering the dipole as a flared open-circuited transmission line, as discussed in
Section t.4. Since the input impedance of an open-circuited transmission line a
distance 1/2 from its open end is given by Z, = —jZ, cot (BI/2), where Z, is its
characteristic impedance, it will always be negative (capacitive) for / << A,

4.2.3 Radian Distance and Radian Sphere

The E- and H-fields for the infinitesimal dipole, as represented by (4-8a)-(4-8b) and
(4-10a)—(4-10c), are valid everywhere (except on the source itself). An inspection of
these equations reveals the tollowing:

(a) Atadistance r = AM2m (or kr = 1), which is referred to as the radian distance,
the magnitude of the first and second terms within the brackets of (4-8b) and
(4-10a) is the same. Also at the radian distance the magnitude of all three terms
within the brackets of (4-10b) is identical; the only term that contributes to the
total field is the sccond, because the first and third terms cancel each other. This
is illustrated in Figure 4.2.

(b) At distances less than the radian distance » < A/27r (kr < 1), the magnitude of
the second term within the brackets of (4-8b) and (4-10a) is greater than the first
term and begins to dominate as r < A/27. For (4-10b) and r < M2, the
magnitude of the third term within the brackets is greater than the magnitude of
the first and second terms while the magnitude of the second term is greater than
that of the first one: each of these terms begins to dominate as r<< A/27. This
is illustrated in Figure 4.2. The region r < A/27r (kr < 1) is referred to as the
near-field region.

(c) At distances greater than the radian distance r > A/27 (kr > 1), the first term
within the brackets of (4-8b) and (4-10a) is greater than the magnitude of the
second term and begins to dominate as r =>>A2w(kr > 1). For (4-10b) and
r > A2, the first term within the brackets is greater than the magnitude of the
second and third tlerms while the magnitude of the second term is greater than
that of the third; each of these terms begins to dominate as r > A/2#. This is
illustrated in Figure 4.2. The region r > A/27 (kr > |) is referred to as the
intermediate-field region while that for r => A/2 (kr >> 1) is referred to as the
Sar-field region.
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Figure 4.2 Magnitude variation. as a function of the radial distance, of
the field terms radiated by an infinitesimal dipole.

(d) The sphere with radius equal to the radian distance (» = A/2mw) is referred as
the radian sphere, and it defines the region within which the reactive power
density is greater than the radiated power density [1]-[3]. For an antenna, the
radian sphere represents the volume occupied mainly by the stored energy of
the antenna’s electric and magnetic fields. Outside the radian sphere the radiated
power density is greater than the reactive power density and begins to dominate
as r > A2 Therefore the radian sphere can be used as a reference, and it
defines the transition between stored energy pulsating primarily in the 6 direction
[represented by (4-12b)] and energy radiating in the radial (r) direction [repre-
sented by the first term of (4-12a); the second term represents stored energy
pulsating in the radial (r) direction].

4.2.4 Near-Field (kr << 1) Region

An inspection of (4-8a)-(4-8b) and (4-10a)-(4-10c) reveals that for kr << A or
r << M2 they can be reduced in much simpler form and can be approximated by

. [ule_jkr

E,= — 08 (4-20a
nS 3 cos 6 )
. Ioleqjkr B )

E,g = =7 47;‘,()'3 sin 8 kr << | (4'20b)

E,=H =H,=0 (4-20c¢)

Iyle %"
H, = —sin 8 -
b ypo sin {4-20d)

The E-field components, E, and E,. are in time-phase but they are in time phase
quadrature with the H-field component H,,: therefore there is no time-average power
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flow associated with them. This is demonstrated by forming the time-average power
density as

W, =3iRelE x H*| = jRe[&,E,H*; — 8,E H* ] (4-21)

which by using {4-20a)—(4-20d) reduces 10

I”I

4

2sin® @ 1 o] sin 6 cos @ .
L ENP § U] =0 @42
r LT ” (4-22)

1
w;-w = ;Re[_ﬁrjg

The condition of kr <€ | can be satisfied at moderate distances away from the antenna
provided that the frequency of operation is very low. Equations (4-20a) and (4-20b)
are similar to those of a static electric dipole and (4-20d) to that of a static current
element. Thus we usually refer 1o (4-20a)~(4-20d) as the quasistationary fields.

4.2.5 Intermediate-Field (kr > 1) Region

As the values of kr begin to increase and become greater than unity, the terms that
were dominant for kr <€< 1 become smaller and eventually vanish. For moderate
values of &r the E-field components lose their in-phase condition and approach time-
phase quadrature. Since their magnitude is not the same. in general. they form a
rotating vector whose extremity traces an ellipse. This is analogous to the polarization
problem except that the vector rotates in a plane parallel o the direction of propagation
and is usually referred to as the cross field. At these intermediate values of kr, the E,
and H,, components approach time-phase, which is an indication of the formation of
time-uverage power flow in the outward (radial) direction (radiation phenomenon).

As the values of kr become moderate (kr > 1), the field expressions can be
approximated again but in a different form. In contrast to the region where kr << |,
the first term within the brackets in (4-8b) and (4-10a) becomes more dominant and
the second term can be neglected. The same is true for (4-10b) where the second and
third terms become less dominant than the first. Thus we can write for kr > |

I()IL" ke
E, = . S (4-23a)
] Py cos ¢
. k]"le——jh‘ . 9 \
E,,—_mwsm g | > 1 (4-23b)
E(/, = Hr = H() =0 (4-23(3)
klyle *
Hy = j—%sm f (4-23d)
The total electric field is given by
E = ﬁ,.E, + ﬁgEﬂ (4'24)

whose magnitude can be written as

[E| = VIEF + [Ef (4-25)
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4.2.6 Far-Field (kr > 1) Region

Since (4-23a)—(4-23d) are valid only for values of kr > 1 (r > A), then E, will be
smaller than E, because E, is inverscly proportional to r* where E, is inversely
proportional to r. In a region where kr > 1, (4-232)—(4-23d) can be simplified and
approximated by

~jkr
E, ﬁjn%—sin ) (4-26a)
E,=E,=H,=H,=0} kr>| (4-26b)
klple ~*
Hy=j— :rr sin @ (4-26¢)

The ratio of E, to H, is equal to

L= =~ 4-27
Z, H, n (4-27)

where

Z, = wave impedance
m = intrinsic impedance (377 = 1207 ohms for free-space)

The E- and H-field components are perpendicular to each other, transverse to the
radial direction of propagation, and the r variations are separable from those of @ and
¢. The shape of the pattern is not a function of the radial distance r, and the fields
form a Transverse ElectroMagnetic (TEM) wave whose wave impedance is equal to
the intrinsic impedance of the medium. As it will become even more evident in later
chapters, this relationship is applicable in the far-field region of all antennas of finite
dimensions. Equations (4-26a)—{4-26c¢) can also be derived using the procedure out-
lined and relationships developed in Section 3.6. This is left as an exercise to the
reader (Prob. 4.11).

Example 4.2

For an infinitesimal dipole determine and interpret the vector effective length. At what
incidence angle does the open-circuit maximum voltage occurs at the output terminals
of the dipole if the electric field intensity of the incident wave is 10 mvolts/meter?
The length of the dipole is 10 cm.

SOLUTION
Using (4-26u) and the effective length as defined by (2-92). we can write that
. klul(’_'jkr . n . k’of"_"kr . .
E,= sin 8 = — «(—dglsin 6
=M=, sin LK (—a, )
~ . k]oe—!“
= ~dyn— —— ¢
m
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Theretore, the cffective length is
€.

. = —@lsin f

whose maximum value occurs when # = 90°, and it is equal to [. Therefore. Lo achieve
maximum output the wave must be incident upon the dipole at a normal incidence
angle (8 = 90°).

The open-circuit maximum voltage is equal to

VO(' |El : (’/('II'“CL\ = |ﬁ{l l() X l()—3 ‘ (_ﬁ”[ Sin G)Irrmx

nax

=10 x 10 Y% = 10" ? volts

4.2.7 Directivity

The real power P4 radiated by the dipole was found in Section 4.2.2, as given by
(4-16). The same expression can be obtained by first forming the average power
density, using (4-26a)—(4-26¢). That is,

« 3
2sin” 8

kiy!
. 3 (4-28)
2

4

n
"2

1 , . v oa
W, = ERC(E x H*) = a,'z—n IE(,I" = a

Integrating (4-28) over a closed sphere of radius r reduces it to (4-16). This is left as
an exercise to the reader (Prob. 4.10).

Associated with the average power density of (4-28) is a radiation intensity U
which is given by

, n [kl ., ” _ .
U=rWw, = 3 (z%) sin” 6 = 5;) |Ey(r, 6. )| (4-29)

and it conforms with (2-12a). The normalized pattern of (4-29) is shown in Figure
4.3. The maximum value occurs at 8 = 77/2 and it is equal to

_ 1 [kdol)’ |
Upix = 5 (47]_) (4-30)
Using (4-16) and (4-30), the directivity reduces to
Ull'\x 3
D‘) = 4”4‘ = = (4'31)
rud 2
and the maximum effective aperture to
A’ kP
Agp =U—|Dy = — (4-32)
‘ (417) T 8

The radiation resistance of the dipole can be obtained by the definition of (4-18).
Since the radiated power obtained by integrating (4-28) over a closed sphere is the
same as that of (4-16), the radiation resistance using it will also be the same as
obtained previously and given by (4-19).

Integrating the complex Poynting vector over a closed sphere, as was done in
(4-13), results in the power (real and imaginary) directed in the radial direction. Any
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Rudialion pattern
U =sin’@

Dipole antenna
-

Figure 4.3 Three-dimensional radiation pattern of infinitesimal dipole.

transverse components of power density, as given by (4-12b), will not be captured by
the integration even though they are part of the overall power. Because of this
limitation, this method cannot be used to derive the input reactance of the antenna.

4.3 SMALL DIPOLE

The creation of the current distribution on a thin wire was discussed in Section 1.4,
and it was illustrated with some examples in Figure 1.16. The radiation properties of
an infinitesimal dipole, which is usuvally taken to have a length { = A/50, were
discussed in the previous section. Its current distribution was assumed to be constant.
Although a constant current distribution is not realizable (other than top-hat-loaded
clements), it is a mathematical quantity that is used to represent actual current distri-
butions of antennas that have been incremented into many small lengths.

A better approximation of the current distribution of wire antennas, whose lengths
are usually A/S0 < [ = M0, is the triangular variation of Figure 1.16(a). The
sinusoidal variations of Figures 1.16(b)—(c) are more accurate representations of the
current distribution of any length wire antenna.

The most convenient geometrical arrangement for the analysis of a dipole is
usually to have it positioned symmetrically about the origin with its length directed
along the z-axis, as shown in Figure 4.4(a). This is not necessary, but it is usually the
most convenient, The current distribution of a small dipole (A/50 < [ = A/10) 1s
shown in Figure 4.4(b), and it is given by

ﬁ:!{,(l — :'). D=z =2
LR = (4-33)

2

{
~ 2, .
HZI“(I +}‘:). —.-’."25;' =10

where [, = constant.
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[

P 0,¢)

(b} Current distribution

Figure 4.4 Geometrical arrangement of dipole and current distribution,

Following the procedure established in the previous section, the vector potential
of (4-2) can be written using (4-33) as

0 — kR
2 i
Alx,v.2) = Ll [ﬁ:j_ l.,(l + —z') £ ol

47

Jqu 3\ oAk (4-34)
+a:” Iyl -7:) R d:

Because the overall length of the dipole is very small (usually / = A/10), the values
of R for different values of 2’ along the length of the wire (—1/2 = 7' < I/2) are not
much different from . Thus R can be approximated by R = r throughout the integra-
tion path. The maximum phase error in (4-34) by allowing R = r for A/50 </
=M10, will be k//2 = 7#/10 rad = 18° for [l = A/10. Smaller values will occur for
the other lengths. As it will be shown in the next section, this amount of phase error
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is usually considered negligible and has very little effect on the overall radiation
characteristics. Performing the integration. (4-34) reduces to

L| plole ™™
A=A =i [%] (4-35)

which is one-half of that obtained in the previous section for the infinitesimal dipole
and given by (4-4).

The potential function given by (4-35) becomes a more accurate approximation
as kr — =, This is also the region of most practical interest, and it has been designated
as the far-field region. Since the potential function for the triangular distribution is
one-half of the corresponding one for the constant (uniform) current distribution, the
corresponding fields of the former are one-half of the latter. Thus we can write the
E- and H-fields radiated by a small dipole as

kl(,le_j"’ . ‘
= jp——7m7 v—sin 6 (4-36a)
Ey=jn Sy sin
E=FE,=H, =Hy=0 1 kr>| (4-36b)
klgle %
Hy=j—2"sin 0 (4-36¢)
8mrr ‘

with the wave impedance equal, as before, 10 (4-27).

