CHAPTER

INTEGRAL EQUATIONS,
MOMENT METHOD, AND SELF
AND MUTUAL IMPEDANCES

8.1 INTRODUCTION

In Chapter 2 it was shown, by the Thévenin and Norton equivalent circuits of Figures
2.21 and 2.22, that an antenna can be represented by an equivalent impedance
ZslZy = (R, + R,) + jX,]. The equivalent impedance is attached across two terminals
(terminals @ — b in Figures 2.21 and 2.22) which are used to connect the antenna to
a generator, receiver, or transmission line. In general, this impedance is called the
driving-point impedance. However, when the antenna is radiating in an unbounded
medium, in the absence of any other interfering elements or objects, the driving-point
impedance is the same as the self-impedance of the antenna. In practice, however,
there is always the ground whose presence must be taken into account in determining
the antenna driving-point impedance. The self- and driving point impedances each
have, in general, a real and an imaginary parl. The real part is designated as the
resistance and the imaginary part is called the reactance.

The impedance of an antenna depends on many factors including its frequency
of operation, its geometry. its method of excitation, and its proximity to the surround-
ing objects. Because of their complex geometries. only a limited number of practical
antennas have been investigated analytically. For many others, the input impedance
has been determined experimentally.

The impedance of an antenna at a point is defined as the ratio of the electric to
the magnetic fields at that point; alternatively, at a pair of terminals it is defined as
the ratio of the voltage to the current across those terminals. There are many methods
that can be used to calculate the impedance of an antenna | 1|. Generally. these can
be classified into three catogories: (1) the boundary-value method. (2) the transmis-
sion-line method. and (3) the Poynting vector method. Extensive and brief discussions
and comparisons of these methods have been reported {1]. [2].

The boundary-value approach is the most basic, and it treats the anlenna as a
boundary-value problem. The solution to this is obtained by enforcing the boundary
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380 Chapter 8 Integral Equations, Moment Method, and Self and Mutual Impedances

conditions (usually that the tangential electric field components vanish at the con-
ducting surface). In turn, the current distribution and finally the impedance (ratio of
applied emf to current) are determined, with no assumptions as to their distribution,
as solutions to the problem. The principal disadvantage of this method is that it has
limited applications. It can only be applied and solved exactly on simplified geomet-
rical shapes where the scalar wave equation is separable.

The transmission-line method. which has been used extensively by Schelkunoff
[3]. treats the antenna as a transmission line, and it is most convenient for the biconical
antenna. Since it utilizes tangential electric field boundary conditions for its solution,
this technique may also be classified as a boundary-value method.

The basic approach to the Poynting vector method is to integrate the Poynting
vector (power density) over a closed surface. The closed surface chosen is usually
either a sphere of a very large radius r (r = 2D%A where D is the largest dimension
of the antenna) or a surface that coincides with the surface of the antenna. The large
sphere closed surface method has been introduced in Chapters 4 and 5, but it lends
itself to calculations only of the real part of the antenna impedance (radiation resis-
tance). The method that utilizes the anlenna surface has been designated as the induced
emf method. and it has been utilized [4]-[6] for the calculation of antenna impedances.

The impedance of an antenna can also be found using an integral equation with
a numerical technique solution. which is widely referred to as the Integral Equation-
Method of Moments [7]-]14). This method. which in the late 1960s was extended to
include clectromagnetic problems, is analytically simple, it is versatile, but it requires
large amounts of computation. The limitation of this technique is usually the speed
and storage capacity of the computer.

In this chapter the integral equation method, with a Moment Method numerical
solution, will be introduced and used first to find the sell- and driving-point impe-
dances, and mutual impedance of wire type of antennas, This method casts the solution
for the induced current in the form of an integral (hence its name) where the unknown
induced current density is part of the integrand. Numerical techniques. such as the
Moment Method |7]-|14], can then be used to solve the current density. In particular
two classical integral equations for lincar elements. Pocklington's and Hallén's In-
tegral Equarions, will be introduced. This approach is very general, and it can be used
with todays modern computational methods and equipment to compute the character-
istics of complex configurations of antenna elements, including skewed arrangements.
For special cases, closed form expressions for the self, driving point, and mutual
impedances will be presented using the induced emf method. This method is limited
to classical geometries, such as straight wires and arrays of collinear and paralle]
straight wires.

8.2 INTEGRAL EQUATION METHOD

The objective of the Integral Equation {IE) method for radiation or scattering is to
cast the solution for the unknown current density. which is induced on the surface of
the radiation scatterer. in the form ol an integral equation where the unknown induced
current density is part of the integrand. The integral equation is then solved for the
unknown induced current density using numerical techniques such as the Moment
Method (MM). To demonstrate this technique, we will initially consider some specific
problems. For introduction, we will start with an electrostatics problem and follow it
with time-harmonic problems.
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8.2.1 Electrostatic Charge Distribution

In electrostatics, the problem of finding the potential that is due to a given charge
distribution is often considered. In physical situations. however, it is seldom possible
to specify a charge distribution. Whereas we may connect a conducting body to a
voltage source, and thus specify the potential throughout the body, the distribution of
charge is obvious only for a few rotationally symmetric geometries. In this section
we will consider an integral equation approach to solve for the electric charge distri-
bution once the electric potential is specified. Some of the material here and in other
sections is drawn from [15]. |16].

From statics we know that a linear electric charge distribution p(r') creates an
electric potential, V(r), according to [17]

l (r')
Viry = fsmmcc P di’ (8-1)
47TE() {charge) R
where »'(x', ¥, 2') denotes the source coordinates, »(x, v, z) denotes the observation
coordinates, d!' is the path of integration, and R is the distance from any one point
on the source to the observation point, which is generally represented by

Rrry=lr=r|l=VE~xY+ @ -yrP+@-2P (8l

We see that (8-1) may be used to calculate the potentials that are due to any
known line charge density. However, the charge distribution on most configurations
of practical interest, i.e.. complex geometries, is not usually known, even when the
potential on the source is given. It is the nontrivial problem of determining the charge
distribution. for a specified potential, that is to be solved here using an integral
equation-numerial solution approach.

A. Finite Straight Wire

Consider a straight wire of length / and radius ¢, placed along the y axis, as shown

in Figure 8-1(a). The wire is given a normalized constant electric potential of 1 V.
Note that (8-1) is valid everywhere, including on the wire itself (Ve = | V).

Thus, choosing the observation along the wire axis (x = z = ) and representing the

charge density on the surface of the wire, (8-1) can be expressed as

l Jl p(vl)
= : ., 0=syv=<| 8-2
47;-5” 0 R(.\!. ‘v’)(} ¥ ( )

where

R(y.¥') = R r)<cco = VI = ¥V + &) + @)

=V - y)»F+a (8-2a)

The observation point is chosen along the wire axis and the charge density is repre-
sented along the surface of the wire to avoid R(y, v') = 0, which would introduce a
singularity in the integrand of (8-2).

It is necessary to solve (8-2) for the unknown p(y') (an inversion problem).
Equation (8-2) is an integral equation that can be used to find the charge density
p(¥")based on the 1-V potential. The solution may be reached numerically by reducing
(8-2) to a series of linear algebraic equations that may be solved by conventional
matrix equation techniques. To facilitate this, let us approximate the unknown charge
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Figure 8.1 Straight wire of constant potential and its segmentation.

digtribution p(yv') by an expansion of N known termy with constant, but unknown,
coefficients, that 1s,

i
p(y') = > a,8,(y") (8-3)

n=1

Thus, (8-2) may be written, using (8-3), as

Ly N
d1re, = 4[ Py a2, (¥ | dy' (8-4)

! R{_‘/’, _\-'J) n=1
Because (8-4) is a nonsingular integral, its integration and summation can be inter-
changed, and it can be written as
N { ¢
gnly')
darey = E a = 5 dy' (8-4a)
n=1 4 {l '\/((_}’ == _V’}l + a°
The wire is now divided into N uniform segments, each of length A = I/N, as
illustrated in Figure 8.1(b). The g,{y") functions in the expansion (8-3) are chogsen
for their ability to accurately model the unknown quantity, while minimizing com-
putation. They are often referred to as basis (or expansion) functions, and they will
be discussed further in Section 8.2.3. To avoid complexity in this solution, subdomain
piecewise constant (or *‘pulse™) functions will be used. These functions, shown in
Figure 8.5, are defined to be of a constant value vver one segment and zero elsewhere,
or

0 y<{n— DA
gy)=41 n—DA=y =nA (8-5)
0 nA <y
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Many other basis functions are possible. some of which will be introduced later in
Section 8.2.3.

Replacing v in (8-4) by a fixed point such as y,,. results in an integrand that is
solely a function of y', so the integral may be evaluated. Obviously. (8-4) leads to
one equation with N unknowns a, written as

A ' 2A ’
gy j o) .,
dq :(lj _—;—d + a —_— dv' +.--
Eﬂ ' 0 R(.Vm» v ) y : A R(-\’"" '\’ ) ’ (8'6)

nA ' I '

g.(¥") f gvy’)
+ LA Ay N R T — vy’
ay, J’ln—lhl R(}'",._V')"‘ + ay N~ DA R(ym',\")dy

In order to obtain a solution for these N amplitude constants, N linearly independent
equations are necessary. These equations may be produced by choosing A observation
points y,, each at the center of each A length element as shown in Figure 8.1(b). This
results in one equation of the form of (8-6) corresponding to each observation point.
For N such points, we can reduce (8-6) to

A 4 ! '
gy f BNLY) e
d1re, = j =y’ + .- Ry
L R(._\’l..\")c{" T Jvona R(,Vl-,‘")dy

: (8-6a)
d7rey = a fA _8h '+ -+ +a fl _Buly) dy’
o= Y ) Rom v YIw-na R(yw ¥)
We may write (8-6a) more concisely using matrix notation as
[Vmi = [Zmu][lrl] (8'7)
where each Z,,, term is equal to
Z — J'I gn(.\",) — v,
i 0 \/(.Vm _ y:)z + a? - (8-73)
HA
i
= f = dy’
tn hA \F(_ym vy +a
and
llnl = [an] (8‘7b)
IVm] = |47€p). (8-7¢)

The V,, column matrix has all terms equal to 4e,. and the I, = «, values are the
unknown charge distribution coefficients. Solving (8-7) for [/,] gives

”nl = Ian.] = [Zmn.l_llvm] (8'8)

Either (8-7) or (8-8) may readily be soived on a digital computer by using any of
a number of matrix inversion or equation solving routines. Whereas the integral
involved here may be evaluated in closed form by making appropriate approximations,
this is not usually possible with more complicated problems. Efficient numerical
integral computer subroutines are commonly available in easy-to-use forms.
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One closed form evaluation of (8-7a) is to reduce the integral and represent it by

é + 2 + _.A. ?
2 “ 2 m=n (8-9a)
d

Zrm = 2\ o]
B T 7P (P el
duy + [dp,)® + @12

21n

} m# nbuthm — n| <2 (8-9b)

In (ﬁ"‘b_" Im — n| > 2 (8-9¢c)
d&lfl
where
A
d:m = Im + 3 (8‘9d)
A
dr"nn = lm - 5 (8—93)

I, is the distance between the mth matching point and the center of the nth source
point.

In summary, the solution of (8-2) for the charge distribution on a wire has been
accomplished by approximating the unknown with some basis functions. dividing the
wire into segments, and then sequentially enforcing (8-2) at the center of each segment
to form a set of linear equations.

Even for the relatively simple straight wire geometry we have discussed. the exact
form of the charge distribution is not intuitively apparent. To tllustrate the principles
of the numerical solution, an example is now presented.

Example 8.1

A |-m long straight wire of radius ¢ = 0.001 m is maintained at a constant potential
of 1 V. Determine the linear charge distribution on the wire by dividing the length
into 5 and 20 uniform segments. Assume subdomain pulse basis functions.

SOLUTION

1. N = 5. When the |-m long wire is divided into five uniform segments each of
length A = 0.2 m, (8-7) reduces to

1060 110 051 034 0.257[4a] 1.
110 1060 1.10 051 034 |} a» 1.

