CHAPTER

ANTENNA SYNTHESIS AND
CONTINUOUS SOURCES

7.1 INTRODUCTION

Thus far in the book we have concentrated primarily on the analysis and design of
antennas. In the analysis problem an antenna model is chosen. and it is analyzed for
its radiation characteristics (pattern, directivity, impedance, beamwidth, efficiency,
polarization, and bandwidth). This is usually accomplished by initially specifying the
current distribution of the antenna. and then analyzing it using standard procedures.
If the antenna current is not known. it can usually be determined from integral equation
formulations. Numerical techniques. such as the Moment Method of Chapter 8. can
be used to numerically solve the integral equations.

In practice. it is often necessary Lo design an antenna system that will yield desired
radiation characteristics. For example, a very common request is to design an antenna
whose far-field pattern possesses nulls in certain directions. Other common requests
are for the pattern to exhibit a desired distribution, narrow beamwidth and low side
lobes, decaying minor lobes, and so forth. The task. in general, is to find not only the
antenna configuration but also its geometrical dimensions and excitation distribution.
The designed system should yield, either exactly or approximately, an acceptable
radiation pattern, and it should satisfy other system constraints. This method of design
is usually referred to as synthesis. Although synthesis, in its broadest definition, usually
refers to antenna pattern synthesis, it is often used interchangeably with design. Since
design methods have been outlined and illustrated previously, in this chapter we want
to introduce and illustrate antenna pattern synthesis methods.

Antenna pattern synthesis usually requires that first an approximate analytical
model is chosen to represent, either exactly or approximately, the desired pattern. The
second step is to realize the analytical model by an antenna model. Generally speaking,
antenna pattern synthesis can be classified into three categories. One group requires
that the antenna patterns possess nulls in desired directions. The method introduced
by Schelkunoff [1] can be used to accomplish this; it will be discussed in Section 7.3.
Another category requires that the patterns exhibit a desired distribution in the entire
visible region. This is referred to as beum shaping, and it can be accomplished using
the Fourier transform [2] and the Woodward-Lawson [3]. [4] methods. They will be
discussed and illustrated in Sections 7.4 and 7.5, respectively. A third group includes
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340 Chapter 7 Antenna Synthesis and Continuous Sources

techniques that produce patterns with narrow beams and low side lobes. Some methods
that accomplish this have aleady been discussed: namely the binomial method (Section
6.8.2) and the Dolph-Tschebyscheff method (also spelied Tchebyscheff or Chebyshev)
of Section 6.8.3. Other technigues that belong to this family are the Taylor line-source
(Tschebyscheff error) [S] and the Taylor line-source (one-parameter) [6]. They will
be outlined and illustrated in Sections 7.6 and 7.7, respectively.

The synthesis methods will be utilized to design line-sources and linear arrays
whose space factors [as defined by (4-58a)] and array factors [as defined by (6-52)]
will yield desired far-ficld radiation patterns. The total pattern is formed by multiplying
the space factor (or array Factor) by the element factor (or element pattern) as dictated
by (4-59) [or (6-5)]. For very narrow beam patterns. the total pattern is nearly the
same as the space factor or array factor. This is demonstrated by the dipole antenna
(I = A) of Figure 4.5 whose element factor. as given by (4-58a), is sin 8 for values
of 6 near 90° (8 = 90°). sin # = 1.

The synthesis techniques will be followed with a brief discussion of some very
popular line-source distributions (triangular, cosine, cosine-squared) and continuous
aperture distributions (rectangular and circular).

7.2 CONTINUOUS SOURCES

Very long (in terms of a wavelength) arrays of discrete clements usually are more
difficult to implement, more costly, and have narrower bandwidths. For such appli-
cations, antennas with continuous distributions would be convenient to use. A very
long wire and a large reflector represent, respectively. antennas with continuous line
and aperture distributions. Continuous distribution antennas usually have larger side
lobes. are more difficult L scan, and in gencral, they are not as versatile as arrays of
discrete elements. The characteristics of continuously distributed sources can be ap-
proximated by discrete-element arrays, and vice-versa. and their development follows
and parallels that of discrete-element arrays.

7.2.1 Line-Source

Continuous line-source distributions are functions of only one coordinate. and they
can be used to approximate linear arrays of discrete elements and vice-versa.

The array factor of a discrete-element array, placed along the z-axis, is given by
(6-52) and (6-52a). As the number of elements increases in a fixed-length array, the
source approaches a continuous distribution. In the limit, the array factor summation
reduces to an integral, For a continuous distribution, the factor that corresponds to the
array factor is known as the space factor, For a line-source distribution of length /
placed symmetrically along the z-axis as shown in Figure 7.1(a), the space factor (SF)
is given by

=2

SF(()) = f ],‘(_3')(;}lk:'c(.vs #+ ap () d:’ (7_“

-

where /,(z') and ¢,(c') represent, respectively, the amplitude and phase distributions
along the souce. For a constant phase distribution ¢,(z) = 0.

Equation (7-1) is a finite one-dimensional Fourier transform relating the far-field
pattern of the source to its excitation distribution. Two-dimensional Fourier transforms
are used to represent the space factors for two-dimensional source distributions. These
relations are results of the angular spectrum concept for plane waves, introduced first
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Figure 7.1 Continuous and discrete linear sources.

by Booker and Clemmow (2], and it relates the angular spectrum of a wave 1o the
excitation distribution of the source.

For a continuous source distribution. the total field is given by the product of the
element and space lactors as defined in (4-59). This is analogous to the pattern
multiplication of (6-5) for arrays. The type of current and its direction of flow on a
source determine the element factor. For a finite length linear dipole, for example,
the toal field of (4-58a) is obtained by summing the contributions of small infinitesimal
elements which are used to represent the entire dipole. In the limit, as the infinitesimal
lengths become very small, the summation reduces to an integration. In (4-58a), the
factor outside the brackets is the element factor and the one within the brackets is the
space factor and corresponds to (7-1).

7.2.2 Discretization of Continuous Sources

The radiation characteristics of continuous sources can be approximated by discrete-
element arrays, and vice-versa. This is illustrated in Figure 7.1(b) whereby discrete
elements, with a spacing d between them, are placed along the length of the continuous
source. Smaller spacings between the elements yield better approximations, and they
can even capture the fine details of the continuous distribution radiation characteristics.
For example. the continuous line-source distribution /,(z’) of (7-1) can be approxi-
mated by a discrete-clement array whose element excitation coelficients, at the
specified element positions within —1/2 < 7' < J/2, are determined by the sampling
of 1,(z")e’*<", The radiation pattern of the digitized discrete-element array will ap-
proximate the pattern of the continuous source.

The technique can be used for the discretization of any continuous distribution.
The accuracy increases as the element spacing decreases:; in the limit, the two patterns
will be identical. For large element spacing. the patterns of the two antennas will not
match well. To avoid this, another method known as root-matching can be used [7].
Instead of sampling the continuous current distribution to determine the element
excitation coefficients, the root-matching method requires that the nulls of the contin-
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uous distribution pattern also appear in the initial pattern of the discrete-element array.
If the synthesized pattern using this method still does not yield (within an acceptable
accuracy) the desired pattern. a perturbation technique [7] can then be applied to the
distribution of the discrete-element array to improve its accuracy.

7.3 SCHELKUNOFF POLYNOMIAL METHOD

A method that is conducive to the synthesis of arrays whose patterns possess nulls in
desired directions is that introduced by Schelkunoff [1]. To complete the design, this
method requires information on the number of nulls and their locations. The number
of elements and their excitation coefficients are then derived. The analytical formation
of the technique follows.

Referring to Figure 6.5(a), the array factor for an N-element. equally spaced,
nonuniform amplitude, and progressive phase excitation is given by (6-52) as

N N
- o8 oy
AF = ZI a"c,;m Nikdeos 0+ 8) 2} a,,e-"" 1y (7-2)
n= "=

where a, accounts for the nonuniform amplitude excitation of each ¢lement. The
spacing between the elements is ¢ and B is the progressive phase shift.
Letting

z=x+jy = eIt = pltkdvosit B) (7-3)

we can rewrite (7-2) as
AF = 2 a,,z"_' =q; + a,z + a;zz + -+ aNz.N" (7-4)

n=|

which is a polynomial of degree (N — 1). From the mathematics of complex variables
and algebra, any polynomial of degree (N — 1) has (VN — 1) roots and can be expressed
as a product of (N — 1) linear terms. Thus we can write (7-4) as

AF = a(z — 20z — 20z — 23) - -+ (2 — zn-1) (7-5)

where zy, 23, 23, . . . . 2y~ are the roots, which may be complex, of the polynomial,
The magnitude of (7-5) can be expressed as

lAFI = IﬂuuZ - 3]"3 - .,f»“" — "l |a- — Zy- ll (7'6)

Some very interesting observations can be drawn from (7-6) which can be used
judiciously for the analysis and synthesis of arrays. Before tackling that phase of the
problem, let us first return and examine the properties of (7-3).