Since the directivity of an antenna is controlled by the relative shape of the field
or power pattern, the directivity and maximum effective area of this antenna are the
same as the ones with the constant current distribution given by (4-31) and (4-32),
respectively.

The radiation resistance of the antenna is strongly dependent upon the current
distribution. Using the procedure established for the infinitesimal dipole, it can be
shown that for the small dipole its radiated power is one-fourth (}) of (4-18). Thus
the radiation resistance reduces 1o

2P

R, = —=
||

I\
= 2 - 4-37)
207 ( A) {

which is also one-fourth (3) of that obtained for the infinitesimal dipole as given by
(4-19). Their relative patterns (shapes) are the same and are shown in Figure 4.3.

4.4 REGION SEPARATION

Before we attempt to solve for the fields radiated by a finite dipole of any length, it
would be very desirable to discuss the separation of the space surrounding an antenna
into three regions; namely, the reactive near-field, radiating near-field (Fresnel) and
the far-field (Fraunhofer) which were introduced briefly in Section 2.2. This is nec-
essary because for a dipole antenna of any length and any current distribution, it will
become increasingly difficult to solve for the fields everywhere. Approximations can
be made. especially for the far-field (Fraunhofer) region which is usually the one of
most practical interest. to simplify the formulation to yield closed form solutions. The
same approximations used to simplify the formulation of the fields radiated by a finite
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dipole are also used o formulate the fields radiated by most practical antennas. So it
will be very important to introduce them properly and understand their implications
upon the solution.

The difficulties in obtaining closed form solutions that are valid everywhere for
any practical antenna stem from the inability to perform the integration of

e —JAR

A{x.y.2) = £ f L.(x'. v'. 2" dl’ (4-38)
dqr ..

where

R=VE&—-xVY+u-y)y+c-2) (4-38a)

For a finite dipole with sinusoidal current distribution, the integral of (4-38) can bhe
reduced to a closed form that is valid everywhere! This will be shown in Chapter 8.
The length R is defined as the distance from any point on the source to the observation
point. The integral of (4-38) was used to solve for the fields of infinitesimal and small
dipoles in Sections 4.1 and 4.2. However in the first case (infinitesimal dipole)
R = rand in the second case (small dipole) R was approximated by r (R = r) because
the length of the dipole was restricted to be / = A/10. The major simplification of
(4-38) will be in the approximation of R.

A very thin dipole of finite length / is symmetrically positioned about the origin
with its length directed along the z-axis, as shown in Figure 4.5(a). Because the wire
is assumed to be very thin (x" = y' = 0), we can write (4-38) as

R=Nx-xXV+-¥VP+e-Ir=Ve+y+E-IY 43
which when expanded can be written as
R=\r+ v+ + (-2 +=\Vr +(-2rcos 8 + 7)) (4-40)

where

~

P =XV o+ 2 (4-40a)
Z=rcos 8 (4-40b)
Using the binomial expansion, we can write (4-40) in a series

1 :‘.’; ) l :’3 : 2
R=r—z=cosf + 7(? sin” f)) + 7(—2— cos f sin” (i) + .- (4-41)
. r

whose higher order terms become less significant provided r > ;.

4.4.1 Far-Field (Fraunhofer) Region

The most convenient simplification of (4-41), other than R = r, will be to approximate
it by its first two terms, or

R=r—-:cos 8 (4-42)

The most significant neglected term of (4-41) is the third whose maximum value is

1z ., z?
—( sin® 0) = E when 8 = /2 (4-43)

r\2 max

—
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Figure 4.5 Finite dipole geometry and far-ficld approximations.

When (4-43) attains its maximum value, the fourth term of (4-41) vanishes
because ¢ = /2. It can be shown that the higher order terms not shown in (4-41)
also vanish. Therefore approximating (4-41) by (4-42) introduces a maximum error
given by (4-43).

It has been shown by many investigators through numerous examples that for
most practical antennas, with overall lengths greater than a wavelength (I > 1), a
maximum total phase error of 77/8 rad (22.5°) is not very detrimental in their analytical
formulation. Using that as a criterion we can write, using (4-43), that the maximum
phase error should always be

k(z')?
27 T 4-44
2r 8 ( )
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which for — /2 = 2’ = /2 reduces 1o
12
r = 2(—*) (4-45)

Equation (4-45) simply states that to maintain the maximum phase error of an
antenna equal Lo or less than 7/8 rad (22.5°), the observation distunce r must equal
or be greater than 2/°/A where / is the largest* dimension of the antenna structure.
The usual simplification for the far-field region is to approximate the R in the expo-
nential (¢ ~*%) of (4-38) by (4-42) and the R in the denominator of (4-38) by R = r.
These simplifications arc designated as the far-field approximations and are usually
denoted in the literature as

Far-field Approximationy
R=yr —Zcos ¥ for phase terms (4-46)
R=r for amplitude terms

provided r satisfies (4-45).

It may be advisable to illustrate the approximation (4-46) geometrically. For R =
r — ' cos 6, where f is the angle measured from the z-axis, the radial vectors R and
r must be parallel to each other, as shown in Figure 4.5(b). For any other antenna
whose maximum dimension is D. the approximation of (4-46) is valid provided the
observations are made at a distance

r=2D%A (4-47)

For an aperture antenna the maximum dimension is taken to be its diagonal.

For most practical antennas, whose overall length is large compared to the wave-
length, these are adequate approximations which have been shown by many investi-
gators through numerous examples o give valid results in pattern predictions. Some
discrepancies are evident in regions of low intensity (usually below —25 dB). This
is illustrated in Figure 2.6 where the patterns of a paraboloidal antenna for R = %
and R = 2D¥A differ at levels below — 25 dB. Allowing R to have a value of R =
4D%/A gives better results.

It would seem that the approximation of R in {4-46) for the amplitude is more
severe than that for the phase. However a close observation reveals this is not the
case. Since the observations are made at a distance where r is very large, any small
error in the approximation of the denominator (amplitude) will not make much dif-
ference in the answer. However, because of the periodic nature of the phase {repeats
every 24 rad). it can be a major fraction of a period. The best way to illustrate it will
be to consider an example.

Example 4.3
For an antenna with an overall length [ = 5A. the observations are made at r = 60A.
Find the errors in phase and amplitude using (4-46).

*Pravided the overall length (/) of the antenna is large compared o the wavelength [see TEEE Standard
Definitions of Terms for Antennas. IEEE Std (145-1983)1.
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SOLUTION

For 68 = 90° ' = 2.5A, and r = 604, (4-40) reduces to
Ry = AV/(60)" + (2.5 = 60.052A

and (4-46) to

R, = r = 60A
Therefore the phase difference is
27
Ad = kAR = f (R, — Ry) = 2m(0.052) = 0.327 rad = 18.74°
which in an appreciable fraction (= 4;) of a full period (360°).

The difference of the inverse values of R is

L1 11 I\ 144 x10°°

R, R, X(E - 60.052) A

which should always be a very small value.

4.4.2 Radiating Near-Field (Fresnel) Region

If the observation point is chosen to be smaller than » = 2/%/A, the maximum phase
error by the approximation of (4-46) is greater than 7/8 rad (22.5°) which may be
undesirable in many applications. If it is necessary to choose observation distances
smaller than (4-45), another term (the third) in the series solution of (4-41) must be
retained to maintain a maximum phase error of #/8 rad (22.5°). Doing this. the infinite
series of (4-41) can be approximated by

| 2'2 .9
R=r—2cosf + — (? sin” 0) (4-48)
,
The most significant term that we are neglecting from the infinite series of (4-41) is
the fourth. To find the maximum phase error introduced by the omission of the next
most significant term, the angle @ at which this occurs must be found. To do this, the

neglected term is differentiated with respect to € and the result is set equal to zero.
Thus

a1 :?
{

The angle # = ) is not chosen as a solution because for that value the fourth term is
equal 1o zero. In other words. 6 = 0 gives the minimum error. The maximum error
occurs when the second term of (4-49) vanishes: that is when

[—sin® 8 + 2 cos” Blp=g, = 0 (4-50)
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or

0, = tan"'(£\/2) (4-50a)
If the maximum phase error is allowed to be equal or less than /8 rad, the distance
r at which this occurs can be found from

! 3

< .
= cos 8 sin’@
2r

=2

n/-‘( | )(2) - (13) -
AN A1 A —| =< 4-5
H‘-_Hlull—_'\ij ,\8" \/3 3 lzv.i Ar = 8 ( l)

which reduces to

= 5ali) - o) :
’1-2 _— = .. —_ (4'5.—
W3\ x ’
or
r=0.62N\/1"/A (4-52a)

A value of r greater than that of (4-52a) will lead to an error less than 7/8 rad (22.5°).
Thus the region where the first three terms of (4-41) are significant. and the omission
of the fourth introduces 4 maximum phase error of 7/8 rad (22.5°), is defined by

24N > r = 0.627N/1/A (4-53)

where / is the length of the antenna. This region is designated as radiating near-field
because the radiating power density is greater than the reactive power density and the
field pattern (its shape) is a function of the radial distance r. This region is also called
the Fresnel region because the field expressions in this region reduce to Fresnel
integrals.

The discussion has centered around the finite length antenna of length / with the
observation considered to be a point source. If the antenna is not a line source. / in
(4-53) must represent the largest dimension of the antenna (which for an aperture is
the diagonal). Also if the transmitting antenna has maximum length /, and the receiving
antenna has maximum length /,, then the sum of I, and |, must be used in place of /
in (4-53).

The boundaries for separating the far-field (Fraunhofer), the radiating near-field
(Fresnel), and the reactive near-field regions are not very rigid. Other criteria have
also been established |4] but the ones introduced here are the most **popular.” Also
the fields, as the boundaries from one region to the other are crossed, do not change
abruptly but undergo a very gradual transition.

4.4.3 Reactive Near-Field Region

If the distance of observation is smaller than the inner boundary of the Fresnel region,
this region is usually designated as reactive near-field with inner and outer boundaries
defined by

0.62\/TA > r >0 (4-54)

where / is the length of the antenna. In this region the reactive power density predom-
inates. as was demonstrated in Section 4.1 for the infinitesimal dipole.
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In summary. the space surrounding an antenna is divided into three regions whose |
boundaries are determined by

reactive near-field [0.62\/D/A > r > 0] (4-55a)
radiating near-field (Fresnel) [2D¥A > r = 0.62\/DA] (4-55b)
far-field (Fraunhofer) [« = r = 2D/ )] (4-55¢)

where D is the largest dimension of the antenna (D = [ for a wire antenna).

4.5 FINITE LENGTH DIPOLE

The techniques that were developed previously can also be used to analyze the
radiation characteristics of a linear dipole of any length. To reduce the mathematical
complexities, it will be assumed in this chapter that the dipole has a negligible diameter
(ideally zero). This is a good approximation provided the diameter is considerably
smaller than the operating wavelength. Finite radii dipoles will be analyzed in Chapters
8 and 9.

4.5.1 Current Distribution

For a very thin dipole (ideally zero diameter), the current distribution can be written,

to a good approximation, as
!
[, sin [k (5 - z’)] . O0=sz=iIR

L =0y =02)= | (4-56)
a_l, sin [L(—i + :’)] . —IR=7=0

This distribution assumes that the antenna is center-fed and the current vanishes at
the end points (' = =1/2). Experimentally it has been verified that the current in a
center-fed wire antenna has sinusoidal form with nulls at the end points. For I = A/2
and A/2 < | < A the current distribution of (4-56) is shown plotted in Figures 1.16(b)
and 1.12(c), respectively. The geometry of the antenna is that shown in Figure 4.5.

4.5.2 Radiated Fields: Element Factor, Space Factor,
and Pattern Multiplication

For the current distribution of (4-56) it will be shown in Chapter 8 that closed form
expressions for the E- and H-fields can be obtained which are valid in all regions
(any observation point except on the source itself). In general, however, this is not
the case. Usually we are limited to the far-field region. because of the mathematical
complications provided in the integration of the vector potential A of (4-2). Since
closed form solutions, which are valid everywhere. cannot be obtained for many
antennas, the observations will be restricted to the far-field region. This will be done
first in order to illustrate the procedure. In some cases. even in that region it may
become impossible to obtain closed form solutions.