11 x 10707
11 x 10710
051 110 1060 110 0S5t |la:] =
034 051 110 1060 1.10}] a4

| 025 034 051 110 1060 ]| as| |11 x 1071

Inverting this matrix leads to the amplitude coefficients and subsequent charge
distribution of

a; = 881pC/m
a;, = 8.09pC/m



8.2 Integral Equation Method 385

10~
g
g Y
&
2
[*]
-
é‘ﬂ 8- \__—_ﬁ____f—_—‘
¥
7 [ L ] i 1 L i
0 0.1 0.2 0.3 0.4 08 06 0.7 08 0 1.0
Length (m)
(1) N=5
10F —1
g
2T
:
E
£
Bl
5 8
&=
|
7 1 | L i + 1 1 i 1
0 .1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1.0
Length (m)
ib) N=20)

Figure 8.2 Charge distribution on a 1-m straight wirc at 1 V.

ay = 1.97pClm
a, = 8.09pC/m
as = 8.81pC/m

The charge distribution is shown in Figure 8.2(a).

2. N = 20. Increasing the number of segments to 20 results in a much smoother
distribution, as shown plotted in Figure 8.2(b). As more segments are used, a
better approximation of the actual charge distribution is attained, which has
smaller discontinuities over the length of the wire.

B. Bent Wire

In order to i)lustrate the solution of a more complex structure, let us analyze a body
composed of two noncollinear straight wires; that is, a bent wire. If a straight wire is
bent, the charge distribution will be altered, although the solution to find it will differ
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Figure 8.3 Geometry for bent wire.

only slightly from the straight wire case. We will assume a bend of angle a. which
remains on the yz-plane, as shown in Figure 8.3,

For the first segment /, of the wire, the distance R can be represented by (8-2a).
However, for the second segment /> we can express the distance as

R=\(y-¥yV+(@-17) (8-10)

Also because of the bend, the integral in (8-7a) must be separated into two parts of

Il ' I-_. ’
Zmn - f() R ‘”l + 0 R (”2 (8-11)

!

where /| and /- are measured along the corresponding straight sections from their left
ends.

Example 8.2

Repeat Example 8.1 assuming that the wire has been bent 90° at its midpoint. Sub-
divide the wire into 20 uniform segments.

SOLUTION

The charge distribution for this case. calculated using (8-10) and (8-11), is plotted
in Figure 8.4 for N = 20 segments. Note that the charge is relatively more con-
centrated near the ends of this structure than was the case for a straight wire of
Figure 8.2(b). Further, the overall densily, and thus capacitance, on the structure
has decreased.

Arbitrary wire configurations, including numerous ends and even curved sections,
may be analyzed by the methods already outlined herc. As with the simple bent wire,
the only alterations generally necessary are those required to describe the geometry
analytically.
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Figure 8.4 Charge distribution on a I-m bent wire (a = 90°. N = 20).

8.2.2 Integral Equation

Equation (8-2) for the 1-V potential on a wire of length / is an integral equation,
which can be used to solve for the charge distribution. Numerically this is accom-
plished using a method, which is usually referred to as Moment Method or Method of
Moments (T]-[14]. To solve (8-2) numerically the unknown charge density p(y’) is
represented by N terms. as given by (8-3). In (8-3) g,(v") are a set of N known
functions, usually referred to as basis or expansion functions, while a, represents a
set of N constant, but unknown. coefficients. The basis or expansion functions are
chosen to best represent the unknown charge distribution.

Equation (§-2) is valid at every point on the wire. By enforcing (8-2) at N discrete
but different points on the wire. the integral equation of (8-2) is reduced to a set of N
linearly independent algebraic equations, as given by (8-6a). This set is generalized
by (8-7)-(8-7¢). which is solved for the unknown coefficients «u,, by (8-8) using matrix
inversion technigues. Since the system of N linear equations each with N unknowns,
as given by (8-6a)-(8-8), was derived by applying the boundary condition (constant
I-V potential) at ¥ discrete points on the wire. the technique is referred to as point-
matching (or collocation) method [7], [8]. Thus, by finding the elements of the [V]
and [Z]. and then the inverse [Z]' matrices, we can then determine the coefficients
a,, of the [7] matrix using (8-8). This in wm allows us to approximate the charge
distribution p(y’) using (8-3). This was demonstrated by Examples 8.1 and 8.2 for
the straight and bent wires, respectively.

In general. there are many forms of integral equations. For time-harmonic elec-
tromagnetics, two of the most popular integral equations are the electric field integral
equation (EFIE) and the magnetic field integral equarion (MFIE) [14]. The EFIE
enforces the boundary condition on the tangential electric field while the MFIE
enforces the boundary condition on the tangential components of the magnetic field.
The EFIE is valid for both closed or open surfaces while the MFIE is valid for closed
surfaces. These integral equations can be used for both radiation and scattering prob-
lems. Two- and three-dimensional EFIE and MFIE equations for TE and TM polari-
zations are derived and demonstrated in [ [4{. For radiation probiems, especially wire
antennas, two popular EFIEs are the Pocklington Integral Equation and the Hallén
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Integral Equation. Both of these will be discussed and demonstrated in the section
that follows.

8.3 FINITE DIAMETER WIRES

In this section we want to derive and apply two classic three-dimensional integral
equations, referred to as Pocklington's integrodifferential equation and Hallén’s in-
tegral equation [18]-|26]. that can be used most conveniently to find the current
distribution on conducting wires. Hallén’s equation is usually restricted to the use of
a delta-gap voltage source model at the feed of a wire antenna. Pocklington’s equation,
however, is more general and it is adaptable to many types of feed sources (through
alteration of its excitation function or excitation matrix), including a magnetic frill
[27]. In addition, Hallén"s equation requires the inversion of an ¥ + 1 order matrix
(where N is the number of divisions of the wire) while Pocklington’s equation requires
the inversion of an N order matrix.

For very thin wires, the current distribution is usually assumed to be of sinusoidal
form as given by (4-56). For finite diameter wires (usually diameters d of ¢ > (1L.05A),
the sinusoidal current distribution is representative but not accurate, To find a more
accurale current distribution on a cylindrical wire, an integral equation is usually
derived and sulved. Previously. solutions to the integral equation were obtained using
iterative methods [20]; presently. it is most convenient to use moment method tech-
niques [7]-]9].

If we know the voltage at the feed terminals of a wire antenna and find the current
distribution. the input impedance and radiation pattern can then be obtained. Similarly.
if a wave impinges upon the surface of a wire scatterer, it induces a current density
that in turn is used to find the scattered field. Whereas the linear wire is simple, most
of the information presented here can be readily extended to more complicated struc-
tures.

8.3.1 Pocklington’s Integral Equation

To derive Pocklington’s integral equation, refer to Figure 8.5. Although this derivation
is general, it can be used either when the wire is a scatterer or an antenna. Let us
assume that an incident wave impinges on the surface of a conducting wire. as shown
in Figure 8.5(a). and it is referred to as the incident electric field E(r). When the wire
is an antenna, the incident field is produced by the feed at the gap. as shown in Figure
8.7. Part of the incident field impinges on the wire and induces on its surface « linear
current density J; (amperes per meter). The induced current density J, reradiates and
produces an electric field that is referred to as the scarrered electric field EXr).
Therefore, at any point in space the total electric field E'(r) is the sum of the incident
and scattered fields. or

E'(r) = E(r) + EXr) (8-12)
where
E'(r) = total electric field
Ei(r) = incident electric field
E*(r) = scattered electric field

When the observation point is moved to the surface of the wire (r = r,) and the
wire is perfectly conducting, the total tangential electric field vanishes. In cylindrical
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Figure 8.5 Uniform plane wave obliquely incident on a conducting wire.

coordinates, the electric field radiated by the dipole has a radial component (E,) and
a langential component (£.). These are represented by (8-55a) and (8-55b), Therefore
on the surface of the wire the tangential component of (8-12) reduces (o
Ellr=r)=E{r=r)+ E{(r=r)=0 (8-13)
ar
Ei(r=1r) = —E(r=r) (8-13a)

In general, the scattered electric field generated by the induced current density J,
is given by (3-15), or

|
E(r) = —jwA — j—V(V+ A)
CLLE

] .
= —j— k" A + V(V-A) (8-14)
(WLE

However, for observations at the wire surface only the z component of (8-14) is
needed, and we can write it as

1 . 0”° A,
B = ~ig (k- A. + (ai) (8-15)
According to (3-51) and neglecting edge effects
o e_j“e M | 42 J’Zfr E—jk!-.' Bis _
A = 41 J:L J: R ds’ = Boar J - J- . dd’ dz (8-16)

If the wire is very thin, the current density J. is not a function of the azimuthal
angle ¢. and we can write it as

= L.":{?,’) (8-17)

2wral, = L(z2") = J. =
2ma
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Figure 8.6 Dipole segmentation and its equivalent current,

where 1.(z') is assumed to be an equivalent filament line-source current located a
radial distance p = « from the ; axis, as shown in Figure 8.6(a). Thus (8-16) reduces
to

+ 172 1y —jkR
_ __"_L_ L_J' ~t € g 1] ! _
A, g R [Zwa . 1.(z") R ¢ do ]d.. (8-18)
R=\x-XV+(G-yyY+@c-27
= \(p" +a® - 2pacos(¢p — ¢') + (z — 2')* (8-18a)

where p is the radial distance to the observation point and a is the radius.

Because of the symmetry of the scatterer, the observations are no! a function of
¢. For simplicity, let us then choose ¢ = (). For observations on the surface p = a
of the scatterer (8-18) and (8-18a) reduce to

w12 | [27 gk
Alp =a) = u f—uz I )(Z‘ZTJ’U 47er¢)d:

12
= ”]—m L(z')G(z, 2')dz (8-19)

] 2 —jkl\’
(.g 4.‘ J- 4’""R (8'l9a)

Rp=a) = \/402 sinz(%) +(z—-2') (8-19b)
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Thus for observations at the surface p = a of the scatterer, the z component of the
scattered electric field can be expressed as

1 . d?‘ + 112
E';(p =q) = —Jw—e(k" + dzz) f—l[! 1:(2. Gz 2 Ydz (8-20)
which by using (8-13a) reduces to
| d2 +If2
—_ 2 2! 2 Vd: = —E! = -2
jwe(dzz + k ) .[—uz L(z"G(z. 7') dz Ep = a) (8-21)
or
d> +1 .
(F + kz) f_ p [(YCG 2Yd = —jweE{p = a) (8-21a}

Interchanging integration with differentiation, we can rewrite (8-21a) as

-2 z

+ 2 {"2 )
j 1.(2) [(F + k?‘) Gz, z')] dz' = —jweE.(p = a) (8-22)

where G(z, z') is given by (8-19a).

Equation (8-22) is referred 10 as Pocklington's integral equation |1}, and it can be
used to determine the equivalent filamentary line-source current of the wire, and thus
current densily on the wire, by knowing the incident field on the surface of the wire.

If we assume that the wire is very thin (a << A} such that (8-19a) reduces 10

o "R

Gz ') = GR) = 8-23
() (R) AR ( )

(8-22) can also be expressed in a more convenient form as |22]

+in o IR )
(2 1 + jk - 2 2 z'
j—uz I.(z )417RSI( JKRY2R 3a®) + (kaR)\ d
= —jweEli(p = a) (8-24)
where for observations along the center of the wire (p = ()

R=\a&+ -2\ (8-24a)

In (8-22) or (8-24), I.{z') represents the equivalent filamentary line-source current
located on the surface of the wire, as shown in Figure 8.5(b), and it is obtained by
knowing the incident electric field on the surface of the wire. By point-matching
techniques, this is solved by matching the boundary conditions at discrete points on
the surface of the wire. Often it is easier to choose the matching points to be at the
interior of the wire, especially along the axis as shown in Figure 8.6(a), where 1.(z")
is located on the surface of the wire. By reciprocity. the configuration of Figure 8.6(a)
is analogous to that of Figure 8.6(b) where the equivalent filamentary line-source
current is assumed to be located along the center axis of the wire and the maltching
points are selected on the surface of the wire. Either of the two configurations can be
used to determine the equivalent filamentary line-source current /.(z'): the choice is
left to the individual.
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8.3.2 Hallén’s Integral Equation

Referring again to Figure 8.5(a), let us assume that the length of the cylinder is much
larger than its radius (/ > a) and its radius is much smaller than the wavelength
(a <€ A) so that the effects of the end faces of the cylinder can be neglected. Therefore
the boundary conditions for a wire with infinite conductivity are those of vanishing
total tangentiul E fields on the surface of the cylinder and vanishing current at the
ends of the cylinder [/.(z' = x{/2) = 0.