The complex variable z of (7-3) can be written in another form as

z=|zle® = |z| £ =1 Ly (7-7)
Yy =kdcos @+ B = Tﬂdcos 6+ B (7-7a)

It is clear that for any value of d. 6. or 8 the magnitude of = lies always on a unir
circle: however its phase depends upon d, 6, and 8. For B = 0, we have plotted
in Figures 7-2(a)~(d) the value of z, magnitude and phase, as @ takes values of 0 10
r rad. It is observed that for d = A/8 the values of z, for all the physically observable
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Figure 7.2 Visible Region (VR) and Invisible Region (IR) boundaries for complex
variable z when 8 = 0.

angles of , only exist over the part of the circle shown in Figure 7.2(a). Any values
of z outside that arc are not realizable by any observation angle @ for the spacing
d = M8. We refer to the realizable part of the circle as the visible region and the
remaining as the invisible region. In Figure 7.2(a) we also observe the path of the z
values as 6 changes from 0° to 180°.

In Figures 7.2(b)—(d) we have plotted the values of = when the spacing between
the elements is A/4, A/2, and 3A/4. It is obvious that the visible region can be extended
by increasing the spacing between the elements. It requires a spacing of at least A/2
to encompass, at least once, the entire circle. Any spacing greater than A/2 leads to
multiple values for z. In Figure 7.2(d) we have double values for ; for half of the
circle when ¢ = 3A/4.

To demonstrate the versatility of the arrays, in Figures 7.3(a)—~(d) we have plotted
the values of ¢ for the same spacings as in Figures 7.2(a)-(d) but witha 8 = @/d4. A
comparison between the corresponding figures indicates that the overall visible region
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Figure 7.3 Visible Region (VR) and /nvisible Region (IR) boundaries for com-
plex variable z when 8 = 7/4.

for each spacing has not changed but its relative position on the circle has rotated
counterclockwise by an amount equal to B.

We can conclude then that the overall extent of the visible region can be controlled
by the spacing between the elements and its relative position on the circle by the
progressive phase excitation of the elements. These two can be used effectively in the
design of the array factors.

Now let us return to (7-6). The magnitude of the array factor. its form as shown
in (7-6), has a geometrical interpretation. For a given value of : in the visible region
of the unit circle. corresponding to a value of # as determined by (7-3), |AF| is
proportional to the product of the distances between ¢ and zy, 25, 23, - . . , Ty—1, the
roots of AF. In addition, apart from a constant, the phase of AF is equal to the sum
of the phases between : and each of the zeros (roots). This is best demonstrated
geometrically in Figure 7.4(a). If all the roots z), 23, Za. . . . . Ty— are located in the
visible region of the unit circle, then each one corresponds to a null in the pattern of
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Figure 7.4 Array factor roots within and owside unit circle. and visible and invisi-
ble regions.

IAF| because as # changes z changes and eventually passes through each of the z,'s.
When it does, the length between z and that z,, is zero and (7-6) vanishes. When all
the zeros (roots) are not in the visible region of the unit circle, but some lie outside
it and/or any other point not on the unit circle, then only those zeros on the visible
region will contribute to the nulls of the pattern, This is shown geometrically in Figure
7.4(b). If no zeros exist in the visible region of the unit circle, then that particular
array factor has no nulls for any value of 6. However, if a given zero lies on the unit
circle but not in its visible region. that zero can be included in the pattern by changing
the phase excitation B so that the visible region is rotated until it encompasses that
root. Doing this, and not changing d, may exclude some other zero(s).

To demonstrate all the principles, we will consider an example along with some
computations.

Example 7.1

Design a linear array with a spacing between the elements of d = A/4 such that it
has zeros at 8 = (0°, 90°, and 180°. Determine the number of elements. their excitation,
and plot the derived pattern. Use Schelkunoff's method.

SOLUTION

For a spacing of A/4 between the elements and a phase shift 8 = 0°, the visible region
is shown in Figure 7.2(b). If the desired zeros of the array factor must occur at 8 =
0°, 90°, and 180° then these correspond to z = j, 1, —j on the unit circle. Thus a
normalized form of the array factor is given by

AF = (z —z )Nz — Xz —z) = (2 — j¥z — Dz + J)
AF = f+z -1

—
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~ 90°

180°

Figure 7.5 Amplitude radiation pattern of a four-element array of isotropic
sources with a spacing of A/4 between them, zero degrees progressive phase
shift. and zeros at 8 = 0°, 90° and 180°,

Referring to (7-4), the above array factor and the desired radiation characteristics can
be obtained when there are [our elements and their excitation coefficients are equal to

oy

iy =

as =

a, =

To
clearly

—1
+ 1
-1
+1

illustrate the method, we plotted in Figure 7.5 the pattern of that array: it
meets the desired specifications. Because of the symmetry of the array, the
pattern of the left hemisphere is identical to that of the right.

7.4 FOURIER TRANSFORM METHOD

This method can be used to determine, given a complete description of the desired
pattern, the excitation distribution of a continuous or a discrete source antenna system.
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The derived excitation will yield, either exactly or approximately. the desired untenna
pattern. The pattern synthesis using this method is referred to as beam shaping.

7.4.1 Line-Source

For a continuous line-source distribution of length /, as shown in Figure 7.1, the
normalized space factor of (7-1) can be written as

2 "2

SF(f) = f I(z")elkeos bk gyt = f , 1(2Ne dz! (7-8)

—if2 -

£+ k

§=kcus(9—k;'-‘->(:)=cos"( p (7-8a)

where k. is the excitation phase constant of the source. For a normalized uniform
current distribution of the form /(z') = Iy/1, (7-8) reduces to

\‘iﬂﬂCOQ()—&
' 2 ' k

SE(g) = I, (7-9)

ki k,
;(cos ¢ — I)

e

The observation angle @ of (7-9) will have real values (visible region) provided that
—(k + k) = €= (k — k) as obtained from (7-8a).

Since the current distribution of (7-8) extends only over —1/2 < 7' = /2 (and it
is zero outside it). the limits can be extended to infinity and (7-8) can be written as

“+ X

SF(8) = SF(¢) = f 1z ye!™ d:! (7-10a)

The form of (7-10a) is a Fourier transform. and it relates the excitation distribution
KZ') of & continuous source to its far-field space factor SF(#). The transform pair of
(7-10a) is given by

1t y e
Ky = — f SF(&)e 7 Edg = L f SF(0)e ™7+ d& (7-10b)
2t 2m)- =

Whether (7-10a) represents the direct transform and (7-10b) the inverse transtorm,
or vice-versa, does not matter here. The most important thing is that the excitation
distribution and the far-field space factor are related by Fourier transforms.

Equation (7-10b) indicates that if SF(8) represents the desired pattern, the exci-
tation distribution /(z'} that will yield the exact desired pattern must in general exist
for all values of ' (— 2% = ;' = ). Since physically only sources of finite dimensions
are realizable, the excitation distribution of (7-10b) is truncated at 7' = *{/2 (beyond

’

2 = /2 it is set to zero). Thus the approximate source distribution is given by

1 k] .,
Iy = —f SF(&)e Féd - ==l
1‘,(:')=’ 27 - . (7-11)

0 elsewhere
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and it yields an approximate pattern SF(#),. The approximate pattern is used to
represent, within certain error, the desired pattern SF(#),. Thus

in2

SF(6), = SF(0), = f 142N de’ (7-12)

-2

It can be shown that, over all values of £ the synthesized approximate pattern
SF(8), yields the least mean square error or deviation from the desired pattern SF(8),.
However that criterion is not satisfied when the values of £ are restricted only in the
visible region [8], [9].

To illustrate the principles of this design method, an example is taken.