The finite dipole antenna of Figure 4.5 is subdivided into a number of infinitesimal
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dipoles of length Az'. As the number of subdivisions is increased. each infinitesimal
dipole approaches a length dz’. For an infinitesimal dipole of length dz' positioned
along the z-axis at ', the electric and magnetic field components in the far-ficld are
given, using (4-26a)-{4-26c), as

kLY. v, ZYe AR

dE, = jn - sin 6 dz’ (4-57a)

dE, = dE, = dH, = dH; = 0 (4-57b)
L(x', v, e R

dH,, LI in' ¢ " qin 6 dz’ (4-57c)

where R is given by (4-39) or (4-40)).
Using the far-field approximations given by (4-46), (4-57a) can be written as

. kl,.(x'. .\7', e —Jkr
‘{E” - jn 477"-

sin Ge Tk st (4-58)

Summing the contributions from all the infinitesimal elements, the summation reduces.
in the limit, to an integration. Thus

wr

+i2 P i - |
E” - [’ "2 (,E(] - jn 4 Sin o [f n 11'("\-,? ."". Z')C’"‘" Luh”d:'] (4'583)

The factor outside the brackets is designated as the element fuctor and that within
the brackets as the space fuctor. For this antenna. the element factor is equal to the
field of a unit length infinitesimal dipole located at a reference point (the origin). In
general. the element factor depends on the type of current and its direction of flow
while the space factor is a function of the current distribution along the source.

The total field of the antenna is equal to the product of the element and space
factors. This is referred to as partern multiplication {or continuously distributed
sources, and it can be written as

total field = (element factor) X (space factor) (4-59)

The pattern multiplication for continuous sources is analogous to the pattern multi-
plication of (6-5) for discrete-element antennas (arrays).
For the current distribution of (4-56), (4-58a) can be written as

: k"'e_jkr .3 f) .t , [ ! + ks eos 2 '
E,=jn yy mn(i{ Ly SO k2+<. e dz
+ I
+ j" sin[k(; — :')]e”‘:'”“‘" dz'} (4-60)

Each one of the integrals in (4-60) can be integrated using

ay

Je"" sin (Bry + Y dx = ;—2:—35 [ sin (Bx + ) — Bceos (Bx + y)| (4-61)

where

a = *jkcos ¥ (4-61a)
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B= +k (4-61b)
y = kir2 (4-61¢)

After some mathematical manipulations, (4-60) takes the form of

(kl ) (kl)
cost—cos 8] — cos|—
L ,e—jkr 2 2

p=JN
2ar

. (4-62a)
sin 6

In a similar manner, or by using the established relationship between the E, and
H, in the far-field as given by (3-58b) or (4-27), the total H, component can be
written as

(kl ) (kl)
cosf—cos 8} — cosl—
Ey, I ¥ 2 2

H,=—=
¢ 2w sin @ (4-62b)

4.5.3 Power Density, Radiation Intensity, and Radiation
Resistance

For the dipole, the average Poynting vector can be written as

| 1 ! E}
wm‘ = Rc[E X H*] = 5RCI§I)EIIX ﬁ,,,Hz] = ;Re [ﬁ”E(,\x ﬁ'fn__nf)-

2
(kl ) (kl) 2
. | cos Ecos #l — cos 5-
I |1}

WIIV = ﬁl’ wﬂ\' = ﬁl‘— E 2 = 4 9 (4‘63)
271' o 8w sin ¢
and the radiation intensity as
kl T
| |“ cos |- cos d] — cos E
b IU_ “~
U= -‘Wuv = > : -
! n87r“ sin 6 (4-64)

The normalized (1o 00 dB) elevation power patterns, as given by (4-64) for
[ = A4, AJ2, 3M/4, and A are shown plotted in Figure 4.6, The current distribution of
each is given by (4-56). The power patterns for an infinitestimal dipole / << A
(U ~ sin” 0) is also included for comparison. As the length of the antenna increases.
the beam becomes narrower, Because of that. the directivity should also increase with
length. It is found that the 3-dB beamwidth of each is equal to

| <€ A 3-db beamwidth = 90°
[ = M4 3-dB beamwidth = 87°
[ = A2 3-dB beamwidth = 78° {4-65)

{ = 3A/4 3-dB beamwidth = 64°
I =A 3-dB heamwidth = 47.8°
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Figure 4.6 Elevation plane amplitude patterns for a thin dipale with sinusoidal
current distribution (I = A4, A/2, 3A/4, A).

As the length of the dipole increases beyond one wavelength (! > A), the number
of lobes begin to increase. The normalized power pattern for a dipole with [ = 1.25A
is shown in Figure 4.7. In Figure 4.7(a) the three-dimensional pattern is illustrated
using the software from [5], while in Figure 4.7(b) the two-dimensional (elevation
pattern) is depicted. For the three-dimensional illustration a 90° angular section of the
pattern has been omitted 1o illustrate the elevation plane directional pattern variations.
The current distribution for the dipoles with I = A4, A/2, A, 3A/2, and 2A, as given
by (4-56). is shown in Figure 4.8.
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thin dipole of ] = 1.25A and sinusvidal current distribution.
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- |

12

Figure 4.8 Current distributions along the length of a linear wire antenna.

To find the total power radiated, the average Poynting vector of (4-63) is inte-
grated over a sphere of radius r. Thus

dr rw
Py = Sff W, - ds = L f" a.W,, 4, sin 0dodd
s

27 (7
= L L W, 2 sin 6 d8 d¢ (4-66)

Using (4-63), we can write (4-66) as

Pog = L L W r” sin 0 d6 de

cos|—cos 8] — cos|—
Ll A2 2

47 Jo sin 6

= n’ do (4-67)
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After some extensive mathematical manipulations. it can be shown that (4-67)
reduces 1o

/ 2
Py = 1 4‘1 {C + Intkl)— Ci(kly + Lsin(kD)IS;(2kD— 28,(kD)]
+ jcos(kN)|C + In(kli2) + C;(2kl) — 2C;(kD|} (4-68)

where C = 0.5772 (Euler’s constant) and C;{x) and S;{x) are the cosine and sine
integrals (see Appendix I11) given by

% . e Uhak v
Clx) = — f _ Cnf 2 dy = _L w: 2 dv {4-68a)
‘gin v
Sx) = J: | T'd._v (4-68b)

The derivation of (4-68) from (4-67) is assigned as a problem at the end of the chapter
(Prob. 4.17). C;(x) is related to C;,,(x) by

Cux) = In{yx) — Cix) = In(y) + In(x) — Ci(x)

= 0.5772 + In(x) — Ci(x) (4-69)
where
py l — S
C,(x) = ﬁ ) (#) dy (4-69a)

Ci(x). S;(x) and C,,(x) are tabulated in Appendix Il
The radiation resistance can be obtained using (4-18) and (4-68) and can be
writllen as

_ 2Prm.l _ l{
'lnlz 2

+ Lsin(kl) X [S;(2kl)y — 25,(kD))

C + In(kl) — Ci(kl)

(4-70)

+ Leos(kl) X [C + In(kl2) + Ci(2kl) — 2C(kDI}

Shown in Figure 4.9 is a plot of R, as a function of / (in wavelengths) when the
antenna is radiating into free-space (n = 120m7).

4.5.4 Directivity

As was illustrated in Figure 4.6, the radiation pattern of u dipole becomes more
directional as its length increases. When the overall length is greater than about one
wavelength, the number of lobes increases and the antenna loses its directional prop-
erties, The parameter that is used as a ““figure-of-merit’" for the directional properties
of the antenna is the dircetivity which was defined in Section 2.5.
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Figure 4.9 Radiation resistance, inpul resistance and directivily of a thin di-

pole with sinusoidal current distribution.

The directivity was defined mathematically by (2-22), or
F(ﬁ' Cb)lmux
F(6. ¢) sin 8d0 de

Dy = 4 =777
L,
where F(6, ¢) is related 1o the radiation intensity U by (2-19), or
U= ByF(8. ¢)
From (4-64), the dipole antenna of length { has

cos ﬂcose - COS 6’—, 2
8 2 52

F(6,. d) = F(0) =

sin 6
and
|0l
B, = 5
1] 'r’ 877‘-
Because the pattern is not a function of ¢, (4-71) reduces to
2 F(8)] max

D‘) = T
jﬂ F(8) sin 6 do¢

Equation (4-74) can be written, using (4-67), (4-68), and {4-73), as

2 F(0)] max

Dy = 0

(4-71)

(4-72)

(4-73)

(4-73a)

(4-74)

(4-75)
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where

0 = {C + In(kl) — Citkl) + Lsin(kD[S(2kl) — 2S8.(kI)]
+ fcos(kl)[C + In(kl/2) + C;(2k1) — 2C(kI)1} (4-75a)

The maximum value of F(8) varies and depends upon the length of the dipole,

Values of the directivity, as given by (4-75) and (4-75a). have been obtained for
0 </ = 3X and are shown plotted in Figure 4.9. The corresponding values of the
maximum effective aperture are related to the directivity by

1\2

Ag-m = 4_D(l (4-76)
kis

4.5.5 Input Resistance

In Section 2.13 the input impedance was defined as “*the ratio of the voltage to current
at a pair of terminals or the ratio of the appropriate components of the electric to
magnetic fields at a point.”” The real part of the inputl impedance was defined as the
input resistance which for a lossless antenna reduces to the radiation resistance. a
result of the radiation of real power,

In Section 4.2.2, the radiation resistance of an infinitesimal dipole was derived
using the definition of (4-18). The radiation resistance of a dipole of length / with
sinusoidal current distribution, of the form given by (4-56), is expressed by (4-70).
By this definition, the radiation resistance is referred to the maximum current which
for some lengths (/ = M4, 3A/4, A, etc.) does not occur at the input terminals of the
antenna (sce Figure 4.8). To refer the radiation resistance to the input terminals of the
antenna, the antenna itself is first assumed to be lossless (R, = ). Then the power
at the input terminals is equaled to the power at the current maximum,

Referring to Figure 4.10, we can write

'Iinl2 _ II()l2
2 Rin - 2 Rr (4‘77)
or
L1
R, = [——:l R, (4-77a)
,in
where

R.. = radiation resistance at input (feed) terminals

R, = radiation resistance at current maximum Eq. (4-70)
Iy = current maximum

lin = current at input terminals

For a dipole of length /, the current at the input terminals {/;,) is related to the
current maximum (/) referring to Figure 4.10, by

. [k
I, = lysin (7) (4-78)

e
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Figure 4.10 Current distribution of a linear wire antenna when current maximum does not
occur at the input terminals.

Thus the input radiation resistance of (4-77a) can be written as

R,

» (k]) (4-79)
S E’

Rin =

Values of R;, for 0 < { = 3A are shown in Figure 4.9.

To compute the radiation resistance (in ohms), directivity (dimensionless and in
dB), and input resistance (in ohms) for a dipole of length /, a FORTRAN computer
program has been developed. The program is based on the definitions of each as given
by (4-70), (4-71), and (4-79). The radiated power Py is computed by numerically
integrating (over a closed sphere) the radiation intensity of (4-72)~(4-73a). The pro-
gram is included at the end of this chapter and in the computer disc made available
with the book. The length of the dipole (in wavelengths) must be inserted as an input.

When the overall length of the antenna is a multiple of A (ie,, [ = nA, n =
1,2, 3,...),itis apparent from (4-56) and from Figure 4.8 that [;, = 0. That is,

: I,
lyy = {p sin [k(i *z )]

which indicates that the radiation resistance at the input terminals, as given by
(4-77a) or (4-79) is infinite. In practice this is not the case because the current
distribution does not follow an exact sinusoidal distribution, especially at the feed
point. It has, however, very high values. Two of the primary factors which contribute

v—0 =0 (4-80)

I=nkh.un=0,12




4.5 Finite Length Dipole 161

to the nonsinusoidal current distribution on an actual wire antenna are the nonzero
radius of the wire and finite gap spacing at the terminals.

The radiation resistance and input resistance, as predicted, respectively. by
(4-70) and (4-79), are based on the ideal current distribution of (4-56) and do not
account for the finite radius of the wire or the gap spacing at the feed. Although the
radius of the wire does not strongly influence the resistances, the gap spacing at the
feed does play a significant role especially when the current at and near the feed point
is small.

4.5.6 Finite Feed Gap

To analytically account for a nonzero current at the feed point for antennas with a
finite gap at the terminals, Schelkunoff and Friis [6] have changed the current of
(4-56) by including a quadrature term in the distribution. The additional term is
inserted to take into account the effects of radiation on the antenna current distribution.
In other words, once the antenna is excited by the *‘ideal” current distribution of
(4-56), electric and magnetic fields are generated which in turn disturb the ““ideal™
current distribution. This reaction is included by modifying (4-56) to

T N T . (k \]
a_.{l(, sin Lk (5 -z + jply | cos(kz’) — cos EI }
0=z =
L'y, o) = [ {1 | i k|
ﬁ:{ln sin k(i + ' | + jply ] cos(kz') — cos 5, }
) ) —n=r=0
(4-81)

where p is a coefficient that is dependent upon the overall length of the antenna and
the gap spacing at the terminals. The values of p become smaller as the radius of the
wire and the gap decrease.