Since only an electric current density flows on the cylinder and it is directed along
the z axis (J = 4a.J.), then according to (3-14) and (3-51) A = &.A.(Z'). which for
small radii is assumed to be only a function of z'. Thus (3-15) reduces to

| @A, || d°A,
= e, - j—— = i [Ty 2pen, 2
E: Jr: ‘lw,ue az" Jw,u.e [ dz ¢ MGA“] (8-25)

Since the total tangential clectric field E. vanishes on the surface of the cylinder,
(8-25) reduces to
dA,
d?

+ KA, =0 (8-25a)

Because the current density on the cylinder is symmetrical [/.(z") = J.(—2"),
the potential A_ is also symmetrical (i.e.. A.(Z") = A,(—z")]. Thus the solution of
(8-25a) is given hy

A2) = —j\/uelB, costkz) + C, sin(k|z}))] (8-26)

where B, and C, are constants. For a current-carrying wire. its potential is also given
by (3-53). Equating (8-26) to (3-53) leads to

+2 e_jz.-n €
‘T"’ -',v' P g— Y . - . - -‘)
f_ 2 () 4R dz J “an cos(kz) + C, sin(k|z})] (8-27)

If a voltage V, is applied at the input terminals of the wire, it can be shown that the
constant C; = V,/2. The constant B, is determined from the boundary condition that
requires the current Lo vanish at the end points of the wire.

Equation (8-27) is referred to as Hallén’s integral equation for a perfectly con-
ducting wire. It was derived by solving the differential equation (3-15) or (8-25a)
with the enforcement of the appropriate boundary conditions.

8.3.3 Source Modeling

Let us assume that the wire of Figure 8.5 is symmetrically fed by a voltage source,
as shown in Figure 8.7(a), and the element acting as a dipole antenna. To use, for
example, Pocklington’s integrodifterential equation (8-22) or (8-23) we need to know
how to express El(p = a). Traditionally there have been two methods used o model
the excitation to represent Ei(p = a, 0 < ¢ < 2, —l/2 < z = +1/2) at all points
on the surface of the dipole: One is referred 10 as the delta-gap excitation and the
other as the equivalent magnetic ring current (better known as magnetic frill gen-
erator) |27].
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Figure 8.7 Cylindrical dipole, its segmentation, and gap modeling.

A. Delta Gap
The delta-gap source modeling is the simplest and most widely used of the two, but
it is also the least accurate, especially for impedances. Usually it is most accurate for
smaller width gaps. Using the delta gap, it is assumed that the excitation voltage al
the feed terminals is of a constant V; value and zero elsewhere. Therefore the incident
electric field Ei(p = a. 0 < ¢ < 27, —I/2 < z < +//2) is also a constant (V/A
where A is the gap width) over the feed gap and zero elsewhere, hence the name delta
gap. For the delta-gap model. the feed gap A of Figure 8.7(a) is replaced by a narrow
band of strips of equivalent magnetic current density of
Vi Vi

- A
M, = -ixE =-4§ xd,—=d,— -—-——-=:7=
¢ #T A A 2

The magnetic current density M, is sketched in Figure 8.7(a).

(8-28)

SR >

B. Magnetic Frill Generator

The magnetic frill generator was introduced to calculate the near- as well as the far-
zone fields from coaxial apertures [27]. To use this model, the feed gap is replaced
with a circumferentially directed magnetic current density that exists over an annular
aperture with inner radius a, which is usually chosen to be the radius of the wire, and
an outer radius b, as shown in Figure 8.7(b). Since the dipole is usually fed by
transmission lines, the outer radius b of the equivalent annular aperture of the magnetic
frill generator is found using the expression for the characteristic impedance of the
transmission line.
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Over the annular aperture of the magnetic frill generator. the electric field is
represented by the TEM mode field distribution of a coaxial transmission line given
by

Vv,

J

= § ——t
Ey ?2p" In(bla)

a=p =b (8-29)

Therefore the corresponding equivalent magnetic current density M, for the magnetic
frill generator used to represent the aperture is equal to

Vi
M= -2 xE = -2 x4,E, = —&,————

The fields generated by the magnetic {rill generator of (8-30) on the surface of
the wire are found by using [27]

=p =) (8-30)

(Y 2N e JRR ? 2
- v k(b a)t, ) ) +jl—b 1a
8 In(hla) k3 kR, 2R
a1 _ (h* + cﬁ}))( _ 2)
— = +jll - —=—]\-jk - —
Ry [(kRn J( 2R;; / Ry

+(_l +.b2+a?) ) .
kR TR (8-31)

R(’ = NI + a (8‘313.)

The fields generated on the surface of the wire computed using (8-31) can be
approximated by those found along the axis (p = (). Doing this leads to a simpler

expression of the form |27)
I V —JkRy '.”\'-Rz
=l - e | - 83
2 2In(bla) | R, R,

R =\ +ua (8-32a)
R =2 + b (8-32b)

To compare the results using the two source modelings (delta-gap and magnetic-
frill generator), an example is performed.

+

where

E'(p = 0. -

where

Example 8.3

For a center-fed linear dipole of / = 0.47A and ¢ = 0.005A, determine the induced
voltage along the length of the dipole based on the incident eleciric field of the
magnetic frill of (8-32). Subdivide the wire into 21 segments (N = 21). Compare the
induced voltage distribution based on the magnetic frill to that of the delta gap. Assume
a 50-ohm characteristic impedance with free space between the conductors for the
annular feed.
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SOLUTION

Since the characteristic impedance of the annular aperture is 50 ohms. then

]
Z, = fﬁl(é/a_)zﬁ) o é=2.3
€y 2w a

Subdividing the total length (/ = 0.47A) of the dipole to 21 segments makes

A= 0474 _ 0.0224A
21

Using (8-32) to compute E!, the corresponding induced voltages obtained by multi-
plying the value of — E' at each segment by the length of the segment are listed in
Table 8.1. where they are compared with those of the delta gap. In Table 8.1 n = |
represents the outermost segment and # = 11 represents the center segment. Because
of the symmetry, only values for the center segment and half of the other segments
are shown. Although the two distributions are not identical, the magnetic-frill distri-
bution voltages decay quite rapidly away from the center segment and they very
quickly reach almost vanishing values.

Table 8.1 UNNORMALIZED AND NORMALIZED DIPOLE INDUCED VOLTAGE+
DIFFERENCES FOR DELTA-GAP AND MAGNETIC-FRILL GENERATOR
({ = 0474, a = 0.005A, N = 21)

Delta-Gap Voltage
iﬁ?ﬁ;:: Unnor-  Normal- Magnetic Frill Generator Voltage

n malized ized Unnormalized Normalized

| 0 0 111 X 107% =2603° 7.30 X 1077 —26,03°
2 0 0 142 X 107% —-20.87° 934 X 107° —-2087°
3 0 0 1.89 X 107* —16.13° 1.24 X 107* —16.13°
4 0 0 262 X 107 —11.90° 1.72 X 107 —11.90°
5 0 0 3.88 x 107+ —823° 255 x 107%  —8.23°
6 0 0 623 X 107%  —=522° 410 x 107 ~522°
7 0 0 .14 X 107 -291° 75 X 107%  ~291°
8 0 0 252 x 107 —1.33° 166 X 107 ~133°
9 0 0 789 X 107 —043°  S19x 107Y  ~043
10 0 0 525 X 1077 —0.06° 346 X 107 ~0.06°
11 I

1 1.52 0° 1.0 0°

tVoltage differcnces as defined here represent the product of the incident electric field at the center of
each segment and the corresponding segment length.

8.4 MOMENT METHOD SOLUTION
Equations (8-22), (8-24), and (8-27) each has the form of
Fgy=h (8-33)

where F is a known linear operator, & is a known excitation function, and g is the
response function. For (8-22) F is an integrodifferential operator while for (8-24) and
(8-27) it is an integral operator. The objective here is to determine g once F and h
are specified.



396 Chapter 8 Integral Equations, Moment Method, and Self and Mutual Impedances

While the inverse problem is often intractable in closed form, the linearity of the
operator F makes a numerical solution possible. One technique. known as the Moment
Method [7)-] 14| requires that the unknown response function be expanded as a linear
combination of A terms and written as

N
g = aigi@) + aagalC) + -+ anga(d’) = ZI angall’)  (8-34)
n=
Each a,, is an unknown constant and each g, (z') is a known function usually referred
to as a baysis or expansion function. The domain of the g, (z') functions is the same
as that of g(z'). Substituting (8-34) into (8-33) and using the linearity of the F operator
reduces (8-33) to

N
Zl a,F(g) =h (8-35)
H=

The basis functions g,, are chosen so that each F(g,) in (8-35) can be evaluated
conveniently, preferably in closed form or at the very least numericalty. The only task
remaining then is to find the a, unknown constants.

Expansion of (8-35) leads to one equation with N unknowns. It alone is not
sufficient (o determine the N unknown «, (n = [. 2, .. .. N) constants. To resolve
the N constants, it is necessary to have N linearly independent equations. This can be
accomplished by evaluating (8-35) (e.g., applying boundary conditions) at N different
points. This is referred to as poinr-matching (or collocation). Doing this, (8-35) takes
the form of

N
> LF@)=hye m=12....N (8-36)

n—|

In matrix form, (8-36) can be expressed as

(Zn 2] = [Vl (8-37)
where
Zyw = F(g,) (8-37a)
I, = a, (8-37b)
Vo = ha, (8-37c)

The unknown coefficients a, can be found by solving (8-37) using matrix inver-
sion techniques. or

(7] = (Zon] " '[Vin) (8-38)

8.4.1 Basis Functions

One very important step in any numerical solution is the choice of basis functions. In
general. one chooses as basis functions the set that has the ability to accurately
represent and resemble the anticipated unknown function, while minimizing the com-
putational effort required to employ it [28]-[30]. Do not choose basis functions with
smoother properties than the unknown being represented.

Theoretically. there are many possible basis sets. However, only a limited number
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Figure 8.8 Piecewise constant subdomain functions.

are used in practice. These sels may be divided into two general classes. The first
class consists of subdomain functions, which are nonzero only over a part of the
domain of the function g(x’); its domain is the surface of the structure. The second
class contains entire domain functions that exist over the entire domain of the unknown
function. The entire domain basis function expansion is analogous to the well-known
Fourier series expansion method.

A. Subdomain Functions

Of the two types of basis functions, subdomain functions are the most common.
Unlike entire domain bases. they may be used without prior knowledge of the nature
of the function that they must represent.

The subdomain approach involves subdivision of the structure into N nonover-
lapping segments. as illustrated on the axis in Figure 8.8(a). For clarity, the segments
are shown here to be collinear and of equal length. although neither condition is
necessary. The basis functions are defined in conjunction with the limits of one or
more of the segments.

Perhaps the most common of these basis functions is the conceptually simple
piecewise constant, or ‘‘pulse”’ function. shown in Figure 8.8(a). It is defined by

Piecewise Constunt
N 12 '
[l .\,,_|SX qu

sule') = 10 elsewhere

(8-39)
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Once the associated coefficients are determined, this function will produce a staircase
representation of the unknown function, similar to that in Figures 8.8(b) and (c),

Another common basis set is the piecewise linear, or “‘triangle."” functions seen
in Figure 8.9(a). These are defined by

Piecewise Linear

4 ’
X = Xu- g K N N
1 V-1 =X X
.\" - .‘v,,_h 1
Ny =1 ' (8-40)
gn(“ ) =1 X - X
- Xy =X =,
Xpre| — Xy
0 elsewhere

and are seen o cover two segments. and overlap adjacent functions [Figure 8.9(b)].
The resulting representation [Figure 8.9(¢)] is smoother than that for *‘pulses,’” but
at the cost of increased computational complexity.