Example 7.2

Determine the current distribution and the approximate radiation pattern of a line-
source placed along the z-axis whose desired radiation pattern is symmetrical about
6 = w/2, and it is given by
| 74 = 0 < 3mw/4
SF(O) = 0 elsewhere

This is referred to as a secloral pattern. and it is widely used in radar search and
communication applications.

SOLUTION

Since the pattern is symmetrical, k. = 0. The values of £ as determined by (7-8a),
are given by k/\/i = £= —k/N\/2. In wurn. the current distribution is given by
(7-10b) or

| e
Iz = ’7{,—[ SF(§)e ¢ dE

ﬂsin(kZ’)ﬂ
[VE; . 2
L[ etag = L Ve
2t-N2 7r‘\/i _AL
V2o

L

and it exists over all values of ' (—x = 7
the current distribution is approximated by

= x), Over the extent of the line source,

I(z") = K, -RN==IR

If the derived current distribution /(z') is used in conjunction with (7-10a) and it is
assumed to exist over all values of 7', the exact and desired sectoral pattern will result.
If however it is truncated at 2’ = = {/2 (and assumed to be zero outside). then the
desired pattern is approximated by (7-12) or

in

SF(8), = SF(#), = f " L) et dy'
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_ ;T{S, [g,,(cos 6+ \lf)] oS [i( T é)]}

where S;(x) is the sine integral of (4-68b),

The approximate current distribution (normalized so that its maximum is unity)
is plotted in Figure 7.6(a) for / = 5A and / = 10A. The corresponding approximate
normalized patterns are shown in Figure 7.6(b) where they are compared with the
desired pattern. A very good reconstruction is indicated. The longer line source (/ =
10A) provides a better realization. The side lobes are about .102 (- 19.83 dB) for
[ = 5A and 0.081 (—21.83 dB) for I = 10A (relative to the pattern at # = 90°).

7.4.2 Linear Array

The array factor of an N-element linear array of equally spuaced elements and non-
uniform excitation is given by (7-2). If the reference point is taken at the physical
center of the array. the array faclor can also be written as

Odd Number of Elements (N = 2M + 1)

M
AF(#) = AF()h = D a,e™? (7-13a)

m=—M

Even Number of Elements (N = 2M)

-1 M
AF(8) = AF() = 2 amejlllmw-liﬂll/t + zame_mzm—nnlw (7-13b)

m=- M m=|
where
th = kdcos 0 + B (7-13¢)
For an odd number of clements (N = 2M + 1), the elements are placed at
w=md. m=0 %1 *2,...,.tM (7-13d)
and for an even number (V = 2M)m
| 2_’”2;1_(1‘ l=m=M
= 2m + | (7-13¢)

d, -M=m= —1

2
An odd number of elements must be utilized to synthesize a desired pattern whose
average value, over all angles. is not equal to zero. The m = 0 term of (7-13a) is
analogous to the d.c. term in a Fourier series expansion of functions whose average
value is not zero,

In general. the array factor of an antenna is a pertodic function of . and it must
repeat for every 27 radians. In order for the array factor to satisfy the periodicity
requirements for real values of @ (visible region), then 2kd = 2mor d = AM2. The
periodicity and visible region requirement of ¢ = A/2 can be relaxed: in fact. it can
be made ¢ < A2. However. the array factor AF(y) must be made pseudoperiodic by
using fill-in functions. as is customarily done in Fourier series analysis. Such a
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construction leads to nonunique solutions, because each new fill-in function will result
in a different solwion. In addition, spacings smaller than A/2 lead to superdirective
arrays that are undesirable and impractical. If d > A/2, the derived patterns exhibit
undesired grating lobes; in addition, they must be restricted to satisfy the periodicity
requirements.

It AF(4n) represents the desired array factor. the excitation coefficients of the array
can be obtained by the Fourier formula of

Odd Number of Elements (N = 2M + 1)

] 1712 ) | jrr
- — o . - iy = — —jmil _ 14,
da,, TJ— - AF(i)e s e AF(ne " dfs M=m=M |(7-14a)

Even Number of Elements (N = 2M)

| 12 .
? ] I”’AF(III)E —ji2m ”ﬂh"d,/,

[ = 1112
= ;TJ;!_AF(I/I)E_J“"'"’“l“wldlfl -M=m= —1|(7-14b)
(l"' = l 7,/2 - l
?J’_ i Ap(,p)(, Fi I}IZWtdl,j

l T e — 1
= ;;-J-—lr AF(,/,)e A2 Isl-lﬁd,l, l=m=<M (7-14c)

Simiplifications in the forms of (7-13aj—(7-13b) and (7- tda)—~(7-14¢) can be obtained
when the excitations are symimetrical about the physical center of the array.

Example 7.3

Dectermine the excitation coefficients and the resultant pattern for a broadside discrete
element array whose array factor closely approximates the desired symmetrical sec-
toral pattern of Example 7.2. Use {1 elements with a spacing of d = A/2 between
them. Repeat the design for 21 elements.

SOLUTION

Since the array is broadside. the progressive phase shift between the elements as
required by (6-18a) is zero (8 = 0). Since the pattern is nonzero only for 7/4 < 8 <
3m/4, the corresponding values of  are obtained from (7-13¢) or W\/2 = ¢ = —
7/ \/2. The excilation coelficients are obtained from (7-14a) or

Uy =

[ (m'rr)
sin|—=
N EAYF R 1 V72
S _e My =
2 a3 \/i mar

V2

by
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Figure 7.6 Normalized current distribution, desired pattern. and synthesized patterns

using the Fourier transform method.

and they are symmetrical about the physical center of the array |a,(—z.,) = a.(zn))-
The corresponding array factor is given by (7-13a).
The normalized excitation coefficients are

dn
4 ey
A.2
a3

1.0000
(.3582
—0.2170
0.0558

adaiy
aais
d.g
a-9

0.0578
—0.0895
0.0518
0.0101

a.s = —0.049
dvy =  0.0455
Aoy = — 0.01 00

They are displayed graphically by a dot (*) in Figure 7.6(a) where they are compared
with the continuous current distribution of Example 7.2. It is apparent that at the
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Figure 7.7 Desired array factor and synthesized normalized putterns for lingar
array of 11 and 21 elements using the Fourier transform method.

element positions, the line-source and linear array excitation values are identical. This
is expected since the two aatennas are of the same length (for ¥ = 11.d = A2 =
I =35AandforN = 21.d = A2=1 = 10A).

The corresponding normalized array factors are displayed in Figure 7.7. As it
should be expected. the larger array (N = 21, d = A/2) provides a better reconstruction
of the desired pattern. The side lobe levels, relative to the value of the pattern at 8 =
90°, are 0.061 (—24.29dB) for N = 11 and 0.108 (—19.33 dB) for N= 21.

Discrete element linear arrays only approximate continuous line-sources. There-
fore, their patterns shown in Figure 7.7 do not approximate as well the desired pattern
as the corresponding patterns of the line-source distributions shown in Figure 7.6(b).

Whenever the desired pattern contains discontinuities or its values in a given
region change very rapidly. the reconstruction pattern will exhibit oscillatory over-
shoots which are referred to as Gibhs' phenomena. Since the desired sectoral patterns
of Examples 7.2 and 7.3 are discontinuous at 8 = /4 and 3#/4, the reconstructed
patterns displayed in Figures 7.6(b) and 7.7 exhibit these oscillatory overshoots.

7.5 WOODWARD-LAWSON METHOD

A very popular antenna pattern synthesis method used for beam shaping was intro-
duced by Woodward and Lawson [3], [4]. [10]. The synthesis is accomplished by
sampling the desired pattern at various discrete locations. Associated with each pattern
sample s a harmonic current of uniform amplitude distribution and uniform progres-
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sive phase, whose corresponding field is referred to as a composing function. For a
line-source, each composing function is of an b,, sin(¢,,)if,, form whereas for a linear
array it takes an b, sin(N¢, YN sin{¢,,) form. The excitation coefficient b, of each
harmonic current is such that its field strength is equal to the amplitude of the desired
pattern at its corresponding sampled point. The total excitation of the source is
comprised of a finite summation of space harmonics. The corresponding synthesized
pattern is represented by a finite summation of composing functions with ¢ach term
representing the field of a current harmonic with uniform amplitude distribution and
uniform progressive phase.