When [ = A2,
L. v.2') = a.l,(1 + jp)costkz’)y  0=<|| = M4 (4-82)
and for! = A |
Lix'.y'.2) = {ﬁ:ln{sin(kz') fj[’[l + cos(kz )i} 0<z < A2
N a.ly{—sin(kz’)y + jpll + cos(ka)]} ~A2=27 =0

(4-83)
Thus for I = A/2 the shape of the current is not changed while for !/ = A itis modified
by the second term which is more dominant for small values of z'.

The variations of the current distribution and impedances, especially of wire-type
antennas, as a function of the radius of the wire and feed gap spacing can be easily
taken into account by using advanced computational methods and numerical tech-
niques, especially Integral Equations and Moment Method [7]-] 12], which are intro-
duced in Chapter 8.

To illustrate the point, the current distribution of an / = A/2 and / = A dipole
has been computed using an integral equation formulation with a moment method
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numerical solution, and it is shown in Figure 8,13(b) where it is compared with the
ideal distribution of (4-56) and other available data. For the moment method solution,
a gap at the feed has been inserted. As expected and illustrated in Figure 8.13(b), the
current distribution for the / = A/2 dipole based on (4-56} is not that different from
that based on the moment method. This is also illustrated by (4-82). Therefore the
input resistance based on these two methods will not be that different. However, for
the [ = A dipole, the current distribution based on (4-56) is quite different, especially
at and near the feed point, compared to that based on the moment method, as shown
in Figure 8.13(b). This is expected since the current distribution based on the ideal
current distribution is zero at the feed point; for practical antennas it is very small.
Therefore the gap at the feed plays an important role on the current distribution at
and near the feed point. In turn, the values of the input resistance based on the two
methods will be quite different. since there is a significant difference in the current
between the two methods. This is discussed further in Chapter 8.

4.6 HALF-WAVELENGTH DIPOLE

One of the most commonly used antennas is the half-wavelength (I = A/2) dipole.
Because its radiation resistance is 73 ohms, which is very near the 75-ohm character-
istic impedance of some transmission lines. its matching to the line is simplified
especially at resonance. Because of its wide acceptance in practice, we will examine
in a little more detail its radiation characteristics.

The electric and magnetic field components of a half-wavelength dipole can be
obtained [rom (4-62a) and (4-62b) by letting / = A/2. Doing this, they reduce 10

cos 11-cc:s e
. loeﬂjkr 2

o =Jn 2ar sin 8
| cos (E cos 8)
i B (4-85)
61 2mr sin 6

in turn, the time-average power density and radiation intensity can be written, re-
spectively, as

- a
, cos(—z- cos 9) ]
W, = ntl N (4-86)
av 8 sin @ Y
and
7 2
, cos(—_z- cos 6)
2 _ |Iu|' _ |A’o|2 . 3
U=rw, = = n—ssin’ # (4-87)

Ly sin g’
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/
C— L2 dipate

Figure 4.11 Three-dimensional pattern of a A/2 dipole.
(sourck: C. A, Balanis, “*Antenna Theory: A Review™ Proc.
{EEE, Vol. 80, No 1. Jan, 1992, © 1992 IEEE.)

whose two-dimensional pattern is shown plotted in Figure 4.6 while the three-dimen-
sional pattern is depicted in Figure 4.11. For the three-dimensional pattern of Figure
4.11, a 90° angular sector has been removed to illustrate the figure-eight elevation
plane pattern variations,

The total power radiated can be obtained as a special case of (4-67), or

'li Tr
cos” | — cos #
-:'Ir fJ

“ru 2 J- =
Py = _ df 4-88
d = g Jo sin 0 (-8)
which when integrated reduces, as a special case of (4-68), to
/ a MAw 1 = cos I 2
Prmi = r)li “| J ﬁ) {!',-' = T’ﬁ C,n{.?’i'T} {4—89)
B Ju ¥ : 87

By the definition of Cj,(x), as given by (4-69). C,,,(277) is equal 1o
Cn(2m) = 05772 + In(27) — C,(2mw) = (0.5772 + 1.838 — (—0.02) = 2.435
(4-90)

where C;(27) 1s obtained from the tables in Appendix III.
Using (4-87). (4-89), and (4-90), the directivity of the half-wavelength dipole
reduces to

Urrm' UJH—' w2 4 4
l’) — “"]f i = — 4 s = = —
0 i Pl'ud i Prml Cin':gﬂ-) 2433

1.643 (4-91)

The corresponding maximum effective area is equal to

2 )‘.'] .
Acm = (\_ ‘Dll = —(1 -{743,} = ().13A" (4-92)
d7 4ar
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and the radiation resistance. for a free-space medium (5 = 1207), is given by

2Phg M
R, == - T (om = 302435 ~ 73 (4-93)
7ol 47

The radiation resistance of (4-93) is also the radiation resistance at the input
terminals (input resistance) since the current maximum for a dipole of / = A/2 occurs
at the input terminals (see Figure 4.8). As it will be shown in Chapter 8, the imaginary
part (reactance) associated with the input impedance of a dipole is a function of its
length (for / = A/2, it is equal to j42.5). Thus the total input impedance for ! = A2
is equal t0 Z;,, = 73 + j42.5. To reduce the imaginary part of the input impedance
to zero. the untenna is matched or reduced in length until the reactance vanishes. The
latter is most commonly used in practice for haif-wavelength dipoles.

Depending on the radius of the wire, the length of the dipole for first resonance
is about / = 0.47A 10 0.48A; the thinner the wire, the closer the length is to 0.48A.
Thus, for thicker wires. a larger segment of the wire has to be removed from A/2 to
achieve resonance.

4.7 LINEAR ELEMENTS NEAR OR ON
INFINITE PERFECT CONDUCTORS

Thus far we have considered the radiation characteristics of antennas radiating into
an unbounded medium. The presence of an obstacle, especially when it is near the
radiating element, can signiticanlly alter the overall radiation properties of the antenna
system. In practice the most common obstacle that is always present, even in the
absence of anything else, is the ground. Any energy from the radiating element
directed toward the ground undergoes a reflection. The amount of reflected energy
and its direction arc controlled by the geomietry and constitutive parameters of the
ground.

In general. the ground is a lossy medium (o # 0) whose effective conductivity
increases with frequency. Therefore it should be expected to act as a very good
conductor above a certain frequency. depending primarily upon its moisture content.
To simplify the analysis, it will lirst be assumed that the ground is a perfect electric
conductor. flat, and infinite in extent. The effects of finite conductivity and earth
curvature will be incorporated later, The same procedure can also be used to inves-
tigate the characteristics of any radiating element near any other infinite, flat. perfect
electric conductor. Although infinite structures are not realistic, the developed pro-
cedures can be used to simulate very large (electrically) obstacles. The effects that
finite dimensions have on the radiation properties of a radiating element can be
conveniently accounted for by the use of the Geometrical Theory of Diffraction
(Chapter 12, Section 12.10) and/or the Moment Method (Chapter 8, Section 8.4).

4.7.1 Image Theory

To analyze the performance of an antenna near an infinite plane conductor, virtual
sources (images) will be introduced to account for the reflections. As the name implies,
these are not real sources but imaginary ones, which when combined with the real
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sources. form an equivalent system. For analysis purposes only, the equivalent system
gives the sume radiated field on and above the conductor as the actual system itseif.
Below the conductor, the equivalent system does not give the correct field. However,
in this region the field is zero and therc is no need for the equivalent.

To begin the discussion. let us assume that a vertical electric dipole is placed a
distance /1 above an infinite. flat, perfect electric conductor as shown in Figure 4.12(a).
The arrow indicates the polarity of the source. Energy from the actual source is
radiated in all directions in a manner delermined by its unbounded medium directional
properties. For an observation point P, there is a direct wave. In addition, a wave
from the actual source radiated toward point R, of the interface undergoes a reflection.
The direction is determined by the law of reflection (8," = 6,”) which assures that
the energy in homogeneous media travels in straight lines along the shortest paths.
This wave will pass through the observation point P,. By extending its actual path
below the interface. it will seem 1o originate from a virtual source positioned a distance
h below the boundary. For another observation point P the point of reflection is R,
but the virtual source is the same as before. The same is concluded for ail other
observation points above the interface.

The amoum of reflection is generally determined by the respective constitutive
parameters ol the media below and above the intertace. For a perfect electric conductor
below the interface, the incident wave is completely reflected and the field below the
boundary is zero. According to the boundary conditions, the tangential components
of the electric field must vanish at all points along the interface. Thus for an incident
electric field with vertical polarization shown by the arrows. the polarization of the
reflected waves must be as indicated in the figure to satisty the boundary conditions.
To excite the polarization of the reflected waves, the virtual source must also be
vertical and with a polarity in the same direction as that of the actual source (thus a
reflection coefficient of +1).

Another orientation of the source will be to have the radiating element in a
horizontal position, as shown in Figure 4.21. Following a procedure similar to that of
the vertical dipole, the virtual source (image) is also placed a distance h below the
interface but with a 180° polarity difference relative to the actual source (thus a
reflection coefficient of —1).

In addition to electric sources, artificial equivalent ‘*magnetic’” sources and mag-
netic conductors have been introduced to aid in the analyses of electromagnetic
boundary value problems. Figure 4.13(a) displays the sources and their images for an
electric plane conductor. The single arrow indicates an electric element and the double
a magnetic one. The direction of the arrow identifies the polarity. Since many problems
can be solved using duality, Figure 4.13(b) illustrates the sources and their images
when the obstacle is an infinite, flat. perfect **magnetic’” conductor.

4.7.2 Vertical Electric Dipole

The analysis procedure for vertical and horizontal electric and magnetic elements near
infinite electric and magnetic plane conductors, using image theory, was illustrated
graphically in the previous section. Based on the graphical model of Figure 4.12, the
mathematical expressions for the fields of a vertical linear element near a perfect
electric conductor will now be developed. For simplicity. only far-field observations
will be considered.



166 Chapter 4 Linear Wire Antennas

Reflected

Actual
source

Direct

Virtual source
(image)

(a) Vertical electric dipole

Direct

Reflected

(b) Field components at point of reflection
Figure 4.12 Vertical electric dipole above an infinite, flat, perfect electric conductor.

Referring to the geometry of Figure 4.14(a), the far-zone direct component of the
electric field of the infinitesimal dipole of length /, constant current /y, and observation
point P is given according to (4-26a) by
kilyle

mry

Ed = jq sin 6, (4-94)
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Figure 4.13 Electric and magnetic sources and their images near
electric and magnetic conductors.

The reflected component can be accounted for by the introduction of the virtual source
(image), as shown in Figure 4.14(a), and it can be written as

klyle "2
Ey = _jﬁ',_,n—l?sin B, (4-95)

ar

k. 1’{3 |I-(’ A

Eo=Jm 4911,

sin 6 (4-95a)
since the reflection coefficient R, is equal to unity.

The total field above the interface (z = 0) is equal to the sum of the direct and
reflected components as given by (4-94) and (4-93a). Since a field cannot exist inside
a perfect electric conductor, it is equal to zero below the interface. To simplify the
expression for the total electric field, it is referred to the origin of the coordinate
system (z = 0).
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(a) Vertical electric dipole above ground plane

g

X

(b) Fur-field observations
Figure 4.14 Vertical electric dipole above infinite perfect electric conductor.

In general, we can write that
ro= [* + h* — 2rh cos 6] (4-96a)
r, = [¥ + h* — 2rhcos(m — 6)]'? (4-96b)

For far-field observations (r == k), (4-96a) and (4-96b) reduce using the binomial
expansion (o
ro=r—hcosf (4-97a)
rs=r+ hcos 6 (4-97b)

As shown in Figure 4.14(b), geometrically (4-97a) and (4-97b) represent parallel lines.
Since the amplitude variations are not as critical
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Figure 4.15 Elevation planc amplitude patterns of a vertical infinitesimal
clectric dipole for different heights above an infinite pertect electric conductor.

Fy=r = for amplitude variations (4-98)

Using (4-97a)—(4-98), the sum of (4-94) and (4-952) can be written as

g, = il T 02 costhhcos )] 220
0 =M dmwr S | -« } o

E,=0 2 <0

It is evident that the total electric field is equal to the product of the field of a single
source positioned symmetrically about the origin and a factor {within the brackets in
(4-99)] which is a function of the antenna height (h) and the observation angle ().
This is referred to as parrern multiplication and the factor is known as the array
factor. This will be developed and discussed in more detail and for more complex
configurations in Chapter 6.