Increasing the sophistication of subdomain basis functions beyond the level of
the “‘triangle”” may not be warranted by the possible improvement in accuracy,
However, there are cases where more specialized functions are useful for other rea-
sons. For example, some integral operators may be evaluated without numerical
integration when their integrands are multiplied by a sin(kx’) or cos (kx’) function,
where «* is the variable of integration. In such examples, considerable advantages in
computition time and resistance to errors can be gained by using basis functions like
the piecewise sinusoid of Figure 8.10 or truncated cosine of Figure 8.11. These
functions are defined by
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Figure 8.10 Piecewise sinusoids subdomain functions.

Piecewise Sinusoid

sin[k(x' — x),_))]
Sinlk(x:, - X:,._ l)]

Truncated Cosine

! X, =x =x, (8-41)
sinlk(xh 1 — A
0 elsewhere
cos k(.r' ~In = en) ""_') Xao) =X =,
2 (8-42)
0 elsewhere

B. Entire Domain Functions
Entire domain basis functions. as their name implies. are defined and are nonzero
over the entire length of the structure being considered. Thus no segmentation is
involved in their use.

A common entire domain basis set is that of sinusoidal functions, where

Entire Domuain

(X') = cos (2n — DHmx' !
8 X)) = b [ y)

i 7
Xn—1 =X = Xn

X = ;[)- (8-43)
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Figure 8.11 Truncated cosines subdomain functions.

Note that this basis set would be particularly useful for modeling the current distri-
bution on a wire dipole. which is known to have primarily sinusoidal distribution.
The main advantage of entire domain basis functions lies in problems where the
unknown function is assumed a priori to follow a known pattern. Such entire-domain
functions may render an acceptable representation of the unknown while using far
fewer terms in the expansion of (8-34) than would be necessary for subdomain bases,
Representation of a function by entire domain cosine and/or sine functions is similar
to the Fourier series expansion of arbitrary tunctions.

Because we are constrained to use a finite number of functions (or modes, as they
are sometimes called), entire domain basis functions usually have difficulty in mod-
eling arbitrary or complicated unknown functions.

Entire domain basis functions, sets like (8-43). can be generated using Tschebys-
cheff, Maclaurin, Legendre, and Hermite polynomials, or other convenient functions,

8.4.2 Weighting (Testing) Functions

To improve the point-matching solution of (8-36), (8-37), or (8-38) an inner product
(w. g} can be defined which is a scalar operation satisfying the laws of

(w, @) = (g. W) (8-44a)
(bf + cg. wy = b(f w) + (g, w) (8-44b)
(g* g)>0 ifg#0 (8-44c)

e =0 ifg=0 (8-44d)
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where b and ¢ are scalars and the asterisk (*) indicates complex conjugation. A typical,
but not unique, inner product is

(w, g8) = fﬁw* ‘gds (8-45)

where the w’s are the weighting (testing) functions and § is the surface of the structure
being analyzed. Note that the functions w and g can be vectors. This technique is
better known as the Moment Method or Method of Momenis (MM) |7]. |8].

The collocation (point-matching) method is a numerical technique whose solu-
tions satisfy the electromagnetic boundary conditions (e.g.. vanishing tangential elec-
tric tields on the surface of an electric conductor) only at discrete points. Between
these points the boundary conditions may not be satisfied. and we define the deviation
as a residual (e.g., residual = AE|q., = E (scattered)ly, + £ (incident)|y, # 0 on
the surface of an electric conductor). For a half-wavelength dipole. a typical residual
is shown in Figure 8.12(a) for pulse basis functions and point-matching and Figure
8.12(b) exhibits the residual for piecewise sinusoids-Galerkin method [31]. As ex-
pected, the pulse basis point-matching exhibits the most ill-behaved residual and the
piecewise sinusoids-Galerkin method indicates an improved residual. To minimize
the residual in such a way that its overall average over the entire structure approaches
zero, the method of weighted residuals is utilized in conjunction with the inner product
of (8-45). This technique, reterred to as the Moment Method (MM). does not lead to
a vanishing residual at every point on the surface of a conductor, but it forces the
boundary conditions to be satisfied in an average sense over the entire surface.

To accomplish this, we define a set of N weighting (or testing) functions {w,,} =
Wi. W, . ... wy in the domain of the operator F. Forming the inner product between
each of these functions, (8-35) results in

N
> @l F(ga)) = (Wi h) m=1,2,...,N (8-46)

n=1\

This set of N equations may be written in matrix form as

[an] [an] = [hml (8"47)
where
(wy, F(g))  {wy, F(ga)
[an] = (WZS 1.‘(8|)> (”’3- F(SZ)) (8’47"1)
a {wy. h)
a; (wo, )
'anl = : lhm] = ' (8°47b)
ay (wy, h)
The matrix of (8-47) may be solved for the a, by inversion, and it can be written as
[@,] = [Fun) '[R] (8-48)

The choice of weighting functions is important in that the elements of {w,} must
be linearly independent, so that the N equations in (8-46) will be linearly independent
[71-191, [29], [30]. Further, it will generally be advantageous to choose weighting
functions that minimize the computations required to evaluate the inner product.

The condition of linear independence between elements and the advantage of
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Figure 8.12 Tangential electric field on the conducting surface of a A/2 dipole. (SOURCE:
E. K. Miller and F. J. Deadrick. **Some computational aspects of thin-wire modeling™ in
Numerical and Asymptotic Techniques in Electromagnetics, 1973, Springer-Verlag.)

computational simplicity are also important characteristics of basis functions. Because
of this, similar types of functions are often used for both weighting and expansion. A
particular choice of functions may be to let the weighting and basis function be the
same, that is, w, = g,. This technique is known as Galerkin's method [32].



8.5 Self Impedance -1)3

Tt should be noted that there are N” terms to be evaluated in (8-47a). Each term
usually requires two or more integrations; at least one to evaluate each F(g,) and one
to perform the inner products of (8-45). When these integrations are 1o be done
numerically, as is olten the case. vast amounts of computation lime may be necessary.
There is, however, a unique set of weighting functions that reduce the number of
required integrations. This is the set of Dirac delta weighting functions

[Wm] = [6([) - pm)} = [6(17 = Pk 5([) - .. J (8-49)

where p specifies a position with respect to some reference (origin) and p,, represents
a point at which the boundary condition is enforced. Using (8-45) and (8-49) reduces
(8-46) to

(B(p ~ pad )y = 2a,{8(p — pu) Flg)) m=1.2....,N

IISS(P - Pm)h dy = zan jjss(p - pm)F(.gn) ds m=1,2,....N (8'50)

h'l’:/’m = Za"F(gn)|p=pm m = ], 2. ‘e N

Hence. the only remaining integrations are those specified by F(g,). This simplification
may lead to solutions that would be impractical if other weighting functions were
used. Physically, the use of Dirac delta weighting functions is seen as the relaxation
of boundary conditions so that they are enforced only at discrete points on the surface
of the structure, hence the name point-matching.

An important consideration when using point-matching is the positioning of the
N points (p,,). While equally space points often yield good results. much depends on
the basis functions used. When using subsectional basis functions in conjunction with
point-matching, one match point should be placed on each segment (to maintain linear
independence). Placing the points at the center of the segments usually produces the
best results. It is important that a match point does not coincide with the *‘peak’” of
a triangle or a similar discontinuous function, where the basis function is not differ-
entiably continuous. This may cause errors in some situations,

8.5 SELF IMPEDANCE

The input impedance of an antenna is a very important parameter, and it is used to
determine the efficiency of the antenna. In Section 4.5 the real part of the impedance
(referred either 1o the current at the feed terminals or to the current maximum) was
found. At that time, because of mathematical complexities, no attempt was made to
find the imaginary part (reactance) of the impedance. In this section the self impedance
of a lincar element will be examined using bath the Integral Equation-Moment Method
and the induced emf method. The real and imaginary parts of the impedance will be
found using both methods.

8.5.1 Integral Equation-Moment Method

To use this method to find the self impedance of a dipole, the first thing to do is to
solve the integral equation for the current distribution. This is accomplished using
cither Pocklington’s Integral equation of (8-22) or (8-24) or Hallén’s integral equation
of {(8-27). For Pocklington's integral equation you can use either the delta-gap voltage
excitation of (8-28) or the magnetic frill model of (8-31) or (8-32). Hallén's integral
equation is based on the delta-gap model of (8-28).
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Once the current distribution is found, using either or both of the integral equa-
tions, then the self (input) impedance is determined using the ratio of the voltage to
current, or

Zm = Yﬂ (8‘5”

’in

A computer program MOMENT METHOD has been developed based on Pockling-
ton's and Hallén's integral equations, and it is found at the end of this chapter.
Pocklington’s uses both the delta-gap and magnetic-frill models while Hallén’s uses
only the delta-gap feed model. Both, however, use piecewise constant subdomain
functions and point-matching. The program computes the current distribution, nor-
malized amplitude radiation pattern, and input impedance. The user must specify the
length of the wire, its radius (both in wavelengths), and the type of feed modeling
(delta-gap or magnetic-frill) and the number of segments.

To demonstrate the procedure and compare the resulls using the two-source
modelings (delta-gap and magnetic-frill generator) for Pocklington’s integral equation,
an example is performed.

Example 8.4

Assume a center-fed linear dipole of / = 0.47A and ¢ = 0.005A. This is the same
element of Example 8.3.

1. Determine the normalized current distribution over the length of the dipole using
N = 21 segments to subdivide the length. Plot the current distribution.

2. Determine the input impedance using segments of N = 7, 11, 21, 29, 41, 51,61,
71, and 79.

Use Pocklington’s integrodifferential equation (8-24) with piecewise constant sub-
domain basis lunctions and point-matching to solve the problems. model the gap with
one segment. and use both the delta-gap and magnetic-frill generator to model the
excitation. Use (8-32) for the magnetic-frill generator. Because the current at the ends
of the wire vanishes, the piecewise constant subdomain basis functions are not the
most judicious choice. However, because of their simplicity. they are chosen here to
illustrate the principles even though the results are not the most accurate. Assurme that
the characteristic impedance of the annular aperture is 50 ohms and the excitation
voltage V;is | V,

SOLUTION

1. The voltage distribution was found in Example 8.3, and it is listed in Table 8.1.
The corresponding normalized currents obtained using (8-24) with piecewise
constant pulse functions and point-matching technique for both the delta-gap and
magnetic frill-generator are shown plotted in Figure 8.13(a). It is apparent that
the two distributions are almost identical in shape, and they resemble that of the
ideal sinusoidal current distribution which is more valid for very thin wires and
very small gaps. The distributions obtained using Pocklington's integral equation
do not vanish at the ends because of the use of piecewise constant subdomain
basis functions.
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Table 8.2 DIPOLE INPUT IMPEDANCE FOR
DELTA-GAP AND MAGNETIC-
FRILL. GENERATOR USING
POCKLINGTON'S INTEGRAL
EQUATION (/ = 0.47A, a = (.005A)

N Delta Gap Magnetic Frill
7 122.8 + j113.9 26.8 + j24.9
1 94.2 + j49.0 32.0 + j16.7
21 77.7 — jO.8 47.1 — j0.2
29 754 — j6.6 574 - j4.5
41 759 - j2.4 68.0 — j1.0
51 772 + j24 73.1 + j4.0
61 78.6 + 6.1 762 + /8.5
71 799 + j7.9 779 + j11.2
79 80.4 + j8.8 78.8 + j12.9

2. The input impedances using both the delta-gap and the magnetic-frill generator
are shown listed in Table 8.2. It is evident that the values begin to stabilize and
compare favorably to each other once 61 or more segments are used.

To further illustrate the point on the variation of the current distribution on a
dipole, it has been computed by Moment Method and plotted in Figure 8.13(b) for
[ = M2and ! = A for wire radii of a = 107X and 107 *A where it is compared with
that based on the sinusoidal distribution. It is apparent that the radius of the wire does
not influence to a lurge extent the distribution of the / = A/2 dipole. However it has
a profound effect on the current distribution of the / = A dipole at and near the feed
point. Therefore the input impedance of the / = A dipole is quite different for the
three cases of Figure 8.13(h), since the zero current at the center of the sinusoidal
distribution predicts an infinite impedance. In practice, the impedance is not infinite
but is very large.