The formation of the overall pattern using the Woodward-Lawson method is
accomplished as follows. The first composing function produces a pattern whose main
beamn placement is determined by the value of its uniform progressive phase while its
intermost side lobe level is about —13.5 dB; the level of the remaining side lobes
monotonically decreases. The second composing function has also a similar pattern
except that its uniform progressive phase is adjusted so that its main lobe maximum
coincides with the intermost null of the first composing function. This results in the
filling-in of the intermost null of the pattern of the first composing function; the
amount of filling-in is controlled by the amplitude excitation of the second composing
function. Similarly. the uniform progressive phase of the third composing function is
adjusted so that the maximum of its main lobe occurs at the second intermost null of
the first composing function: it also results in filling-in of the second intermost null
of the first composing function. This process continues with the remaining finite
number of composing functions.

The Woodward-Lawson method is simple, elegant and provides insight into the
process of pattern synthesis. However, because the pattern of each composing function
perturbs the entire pattern to be synthesized, it lacks local control over the side lobe
level in the unshaped region of the entire pattern. {n 1988 and 1989 a spirited and
welcomed dialogue developed concerning the Woodward-Lawson method [ 1] ]| 14].
The dialogue centered whether the Woodward-Lawson method should be taught and
even appear in textbooks, and whether it should be replaced by an alternate method
[15] which overcomes some of the shortcomings of the Woodward-Lawson method.
The alternate method of [15] is more of a numerical and iterative extension of
Schelkunoft’s polynomial method which may be of greater practical value because it
provides superior beamshape and pattern control. One of the distinctions of the two
methods is that the Woodward-Lawson method deals with the synthesis of field
patterns while that of {15] deals with the synthesis of power patterns.

The analytical formulation of this method is similar to the Shannon sampling
theorem used in communications which states that **if a function g(¢) is band-limited,
with its highest frequency being f,, the function g(/) can be reconstructed using
samples taken at a frequency f;. To faithfully reproduce the original function g(/), the
sampling frequency f, should be at least twice the highest frequency f, (f, = 2f,) or
the function should be sampled at points separated by no more than At = 1/f, =
12 fr) = T,/2 where T, is the period of the highest frequency f,."" In a similar
manner, the radiation pattern of an antenna can be synthesized by sampling functions
whose samples are separated by M/ rad, where { is the length of the source (9], [10).

7.5.1 Line-Source

Let the current distribution of a continuous source be represented, within —//2 <

z' = l/2, by a finite summation of normalized sources each of constant amplitude and
linear phase of the form
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bnl k' cos [
in(2) = —FeThEmh —ID = =1 (7-15)
As it will be shown later, 6,, represents the angles where the desired pattern is sampled.
The total current /(z'} is given by a finite summation of 2M (even samples) or
2M + 1 (0dd samples) current sources each of the form of (7-15). Thus

[ M
1"y = 7 be I coséy (7-16)
m=—-M

where
m=0,*x1.x2, ... .=2M(for2M + | odd number of samples) (7-16a)

For simplicity always use odd number of samples.

Associated with each current source of (7-15) is a corresponding field pattern of
the form given by (7-9) or

ki
sin [; (cos 8 — cos 8,,,_)]
5,(8) = b, - (7-17)
E{
2

(cos 6 - cos 6,,)

whose maximum occurs when 6 = #,. The total pattern is obtained by summing
2M + 1 (odd samples) terms each of the form given by (7-17). Thus

M
SF(8) = > b, p (7-18)

m=—-M

|k
sin ;(cos 8 — cos 6,)

The maximum of each individual term in (7-18) occurs when @ = 8,,. and it is
equal to SF(¢ = 6,,). In addition, when one term in (7-18) attains its maximum value
at its sample at 8 = 6,,. all other terms of (7-18) which are associated with the other
samples are zero at = 8,,. In other words, all sampling terms (composing functions)
of (7-18) are zero at all sampling points other than at their own, Thus at each sampling
point the total field is equal to that of the sample. This is one of the most appealing
properties of this method. If the desired space factor is sampled at 8 = 6, the
excitation coefficients b, can be made equal to its value at the sample points 6,,. Thus

b, = SF(8 = 8,), (7-19)

The reconstructed pattern is then given by (7-18), and it approximates closely the
desired pattern.

In order for the synthesized pattern to satisfy the periodicity requirements of 27
for real values of 8 (visible region) and to faithfully reconstruct the desired patiern,
each sample should be separated by

A
kz' A k=t = 2T A = 7

(7-19a)
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The location of each sample is given by

A
costl, = mA =m (7) m=0, 21, 2., forodd samples (7-19b)
r(2m - I)A (Zm — 1) /A
2 I )
m = . for even samples
cosfl, = { (7-19¢)
2m + 1) (2m + 1Y /A
e -5 (,_ ‘
\ m=—1 -2 .. for even samples

Therefore, M should be the closest integer to M = /A,

As long ax the location of each sample is determined by (7-19b), the pattern value
at the saumple points is determined solely by that of one sample and it is not correlated
to the field of the other samples.

Example 7.4

Repecat the design of Example 7.2 for / = SA using odd samples and the Woodward-
Lawson line-source synthesis method.

SOLUTION

Since I = 5A. M = 5 and the sampling separation is 0.2. The total number of sampling
points is 11. The angles where the sampling is performed are given. according to
(7-19b). by

n

A
6, = cos ™! ('"7) = cos” '(0.2m), m=0 xl,.... *

The angles and the excitation coefficients at the sample points are listed below.

m O b, = SF{#,)4 m &, b, = SF(0,) 4
0 on° I

1 78.46° l - 101.54° |

2 66.42° 1 -2 113.58° 1

3 53.13° 1 -3 126.87° |

4 36.87° 0 -4 143,13° 0

5 0° 0 -5 180° 0

The computed pattern is shown in Figure 7.8(a) where it is compared with the desired
pattern. A good reconstruction is indicated. The side lobe level, relative to the value
of the pattern at § = 90°. is 0.160 (—15.92 dB).

To demonstrate the synthesis of the pattern using the sampling concept, we have
plotted in Figure 7.8(b) all seven nonzero composing functions s,,(#) used for the
reconstruction of the ! = 5A line-source pattern of Figure 7.8(a). Each nonzero
s;m(8) composing function was computed using (7-17) form = 0, =1, £2, =3 It
is evident that at each sampling point all the composing functions are zero, except
the one that represents that sample. Thus the value of the desired pattern at each
sampling point is determined solely by the maximum value of a single composing
function. The angles where the composing functions attain their maximum values are
listed in the previous table,
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7.5.2 Linear Array
The Woodward-Lawson method can aiso be implemented to synthesize discrete linear
arrays. The technique is similar to the Woodward-Lawson method for line sources
except that the pattern of each sample, as given by (7-17), is replaced by the array
factor of a uniform array as given by (6-10c). The pattern of each sample can be
written as

N
sin [5 kd(cos 8 — cos 0,,,)]
Jul8) = by, (7-20)
1
N sin [Ekd(cos # — cos 9,,,)]

¢ = Nd assumes the array is equal to the length of the line source (the length € of the line
includes a distance d/2 bevond each end element). The total array factor can be written
as a superposition of 2M + 1 sampling, terms (as was done for the line source) each of
the form of (7-20). Thus

sin [g kd(cos 8 — cos 9,,,):‘
(7-21)

M
AF(@) = 2

m= -

b"l
M 1
N sin ;kd(cos # — cos 0,,)

As for the line sources, the excitation coefficients of the array elements at the
sample points are equal to the value of the desired array factor at the sample points.

That is,
bm = AF(G = Hm)rl (7'22)
The sample points are taken at
A
cosl, = mA =m (7) m=0,*1,*x2, .. for odd samples (7-23a)
r
2m — I)A_(Em— I)(L)
2 2 Nd ]’
m=+1,+2... for even samples
cost, = { {7-23b)
2m + ”A _L2m+ 1) i
2 T2 Nd)'
\ m=-1,-2,.. for even samples

The normalized excitation coefficient of each array element, required to give the
desired pattern, is given by

1< "y
a,,(:_"') = X/ ,Z_Mbme Rankad (7-24)

where z," indicates the position of the nth element (element in question) symmetrically
placed about the geometrical center of the array.