The shape and amplitude of the field is not only controlled by the field of the
single element but also by the positioning of the element relative to the ground. To
examine the ficld variations as a function of the height A, the normalized (1o 0 dB)
power patterns for i = 0, A/8, M4, 3A/8, A/2, and A have been plotted in Figure 4.15.
Because ol symmetry, only hall’ of each pattern is shown. For I > A/4 more minor
lobes, in addition to the major ones, are formed. As & attains values greater than A,
an even greater number of minor lobes is introduced. These are shown in Figure 4,16
for h = 2A and SA. The introduction of the additional lobes in Figure 4.16 is usually
called scalloping. In general, the total number of lobes is equal to the integer that is
closest to

2/
number of lobes = 7’ + 1 (4-100)
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Figure 4.16 Elevation plane amplitude patterns of a vertical infinitesimal
electric dipole for heights of 2A and 5A above an infinite perfect clectric con-
ductor,

Since the total field of the antenna system is different from that of a single element,
the directivity and radiation resistance are also different. To derive expressions for
them. we first find the total radiated power over the upper hemisphere of radius r
using

| 2w rwi2 ., .
P =g W, *ds = Z)fu fo |E 1 P sin 6 d6 d¢

T w2 , .
= f |E,f? * sin 6 d6 (4-101)

n 4]
which simplifies, with the aid of (4-99). to

2 g r
Iyl [ L cos@khy .sm(Zkh)] 4102)

A

Foa = 0 37 T@kh?E kR

As kh — % the radiated power, as given by (4-102). is equal to that of an isolated
element. However. for kh — 0. it can be shown by expanding the sine and cosine
functions into series that the power is twice that of an isolated element. Using (4-99),
the radiation intensity can be written as

-
-

lnl

A

. l 2
U = l"Wm, = 12 (‘—_ IE/)l-) = 1?
2n

> sin® #cos*(khcos B)  (4-103)

The maximum value of (4-103) occurs at # = 7/2 and is given, excluding kh — =,
by

2

Iyl

A

7

Upss = Ul o = 2 (4-103a)
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Figure 4.17 Elevation plane amplitude pattern of a vertical infinitesimal

electric dipole at a height of 0.4585A above an infinite perfect electric conduc-
tor.

which is four times greater than that of an isolated element. With (4-102) und
(4-103a). the directivity can be written as

, 2
D() = 47TUII|-I.X = (4_ lo4)
P [1 cos (2kh) sin(Zkh)]

3 (2kh)? (2khy?

whose value for kh = 0 iy 3, The maximum value occurs when kh = 2.881 (h =
0.4585A). and it is equal to 6.566 which is greater than four times that of an isolated
element (1.5). The pattern for i = 0.4585A is shown plotted in Figure 4.17 while the
directivity, as given by (4-104). is displayed in Figure 4.18 for 0 = h < 5A.

Using (4-102), the radiation resistance can be written as

2P IV cos(2kh)y  sin(2kh)
Rr p—rg -_— = '2 — -_— > + 4"05
TR (/\) [3 2khY | (2khY ] (4-103)

whose value for ki — = is the same and for A = 0 is twice that of the isolated
element as given by (4-19). When kh = 0, the value of R, as given by (4-105) is only
one-half the value of an /" = 2/ isolated element according to (4-19). The radiation
resistance, as given by (4-105), is plotted in Figure 4.18 for 0 = /1 = 5A when [ =
M50 und the element is radiating into free-space (n = 1207r). It can be compared to
the value of R, = (.316 ohms for the isolated element of Example 4.1.

In practice, a wide use has been made of a quarter-wavelength monopole (/ =
M4) mounted above a ground plane. as shown in Figure 4.19(a). For analysis purposes,
a M4 image is introduced and it forms the A/2 equivalent of Figure 4.19(b). It should
be emphasized that the A/2 equivalent of Figure 4.19(b) gives the correct field values
for the actual system of Figure 4.19(a) only above the interface (z = 0,0 = 6 = 7/2).
Thus, the far-zone electric and magnetic fields for the A/4 monopole above the ground
plane are given, respectively, by (4-84) and (4-85).




172

Chapter 4 Linear Wire Antennas

Directivity (dimensionless)

ta

Height (wavelengths)

B - 0.7
—10.6

—— Directivity 7
= == == Radiation resistance 0.5
- 0.4

L \ g - - mem P — G ey o ame -

- 7 T - S0.3
1 i 1 i 1 i i 1 0.2

| 2 3 4 5

Radiation resistance (ohms)

Figure 4.18 Directivity and radiation resistance of a vertical infinitesimal elec-
tric dipole as a function of its height above an infinite perfect electric conductor.
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Figure 4.19 Quarter-wavelength monopole on an infinite perfect

electric conductor,
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Figure 4.20 Input impedance of a vertical A/2 dipole above a flat lossy electric

conducting surface.

From the discussions of the resistance of an infinitesimal dipole above a ground
plane for kh = 0. it follows that the input impedance of a A/4 monopole above a
ground plane is equal to one-half that of an isolated A/2 dipole. Thus, referred to the
current maximum, the input impedance Z,, is given by

Z (monopole) = 1 Z, (dipole) = }[73 + j42.5] = 36.5 + j21.25 (4-106)

where 73 + j42.5 is the input impedance (and also the impedance referred to the
current maximum) of a A/2 dipole.

The same procedure can be followed for any other length. The input impedance
Zin = Rim + jXim (referred to the current maximum) of a vertical A/2 dipole placed
near a flat lossy electric conductor, as a function of height above the ground plane, is
plotted in Figure 4.20. for 0 < h < A, Conductivity values considered were 1077,
107%. 1, 10 S/m, and infinity (PEC). It is apparent that the conductivity does not
strongly influence the impedance values. The conductivity values used are represen-
tative of dry to wet earth. It is observed that the values of the resistance and reactance
approach. as the height increases, the corresponding ones of the isolated element (73
ohms for the resistance and 42.5 ohms for the reactance).

4,7.3 Approximate Formulas for Rapid Calculations
and Design

Although the input resistance of a dipole of any length can be computed using (4-70)
and (4-79). while that of the corresponding monopole using (4-106), very good
answers can be obtained using simpler but approximate expressions. Defining G as

G = ki/2 for dipole (4-107a)
G = kI for monopole {4-107b)
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where [ is the total length of each respective element, it has been shown that the input
resistance of the dipole and monopole can be computed approximately using [10]

0<G < /4
(maximum input resistance of dipole is less than 12.337 ohms)

R, (dipole) = 20G2 0 <! < A4 (4-108a)
R;, (monopole) = 10G® 0 << M8 (4-108b)
4 =G < nl2

(maximum input resistance of dipole is less than 76.383 ohms)
R, (dipole) = 24.7G** MA=<[< AR2 (4-109a)
R,, (monopole) = 12.35G*% M8 =< M4 (4-109b)

m2 <G <2 |

(maximum input resistance of dipole is less than 200.53 ohms)
R, (dipole) = 11.14G*"7 M2 =< 0.6366A (4-110a)
R, (monopole) = 5.57G*"7 M4 =1 <(.3183A (4-110b)

Besides being much simpler in form. these formulas are much more convenient
in design (synthesis) problems where the input resistance is given and it is desired to
determine the length of the element. These formulas can be verified by plotting the
actual resistance versus length on 2 log-log scale and observe the slope of the line
[13]. For example. the slope of the line for values of G up to about 7/4 == 0,75 is 2.

Example 4.4

Determine the length of the dipole whose input resistance is 50 ohms. Verify the
answer,

SOLUTION
Using {(4-109a)
50 = 24.7G**
or
G = 1.3259 = ki2
Therefore
[ = (0.422A

Using (4-70) and (4-79) R;, for 0.422A is 45.816 ohms, which closely agrees with
the desired value of 50 ohms. To obtain 50 ohms using (4-70) and (4-79), ! = 0.4363A.
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4.7.4 Antennas for Mobile Communication Systems

The dipole and monopole are two of the most widely used antennas for wireless
mobile communication systems [14]-[17]). An array of dipole elements is extensively
used as an antenna at the base station of a land mobile system while the monopole,
because of its broadband characteristics and simple construction. is perhaps to most
common antenna element for portable equipments, such as cellular telephones, cord-
less telephones, automobiles, trains, etc. The radiation efficiency and gain character-
istics of both of these elements are strongly influenced by their electrical length which
is related to the frequency of operation. In a hand-held unit. such as a cellular
telephone. the position of the monopole element on the unit influences the pattern
while it does not strongly affect the input impedance and resonant frequency. In
addition to its use in mobile communication systems. the quarter-wavelength mono-
pole is very popular in many other applications. An alternative to the monopole for
the hand-held unit is the loop. which is discussed in Chapter 5. Other elements include
the inverted F. planar inverted F antenna (PIFAY. microstrip (patch). spiral, and others
[14]-[17}.

4.7.5 Horizontal Electric Dipole

Another dipole configuration is when the linear element is placed horizontally relative
to the infinite electric ground planc, as shown in Figure 4.21. The analysis procedure
of this is identical to the one of the vertical dipole. Introducing an image and assuming
far-field observations, as shown in Figure 4.22(a.b), the direct component can be
wrilten as

Elle N
El = jn ‘;‘ sin o (4-111)

and the reflected one by

kl(;l(’ k2

[-,'/’ jR,m A sin (4-112)
or
r . k](]l(,'_jk"z .
= = —,nT sin IJI (4-] ‘23)
since the reflection coeflicient is equal 0 R, = ~ 1.

To find the angle . which is measured from the y-axis toward the observation
point, we first form

costy = a,-a, = 4, (d,sin Hcos ¢ + 4, sin Osind + d_cos ) = sin fsin ¢
(4-113)

from which we find

sing = V1 — cos* i = V1 — sin” #sin” ¢ (4-114)
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Figure 4.21 Horizonal electric dipole. and its associated image.
above an infinite. flat. perfect electric conductor.

Since for far-field ooservations

rn=r— hcos8 o

fi has ar $ 4-11
r»=r + hcos ()} OF phase vanations (4-115a)
rpe=rp = for amplitude variations (4-115b)

the towal field. which is valid only above the ground plane (; 2 h: 0= 0= 7/2.0 =<
¢ = 2), can be written as

kl(,,(.’ Eal

Ea,;- = E:; + E‘;; = j’)? Ay

V1 — sin® Bsin” & [2) sintkh cos 8))

(4-116)

Equation (4- 1 16) again consists of the product of the field of a singfe isolated element
placed symmetrically at the origin and a factor (within the brackets) known as the
array factor. This again is the pattern multiplication rule which is discussed in more
detail in Chapter 6.

To examine the variations of the total field as a function of the element height
above the ground plane, the two-dimensional elevation plane patterns (normalized to
0 dB) for ¢ = 90° (y-z plane) when # = 0. A/8, A/4, 3A/8. A/2, and A are plotted
in Figure 4.23. Since this antenna system is not symmetric, the azimuthal plane
(x-v plane) pattern will not be isotropic.

To obtain a better visualization of the radiation intensity in all directions above
the interface. the three-dimensional pattern for h = A is shown plotted in Figure 4.24.
The radial distance on the x-y plane represents the elevation angle 6 from 0° to 90°,
and the z-axis represents the normalized amplitude of the radiation field intensity from
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{a) Horizontal electrie dipole above ground plane

=

() Far-lield observations
Figure 4.22 Horizontal electric dipole above an infinite perfect electric conductor.

010 1. The azimuthal angle ¢ (0 = ¢ = 2) is measured from the x- toward the
y-axis on the x-y plane.

As the height increases beyond one wavelength ( > A), a larger number of lobes
is again formed. This is illustrated in Figure 4.25 for # = 2A and 5A. The scalloping
effect is evident here, as in Figure 4-16 for the vertical dipole. The total number of
lobes is equal to the integer that most closely is equal to

e o lahis 2 2 (f{) 4-117)

with unity being the smallest number.
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Figure 4.23 Elevation plane (¢ = 90°) amplitude patterns of a horizontal

infinitesimal electric dipole for different heights above an infinite perfect elec-
tric conductor.
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Figure 4.25 Elevation plane (¢ = 90°) amplitude patterns of a horizontal
infinitesimal electric dipole for heights 2\ and 5A above an infinite perfect
electric conductor.,

Following a procedure similar to the one performed for the vertical dipole, the
radiated power can be written as

Iyl I sin(2kh)  cos(2kh)  sin(2kh)
fofl 1 &2 _ B . .

and the radiation resistance as
P “[2 _ sinky _ coskh) | sinQ@kh)
=T 13 2kh (2kh): (2kh)?