8.5.2 Induced EMF Method

The induced emf method is a classical method to compute the self and mutual
impedances |1}-[6]. | 33]. The method is basically limited to straight, parallel and in
echelon elements, and it is more difficult to account accurately for the radius of the
wires as well as the gaps at the feeds. However it leads to closed form solutions which
provide very good design data. From the analysis of the infinitesimal dipole in Section
4.2, it was shown that the imaginary part of the power density, which contributes to
the imaginary power, is dominant in the near-zone of the element and becomes
negligible in the far-field. Thus, near-fields of an antenna are required to find its input
reactance.

A. Near-Field of Dipale

In Chapter 4 the far-zone electric and magnetic fields radiated by a finite length dipole
with a sinusoidal current distribution were found. The observations were restricted in
the far-field in order to reduce the mathematical complexities. The expressions of
these fields were used to derive the radiation resistance and the input resistance of the
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Figure 8.13 Current distribution on a dipole antenna.

dipole. However, when the input reactance and/or the mutual impedance between
elements are desired, the near-fields of the element must be known. It is the intent
here to highlight the derivation.

The fields are derived based on the geometry of Figure 8.14, The procedure is
identical to that used in Section 4.2.1 for the infinitesimal dipole. The major difference
is that the integrations are much more difficult. To minimize long derivations involving
complex integrations, only the procedure will be outlined and the final results will be
given. The derivation is left as an end of the chapter problems. The details can also
be found in the first edition of this book.

To derive the fields, the first thing is to specify the sinusoidal current distribution
for a finite dipole which is that of (4-56). Once that is done, then the vector potential
A of (4-2) is determined. Then the magneltic field is determined using (3-2a), or
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Figure 8.14 Dipole geomelry for near-ficld analysis.

1 . | 0A,
H=-VxA= —f,—— (8-52)
p ® dp
It is recommended that cylindrical coordinates are used. By following this procedure
and after some lengthy analytical details. it can be shown by referring to Figure
8.14(b) that the magnetic field radiated by the dipole is

Iy 1 : " ki .
H=4a,H, = —ﬁd,4—;;j-,; I:e”f"“"" + ¢ *R: — 3 cos (E)e ‘f"] (8-53)
where

r = X +yv 4+ = e + (8'533')

R, = l+2+~—-i)2= 24—(7—12 (8-53b)

1 = X A4 < 5 P < 2 ' -
y 1\’ : 1\
Ry= [x + vy +|z+ 5 = poHiat g (8-53c)
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The corresponding electric field is found using Maxwell’s equation of
l
E=—VxH (8-34)
Jjwe

Once this is done, it can be shown that the electric field radiated by the dipole is

| oH, 113
E=8,6+aE= -4, g V12,
plp T 85 a’jans dz 'Jwepc’)p(p #) (8-33)
where

.y [\ e [\ e Ke |

=FE =j—|lz - = +lz + = — 2zcos | -
Sy [( 2) R, 2] R, cost\z) ]

'n]“ e‘j“"x e‘}'kR: k[ e—jkr

E.= —j— + — 2 cos {— B

: J41r[ i} z cos { ] — (8-55b)

It should be noted that the last term in (8-53). (8-55a), and (8-55b) vanishes when
the overall length of the element is an integral number of odd half wavelengths
(! = nA2,n = 1.3, 5....) because cos(kl/2) = cos(nm/2) = O forn = 1,3,
5 ....

The fields of (8-53), (8-55a), and (8-55b) were derived assuming a zero radius
wire. In practice all wire antennas have a finite radius which in most cases is very
small electrically (typically less than A/200). Therefore the fields of (8-53), (8-55a),
and (8-55b) are good approximations for finite, but small, radius dipoles.

B. Self Impedance

The technique. which is used in this chapter to derived closed form expressions for
the self- and driving point impedances of finite linear dipoles, is known as the induced
emf method. The general approach of this method is to form the Poynting vector using
(8-53), (8-55a), and (8-55b). and to integrate it over the surface that coincides with
the surface of the antenna (linear dipole) itself. However, the same results can be
obtained using a slightly different approach, as will be demonstrated here. The ex-
pressions derived using this method are more valid for small radii dipoles. Expressions,
which are more accurate for larger radii dipoles, were derived in the previous section
based on the Integral Equation-Moment Method.

To find the input impedance of a linear dipole of finite length and radius, shown
in Figure 8.15, the tangential electric field component on the surface of the wire is
needed. This was derived previously and is represented by (8-55b). Based on the
current distribution and tangential electric field along the surface of the wire. the
induced potential developed at the terminals of the dipole based on the maximum
current is given by

+€72
Vm = j dvm

1
1 +¢2 .
- Tf—uz Iip=az=2)E(p=az=<)d (8-56)

nr
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Figure 8.15 Uniform linear current density over cylindrical surface of wire.

where /,, is the maximum current. The input impedance (referred to at the current
maximum 1,,) is defined as

V,
Zm = — (8‘57)
’I"
and can be expressed using (8-56) as
€2
Zn = — 3 Ilp=az=2)elp=az=2)d (8-57a)

1517“

Equation (8-57a) can also be obtained by forming the complex power density, inte-
grating it over the surface of the antenna, and then relating the complex power to the
terminal and induced voltages |2). The integration can be performed either over the
gap at the terminals or over the surface of the conducting wire.

For a wire dipole, the total current /. is uniformly distributed around the surface
of the wire, and it forms a linear current sheet J.. The current is concentrated primarily
over a very small thickness of the conductor, as shown in Figure 8.15, and it is given,

based on (4-56). by
{
I. = 2mal. = I, sin [k(s - |z'l)} (8-58)

Therefore (8-57a) can be written as

¢
Zy = ——J o sin [ (— -z I)} E(p=az=:)d (8-59)

For simplicity, it is assumed that the E-field produced on the surface of the wire
by a current sheet is the same as if the current were concentrated along a filament
placed along the axis of the wire. Then the £-field used in (8-59) is the one obtained
along a line parallel to the wire at a distance p = « {from the filament.

Letting /,, = [, and substituting (8-55b) into (8-59) it can be shown, after some
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lengthy but straighttorward manipulations, that the real and imaginary parts of the
input impedance (referred to at the current maximum) can be expressed as

1
R, = R, = ;’Z—T{C + In(kl) — €kt + 3 sinkDIS;2k1) = 28,(k1)]

|
+ Ecos(kl)[(.‘ + In(klf2) + C;(2kl) — 2C,(kD)]} (8-60a)
X, = %T {2si(k1) + cos(kDI2Sikl) — Si(2kD)]

) 2 ka* .
—sln(kl){zc,-(kl) — G2kl — C,(—I')]} (8-60b)

where §,(x) and C;(x) are the sine and cosine integraly of Appendix 11I. Equation
(8-60a) is identical to (4-70). In deriving (8-60a) it was assumed that the radius of
the wire is negligible (in this case set to zero), and it has little effect on the overall
answer. This is a valid assumption provided ! >> «, and it has been confirmed by
other methods.

The inpul resistance and input reactance (referred to at the current at the input
terminals) can be obtained by u transfer relation given by (4-79), or

R, = b 2R . T (8-61
= AL) T sin}ki2) -6la)
l() : xm
. —_— — X — —;-,— - 3
Xin (1,-,,) " sin®(klf2) (8-61b)

For a small dipole the input reactance is given by [34]

o onlngre) ~ 1)
Xig = Xy = —120 tan(ki/2) (8-62)

while its input resistance and radiation resistance are given by (4-37). Plots of the self
impedance. both resistance and reactance. based on (8-60a). (8-60b) and (8-61a),
(8-61b) for 0 = / = 3A are shown in Figures 8.16(a.b). The radius of the wire is
1077A. It is evident that when the length of the wire is multiples of a wavelength the
resistances and reactances become infinite; in practice they are large.

Ideally the radius of the wire does not affect the input resistance. as is indicated
by (8-60a). However in practice it does have an effect, although it is not as significant
as it is for the input reactance. To examine the effect the radius has on the values of
the reactance, its values as given by (8-6(0) have been plotted in Figure 8,17 fora =
1075A. 107 *A. 1077A. and 10~ 2A. The overall length of the wire is taken to be 0 <
[ = 3A. It is apparent that the reactance can be reduced to zero provided the overall
length is slightly less than nA/2, n = 1, 3, ..., or slightly greater than nA/2. n = 2,
4, . ... This is commonly done in practice for / = A/2 because the input resistance is
close 10 50 ohms, an almost ideal match for the widely used 50-ohm lines. For small
radii, the reactance for / = A/2 is equal to 42.5 ohms.

From (8-60b) it is also evident that when/ = nA2,n = 1, 2,3, ..., the terms
within the last bracketl do not contribute because sin(k/) = sin(nm) = 0. Thus for
dipoles whose overall length is an integral number of half-wavelengths. the radius
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Figure 8.16 Self-resistance and seif-reactance of dipole antenna with wire radius of 107° A,

has no effect on the antenna reactance. This is illustrated in Figure 8.17 by the
intersection points of the curves.

Example 8.5

Using the induced emf method, compute the input reactance for a linear dipole whose
lengths are nA/2, where n = | — 6.

SOLUTION

The input reactance for a linear dipole based on the induced emf method is given by
(8-60b) whose values are equal to 42.5 for A/2, 125.4 for A, 45.5 for 3A/2, 133.1 for
2A, 46.2 for SA/2, and 135.8 for 3A.
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Figure 8.17 Reactance (referred to the current maximum) of linear dipole with sinusoidal
currcnt distnibution for different wire radii.

8.6 MUTUAL IMPEDANCE BETWEEN
LINEAR ELEMENTS

In the previous section, the input impedance of a linear dipole was derived when the
element was radiating into an unbounded medium. The presence of an obstacle, which
could be another element, would alter the current distribution. the field radiated, and
in turn the input impedance of the antenna. Thus the antenna performance depends
not only on its own current but also on the current of neighboring elements. For
resonant elements with no current excitation of their own, there could be a substantial
current induced by radiation from another source. These are known as parasitic
elements. as in the case of 4 Yagi-Uda antenna, and play an important role in the
overall performance of the entire antenna system. The antenna designer, therefore,
must take into account the interaction and mutual effects between elements. The input
impedance of the antenna in the presence of the other elements or obstacles, which
will be referred to as driving-point impedance, depends upon the self impedance
(input impedance in the absence of any obstacle or other element) and the mutual
impedance between the driven element and the other obstacles or elements.

To simplify the analysis, it is assumed that the antenna system consists of two
elements. The system can be represented by a two-port (four-terminal) network, as
shown in Figure 8.18, and by the voltage-current relations

Vi =20, + Zpnl,
-6
Vo = Zoly + 215 @63
where
1%
Zy, =— (8-63a)
ll Ig=0
is the input impedance at port #1 with port #2 open-circuited,
Vi
Z|3 = . (8-63b)
]2 L=0
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Figure 8.18 Two-porl network and its T-equivalent.

is the mutual impedance at port #1 due to a current at port #2 (with port #1 open-
circuited),

Vs
Zyy = —

7 (8-63¢)

L=t
is the mutual impedance at port #2 due to a current in port #1 (with port #2 open-
circuited),

Ly 3

(8-63d)

=1

is the input impedance at port #2 with port #1 open-circuited. For a reciprocal
network, Z,s = Z-.

The impedances Z;; and Z,, are the input impedances of antennas | and 2,
respectively, when each is radiating in an unbounded medium. The presence of another
element modifies the input impedance and the extent and nature of the effects depends
upon (1) the antenna type, (2) the relative placement of the elements, and (3) the type
of feed used to excite the elements.

Equation (8-63) can also be written as

% I

Z“_J = _I = Z” + Z]E —= (8“643]
1 h
Vs !