Example 7.5

Repeat the design of Example 7.4 for a lincar array of 10 elements using the Woodward-
Lawson method with odd samples and an element spacing ol d = A/2.
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SOLUTION

According to (7-19), (7-19b), (7-22) and (7-23a). the excitation coefficients of the array
at the sampling points are the same as those of the line source. Using the values of
b,, as listed in Example 7.4, the computed array factor pattern using (7-21) is shown
in Figure 7.8(a). A good synthesis of the desired pattern is displayed. The side lobe
level, relative to the pattern value at = 90° is 0.221 (— 13.1 dB). The agreement
between the line-source and the linear array Woodward-Lawson designs are also good.

The normalized pattern of the symmetrical discrete array cun also be generated
using the array factor of (6-61a) or (6-61b), where the normalized excitation coeffi-
cients a,,’s of the array elements are obtained using (7-24). For this example, the
excitation coefficients of the 10-element array. along with their symmetrical position,
are listed below. To achieve the normalized amplitude pattern of unity at 8 = 90° in
Figure 7.8(a), the array factor of (6-61a) must be multiplied by 1/2a, = 1/0.5 = 2.0.

Element Number Element Position Excitation Coefficient
n F4 In d,
+1 +(.25A 0.5695717
2 +0.75A - 0.0344577
+3 + 1.25A —{).00999999
+4 +1.75A (2.1 108508
*5 +2.25A —0.0459650

In general, the Fourier transform synthesis method yields reconstructed patterns
whose mean-square error (or deviation) from the desired pattern is a minimum.
However, the Woodward-Lawson synthesis method reconstructs patterns whose val-
ues at the sampled points are identical to the ones of the desired pattern: it does not
have any control of the pzitern between the sample points, and it does not yield a
pattern with least mean-square deviation,

Ruze [9] points out that the least-mean-square error design is not necessarily the
best. The particular application will dictate the preference between the two. However,
the Fourier transform method is best suited for reconstruction of desired patterns
which are analytically simple and which allow the integrations to be performed in
closed form. Today, with the advent of high-speed computers. this is not a major
restriction since integration can be performed (with high efficiency) numerically. In
contrast, the Woodward-Lawson method is more flexible, and it can be used to
synthesize any desired pattern. In fact, it can cven be used to reconstruct patterns
which, because of their complicated nature, cannot be expressed analytically. Meas-
ured patterns. either of analog or digital form, can also be synthesized using the
Woodward-Lawson method.

7.6 TAYLOR LINE-SOURCE
(TSCHEBYSCHEFF ERROR)

In Chapter 6 we discussed the classic Dolph-Tschebyscheff array design which yields,
for a given side lobe level, the smallest possible first null beamwidth (or the smallest
possible side Jobe level for a given first null beamwidth). Another classic design that



7.6 Taylor Line-Source (Tschebyscheff Error) 359

is closely related to it, but is more applicable for continuous distributions, is that by
Taylor |5] (this method is different from that by Taylor [6] which will be discussed
in the next section).

The Taylor design [5] yields a pattern that is an optimum compromise between
beamwidth and side lobe level. In an ideal design. the minor lobes are maintained at
an equal and specific level. Since the minor lobes are of equal ripple and extend to
infinity, this implies an infinite power, More realistically, however, the technique as
introduced by Taylor leads to a pattern whose first few minor lobes (closest to the
main lobe) are maintained at an equal and specified level; the remaining lobes decay
monotonically, Practically, even the level of the closest minor lobes exhibits a slight
monotonic decay. This decay is a function of the space « over which these minor
lobes are required 1o be maintained at an equal level. As this space increases, the rate
of decay of the closest minor lobes decreases. For a very large space of u (over which
the closest minor lobes are required to have an equal ripple). the rate of decay is
negligible. It should be pointed out, however, that the other method by Taylor [6] (of
Section 7.7) yields minor lobes, all of which decay monotomically.

The details of the analytical formulation are somewhat complex (for the average
reader) and lengthy. and they will not be included here. The interested reader is
referred to the literature [5], [16]. Instead, a succinct outline of the salient points of
the method and of the design procedure will be included. The design is for far-field
patterns, and it is based on the formulation of (7-1).

Ideally the normalized space factor that yields a pattern with equal-ripple minor
lobes is given by

cosh [\/(wA): — uil

SF(0) = cosh(mA)

|
—~
3
t
n
S’

!
”X cos 0 (7-25a)

T
whose maximum value occurs when u = 0. The constant A is related to the maximum
desired side lobe level R, by

cosh{mA) = R, (voltage ratio) (7-26)

The space factor of (7-25) can be derived from the Dolph-Tschebyschelf array
formulation of Section 6.8.3, if the number of elements of the array are allowed to
become infinite.

Since (7-25) is ideal and cannot be realized physically, Taylor | 5] suggested that
it be approximated (within a certain error) by a space factor comprised of a product
of factors whose roots are the zeros of the pattern. Because of its approximation to
the ideal Tschebyscheff design, it is also referred to as Tschebyscheff error. The

Taylor space factor is given by
A=l 2
-]
sinu) "='L Hn

"]

(7-27)

SF(u. A. 1) =
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U= mTy= w%cos 0 (7-27a)

u, = Ty, = n;’(cos 6, (7-27p)

where 6, represents the locations of the nulls. The parameter 77 is a constant chosen
by the designer so that the minor lobes for |u| = |w/7r| = 7 are maintained at a nearly
constant voltage level of 1/Ry: for |v| = |u/m| > 7 the envelope, through the maxima
of the remaining minor lobes, decays at a rate of /v = #/u. In addition, the nulls of
the pattern for ju| = @ occur at integer values of v,

In general, there are @ — 1 inner nulls for |v| < 7 and an infinite number of outer
nulls for |u| = 7. To provide a smooth transition between the inner and the outer nulls
(at the expense of slight beam broadening), Taylor introduced a parameter o. It is
usually referred to as the scaling factor, and it spaces the inner nulis so that they blend
smoothly with the outer ones. In addition. it is the factor by which the beamwidth of
the Taylor design is greater than that of the Dolph-Tschebyscheff, and it is given by

n
> = 3 7-28
The location of the nulls are obtained using
+ A+ (m -1 1=n<
u, = wuy, = w—cos §, = { 'n'or\/ (n =2 _ = (7-29)
A *nw isn=<=

The normalized line-source distribution, which yields the desired pattern, is given
by

n-1 -
() = é[l + 2 Z SF(p. A, 1) cos (2#1;1[-)] (7-30)

1 p=1

The coefficients SF(p, A, 1) represent samples of the Taylor pattern, and they
can be obtained from (7-27) with u = arp. They can also be found using

[ — DJ? =l mp 2 )
SF([J. A n) = {(ﬁ -1+ P)'(ﬁ - | - p)‘ ":'l_:.[‘ [l (um) ] lpl <n
0

lpl =7
(7-30a)

with SF(—p, A, n) = SF(p. A. ).
The half-power beamwidth is given approximately by [8]

Al _ Ry 27
By = 2 sin '{—~ [(cosh "Ry — (cosh '——)] } (7-31)
ml V2

7.6.1 Design Procedure
To initiate a Taylor design, you must

1. specify the normalized maximum tolerable side lobe level 1/R; of the pattern.
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2. choose a positive integer value for 7 such that for Ju| = |(/A) cos 8] = 7 the
normalized level of the minor lobes is nearly constant at I/R,,. For |v| > 7, the
minor lobes decrease monotonically. In addition, for [u| < 7 there exist (i1 — 1)
nulls. The position of all the nulls is found using (7-29). Small values of 7 yield
source distributions which are maximum at the center and monotonically decrease
toward the edges. In contrast. large values of 77 result in sources which are peaked
simultaneously at the center and at the edges, and they yield sharper main beams.
Therefore, very small and very large values of 77 should be avoided. Typically.
the value of i should be at least 3 and at least 6 for designs with side lobes of
—25 and —40 dB. respectively.

To complete the design. you do the following:

1. Determine A using (7-26), o using (7-28). and the nulls using (7-29).

2. Compute the space factor using (7-27). the source distribution using (7-30) and
(7-30a). and the half-power beamwidth using (7-31).

Example 7.6

Design a —20 dB Taylor distribution line-source with 1 = 5. Plot the pattern and
the current distribution for { = 7TA(—-7 = v = wa=T7).