By expanding the sine and cosine functions into series, it can be shown that (4-119)
reduces for small values of kh to

k-0 N2 2 8 [2ahY 27 1)3(/:)2
= - -_—_—t — ] — = - —_ -
Rr ""(A) [3 3 15( A )] s (A y @10

For kh — =, (4-119) reduces 10 that of an isolated element. The radiation resistance,
as given by (4-119), is plotted in Figure 4.26 for ) =< h < 5A when / = A/50 and the
antenna is radiating into free space (n = 1207).
The radiation intensity is given by
2o bl , -

U= Z'_T;IE'A- = g %, (1 — sin® @sin® ¢) sin®(kh cos 6) (4-121)
The maximum value of (4-121) depends on the value of kh (whether kh = /2,
h < M4 or kh > 7/2, h > A/4). It can be shown that the maximum of (4-121) is:

™
Prud = 71‘2'

4-119)

nlhl|® . 5. kh =< 72 (h = A4) 4122

'5 —/\— sin-(kh) (6= 0°) (4-122a)
Umax = 2 kh > nwl2 (h > M4)

7|l [¢ = 0°and sin(kh cos ) = | (4-122b)

2]A or Oax = o8~ '(m/2kh))
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Figure 4.26 Radiation resistance and directivity gain of a horizontal infini-
tesimal electric dipole as a function of its height above an infinite perfect
electric conductor.

Using (4-118) and (4-122a), (4-122b), the directivity can be written as

4 sin*(kh
IR == ad (@123

4l R(kh)
o= | 4
nd
—_— > > -123
RO kh > w2 (h > A4) (4-123b)
where
2 sin(2kh)  cos(Qkh)  sin(2kh)
R(khY = | = - — -123¢
(KA [3 2kh kR kRy ] (4-123¢)
For small values of kh (kh — 0), (4-123a) reduces to
s 4 sin(kh ol 2
D, K0 sin“(kh) — 75 (sm kh) (@-124)
2_2 + i(kh)2 “
3 3 15

For h = 0 the element is shorted and it does not radiate. The directivity, as given by
(4-123a), (4-123b) is plotted for 0 = h = 5A in Figure 4.26. It exhibits a maximum
value of 7.5 for small values of h. Maximum values of 6 occur when 4 = ((1.725 +
A, n=0,1,2,3,....

The input impedance Z;,, = R;,, + jX;, (referred to the current maximum) of a
horizontal A/2 dipole above a flat lossy electric conductor is shown plotted in Figure
4.27 for 0 < kh < A. Conductivities of 1072, 1074, 1, 10 S/m, and infinity (PEC) were
considered, It is apparent that the conductivity does have a more pronounced effect
on the impedance values, compared to those of the vertical dipole shown in Figure
4.20. The conductivity values used are representative of those of the dry to wet earth.
The values of the resistance and reactance approach. as the height increases. the
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Figure 4.27 Input impedance of a horizontal A/2 above a flat lossy eleciric conducting
surface.

corresponding values of the isolated element (73 ohms for the resistance and 42.5
ohms for the reactance).

4.8 GROUND EFFECTS

In the previous two sections the variations of the radiation characteristics (pattern,
radiation resistance, directivity) of infinitesimal vertical and horizontal linear elements
were examined when they were placed above plane perfect electric conductors, Al-
though ideal electric conductors (o = ) are not realizable, their effects can be used
as guidelines for good conductors (o >> we, where €is the permittivity of the medium).

One obstacle that is not an ideal conductor, and it is always present in any antenna
system, is the ground (earth). In addition. the earth is not a plane surface. To simplify
the analysis, however. the earth will initially be assumed to be flat. For pattern analysis,
this is a very good engineering approximation provided the radius of the earth is large
compared to the wavelength and the observation angles are greater than about 57.3/
(ka)'” degrees from grazing (a is the earth radius) [18]. Usually these angles are
greater than about 3°.

In general, the characteristics of an antenna at low (LF) and medium (MF)
frequencies are profoundly influenced by the lossy earth. This is particularly evident
in the input resistance. When the antenna is located at a height that is small compared
to the skin depth of the conducting earth, the input resistance may even be greater
than its free-space values [18]. This leads to antennas with very low efficiencies.
Improvements in the efficiency can be obtained by placing radial wires or metallic
disks on the ground.

The analytical procedures that are introduced to examine the ground effects are
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based on the geometrical optics models ot the previous sections. The image (virtual)
source is again placed a distunce h below the interface to account for the reflection.
However, for each polarization nonunity reflection coefficients are introduced which,
in general, will be a function of the angles of incidence and the constitutive parameters
of the two media. Although plane wave reflection coefficients are used, even though
spherical waves are radiated by the source. the error is small for conducting media
[19]. The spherical nature of the wavefront begins to dominate the reflection phenom-
enon at grazing angles (i.e., as the point of reflection approaches the horizon) [20).
If the heighl (h) of the antenna above the interface is much less than the skin depth
886 = /2N wpm) of the ground, the image depth 7 below the interface should be
increased [ 19| by a complex distance 8(1 — j).

The geometrical optics formulations are vahid provided the sources are located
inside the lossless medium. When the sources are placed within the ground, the
formulations should include possible surface-wave contributions. Exact boundary-
value solutions, based on Sommerfeld integral formulations, are available [18]. How-
ever they are 100 complex to be included in an introductory chapter.

4.8.1 Vertical Electric Dipole

The field radiated by an electric infinitesimal dipole when placed above the ground
can be obtained by referring to the geometry of Figures 4.14(a) and (b). Assuming
the earth is flat and the observations are made in the far-field, the direct component
of the field is given by (4-94) and the reflected by (4-95) where the reflection coeffi-
cient R, is given by

08 6, — cos 8,
M EBA T PR - R (4-125)
My cos §; + m cos §,

where R is the reflection coefticient for parallel polarization [7] and

) . e e . .
M = /E‘—- = intrinsic impedance of free-space (air)
€p

jw
m = /’¢ = intrinsic impedance of the ground
o, + jwe;

8; = angle of incidence (relative to the normal)
8, = angle of refraction (relative to the normal)

The angles 6; and 6, are related by Snell's law of refraction
Yo 8in 8; = v, sin 4, (4-126)

where

Yo = jky = propagation constant for free-space (air)

kg = phase constant for free-space (air)

v = (&) + jk)) = propagation constant for the ground

a, = attenuation constant for the ground

k, = phase constant for the ground
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Figure 4.28 Elevation plane amplitude patterns of an infinitesimal verticle
dipole above a perfect electric conductor (o = =) and a flat earth (o, = 0.01
S/m. e, = 5,f = 1GHz).

Using the far-field approximations of (4-97a)-(4-98), the total electric field above
the ground (z = 0) can be written as

Iyle =% . .
E,= jn%lfr—- sin QeHheost 4 R o Meost] 7= (4-127)
"

where R, is given by (4-125).

The permittivity and conductivity of the earth are strong functions of the ground’s
geological constituents, especially its moisture. Typical values for the relative per-
mittivity €, (dielectric constant) are in the range of 5-100 and for the conductivity o
in the range of 10 —1 S/m.

A normalized (to 0 dB) pattern for an infinitesimal dipole above the ground with
h= A4 €, = 5./ =1GHz o, = 107?S/m is shown plotted in Figure 4.28
(dashed curves) where it is compared with that (solid curve) of a perfect conductor
{(gy = ). In the presence of the ground, the radiation toward the vertical direction
(60° > 6 > 0°) is more intense that for the perfect electric conductor, but it vanishes
for grazing angles (0 = 90°). The null field toward the horizon (8 = 90°) is formed
because the reflection coefficient R, approaches — 1 as 8, — 90°. Thus the ground
effects on the pattern of a vertically polarized antenna are significantly different from
those of a perfect conductor.

Significant changes also occur in the impedance. Because the formulation for the
impedance is much more complex {18}, it will not be presented here. Graphical
illustrations for the impedance change of a vertical dipole placed a height # above a
homogeneous lossy half-space, as compared to those in free-space, are shown in
Figure 4.29. They are based on numerical results obtained by Vogler and Noble [2]].
The variations in impedance are expressed in terms of changes in resistance (AR/Ry)
and in reactance (AX/R,), where R, is the radiation resistance of an infinitesimal
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dipole radiating in an infinite free-space [as given by (4-19)). The parameter N, is

defined by
+ {7
N = ,/——m AT LT !Nule"(f‘ "”) (4-128)
JWEy

where o, €, are the conductivity and permittivity. respectively, of the homogeneous
lossy half-space, €, is the free-space permittivity, and  is phase angle of' N,.

The curve in Figure 4.29(a) represents the data for a perfectly conducting (V|
= o) half-space. As expected, the magnitude of AR/R,, approaches unity as 2kyh —
0, which corresponds to doubling the radiation resistance. while the magnitude of AX
approaches infinity as 2kyh —> 0. The curves for both AR and AX become oscillatory
as 2koh exceeds approximately 7 or the height &1 exceeds Ay/4.

For the finite conductivity half-space, the 4 = 7/4 curves correspond to a perfect
dielectric half-space (o, = 0) while the ¢y = 0 curves represent negligible displace-
ment currents in the lossy half-space. The curves for [NV,?| = 100 are not wo different
from that of a perfectly conducting half-space (|N,| = ). Significant changes are
evident as the values of |N,?| decrease particularly in the resistive portion of the ¢ =
O curves,

The curves of Figure 4.29 can be used as design data to determine the changes
in the input impedance of an infinitesimal vertical dipole when it is placed above a
lossy medium. To demonstrate the procedure, let us consider the following example.

Example 4.5

An infinitesimal vertical dipole of length I = A,/50) is placed a height h = Ay/10
above the earth. Assume the earth is locally flat with a dielectric constant of 4 and
conductivity of 107 S/m at a frequency of 100 MHz. Determine the changes in input
resistance and rcactance of the dipole.

SOLUTION
For a frequency of 100 MHz

a _ IO_S
we, 27 X 10° X 4 X 8854 x 1012

Therefore uccording to (4-125)

=199 x 107 <

or
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For a height of A,/10

277' /\()
2k = 21— —]) = |.2
o (An)(lo) 257

Using Figure 4.29(d) and the curve for 74 — ¢ = 0 at 2koh = 1.257, the relative
changes in resistance and reactance are, respectively. equal to

AR

— = (0.767
Ro

AX o2
Rq

Since for a A/50 dipole the radiation resistance according to (4-19) and Example 4.1
is equal to

R, = R, = 0.316 ohms
then the changes in resistance and reactance are, respectively, equal (o

AR = 0.767(0.316) = 0.242 ohms
AX = 1.2(0.316) = 0.379 ohms

4.8.2 Horizontal Electric Dipole

The analytical formulation of the horizontal dipole above the ground can also be
obtained in a similar manner as for the vertical electric dipole. Referring to Figure
4.22(a) and (b). the direct component is given by (4-111) and the reflecied by (4-112)
where the reflection coefficient R, is given by

R = R. for ¢ = 0° 180° plane
h R, for ¢ = 90° 270° planc

where Ry is the reflection coefficient for parallel polarization. as given by (4-125).
and o is the reflection coefficient for perpendicular polarization given by [7].

(4-129)

R = 7 cos 0; — mq cos 6,

4-129:
T COs 0,' + Mo COS 6, ( 4

The angles 6; and 6, are again related by Snell’s law of refraction as given by (4-126).
Using the far-field approximations of (4-115a) and 4-115b). the total field above
the ground (z = /1) can be wrilten as

kl,e
drr

E"' = ’1, ‘/I — sin® fsin? d) [fl,ikhc().\'l) + Rhe - jkh con ﬂ]. :=h (4_130)
where R, is given by (4-129).

The normalized (to 0 dB) pattern in the v-z plane (¢ = 90°) for h = A/4 is
shown plotted in Figure 4.30 (dashed curve) where it is compared with that (solid
_eurve) of a perfect conductor (o, = ). In the space above the interface, the relative
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Figure 4.30 Elevation plane (¢ = 90°) amplitude patterns of an infini-
tesimal horizontal dipole above a perfect electric conductor (o = «) and 4
flat eurth (or, = (.01 S/m, €,, = 5./ = | GHa).

pattern in the presence of the ground is not significantly different from that of a perfect
conductor. This becomes more evident by examining R, as given by (4-129). For a
ground medium. the values of R, for most observation angles are not much different
from — | (the value of R, for a perfect conductor). For grazing angles (8, = 90°). the
values of Ry, for the lossy ground approach — I very rapidly. Thus the relative pattern
of a hotizontal dipule abave a lossy surface is not significantly different from that
above a perfect conductor.