Zy=7=1In+ Iy ([—‘) (8-64b)

Z,; and Z,, represent the driving point impedances of antennas | and 2, respectively.
Each driving point impedance depends upon the current ratio /\//5, the mutual impe-
dance, and the self-input impedance (when radiating into an unbounded medium).
When attempting to match any antenna, it is the driving point impedance that must
be matched. It is, therefore, apparent that the mutual impedance plays an important
role in the performance of an antenna and should be investigated. However, the
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4 ———

Figure 8.19 Dipole positioning for mutual coupling.

analysis associated with it is usually quite complex and only simplified models can
be examined with the induced emf method. Integral Equation-Moment Method tech-
niques can be used for more complex geometries, including skewed arrangements of
clements.

Referring to Figure 8.19, the induced open-circuit voltage in antenna 2, referred
fo its current at the input terminals, due to radiation from antenna | is given by

1 1.2

/., = —_—— s ‘," > 7’ ' -
Vay i) yn BaeRED A (8-65)

where

E. (") = E-field component radiated by antenna 1, which is parallel to antenna 2
I,(z') = current distribution along antenna 2

Therefore the mutual impedance of (8-63c), (referred to at the input current I, of
antenna 1), is expressed as

_ V'_!l 1 1‘112 , , ,
Zgu = ‘Z‘" = - ]“{‘u 2 E;ZI(& )[3(2 )d._ (8-66)

8.6.1 Integral Equation-Moment Method

To use this method to find the mutual impedance based on (8-66). an integral equation
must be formed to find £..;, which is the field radiated by antenna 1 at any point on
antenna 2. This integral equation must be a function of the unknown current on
antenna 1, and it can be derived using a procedure similar to that used to form
Pocklington’s Integral Equation of (8-22) or (8-24), or Halién’s Integral Equation of
(8-27). The unknown current of antenna 1 can be represented by a series of finite



8.6 Mutual Impedance Between Linear Elements 415

number of terms with & unknown coefficients and a set of known (chosen) basis
functions. The current /(<) must also be expanded into a finite series of N terms with
N unknown coefficients and a set of N chosen basis functions. Once each of them is
formulated, then they can be used interactively to reduce (8-66) intoan N X N set of
linearly independent equations to find the mutual impedance.

To accomplish this requires a lengthy formulation, computer programming, and
usually a digital computer. The process usually requires numerical integrations or
special functions for the evaluation of the impedance matrices of E.,, and the integral
of (8-66). There are national computer codes, such as the Numerical Electromagnetics
Code (NEC) and the simplified version Mini Numerical Electromagnetics Code (MIN-
INEC). for the evaluation of the radiation characteristics, including impedances, of
wire antennas [35]-[37]. Both ol these are based on an Integral Equation-Moment
Methad formulation. Information concerning these two codes totlows. There are other
codes: however, these two seem to be the most popular, especially for wire type
antennas.

Another procedure that has been suggested to include mutual effects in arrays of
linear clements is to use a convergent iterative algorithm [38], [39]. This method can
be used in conjunction with a calculator [38], and it has been used to calculate
impedances. patterns and directivities of arrays of dipoles [39].

A. Numerical Electromagnetics Code (NEC)

The Numerical Electromagnetics Code (NEC) is a user-oriented program developed
at Lawrence Livermore Laboratory. It is a moment method code for analyzing the
interaction of electromagnetic waves with arbitrary structures consisting of conducting
wires and surfaces. It combines an integral equation for smooth surfaces with one for
wires to provide convenient and accurate modeling for a wide range of applications.
The code can model nonradiating networks and transmission lines, perfect and im-
perfect conductors, lumped element loading. and perfect and imperfect conducting
ground planes. It uses the electric field integral equation (EFIE) for thin wires and the
magnetic field integral equation (MFIE) for surfaces. The excitation can be either an
applied voltage source or an incident plane wave. The program computes induced
currents and charges, near- and far-zone electric and magnetic fields, radar cross
section, impedances or admittances, gain and directivity, power budget, and antenna-
to-antenna coupling.

B. Mini-Numerical Electromagnetics Code (MININEC)
The Mini-Numerical Electromagnetics Code {MININEC) [36], [37] is a user-oriented
compact version of the NEC developed at the Naval Ocean Systems Center (NOSC).
It is also a moment method code, but coded in BASIC. and has retained the most
frequently used options of the NEC. It is intended to be used in mini, micro, and
personal computers. as well as work stations. and it is most convenient to analyze
wire antennas. It computes currents, and near- and far-field patterns. It also optimizes
the feed excitation voltages that yield desired radiation patterns.

Information concerning the NEC and MININEC, and their availability, can be
directed to:

Professor Richard W. Adler
Naval Postgraduate School

Code 62 AB

Monterey. California 93943



416 Chapter 8 Integral Equations, Moment Method, and Self and Mutual Impedances

8.6.2 Induced EMF Method

The induced emf method is also based on (8-66) except that /»(z') is assumed to be
the ideal current distribution of {(4-56) or (8-58) while E,»,(z") is the electric field of
(8-55b). Using (8-58) and (8-55b), we can express (8-66) as

Vql nliml"m J . I8 e—ij,
Z,, = = . k [ z’
M 411'1,,11, b2 S0 P 2’| R,

e—ij: ,'I e—jkr' ,
+ i 2 cos (AE W dz (8-67)

2

where r. Ry, and R are given, respectively, by (8-53a), {(8-53b) and (8-53c) but with

=dand! = 1. 1,,. 1, and I,;. I; represent, rerecllvely the maximum and input
currcnts for antennas | and 2. By referring each of the maximum currents to those at
the input using (4-78) and assuming free space. we can write (8-67) as

30 41 ! - JkR,
Zop = j f sin [k (—2 - Iz’l)] ["
, (kl.) , (k!z) ~hn2 2 R,
SN ? Sii—

2
5_."'}?2 ! — jkr
+ & R — 2 cos (ki') £ " ] dz’ (8-68)
The mutwal impedance referred to the current maxima is related to that at the input
of (8-68) by
ki, kL
Zoim = Loy sm( 2 ) sm( 2) (8-69)
which for identical elements (I, = [, = !) reduces o
ki
Z’llm 21|, sin” (2) (8-70)
whose real and imaginary parts are related by
ki
R'Zlm = R0|, sin” (2) (8'70&)
ki
X.'.’!m X‘)“ sin (2) (8"70[))

For a two-element array of linear dipoles, there are three classic configurations
for which closed-form solutions for (8-68), in terms of sine and cosine integrals, are
obtained [33]. These are shown in Figure 8.20, and they are referred to as the side-
by-side [Fig. 8.20(a)). collinear [Fig. 8.20(b)], and parallel-in-echelon [Fig. 8.20(c)].
For two identical elements (each with odd multiples of 2.1 = nA/2, n = 1, 3,5,
. ..) (8-70) reduces for each arrangement to the expressions that follow. Expressions
for linear elements of any fength are much more compiex and can be found in {33].

A computer program referred to as SELF AND MUTUAL IMPEDANCES, based
on (8-71a)}-(8-731), is included at the end of the chapter.
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Figure 8.20 Dipole configuration of two identical elements for mutual
impedance computations.

Side-hy-Side Configuration [Figure 8.20(a)/]

Rapm = —-[2Cue) — Ciluy) — Cilup)] (8-71a)
4qr
Xapm = — —-[28:(0) = S,(y) — Si(u2)] (8-71b)
4
uy = kd (8-71c)

u, = k(\/d- +1-+ 1) (8-71d)
ur» = k(\/d*> + 1 - 1) (8-71e)

Collinear Configuration [Figure 8.20(b)]

Ryyw = — S%TCOS(U())[“QC,'QUD) + Civy) + Ci(v)) — In(vy)]
+ Eg} Sin(U25;(2vy) — Si(va) — Si(v))] (8-72a)
Xoim = — -8"’; COS(U[2S,(2ve) — 5,(v2) — Si(w)]

+ siwsin(vn)l'ZCvaa) = Ci(vy) — Ci(vy) — In(vy)] (8-72b)

g = kh (8-720)
v, = 2k(h + (8-72d)
U = 2/\(/1 - ,) (8-728)

v = (B = 1)K (8-72f)
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Parallel-in-Echelon Configuration [Figure 8.20(¢)]
Roiw = = 2= costwa) =2Ci(w1) = 2G(w) + Clwy)
+ Cilw) + Ci(w3) + Ci(ws)]
+ g sin(wg)[25;00) — 25,00) — Si(w2)

+ 5;(w3) — 5;(wq) + S;(w1)] (8-73a)

Xaim = — Slﬂcos(wo)[ZS,-(w.) + 2S)(w)) — Si(wa)
— §i(wz) — S§;{w3) — Si(wa)]
+ BlTrsin(w(,)IZC,(wl) — 2Ciw]) = Cilwy) + Ci(wl)
— Ci(ws) + Ci(w3)) (8-73b)
wy = kh (8-73¢)

w, = k(\/d* + I + h) (8-73d)
wl = k(\/d* + 1’ — h) (8-73e)

wy = k[\@Z+ h = I) + (h = D] (8-73h)
wi = k[IN/d® + th — 1 — (h = 1) (8-73g)
wy = k[\/d° + (h + IV + (h + D] (8-73h)
wi = k[\Nd*> + (h + I}’ — (h + D] (8-73i)

The mutual impedance, referred to the current maximum, based on the induced
emf method of a side-by-side and a collinear arrangement of two half-wavelength
dipoles is shown plotted in Figure 8.21. It is apparent that the side-by-side arrangement
exhibits larger mutual effects since the antennas are placed in the direction of maxi-
mum radiation. The data is compared with those based on the Moment Method/NEC
[35) using a wire with a radius of 107°A. A very good agreement is indicated between
the two sets because a wire with a radius of 107°A for the MM/NEC is considered
very thin. Variations as a function of the radius of the wire for both the side-by-side
and collinear arrangements using the MM/NEC are shown, respectively, in Figures
8.22(a,b). Similar sets of data were computed for the parallel-in-echelon arrangement
of Figure 8.20(c). and they are shown. respectively. in Figures 8,23(a) and 8.23(b)
ford = M4, 0<h=Aandh = A2, 0 <d < A for wire radii of 10 "*A. Again a
very good agreement between the induced emf and Moment Method/NEC data is
indicated.

Example 8.6

Two identical linear half-wavelength dipoles are placed in a side-by-side arrangement,
as shown in Figure 8.20(a). Assuming that the separation between the elements is
d = 0.35A, find the driving point impedance of each.
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Figure 8.21 Mutual impedance of two side-by-side and collinear A/2 dipoles using the mo-
ment method and induced emf method.

SOLUTION
Using (8-64a)
v I
Zy, = T'I' =Zy + le('ﬁ)

Since the dipoles are identical. I, = I,. Thus
Zyy =12y + Z)

From Figure 8.21(a)
Z, =125~ j38
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Since
Z,, =73 + j425
Z,, reduces to
Z,,=98 + j4.5
which is also equal to Z,; of (8-64b).
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Figure 8.23 Muuual impedance for two paraltel-in-echelon A/2 dipoles with
wire radii of 1073 A,

As discussed in Chapter 2, Section 2.13, maximum power transfer between the
generator and the transmitting antenna occurs when their impedances are conjugate-
matched. The same is necessary for the receiver and receiving antenna. This ensures
maximum power transfer between the transmitter and receiver, when there is no
interaction between the antennas. In practice. the input impedance of one antenna
depends on the load connected to the other antenna. Under those conditions, the
matched loads and maximum coupling can be computed using the Linvilie method
[40]. which is used in rf amplifier design. This technique has been incorporated into
the NEC [35]. Using this method, maximum coupling is computed using |35]
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by-side and collinear arrangements as a function of separation.

1 i
Cogs = Z“ - - LH"7 (8-74)

where
L = V12 Y2
2Re(Y))) Re(Yx) — Re(Y2Yy)

To ensure maximum coupling, the admittance of the matched load on the receiving
antenna should be [35]

(8-74a)

l —_
Y, = [ £y I] Re(Yyn) — Vo (8-75)
l+p
where
Gumax (Y12 Ya))*
R A 5759
The corresponding input admittance of the transmitting antenna is
Yy Y2
Y = Y — Y, + Y (8-76)

Based on (8-74)—(8-76). maximum coupling for two half-wavelength dipoles in
side-by-side and collinear arrangements as a function of the element separation (d for
side-by-side and s for collinear) was computed using the NEC, and it is shown in
Figure 8.24. As expected. the side-by-side arrangement exhibits much stronger coup-
ling, since the elements are placed along the direction of their respective maximum
radiation. Similar curves can be computed for the parallel-in-echelon arrangement.