SOLUTION

For a —20) dB side lobe level
Ry (voltage ratio) = 10

Using (7-26)

|
A= T—Tcosh‘ "0y = 0.95277

and by (7-28)
o= 5
V(0.952777 + (5 — 0.5)°
The nulls are given by (7-29) or
v, = u,/m= 117, £1.932, 291, £3.943, +5.00, £6.00, £7.00,...
The corresponding null angles for / = 7A are
6, = 80.38° (99.62%), 73.98° (106.02°). 65.45° (114.55%).
55.71°¢124.29°), 44.41° (135.59°), and 31.00° (149.00°)
The half-power beamwidth for / = 7A is found using (7-31), or
©y = 7.95°

The source distribution, as computed using (7-30) and (7-30a). is displayed in Figure
7.9(a). The corresponding radiation pattern for —7 = v = W/ = 7(0° = 0 = 180°
for I = 7A) is shown in Figure 7.9(b).

All the computed parameters compare well with results reported in |5] and | 16].

= 1.0871
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Figure 7.9 Normalized current distribution and far-field space facior pattern
for a — 20 dB side lobe and 71 = 5 Taylor (TschebyschelT error) line-source of
I =7A

7.7 TAYLOR LINE-SOURCE (ONE-PARAMETER)

The Dolph-Tschebyschelf array design of Section 6.8.3 yields minor lobes of equal
intensity while the Taylor (Tschebyscheff error) produces a pattern whose inner minor
lobes are maintained at a constant level and the remaining ones decrease monotoni-
cally. For some applications. such as radar and low-noise systems, it is desirable to



7.7 Taylor Line-Source (One-Parameter) 363

sacrifice some beamwidth and low inner minor lobes to have all the minor lobes decay
as the angle increases on either side of the main beam. In radar applications this is
preferable because interfering or spurious signals would be reduced further when they
try to enter through the decaying minor lobes. Thus any significant contributions from
interfering signals would be through the pattern in the vicinity of the major lobe.
Since in practice it is easier to maintain pattern symmetry around the main lobe, it is
also possible to recognize that such signals are false targets. In low-noise applications,
it is also desirable to have minor lobes that decay away from the main beam in order
to diminish the radiation accepted through them from the relatively **hot’’ ground.

A continuous line-source distribution that yields decaying minor lobes and, in
addition, controls the amplitude of the side lobe is that introduced by Taylor [6] in
an unpublished classic memorandum, It is referred to as the Taylor (one-parameter)
design and its source distribution is given by

5 .1\2
Jy |:j'rrB 1 — (1) :I -nR=77=+IR 7-32
["(:!) — {0 I ( )

elsewhere

where Jj, is the Bessel function of the first kind of order zero, / is the total length of
the continuous source [see Figure 7.1(a)], and B is a constant to be determined from
the specified side lobe level.

The space factor associated with (7-32) can be obtained by using (7-1). After
some intricate mathematical manipulations. utilizing Gegenbauer’s finite integral and
Gegenbauer polynomials [17], the space factor for a Taylor amplitude distribution
line-source with uniform phase (¢, (') = ¢y = 0] can be written as

sinh[\/(BY — @)
1 .
sEgy =1 VB T

sin[\/u* — (wB)~]
[ \
Vu — (7B)

u? < (wB)*
(7-33)

> > (mB)?

where

l
u= 'rrxcos 6 (7-33a)

B = constant determined from side lobe level
[ = line-source dimension

The derivation of (7-33) is assigned as an exercise to the reader (Problem 7.17). When
(wB)* > u?, (7-33) represents the region near the main lobe. The minor lobes are
represented by (7B)* < u? in (7-33). Either form of (7-33) can be obtained from the
other by knowing that (see Appendix VI)

sin(jx) = jsinh(x) (7-34)
sinh(jx) = jsin(x)
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When ¢ = 0 (6 = #/2 and maximum radiation), the normalized pattern height
is equal to

sinh({7B
(SF)mux = M = Hy (7-35)
B
For «* > (wB)?, the normalized form of (7-33) reduces to
sin{\/u~ — (8P
SF(0) = < Sinl) o B (7-36)

\u — (mB)” U

and it is identical to the pattern of a uniform distribution. The maximum height H, of
the side lobe of (7-36) is H, = 0.217233 (or 13.2 dB down from the maximum), and
it occurs when (see Appendix [)

[P — (wB)*1'? = u = 4.494 (7-37

Using (7-35). the maximum voltage height of the side lobe (relative to the max-
imum H, of the major lobe) is equal to

H, 0.217233

|
Hy Ry  sinh(wB)(wB) (7-38)
or
1 sinh(7B) sinh(mB)
Fo = - — 7-38a
" S o2 w8 T (7-382)

Equation (7-38a) can be used to find the constant B when the intensity ratio Ry
of the major-to-the-side lobe is specified. Values of B for typical side lobe levels are

SIDE LOBE
LEVEL
(dB) - 10 —15 —20 —25 - 30 —35 —40
B Jj0.4597 03558 0.7386 1.0229 1.2761 1.5136 1.7415

The disadvantage of designing an array with decaying minor lobes as compared
to a design with equal minor lobe level (Dolph-Tschebyscheff), is that it yields about
12 to 15% greater halt-power beamwidth. However such a loss in beamwidth is a
small penalty to pay when the extreme minor lobes decrease as 1/u.

To illustrate the principles, let us consider an example.

Example 7.7

Given a continuous line-source, whose total length is 4A, design a Taylor distribution
array whose side lobe is 30 dB down trom the maximum of the major lobe.

(a) Find the constant B.
(b) Plot the pattern (in dB) of the continuous line-source distribution,



()

(d)
{e)
f)
(8)

(h)
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For a spacing of A/4 between the elements, find the number of discrete
isotropic elements needed to approximate the continuous source. Assume
that the two extreme elements are placed at the edges of the continuous line
source.

Find the normalized coefficients of the discrete array of part (c).

Write the array factor of the discrete array of parts (c) and (d).

Plot the array factor (in dB) of the discrete array of part (e).

For a corresponding Dolph-Tschebyscheff array, find the normalized coef-
ficients of the discrete elements.

Compare the patterns of the Taylor continuous line-source distribution and
discretized array, and the corresponding Dolph-Tschebyscheff discrete ele-
ment array.

SOLUTION

For a —30 dB maximum side lobe, the voltage ratio of the major-to-the-side lobe
level is equal to

30 = 20 lcg") (R“) Lamd R" = 31.62

(a)

(b)
(c)

(d)

201

The constant B is obtained using (7-38a) or

Ry = 3162 = 4603 20 o g = ) 2761

The normalized space factor pattern is obtained using (7-33), and it is shown
plotted in Figure 7.10.

For d = A/4 and with elements at the extremes, the number of elements is
17.

The coefficients are obtained using (7-32). Since we have an odd number
of elements, their positioning and excitation coefficients are those shown in
Figure 6.17(b). Thus the total excitation coefficient of the center element is

= 12 ). =g = Jo(j4.009) = 11.400 2 a, = 5.70

The coefficients of the elements on either side of the center element are
identical (because of symmetry). and they are obtained from

ay = 1) = wne = Jn(j3.977) = 11.106

The coefficients of the other elements are obtained in a similar manner,
and they are given by

ay; = 10.192
ay = 8.889
as = 7.195
U, = 5.426
a; = 3.694
ag = 2.202

1.000

dy
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Figure 7.10 Far-field amplitude patterns of continuous and discretized Taylor
{one-parameter) distributions,

(e) The array factor is given by (6-61b) and (6-61c), or
9

(AF);; = E a, cos[2(n — 1)u]

n=1

m
u = mT—cos i = —cos f
A 4
where the coefficients (a,’s) are those found in part (d).
(f) The normalized pattern (in dB) of the discretized distribution (discrete ele-
ment array) is shown in Figure 7.10.
(g) The normalized coefficients of a 17-element Dolph-Tschebyscheff array,
with — 30 dB side lobes, are obtained using the method outlined in the
Design Section of Section 6.8.3 and are given by
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— — — — Tavlor fone-parameter): Diseretized

Figure 7.11 Far-field amplitude patterns of Taylor (discretized) and Dolph-Tschebyscheff
distributions (1 = 4A, d = M4, N = 17).