4.8.3 Earth Curvature

Antenna pattern measurements on aircraft can be made using either scale models or
tull scale in-flight. Scale model measurements usually are made indoors using elec-
tromagnetic anechoic chambers, as described in Chapter 16. The indoor facilities
provide a controlled environment. and all-weather capability, security. and minimize
electromagnetic interference. However. scale model measurements may not always
simulate real-life outdoor conditions, such as the reflecting surface of sea water.
Therefore full-scale model measurements may be necessary. For in-flight measure-
ments. reflecting surfaces, such as sea water, introduce reflections. which usually
interfere with the direct signal. These unwanted signals are usually referred to as
multipath. Therefore the total measured signal in an outdoor system configuration is
the combination of the direct signal and that due to multipath, and usually it cannot
be easily separated in its parts using measuring techniques. Since the desired signal
is that due to the direct path, it is necessary to be able to subtract from the total
response the contributions due to multipath. This can be accomplished by developing
analytical models o predict the contributions due to multipath, which can then be
subtracted from the total signal in order to be left with the desired direct path signal.
In this section we will briefly describe techniques that have been used to accomplish
this [22], |23].
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The analytical formulations of Sections 4.8.1 and 4.8.2 for the patterns of vertical
and horizontal dipoles assume that the earth is flat. This is a good approximation
provided the curvature of the earth is large compared to the wavelength and the angle
of observation is greater than about 3° from grazing |or more accurately greater than
about 57.3/(ka)'"* degrees, where ¢ is the radius of the earth] from grazing [24]. The
curvature of the earth has a tendency to spread out (weaken, diffuse, diverge) the
reflected energy more than a corresponding flat surface. The spreading of the reflected
energy from a curved surface as compared to that from a flat surface is taken into
account by introducing a divergence factor D [20], [22], [23], defined as

reflected field from curved surface
reflected field from flat surface

D = divergence factor = (4-13D)

The formula for D can be derived using purely geometrical considerations. It is
accomplished by comparing the ray energy density in a small cone reflected from a
sphere near the principal point of reflection with the energy density the rays (within
the same cone) would have if they were reflected from a plane surface. Based on the
geometrical optics energy conservation law for a bundle of rays within a cone. the
reflected rays within the cone will subtend a circle on a perpendicular plane for
reflections from a fiat surface. as shown in Figure 4.3[(a}. However, according to the
geometry of Figure 4.31(b). it will subtend an ellipse for a spherical reflecting surface.
Therefore the divergence factor of (4-131) can also be defined as

E;
E

D (4-132)

——
=

) .. 12
area contained in circle
area contained in ellipse

where

E;= reflected field from spherical surface
Ef= reflected field from flat surface

Using the geometry of Figure 4.32, the divergence factor can be written as [7]

and 23]
Pl P
(p + ) (pi + )

D= (4-133)

’

5
s+

where p} and p5 are the principal radii of curvature of the reflected wavefront at the
point of reflection and are given, according to the geometry of Figure 4.32, by

4
L T A . (4-133a)
pl s psin ¢ (psinyg)y a
LI A B S B (4-133b)
pr s psin g (psin ¢y a
o 2 @-133¢)

T+ sin g
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Figure 4.31 Reflection from a flat and spherical surfaces.
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A simplified form of the divergence factor is that of [25]

25’ i 2's |12
= |+ — 5\
P [1 T A + 9 vin lp] [ als’ + $) (4-134)

Both (4-133) and (4-134) take into account the earth curvature in two orthogonal
planes,

Assuming that the divergence of rays in the azimuthal plane (plane vertical to the
page) is negligible, the divergence factor can be written as

f =12
58
Des | 9—"— 4-13

[ ad tan .p] fReiaa

where i is the grazing angle. Thus the divergence factor of (4-135) takes into account
energy spreading primarily in the elevation plane. According to Figure 4.32

hy = height of the source above the earth (with respect to the tangent at the
point of reflection)

hy = height of the observation point above the earth (with respect to the tan-
gent at the point of reflection}

d = range (along the surface of the earth) between the source and the obser-
vation point

a = radius of the earth (3,959 mi). Usually a % radius (= 5,280 mi) is used.

i = reflection angle (with respect to the tangent at the point of reflection).

d, = distance (along the surface of the earth) from the source to the reflection
point

d, = distance (along the surface of the earth) from the observation point 1o the
reflection point
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The divergence factor can be included in the formulation of the fields radiated by
a vertical or a horizontal dipole. in the presence of the earth. by modifying (4-127)
and (4-130) and writing them, respectively, as

klyle ™% ) .
Eﬂ = J"? szin gl-e_/klrcosli + DR”e—,khcusll-l (4‘]363)
klyle T o
E'f' - /Tl ‘:ti__ \/I — sin- # sin"d) [ejklrcos(i + DR’le—thcnw] (4'136b)
wr

While the previous formulations are valid for smooth surfaces, they can still be
used with rough surfaces, provided the surface geometry satisfies the Rayleigh crite-
rion {20] and [25]

By < (4-137)

8 sin ¢
where h,, is the maximum height of the surface roughness. Since the dividing line
between a smooth and a rough surface is not that well defined, (4-137) should only
be used as a guideline.

The coherent contributions due to scattering by a surface with Gaussian rough
surface statistics can be approximately accounted for by modifying the vertical and
horizontal polarization smooth surface reflection coefficients of (4-125) and
(4-129) and express them as

S0 = R, ye Whohocostiy? (4-138)

where

R;. ,, = reflection coefficient of a rough surface for either vertical or horizontal
polarization

R, , = reflection coefficient of a smooth surface for either vertical (4-125) or
horizontal (4-129) polarization

h3 = mean-square roughness height

A slightly rough surface is defined as one whose rms height is much smaller than the
wavelength, while a very rough surface i1s defined as one whose rms height is much
greater than the wavelength.

Plots of the divergence factor as a function of the grazing angle ¢ (or as a function
of the observation point A,") for different source heights are shown in Figure 4.33. It
is observed that the divergence factor is somewhat different and smaller than unity
for small grazing angles. and it approaches unity as the grazing angle becomes larger.
The variations of D displayed in Figure 4.33 are typical but not unique. For different
positions of the source and observation point, the variations will be somewhat differ-
ent. More detailed information on the variation of the divergence factor and its effect
on the overall field pattern is available [23].

The most difficult task usually involves the determination of the reflection poimt
from a knowledge of the heights of the source and observation points, and the range
d between them. Procedures to do this have been developed [20]. [22]-[26].

However, the one presented here is more accurate and does not require either
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Figure 4.33 Divergence factor for a 4/3 radius earth (¢, = 5.280 mi

= 8,497.3 km) as a function of grazing angle .

iterative or graphical solutions. To find d, and d, (given d, h;. and h,). the cubic

equation of [20] is utilized
2d} ~ 3ddi + [d® — 2a(h, + h)ld, + 2ahyd = 0

with solution given by

l—(—1+ cosn'-'-?r
G TR TP TS

d'z-"_-d_dl

7

s

d\?
p= % (l(h| + hz) + (5)

_v | 2athy — hy)d
Q = cos™! [—-—37—]

(4-139)

(4-139a)

(4-139b)

(4-139¢)

(4-1394d)

Equation (4-139) is valid provided that &« — f is small, such that sin(e — B) =
@— B.costa — B)=1— (@ — B2, sinB= B andcos B=1 — (B)/2. Once
d, and d, are found, then successively B, v, §', & ¥, ), 2, @i, af. &5. and of can be

determined using the geometry of Figure 4.31.

Using the analytical model developed here, computations were made to see how
well the predictions compared with measurements. For the computations it was as-
sumed that the reflecting surface is sea water possessing a dielectric constant of 81
and a conductivity of 4.64 S/m [22], [23]. To account for atmospheric refraction, a 4/
3 earth was assumed [20], [22]. [27] so the atmosphere above the earth can be

considered homogeneous with propagation occurring along straight lines.

For computations using the earth as the reflecting surface, all three divergence
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Figure 4.34¢ Measured and calculated height gain over the ocean (€, =
81, o = 4.64 S/m) for vertical polarization.

factors of (4-133)—(4-135) gave the same results. However, for nonspherical reflecting
surfaces and for those with smaller radii of curvature. the divergence factor of
(4-133) is slightly superior followed by (4-134) and then by (4-135). In Figure 4.34 we
display and compare the predicted and measured height gain versus range d (4 < d
< 14 nautical miles) for a vertical-vertical polarization system configuration at a
frequency of 167.5 MHz. The height gain is delined as the ratio of the total field in
the presence of the earth divided by the total field in the absence of the earth. A good
agreement is noted between the two. The peaks and nulls are formed by constructive
and destructive interferences between the direct and reflected components. If the
reflecting surface were perfectly conducting, the maximum height gain would be 2 (6
dB). Because the modeled reflecting surface of Figure 4.34 was sea water with a
dielectric constant of 81 and a conductivity of 4.64 S/m, the maximum height gain is
less than 6 dB. The measurements were taken by aircraft and facilities of the Naval
Air Warfare Center. Patuxent River, MD. Additional mecasurements were made but
are not included here: they can be found in |28] and [29)].
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PROBLEMS

4.1.

4.2,

4.3.

4.4,

45.

4.6.

4.7.

4.8.
4.9.

4.10.

4.12.
4.13.

1.14.

A horizontal infinitesimal electric dipole of constant current /, is placed symmetrically
about the origin and directed along the x-axis. Derive the

(a) far-zone fields radiated by the dipole

(b) directivity of the antenna

Repeat Problem 4.1 for a horizontal infinitesimal electric dipole directed along the y-
axis.

For Problem 4.1 determine the polarization of the radiated [ar-zone ¢lectric hields (£,
E,) and normalized amplitude puttern in the following planes:

(@) ¢ =0°
(b ¢ = 90°
(c) 0 =9

Repeat Problem 4.3 for the horizontal infinitesimal electric dipole of Problem 4.2,
which is directed along the y-axis.

An infinitesimal magnetic dipole of constant current /,, and length / is symmetrically
placed about the origin along the z-axis. Find the

(a) spherical E- and H-field components radiated by the dipole in all space

(b) directivity of the antenna

For the infinitesimal magnetic dipole of Problem 4.5, find the lar-zone lields when the
element is placed along the

() x-axis

(b) v-axis

An infinitesimal electric dipole is centered at the origin and lies on the x-v plane along
a line which is at an angle of 45° with respect o the x-axis. Find the far-zone clectric
and magnetic fields radiated. The answer should be a function of spherical coordinates.
Repeat Problem 4.7 for an infinitesimal magnetic dipole.

Derive (4-10a)-(4-10c¢) using (4-8a)-(4-9).

Derive the radiated power of (4-16) by forming the average power density, using
4-26a)-(4-26¢). and integrating it over a sphere of radius r.

Derive the far-zone fields of an infinitesimal electric dipole, of length / and constant
current £, using (4-4) and the procedure outlined in Section 3.6. Compare the results
with (4-26a)-(3-26¢).

Derive the fifth term of (4-41).

For an antenna with a maximum linear dimension of D, find the inner and outer
boundaries of the Fresnel region so that the muximum phase error does not exceed
(a) /16 rad

(b) 7/4 rad

{c) 18°

(d) 15°

The boundaries of the far-field (Fraunhofer) and Fresnel regions were selected based
on a maximum phase error of 22.5° which occur, respectively, at directions of 90° and
54,74° from the axis along the largest dimension of the antenna, For an antenna of
maximum length of 5A, what do these maximum phase errors reduce to at an angle of
30° from the axis along the length of the antenna? Assume that the phase error in each
cuse is totally contributed by the respective first higher order term that is being neglected
in the infinite series expansion of the distance from the source to the observation point.
The current distribution on a terminated and matched long linear (traveling wave)
antenna of length /, positioned along the z-axis and fed at its vne end, is given by

I=ale ™. O=s:=|

where /, is a constant. Derive expressions for the
{(a) lar-zone spherical electric and magnetic ield components
{b) radiation power density
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4.19.

4.20.

4.21.

4.22.
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A line source of infinite length and constant current /, is positioned along the z-axis.
Find the

{a) vector potential A

(b) cylindrical E- and H-field components radiated

+x e—jﬁvbz + 17

——d

where H,'?'(ax) is the Hankel function of the second kind of order zero.

Show that (4-67) reduces to {4-68) and (4-88) to (4-89).

A thin linear dipole of length / is placed symmetrically about the z-axis. Find the far-
zone spherical electric and magnetic components radiated by the dipole whose current
distribution can be approximated by

Hint: = —jmwH*(Bb)

A

!
=0

I() (l + _Z')' _”2

(a) l:(zl) =
In( - 'I‘Z ). 0

(by 12" = 1y cos("?rz'). =<z <in

!
LY

IA
IA

2

() Iz =1, cosz(—?z'). -NR=2=<IR

A center-fed electric dipole of length [ is attached to a balanced lossless transmission

line whose characteristic impedance is 50 ohms. Assuming the dipole is resonant at the

given length. find the input VSWR when

(a) I = A4 (b I = A2

€ I=3M4 (dIl=A

Use the equations in the book or the computer program at the end of the chapter. Find

the radiation efficiency of resonant linear electric dipoles of length

(a) I = M50 (by!= A4

(© ! = A2 d)y ! =A

Assume that each dipole is made out of copper [0 = 5.7 X 107 S/m), has a radius of

10" *A, and is operating a1 f = 10 MHz. Use the computer program at the end of the

chapter 1o find the radiation resistances.