8.7 MUTUAL COUPLING IN ARRAYS

When two antennas are near each other, whether one and/or both are transmitting or
receiving, some of the energy that is primarily intended for one ends up at the other.
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The amount depends primarily on the

a. radiation characteristics of each
b. relative separation between them
¢. relative orientation of each

There are many different mechanisms that can cause this interchange of energy. For
example, even if both antennas are transmitting, some of the energy radiated from
each will be received by the other because of the nonideal directional characteristics
of practical antennas. Pan of the incident energy on one or both antennas may be
rescattered in different directions allowing them to behave as secondary transmitters.
This interchange of energy is known as “‘mutual coupling,”’ and in many cases it
complicates the analysis and design of an antenna. Furthermore, for most practical
configurations, mutual coupling is difficult to predict analytically but must be taken
into account because of its significant contribution. Because the mutual effects of any
antenna configuration cannot be generalized, in this section we want first to briefly
introduce them in a qualitative manner and then examine their general influence on
the behavior of the radiation characteristics of the antenna. Most of the material and
presentation in this section is followed from a well-written document on this subject
[41].

8.7.1 Coupling in the Transmitting Mode

To simplify the discussion, let us assume that two antennas m and »n of an array are
positioned relative to each other as shown in Figure 8.25(a). The procedure can be
extended to a number of elements, If a source is attached to antenna n, the generated
energy traveling toward the antenna labeled as (0) will be radiated into space (1) and
toward the mth antenna (2), The energy incident on the mth antenna sets up currents
which have a tendency to rescatter some of the energy (3) and allow the remaining
to travel toward the generator of m (4). Some of the rescattered energy (3) may be
redirected back toward antenna n (5). This process can continue indefinitely. The
same process would take place if antenna m is excited and antenna »n is the parasitic
element. If both antennas, m and n, are excited simultaneously, the radiated and
rescattered fields by and from each must be added vectorially to arrive at the total
field at any observation point. Thus, *‘the total contribution to the far-field pattern of
a particular element in the array depends not only upon the excitation furnished by
its own generator (the direct excitation) but upon the total parasitic excitation as
well, which depends upon the couplings from and the excitation of the other generators
[41]."

The wave directed from the n to the m antenna and finally toward its generator
(4) adds vectorially to the incident and reflected waves of the m antenna itself, thus
enhancing the existing standing wave pattern within m. For coherent excitations, the
coupled wave (4) due to source » differs from the reflected one in m only in phase
and amplitude. The manner in which these two waves interact depends on the coupling
between them and the excitation of each. It is evident then that the vector sum of
these two waves will influence the input impedance looking in at the terminals of
antenna m and will be a function of the position and excitation of antenna n. This
coupling effect is commonly modeled as a change in the apparent driving impedance
of the elements and it is usually referred to as mutwal impedance variation,

To demonstrate the usefulness of the driving impedance variation, let us assume
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Figure 8.25 Transmilling mode coupling paths between antennas m and n (Reprinted with
permission of MIT Lincoln Laboratory. Lexington, MA).

that a set of clements in an array are excited. For a given element in the array, the
generator impedance that is optimum in the sense of maximizing the radiated power
for that element is that which would be a conjugate impedance match at the element
terminals. This is accomplished by setting a reflected wave which is equal in amplitude
and phase to the backwards traveling waves induced due to the coupling. Even though
this is not the generator impedance which is a match to a given element when all
other elements are not excited. it does achieve maximum power transfer.

To minimize confusion, let us adopt the following terminology [41]:

1. Antenna impedance: The impedance looking into a single isolated element.
Passive driving impedance: The impedance looking into a single element of an
array with all other elements of the array passively terminated in their normal
generator impedance unless otherwise specified.

3. Active driving impedance: The impedance looking into a single element of an
array with all other elements of the array excited.
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Since the passive driving impedance is of minor practical importance and differs
only slightly from the antenna impedance, the term driving impedance will be used
to indicate active driving impedance, unless otherwise specified.

Since the driving impedance for a given element is a function of the placement
and excitation of the other elements, then optimum generator impedance that maxi-
mizes array radiation efficiency (gain) varies with array excitation. These changes,
with element excitation variations, constitute one of the principal aggravations in
electronic scanning arrays.

8.7.2 Coupling in the Receiving Mode

To illustrate the coupling mechanism in the receiving mode, let us again assume that
the antenna system consists of two passively loaded elements of a large number. as
shown in Figure 8.25(b). Assume that a plane wave (0) is incident, and it strikes
antenna m first where it causes current flow. Part of the incident wave will be rescat-
tered into space as (2). the other will be directed toward antenna » as (3) where it will
add vectorially with the incident wave (0}), and part will travel into its feed as (1). It
is then evident that the amount of energy received by each element of an antenna
array is the vector sum of the direct waves and those that are coupled to it parasitically
from the other elements.

The amount of energy that is absorbed and reradiated by each element depends
on its match to its terminating impedance. Thus, the amount of energy received by
any element depends upon its terminating impedance as well as that of the other
elements. In order to maximize the amount of energy extracted from an incident wave,
we like to minimize the total backscatlered (2) energy into space by properly choosing
the terminating impedance. This actually can be accomplished by mismatching the
receiver itself relative to the antenna so that the reflected wave back to the antenna
(4) is cancelled by the rescattered wave. had the receiver been maltched to the actual
impedance of each anienna.

As a result of the previous discussion, it is evident that mutual coupling plays an
important role in the performance of an antenna. However, the analysis and under-
standing of it may not be that simple.

8.7.3 Mutual Coupling on Array Performance
The effects of the mutual coupling on the performance of an array depends upon the

a. antenna type and its design parameters

b. relative positioning of the elements in the array
¢. [feed of the array elements

d. scan volume of the array

These design parameters influence the performance of the antenna array by varying
its element impedance, reflection coefficients, and overall antenna pattern. In a finite-
element array. the multipath routes the energy follows because of mutual coupling
will alter the pattern in the absence of these interactions. However, for a very large
regular array (array with elements placed at regular intervals on a grid and of sufficient
numbers so that edge effects can be ignored), the relative shape of the pattern will be
the same with and without coupling interactions. It will only require a scaling up or
down in amplitude while preserving the shape. This, however, is not true for irregular
placed elements or for small regular arrays where edge effects become dominant.
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8.7.4 Coupling in an Infinite Regular Array

The analysis and understanding of coupling can be considerably simplified by con-
sidering an infinite regular array. Although such an array is not physically realizable,
it does provide an insight and in many cases answers of practical importance. For the
infinite regular array we assume that

a. all the elements are placed at regular intervals

b. all the elements are identical

¢. all the elements have uniform (equal) amplitude excitation
d

there can be a linear relative phasing between the elements in the two orthogonal
directions

The geometry of such an array is shown in Figure 6.23 with its array factor given by
(6-87) or (6-88). This simplified model will be used to analyze the coupling and
describes fairly accurately the behavior of most elements in arrays of modest to large
size placed on flat or slowly curve surfaces with smoothly varying amplitude and
phase taper.

To assess the behavior of the element driving impedance as a function of scan
angle, we can write the terminal voltage of any one element in terms of the currents
flowing in the others, assuming a single-mode operation, as

Vi = 20 2 Zownpa dog (8-77)

P4

where Z,,p, defines the terminal voltage at antenna mn due to a unity current in
element pg when the current in all the other elements is zero. Thus the Z,,,, ,, terms
represent the mutual impedances when the indices mn and pqg are not identical. The
driving impedance of the mnth element is defined as

vﬂm I ]
Zpmn = = 2 2 Zmn.pq;ﬂ (8-78)

I mn P 4 e

Since we assumed that the amplitude excitation of the elements of the array was
uniform and the phase linear, we can write that

L, = [mef(pﬂ&riﬁn (8-79a)
Ly = loge! "+ "8 (8-79b)

Thus, (8-78) reduces to
Zpwn = 2, 2 Ziy g €10~ gt MB, (8-80)

n

It is evident that the driving point impedance of mn element is equal to the vector
sum of the element selt impedance (mn = pg) and the phased mutual impedances
between it and the other elements (mn # pg). The element self impedance (mn =
Pq) is obtained when all other elements are open-circuited so that the current at their
feed points is zero [/,,(pg # mn) = 0]. For most practical antennas, physically this
is almost equivalent to removing the pg elements and finding the impedance of a
single isolated element.

A consequence of the mutual coupling problem is the change of the array impe-
dance with scan angle. In order not to obscure the basic principle with the complexity
of the problem, this can best be illustrated by examining the behavior of the reflection
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coefficient of a uniform plane wave in free-space incident on a resistive sheet of
infinite extent backed by an open circuit so that there are no transmitted fields through
the sheet, as shown in Figure 8.26(a). Although the open circuit is not physically
realizable, nevertheless the model is useful, This is accomplished by choosing the
surface resistivity of the sheet to be that of free-space (1, = 1207) so that the sheet
is an exact maich for a normally incident wave. Referring to Figure 8.26(b) for an
E-plane scan and Figure 8.26(c) for an H-plane scan, we impose that at the boundary
(z = 0 for all x and y) the ratio of the total tangential electric field to the total
tangential magnetic field is equal to the surface impedance of the sheet. The same
procedure is used in electromagnetics to derive the Fresnel reflection and transmission
coefficients from planar interfaces for vertical and horizontal polarizations [14].

Referring to Figure 8.26(b), we can write that the incident and reflected waves
for the E- and H-fields as

E' = E)&, cos 0, — &_sin @) fktsinfrzcost (8-81a)
Hl’ — ﬁ_rH(i)e-i‘jkg;(ySiuf),*f-:cns(l,) (8'8“))
E" = Ei(@, cos 8, + 4. sin @,)e Fol~ysnhtiush (8-81c)

H = —&Hfe Mol ysint+zcost) (8-81d)
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Applying boundary conditions on the tangential components of the electric and mag-
netic field of (8-81a)—(8-81d) gives

El:m 3 E‘(‘) cos 6,, eﬂ«'n}'sin 4 4 E(') cos Brc,jk(._\fsin 4

o H, B Hfi)ejk’"”in ho— H(’)-e'/"u!'”“”» (8-82)
Since
_ El
Hj == (8-82a)
T
E"
Hf = = (8-82b)
Mo
we can write (8-82) as
Ei(cos 6, — 1) ey = _Eicos §, + 1)ersind (8-83)
whose only solution independent of y occurs when 6, = #,. Thus,
E, 1 - cosé , {6
L===—"""=1n’?|= 8-8
B, 1 +cosg 0 (2 (8-84)
which can also be written as
! 1
E 1 — cos 6  cos Z. -1
]"t. = — = = = 8-
E(l, 1 + cos H; 1 + l Z‘, -+ 1 ( 85)

cos 6,

By comparison with the reflection coefficient I of a transmission line with a normal-
ized load Z;

_ 4 -1
A (8-86)
the sheet represents an impedance to the wave that varies as
|
Z. = (8-87)

cos 6;

This is usually referred to as a normalized directional impedance.
Referring to Figure 8.26(c), it can be shown that for the H-plane scan the reflection
coefficient is

1 — cos {8
[‘ = —— 1 = — o -
4 | + cos 6 tan (2) (8-83)
and the sheet represents o the wave an impedance that varies as
Z, = cos 6 (8-89)

It is clear that even for such a simple problem of a plane wave impinging on a
resistive sheet, there is a change, as a function of the scan angle, of the apparent
impedance that the resistive sheet represents to the wave,

To illustrate the practical importance of the resistive sheet problem, the computed
reflection coefficient magnitude for the E- and H-plane scans for arrays of half-
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Figure 8.27 Magnitude of reflection coefficient as a function of principal plane
scan angle. (Reprinted with permission of MIT Lincoln Laboratory, Lexington, MA.)

wavelength dipoles for various spacings d{d = d, = d,) and height » above a ground
plane are shown in Figures 8.27(a.b) [41]. The height & was chosen to minimize the
mismatch in the principal planes of scan. The curves are discontinued at the angles
where major lobes are equally disposed about broadside and retrace themselves be-
yond that point. The angles of discontinuity become smaller for wider spacings. 1t is
also evident that the reflection coefficient for a given scan angle in the principal plane
becomes smaller as the elements are brought closer together. In the same figures and
indicated by small x's is the reflection coefficient of the central element of a large
array of short dipoles with a spacing of d, = d, = 0.1A but without a ground plane.
The resistive sheet reflection coefficient is also plotted for comparison purposes. It
should be noted that the results of Figure 8.27 were computed assuming the generator
impedance is matched to the element driving impedance when the array’s major lobe
was toward broadside. This requires the tuning of the driving reactance for broadside

conditions, which for small spacings is exceedingly large.