UNNORMALIZED NORMALIZED
ay = 2.858 ay, = 1.680
tr = 5.597 as, = 3.290
ay = 5.249 ay, = 386
ay = 4.706 iy, = 2,767
as = 4.022 as, = 2.364
a, = 3.258 ag, = 1915
e = 2.481 ay, = 1459
ay = 1.750 ay, = 1.029
iy = 1.701 ay, = 1.000

As with the discretized Taylor distribution array, the coefficients are
symmelrical, and the form of the array factor is that given in part (e).
(h) The normalized pattern (in dB) is plotted in Figure 7.1 1 where it is compared
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with that of the discretized Taylor distribution. From the patterns in Figures
7.10 and 7.11. it can be concluded that

1. the main lobe of the continuous line-source Taylor design is well ap-
proximated by the discretized distribution with a A/4 spacing between
the elements. Even the minor lobes are well represented, and a beter
approximation can be obtained with more elements and smaller spacing
between them.

2. the Taylor distribution array patlern has a wider main lobe than the
corresponding Dolph-Tschebyscheff, but it displays decreasing minor
lobes away from the main beam.

A farger spacing between the elements does nol approximate the continuous
distribution as accurately. The design of Taylor and Dolph-Tschebyscheff arrays for
I = dx and d = M2(N = 9) is assigned as a problem at the end of the chapter
(Problem 7.18).

To qualitatively assess the performance between uniform, binomial. Dolph-
Tschebyscheff, and Taylor (one-parameter} array designs, the amplitude distribution
of each has been plotted in Figure 7.12(a). It is assumed that ! = 4A.d = AMA.N =
17. and the maximum side lobe is 30 dB down. The coefficients are normalized with
respect 1o the amplitude of the corresponding element at the center of that array.

The binomial design possesses the smoothest amplitude distribution (between |
and 0) from the center to the edges (the amplitude toward the edges is vanishingly
small), Because of this characteristic. the binomial array displays the smallest side
lohes followed, in order, by the Taylor, Tschebyschetf, and the uniform arrays. In
contrast, the uniform array possesses the smallest half-power beamwidth followed. in
order, by the Tschebyscheff, Taylor. and binomial arrays. As a rule of thumb, the
array with the smoothest amplitude distribution (from the center to the edges) has the
smallest side lobes and the larger half-power beamwidths. The best design is a trade-
off between side lobe level and beamwidth,

7.8 TRIANGULAR, COSINE, AND
COSINE-SQUARED AMPLITUDE DISTRIBUTIONS

Some other very common and simple line-source amplitude distributions are those of
the triangular, cosine. cosine-squared. cosine on-a-pedestal, cosine-squared on-a-
pedesial, Gaussian, inverse taper, and edge. Instead of including many details, the
pattern. half-power beamwidth. first-null beamwidth, magnitude of side lobes. and
directivity for uniform. triangular, cosine, and cosine-squared amplitude distributions
(with constant phase) are summarized in Table 7.1 [18]. [19].

The normalized coetficients tor a uniform, triangular. cosine, and cosine-squared
arrays of | = 4A, d = A4, N = 17 are shown plotted in Figure 7.12(b). The array
with the smallest side lobes and the larger half-power beamwidth is the cosine-squared,
because it possesses the smoothest distribution. It is followed, in order, by the trian-
gular, cosine. and uniform distributions. This is verified by examining the character-
istics in Table 7.1.
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ly + 7, cos (Zz'). -R =<2
1"(1’) = !
0 elsewhere

Cosine on-a-pedestal distribution is obtained by the superposition of the uniform
and the cosine distributions. Thus it can be represented by

(7-39)
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where /,, and /, are constants. The space factor pattern of such a distribution is obtained
by the addition of the patterns of the uniform and the cosine distributions found in
Table 7.1, That 1s.

, stn(u) ml  cosu
SFE(#) ol » I 2 (W2 < i (7-40)

A similar procedure is used to represent and analyze a cosine-squared on-a-
pedestal distribution.

7.9 LINE-SOURCE PHASE DISTRIBUTIONS

The amplitude distributions of the previous section were assumed to have uniform
phase variations throughout the physical extent of the source. Practical radiators (such
as reflectors, lenses. horns, etc.) have nonuniform phase fronts caused by one or more
of the following:

1. displacement of the reflector feed from the focus
2. distortion of the reflector or lens surface

3. feeds whose wave fronts are not ideally cylindrical or spherical (as they are
usually presumed to be)

4. physical geometry of the radiator

These are usually referred to phase errors, and they are more evident in radiators with
tilted beams.

To simplify the analytical formulations, most of the phase fronts are represented
with linear, quadratic. or cubic distributions. Each of the phase distributions can be
associated with each of the amplitude distributions. In (7-1), the phase distnbution of
the source is represented by ¢,(z'). For linear, quadratic, and cubic phase variations,
¢, (') takes the form of

2
linear: ¢lz') = By n ', -NR=s=iR (7-41a)

2 2 B
quadratic:  ¢{7’) = BZ(T) i -iR=<=1? (7-41b)

72\3
cubic: G2’ = B (?) " —i2==1{2 (7-41ic)

and it is shown plotted in Figure 7.13. The quadratic distribution is used to represent
the phase variations at the aperture of a horn and of defocused (along the symmetry
axis) reflector and lens antennas.

The space factor patterns corresponding to the phase distributions of (7-41a)-
(7-41c¢) can be obtained by using (7-1). Because the analytical formulations become
lengthy and complex, especially for the quadratic and cubic distributions. they will
not be inciuded here. Instead, a general guideline of their effects will be summarized
[18]. [19].

Linear phase distributions have a tendency to tilt the main beam of an antenna
by an angle 6, and to form an asymmetrical pattern. The pattern of this distribution
can be obtained by replacing the « (for uniform phase) in Table 7.1 by (¢4 — &). In
general, the half-power beamwidth of the tilted pattern is increased by 1/cos 6, while
the directivity is decreased by cos 6,. This becomes more apparent by realizing that
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Figure 7.13 Linear, quadratic. and cubic phase variations.
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the projected length of the line source toward the maximum is reduced by cos 6,
Thus the effective length of the source is reduced.

Quadratic phase errors lead primarily to a reduction of directivity. and an increase
in side lobe level on either side of the main lobe. The symmetry of the original pattern
is maintained. In addition, for moderate phase variations, ideal nuils in the patterns
disappear. Thus the minor lobes blend into each other and into the main beam, and
they represent shoulders of the main beam instead of appearing as separate lobes,
Analytical formulations for quadratic phase distributions were introduced in Chapter
13 on horn antennas.

Cubic phase distributions introduce not only a tilt in the beam but also decrease
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the directivity. The newly formed patterns are asymmetrical. The minor lobes on one
side are increased in magnitude and those on the other side are reduced in intensity.

7.10 CONTINUOUS APERTURE SOURCES

Space factors for aperture (two-dimensional) sources can be introduced in a similar
manner as in Section 7.2.1 for line-sources.

7.10.1 Rectangular Aperture

Referring to the geometry of Figure 6.23(b). the space factor for a two-dimensional
rectangular distribution along the x-y plane is given by

172 (1402 .
= |- ’ t Py [kasin Geosd+ky'sindsin & + 6,08V (dx' v -4
SF 2 J’ e ALx'. y)e A (7-42)

where /. and /, are, respectively, the linear dimensions of the rectangular aperture
along the x and y axes. A,(x', ¥') and ¢,(x’, v') represent. respectively, the amplitude
and phase distributions on the aperture.

For many practical antennas (such as waveguides, homns, etc.) the aperture distri-
bution (amplitude and phase) is separable. That is,

AL ¥ = LY (YY) (7-42a)
b, x', ¥v') = ") + (¥ (7-42b)

so that (7-42) can be written as

SF = §,S, (7-43)
where
1, /2 . ,
S‘. = f : hu.f)e;lkx sindeosgh+ . (2] dx' (7_43.&)
; ~1/2
W2 o . , .
Sy = f (" Yk intind+ 6,070 dly (7-43b)
' — 412"

which is analogous to the array factor of (6-85)-(6-85b) for discrete-element arrays.
The evaluation of (7-42) can be accomplished either analytically or graphically.
If the distribution is separable, as in (7-42a) and (7-42b), the evaluation can be
performed using the results of a line-source distribution.
The total field of the aperture antenna is equal to the product of the element and
space factors. As for the line sources, the element factor for apertures depends on the
type of current density and its orientation.