Write the far-zone electric and magnetic ficlds radiated by a magnetic dipole of [ =

A/2 aligned with the z-axis. Assume a sinusoidal magnetic current with maximum value

lio

A resonant center-fed dipole is connected to a 50-ohm line. It is desired to maintain

the input VSWR = 2.

(a) What should the largest input resistance of the dipole be to maintain the VSWR =
27

{b) What should the length (in wavelengths) of the dipole be to meet the specification?

{c) What is the radiation resistance of the dipole?

The radiation field of a particular antenna is given by:

_oa ¥ loAe ™™ e IpAge
E = d jwuk sm64—ﬂ_r- + fywp sind Y

The values A and A, depend on the antenna geometry. Obtain an expression for the
radiation resistance. What is the polarization of the antenna?
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4.24,

425,

4.26.

4.27.

4.29.

For a A/2 dipole placed symmetrical along the z-axis, determine the

(a) vector effective height

(b) maximum value (magnitude) of the vector effective height

(¢) ratio (in percent) of the maximum value (magnitude) of the vector effective height
to its total length

(d) maximum open-circuit output voltage when a uniform plane wave with an electric
field of

E'y — opp = —#, 10" 7 volts/wavelength

impinges at broadside incidence on the dipole
A A2 dipole situated with its center at the origin radiates a time-averaged power of
600 W at a frequency of 300 MHz. A second A/2 dipole is placed with its center at a
point P(r, 8, ¢), where r = 200 m, 6 = 90° ¢ = 40° It is oriented so that its axis is
parallel to that of the transmitting antenna. What is the available power at the terminals
of the second (receiving) dipole?
A half-wave dipole is radiating into free space, The coordinate system is defined so
that the origin is at the center of the dipole and the z-axis is aligned with the dipole.
Input power to the dipole is 100 W. Assuming an overall efficiency of 50%. find the
power density (in W/m*) at r = 500 m. # = 60°, ¢ = 0"
The input impedance of a A/2 dipole. assuming the input (feed) terminals are at the
center of the dipole, is equal to 73 + j42.5. Assuming the dipole is lossless, find the
(a) input impedance (real and imaginary parts) assuming the input (feed) terminals
have been shifted to a point on the dipole which is A/8 from either end point of the
dipole length
(b) capacitive or inductive reactance that must be placed across the new input terminals
of part (a) so that the dipole is self-resonant
(c) VSWR at the new input terminals when the self-resonant dipole of part (b) is
connected to a ““twin-lead’ 300-ohm line
A linear half-wavelength dipole is operating at a frequency of | GHz, determine the
capacitance or inductance that must be placed acrosy the input terminals of the dipole
s0 that the antenna becomes resonant (make the total input impedance real). What is
then the VSWR of the resonant half-wavelength dipole when it is connected to a 50-
ohm line?
The field radiated by an infinitesimal electric dipole, placed along the z-axis a distance
& along the x-axis, is incident upon a waveguide aperture antenna of dimensions ¢ and
b, mounted on an infinite ground plane, as shown in the figure. The normalized electric
field radiated by the aperture in the E-plane (x-z plane; ¢» = 0°) is given by

 sinf— cos @ 3
wpblge 2

E= -y dqrr kb

— C0s
,Jofa‘
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Assuming the dipole and aperture antennas are in the far ficld of cach other. determine
the polarization loss (in dB) between the two antennas.

We are given the following information about antenna A:

{a) When A is transmitting, its radiated far-ficld expression for the E field is given by:

e fa, + ja,
E(z) = Eoe (ﬁ,. J%) Vin

47z \/f

(b) When A is receiving an incident plane wave given by:
E((z) = ﬁye’*: Vim

its open-circuit voltage is V; = 4™ V.
If we use the same antenna to receive a second incident plane given by:

E)(z) = 10024, + 4,B°")ef Vim

find its received open-circuit voltage V,.
A 3-cm long dipole carrics a phasor current /, = 10e/* A, Assuming that A = 5 cm,
determine the E- and H-fields at 10 cm away from the dipole and at § = 45°,
The radiation resistance of a thin, lossless linear electric dipole of length [ = 0.6A is
120 ohms. What is the input resistance?
A lossless. resonant, center-fed 3A/4 linear dipole, radiating in free space is attached to
a balanced. lossless transmission line whose characteristic impedence is 300 ohms.
Calculate the
(a) radiation resistance (referred to the current maximum)
(b) input impedance (referred to the input terminals)
(c) VSWR on the transmission line
For parts (a) and (b) use the computer program at the end of the chapter.
Repeat Problem 4.33 for a center-fed 5A/8 dipole.
A dipole antenna, with a triangular current distribution, is used for communication with
submarines al a frequency of 150 kHz. The overall length of the dipole is 200 m. and
its radius is 1 m. Assume 4 loss resistance of 2 ohms in series with the radiation
resistance of the antenna.
(a) Evaluate the input impedance of the antenna including the loss resistance. The input
reactance can be approximated by

L (In(}2a) — 1]
Xip = = j120 tan(wil/A)

(b) Evaluate the radiation efficiency of the antenna.

{(c) Evaluate the radiation power factor of the antenna.

{d) Design a conjugate-matching network to provide a perfect match between the
antenna and a 50 ohms transmission line. Give the value of the series reactance X
and the turns ratio n of the ideal transformer.

(e) Assuming a conjugate match, evaluate the instantaneous 2 : | VSWR bandwidth
of the antenna.

Derive (4-102) using (4-99).

Determine the smallest height that an infinitesimal vertical electric dipole of I = A/50

must be placed above an electric ground planc so that its pattern has only one null

(aside from the null toward the vertical). and it occurs at 30° from the vertical. For that

height, find the directivity and radiation resistance.

A A/50) linear dipole is placed vertically at a height h = 2A above an infinite electric

ground plane. Determine the angles (in degrees) where all the nulls of its pattern occur.

A linear infinitesimal dipole of length / and constant current is placed vertically a

distance h above an infinite clectric ground plane. Find the first five smallest heights
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(in ascending order) so that a null is formed (for each height) in the far-field pattern at

an angle of 60° [rom the vertical.

A vertical infinitesimal linear dipole is placed a distance # = 3A/2 above an infinite

perfectly conducting flat ground plane. Determine the

(a) angles (in degrees from the vertical) where the array factor of the system will
achieve its maximum value

(b} angle (in degrees from the vertical) where the maximum of the tofaf field will occur

(¢) relative (compared 1o its maximum) field strength (in B) of the total field at the
angles where the array factor of the system achieves its maximum value (as obtained
in part a)

A half-wavelength dipole is placed vertically on an infinite electric ground plane.

Assuming that the dipole is fed at its base, find the

(a) radiation impedance (referred to the current maximum)

{(h) imput impedunce (referred to the input terminals)

(¢) VSWR when the antenna is connected 1o a lossless 50-ohm transmission line

An infinitesimal dipole of length € is placed a distance s from an air-conductor interface

and at an angle of # = 60° from the vertical axis. as shown in the figure. Determine

the location and direction of the image source which can be used to account for

reflections. Be very clear in indicating the location and direction of the image. Your

answer can be in the form of a very clear sketch.

=

It is desired to design an antenna system, which utilizes a vertical infinitesimal dipole
of length € placed a height i above a flat, perfect electric conductor of infinite extent.
The design specifications require that the pattern of the array factor of the source and
its image has only one maximum, and that maximum is pointed at an angle of 60° from
the vertical, Determine (in wavelengths) the height of the source 1o achieve this desired
design specification.

A very short (/ = A/50) vertical electrie dipole is mounted on a pole a height /i above

the ground, which is assumed to be flat, perfectly conducting, and of infinite extent.

The dipole is used as a transmitting antenna in a VHF (/' = 50 MHz) ground-to-air

communication system. In order for the communication system transmitling antenna

sizmul not to interfere with a nearby radio station, it is necessary to place a null in the
vertical dipole system pattern at an angle of 80° from the vertical. What should the
shortest height (in meters) of the dipole be to achieve the desired specifications?

Derive (4-118) using (4-116),

An inlinitesimal horizontal electric dipole of length [ = A/50 is placed parallel to the

v-axis a height & above an infinite electric ground plane.

(a) Find the smallest height /1 (cxcluding h = ) that the antenna must be elevated so
that a null in the ¢ = 90° plane will be formed at an angle of 6 = 45° from the
vertical axis,

(b) For the height of part (a), determine the (1) radiation resistance and (2) directivity
(for # = 0°) of the antenna system,
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A horizontal /50 infinitesimal dipole of constant current and length / is placed parallel
to the y-uxis a distance # = 0.707A above an infinite electric ground plane. Find all
the nulls formed by the antenna system in the ¢¢ = 90° plane.
An infinitesimal magnelic dipole is placed vertically a distance h above an infinite,
perfectly conducting electric ground plane. Derive the far-zone fields radiated by the
element above the ground plane.
Repeat Problem 4.48 for an electric dipole above an infinite, perfectly conducting
magnetic ground plane.
Repeat Problem 4.48 for a magnetic dipole above an infinite. perfectly conducting
magnetic ground plane.
An infinitesimal vertical electric dipole is placed at height & above an infinite PMC
(perfect magnetic conductor) ground plane.
(a) Find the smallest height i (excluding i = ) to which the antenna musi be elevated

so that a null is formed at an angle 8 = 60° from the vertical axis
(b) For the value of /i found in part (a), determine

l. the directive gain of the antenna in the # = 45° direction

2. the radiation resistance of the antenna normalizd to the inirinsic impedance of

the medium above the ground plane

Assume that the length of the antenna is / = ;.
A vertical A/2 dipole. operating at | GHz, is placed a distance of 5 m (with respect to
the tangent at the point of reflections) above the earth. Find the total field at a point 20
km from the source (d = 20 X 10 m), at a height of 1.000 m (with respect to the
tangent) above the ground. Use a % radius earth and assume that the electrical parameters
of thecartharc e, = 5.0 = 10 * S/m.
Two astronauts equipped with handheld radios land on different parts of a large asteroid.
The radios are identical and transmit 5 W average power at 300 MHz. Assume the
asteroid is 4 smooth sphere with physical radius of 1,000 km. has no atmosphere. and
consists of a lossless dielectric material with relative permillivily €, = 9. Assume that
the rudios™ antennas can be modeled as vertical infinitesimal electric dipoles. Determine
the signal power (in microwatts) received by each radio from the other, if the astronauts
are separated by a range (distance along the asteroid’s surface) of 2 km, and hold their
radios vertically at heights of 1.5 m above the asteroid’s surface.

Additional Information Required to Answer this Question: Prior to landing on the
asteroid the astronauts calibrated their radios. Separating themselves in outer space by
10 ki, the astronauts found the received signal power at each radio from the other was
10 microwatls, when both antennas were oriented in the same direciion.

A satellite § ransmius an electromagnetic wave, at 10 GHz. via its transmitting antenna.
The characteristics of the satellite-based transmitter are:

(a} The power radiated from the satellite antenna is 10 W,

(b) The distance between the satellite antenna and a point A on the carth’s surface is

3.7 X 10’ m, and
{c) The satellite transmitting antenna directivity in the direction SA is 50 dB
Ignoring ground effects.

I. Determine the magnitude of the E-field at A.

2. If the receiver at point A is a A/2 dipole, what would be the voltage reading at

the terminals of the antenna?
Derive (4-134) based on geometrical optics as presented in section 13.2 of [7].



COMPUTER PROGRAM - LINEAR DIPOLE
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C
C THIS IS A FORTRAN PROGRAM THAT COMPUTES THE:

C 1. MAXIMUM DIRECTIVITY (DIMENSIONLESS AND IN dB)
C II. RADIATION RESISTANCE

C III. INPUT RESISTANCE
C

(@]

C FOR A SYMMETRICAL DIPOLE OF FINITE LENGTH. THE DIPOLE IS
C RADIATING IN FREE SPACE.

C THE DIRECTIVITY, RADIATION RESISTANCE AND INPUT
C RESISTANCE ARE CALCULATED USING THE TRAILING EDGE

C METHOD IN INCREMENTS OF ¢ IN THETA.

0

**INPUT PARAMETERS
1. L: DIPOLE LENGTH (in wavelengths)

**NOTE
THE FAR-ZONE ELECTRIC FIELD COMPONENT Eg

EXISTS FOR 09 © <180° AND (g ® <360°.
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