7.10.2 Circular Aperture

The space factor for a circular aperture can be obtained in a similar manner as ftor the
rectangular distribution. Referring to the geometry of Figure 6.32, the space factor
for a circular aperture with radius a can be written as



374 Chapter 7 Antenna Synthesis and Continuous Sources

Table 7.2 RADIATION CHARACTERISTICS FOR CIRCULAR APERTURES AND
CIRCULAR PLANAR ARRAYS WITH CIRCULAR SYMMETRY AND
TAPERED DISTRIBUTION

Radial Taper
Distribution Uniform Radial Taper Squared
Distribution e p uh e p_’ ik ar P T
(analytical) " a : u 0 \a
Distribution t * .
(graphical)
Space factor (SF)
«a . 1”271'“: Jl(“) ."471'(72.,:(!” Igl6ﬂﬂzM
n = Z'n'x sin I 7 u
Half-power
beamwidth 29.2 364 42.1
(degrees) (alA) (a/X) {alA)
a > A
First null
beamwidth 69.9 934 116.3
(degrees) (a/N) (a/A) {a/X)
u> A
First side
lobe max. ~17.6 ~24.6 ~306
{10 main max.)
(dB)
2710\’ 21\’ 210\’
Directivity factor (ﬂ) 0.75 (ﬁ) 0.56 (ﬁ)
A A A
27 [a
SF(8, ¢) = j Adp'. @ etk sinleontds Gh Gl el p dp' dd’ (7-44)
n o

where p’ is the radial distance (0 =< p' = «), ¢’ is the azimuthal angle over the
aperture (0 = ¢ = 27w lor 0 = p' = «). and A (p'. ¢') and {,(p'. @) represent,
respectively, the amplitude and phase distributions over the aperture. Equation (7-44)
is analogous to the array factor of (6-112a) for discrete elements.

If the aperture distribution has uniform phase | {,(p’. ¢') = {, = 0] and azimuthal
amplitude symmetry [A,(p, ¢') = A,(p")]. (7-44) reduces, by using (5-48). to

SF(#) = 27 f Ap" YWolkp'sin@)p'dp’ (7-45)
0

where Jy(x) is the Bessel function of the first kind and of order zero.

Many practical antennas, such as a parabolic reflector, have distributions that
taper toward the edges of the apertures. These distributions can be approximated
reasonably well by functions of the form
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A2
_ |2
Alp') = [l (ﬂ):l 0=p'=a, n=01213,... (7-46)
0 elsewhere

For n = 0. (7-46) reduces to a uniform distribution.

The radiation characteristics of circular apertures or planar circular arrays with

distributions (7-46) with n = Q. 1. 2 are shown tabulated in Table 7.2 [19]. It is
apparent. as before. that distributions with lower taper toward the edges (larger values
of n) have smaller side lobes but larger beamwidths. In design, a compromise between
side lobe level and beamwidth is necessary.
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PROBLEMS
7.1. A three-clement array is placed along the z-axis. Assuming the spacing between the
elements is @ = A/4 and the relative amplitude excitation is equal toa;, = |, 4> = 2,
ty = l!

7.2

7.4.

7.5.

7.6.

1.1.

7.8
7.9.

7.10.

(a) find the angles where the array factor vanishes when 8 = (), #/2, 7. and 3772
{b) plot the relative pattern for each array factor

Use Schelkunoff’s method.

Design a lincar array of isotropic elements placed along the z-axis such that the zeros
of the array factor occur at 8 = 0°, 60°, and 120°, Assume that the elements are spaced
A/4 apart and that the progressive phase shift between them is 0°,

(a) Find the required number of elements.

(b) Determine their excitation coefficients.

(c) Write the array factor.

(d) Plot the array factor pattern to verify the validity of the design.

The z-plane array factor of an array of isotropic elements placed along the z-axis is
given by

AF = - 1)

Determine the

(a) number of elements of the array. If there are any elements wilth zero excitation
coefficients (null elements), so indicate

(b} position of cach clement (including that of null elements) along the z axis

(¢) magnitude and phase (in degrees) excitation of each element

(d) angles where the pattern vanishes when the total array length (including null ele-
ments) is 2A

Repeat Prob. 7.3 when

Repeat Example 7.2 when

l A40° = 0 < 140°

SF(#) =
4] elsewhere

Repeat the Fouricr transform design of Example 7.2 for a line source along the z-axis
whose sectoral pattern is given by

| 60° = 8= 120°

SF(8) =
() {0 elsewhere

Use / = 5A and 10A. Compare the reconstructed patterns with the desired one.
Repeat the Fourier transform design of Problem 7.6 for a linear array with a spacing
of d = A/2 hetween the elements and

(a) N = 11 elements

(b) N = 21 clements

Repeat the design of Problem 7.6 using the Woodward-Lawson method for line-sources.
Repeat the design of Problem 7.7 using the Woodward-Lawson method for linear arrays
for N = 10, 20.

Design, using the Woodward-Lawson method, a line-source of / = 5A whose space
factor pattern is given by

SF(#) = sin* (8) 0°< 6= 180°

Determine the current distribution and compare the reconstructed pattern with the
desired pattern.



7.11.

7.12.

7.13.

7.14,

7.15.

7.16.

1.17.

Problems 377

Repeat the design of Problem 7.10 for a linear array of N = 10 elements with a spacing
of d = M2 between them.
In target-search, grounding-mapping radars, and in airport beacons it is desirable to
have the echo power received from a target, of constant cross section, to be independent
of its range R.

Generally, the far-zone field radiated by an antenna is given by

|F(6. )|
R

where C, is a constant. According to the geometry of the figure
R = h/sin (8} = hcsc (6)

|E(R, 8. $)| = C,

For a constant value of ¢, the radiated field expression reduces to
|F(6, ¢ = o)l _ . 76
R 'R

|E(R. 6. ¢ = ‘l’u)' = Cy

A constant value of field strength can be maintained provided the radar is flying
at a constant altitude A and the far-field antenna pattern is equal to

S(8) = C, cse()

This is referred to as a cosecant pattern, and it is used to compensate for the range
variations. For very narrow beam antennas, the total pattern is approximately equal to
the space or array factor. Design a line-source, using the Woodward-Lawson method,
whose space factor is given by

O - o

SF(6) ~ {0.342 csc(f), 20°=6=60
0 elsewhere

Plot the synthesized pattern for / = 20A, and compare it with the desired pattern.
Repeat the design of Problem 7.12 for a linear array of N = 41 elements with a spacing
of d = A/2 between them.
For some radar search applications, it is more desirable to have an antenna which has
a square beam for 0 < 0 < @,, a cosecant pattern for 6, = 8 = 6,,, and it is zero
elsewhere. Design a line-source, using the Woodward-Lawson method, with a space
factor of

1 15°=< < 20°
SF(9) = { 0.342 csc(8) 20° < @ = 60°
0 elsewhere

Plot the reconstructed patiern for / = 20A, and compare it with the desired pattern.
Repeat the design of Problem 7.14, using the Woodward-Lawson mcthod, for a linear
array of 41 elements with a spacing of d = A/2 between them.

Design a Taylor (T'schebyscheff error) line-source with a

(a) —25dB side lobe leveland7 = 5

(b) —20 dB side lobe level and 7 = 10

For each, find the half-power beamwidth and plot the normalized current distribution
and the reconstructed pattern when / = 10A.

Derive (7-33) using (7-1), (7-32), and Gegenbauer’s finite integral and polynomials.
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7.18.
7.1

7.21.

7.22.

7.23.

Repeat the design of Example 7.7 for an array with{ = 4A,d = AM2.N = 9.

Design a broadside five-element, —4{} dB side lobe level Taylor (one-parameter) dis-
tribution array of isotropic sources. The elements are placed along the x-axis with a
spacing of A/4 between them. Determine the

(a) normalized excitation coefficients (amplitude and phase) of cach clement

(b) array factor

Derive the space factors for uniform. triangular, cosine, and cosine squared line-sourge
continuous distributions. Compare with the results in Table 7.1.

Compute the half-power beamwidth, first null beamwidth, first side lobe level (in dB),
and directivity of a linear array of closely spaced elements with overall length of 4A
when its amplitude distribution is

(a) uniform (b) triangular

(c) cosine {d) cosine squared

Derive the space factors for the uniform radial taper, and radial taper-squared circular
aperture continuous distributions. Compare with the results in Table 7.2.

Compute the half-power beamwidth, first null beamwidth, first side lobe level (in dB),
and gain factor of a circular planar array of closely spaced elements, with radius of 2A
when its amplitude distribution is

(a) uniform

(b) radial taper

(c) radial taper-squared