8.7.5 Grating Lobes Considerations

Because of the periodic nature of an infinite array, the impedance behavior as a
function of scan volume for different elements and interelement spacing can be
described in the form of an infinite series. This is accomplished by expressing the
radiated and stored (real and reactive) powers in the vicinity of the array in terms of
the current, field distribution or pattern, of a typical element. The analysis, which was
pionecred by Wheeler [42]; Edelberg and Oliner [43), {44]: and Stark [45] is straight-
forward, but it will not be included here because it requires a knowledge of Fourier
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transforms, and it is beyond the scope of the book at this point. However, some
qualitative results will be briefly discussed.

It was shown in Section 6.10.1 that grating lobes in an array can be formed
provided (6-89a) and (6-89b) are satisfied. This was illustrated by the three-dimen-
sional pattern of Figure 6.29. It was indicated there that additional grating lobes can
be formed by increasing the interelement spacing. The grating lobes disappear as the
spacing recedes toward zero, In general, grating lobes can be moved into and out of
the visible region by controlling the spacing and/or relative phase between the ele-
ments.

The dependence of the element driving impedance Z,(B,. 8,) on the pointing
direction (scan) of the main beam of the array is demonstrated by examining it for
different elements, spacings, and the presence of a ground plane. The discussion is
restricted to planar arrays and the impedance variations are illustrated for the E-, H-,
and D-planes. We define D- as the diagonal plane (45° from the E- and H-planes) and
6., 6. and 8, as the angles of the main beam from broadside for the E-, H- and
D-planes. sespectively.

If the elements are polarized in the v-direction. then according to (6-90a) and
(6-90b) the progressive phase shifts between the elements must be

B.=0

B = —kd,sing, ~ planescan(do =90%6 =6) (890
« = —kd, sin 0,
g’ -0 « I O H-plane scan (¢, = 0°, 6, = 8)) (8-91)

(%) + (%‘) = k sin 6, D-plane scan ((b() = 45°, 6 = 0, (8-92)

To make the presentation of the results more uniform, the element driving im-
pedance Zj(#) is displayed on a Smith chart in a normalized form

_ Zp(8) — jXp(0)

ZI)(Q)m)rm - Rl) (0) (8'93)
where
Z])(e) = R[)(H) + jXp(B) (8-933)
Rp(0) = Rp(6 = (°
p( ot ) beam pointed at broadside (8-93b)

Xn(0) = Xp(8 = 0°)

In Figure 8.28, we display the normalized driving impedance in the E-, H- and
D-planes for a planar array of half-wavelength dipoles (/ = 0.54) spaced d, = d, =
0.55A [41). The E- and H-planes are discontinued at 65°. Physically that angle cor-
responds 1o a grating lobe at —~ 65°, symmetrically disposed relative to the main beam,
Scanning beyond that point is equivalent 1o moving the main beam in from 65° or
retracing the curve.

For a VSWR of 3:1, the half-wavelength dipole array of Figure 8.28 can be
scanned up to 45° in the H-plane, 79° in the D-plane, and anywhere in the E-plane;
for a VSWR of 2:1, then the maximum scan angles are 50° in the E-plane, 40° in the
H-plane. and 77° in the D-plane. For a small dipole (/ = (.1A) the maximum scans
are 47° in the H-plane. 79° in the D-plane, and anywhere for the £-plane for a 3:1
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Figure 8.28 Normalized element impedance versus scan angle on the £-, H-, and D-planes
for a planar array ol half-wavelength dipoles ({ = 0.54) with d, = d, = 0.55A and with no

ground plane. (Reprinted with permission of MIT Lincoln Laboratory, Lexington, MA.)

VSWR: maximum scans of 40° in the H-plane, 76° in the D-plane, and anywhere in

the E-plane for a 2:1 VSWR, The results are summarized in Table 8.3 [41].

To demonstrate the eftects of a ground plane on the element driving impedance,
the normalized impedance of the half-wavelength (/ = 0.5A) dipole arrays. when
placed horizontally a height # = 0.25A above an infinite electric ground plane, are
displayed in Figure 8.29. Physically, the introduction of the ground plane below the

Table 8.3 MAXIMUM SCAN VOLUME OF SHORT AND HALF-

WAVELENGTH DIPOLE PLANAR ARRAY WITH d, = d, =

0.55A AND WITHOUT GROUND PLANE FOR VSWRs

OF 3:1 AND 2:1

|Reprinted with permission of MIT Lincoln Laboratory.

Lexington. MA|

Maximum Scan Angle

Short Dipole

Half-Wavelength

VSWR Scan Plane (I = 0.1A) Dipole (! = 0.51)
£-Plane — -

3:1 H-Plane 47° 45°
D-Plane 79° 79°
E-Plane — 50°

2:1 H-Plane 40° 4(F
D-Plane 76° 77°
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Figure 8.29 Normalized element impedance versus scan angle on the E-, H-, and D-planes
for a planar array of half-wavelength (¢ = 0.5A) dipoles with d, = d, = .55\ and placed
h = 0.25A above a ground plane. (Reprinted with permission of MIT Lincoln Laboratory,
Lexington, MA.}

horizontal electric dipoles prevents them from radiating along the ground plane, so
the impedance is continuous when a grating lobe moves into the visible region. The
maximum scan angles for VSWR’s of 3:1 and 2:1 are shown listed in Table 8.4 [41].

The impedances of a short dipole (/ = 0.1A) are similar to those of the half-
wavelength dipole shown in Figures 8.28 and 8.29. The most striking variation in

Table 8.4 MAXIMUM SCAN VOLUME OF SHORT AND HALF-
WAVELENGTH DIPOLE PLANAR ARRAY WITH d, = d, =
0.55A AND WITH GROUND PLANE (h = ().25A) FOR VSWRs
OF 3:1 AND 2:1
[Reprinted with permission of MIT Lincoln Laboratory,
Lexington, MA]

Maximum Scan Angle

Short Dipole Half-Wavelength

VSWR Scan Plane ( = 0.1A) Dipole (I = 0.5A)
E-Plane 55° 50°
31 H-Plane 50° 50°
D-Plane 62° 62°
E-Plane 45° 40°
2:1 H-Plane 40° 40°

D-Plane 52° 50°
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Laboratory. Lexington, MA.)

impedance of a given array of dipoles is accomplished by the introduction of the
ground plane particularly for scan angles near grating-lobe formation.

By comparing the results of Tables 8.3 and 8.4 it is evident that if for dipole
arrays the element spacing for allowing grating lobes to appear marginally is used as
a design criterion, placing the arrays above a ground plane would give vastly better
(but still poor) VSWR performance at extreme scans. If, however, the element spacing
is chosen to maintain the maximum VSWR below a given value, there appears little
difference between the elements but results in a smaller maximum scan for a given
element spacing.

Tao examine the effect the height 4 above the ground plane has on the maximum
VSWR (within a specified scan volume), the maximum VSWR as a function of the
height for E- and H-plane scans of two large square arrays of half-wavelength dipoles
withd, = d, = 0.5 and d, = d, = 0.6 spacing between the elements are displayed
in Figure 8.30. The maximum scan angle is 40° and the arrays are assumed to he
matched at broadside, It is evident from the results that as the height is decreased the
maximum £-plane mismatch becomes very large while that of the H-plane decreases
monotonically. The optimum height which leads to equal maximum mismatches in
the £- and H-planes of scan for a given scan volume is determined by the spacing
between the elements. The optimum heights for the two arrays are indicated in Figure
8.30.

It can be concluded that when an array is placed at its optimum height above the
ground plane for a given scan volume and the spacing between the elements of the
array is smaller than that required by the grating lobes, that array will exhibit less
impedance variations than the one which just satisfies the scan volume requirement.

To demonstrate the variations of the input reflection coefficient, and thus of the
input impedance, of an infinite array as a function of scan angle, the input reflection
coefficient of an infinite array of circular microstrip patches matched at broadside is
shown in Figure 8.31 for the E-plane and H-plane [46]. The variations are due mainly
to coupling between the elements. The variations are more pronounced for the
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Figure 8.31 Typical magnitude of input reflection coefficient versus scan angle in E- and
H-planes for infinite array of microstrip patches (courtesy 1. T. Aberle and F, Zavosh).

E-plane than for the H-plane. For microstrip patches, coupling is attributed to space
waves (with 1/r radial variations), higher order waves (with 1/p* radial variations),
surface waves (with 1/p® radial variations). and leaky waves [with exp(— Ap)/p'?
radial variations]. As is shown in Chapter 14 and Figures 14.36, 14.37, the variations
of the reflection coeflicient can be reduced by suppressing the surface waves supported
by the substrate using cavities to back the patches [46]. The variations of the reflection
coefficient as a function of scan angle can lead. due to large values of the reflection
coefficient (ideally unity), to what is usually referred as arrav scan blindness [47]-
[50]. This is evident for the E-plane near 72°-73° and is due to excitation in that plane
of a leaky-wave mode, which is not as strongly excited as the scan angle increases
beyond those values. Scan blindness is reached at a scan angle of 90°. Also there can
be degradation of side lobe level and main beam shape due to the large variations of
the reflection coefficient.

Scan blindness is attributed to slow waves which are supported by the structure
of the antenna array. These structures may take the form of dielectric layers (such as
radomes, superstrates and substrates) over the face of the array, or metallic grids or
fence structures. The scan blindness has been referred to as a *‘forced surface wave”’
[47], [48]. or a *‘leaky wave'" [49], resonant response of the slow wave structure by
the phased array. For the microstrip arrays, the substrate layer supports a slow surface
wave which contributes to scan blindness [S0].
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PROBLEMS

8.1. Derive Pocklington’s integral equation 8-24 using (8-22) and (8-23).

8.2. Derive the solution of {8-26) to the differential equation of (8-25a). Show that Hallén’s
integral cquation can be written as (8-27).

8.3. Show that the incident tangential electric field (E.) generated on the surface of a wire
of radius a by a magnetic field generator of (8-30) is given by (8-31).

8.4. Reduce (8-31) to (8-32) valid only along the z axis (p = 0).
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For the center-fed dipole of Example 8.3 write the |Z) matrix for N = 21 using for the
gap the delta-gap generator and the magnetic-frill generator. Use the computer program
MOMENT METHOD (POCKLINGTON) at the end of the chapter.

For an infinitesimal center-fed dipole of € = A/50 of radius ¢ = 0.005A, derive the
input impedance using Pocklington's integral equation with piecewise constant sub-
domain basis functions and point-matching. Use N = 2] and model the gap as a delta-
gap generator and as a magnetic-frill generator. Use the MOMENT METHOD (POCK-
LINGTON) computer program at the end of the chapter.

Using the MOMENT METHOD (HALLEN) computer program at the end of the
chapter. compute the input impedance of a A/4 and 3A/4 dipole with an //d ratio of
Id = 50 and 25. Use 20 subsections. Compare the resulls with the impedances of a
dipole with //d = 10°. Plol the current distribution and the Jar-field panern of each
dipole.

Derive (8-53)-(8-55b) using (8-52), (3-2a), and (4-56).

For a linear dipole with sinusoidal current distribution, radiating in free-space, find the
radiation Z,,, and the input Z;, impedances when a = A/20. Verify using the computer
program SELF AND MUTUAL IMPEDANCES at the end of Lhe chapter.

(a) I = M4 (by I = A2

(c) I = 3M4 1=

A A/2 dipole of finite radius is not self-resonant. However, if the dipole is somewhat
less than A2, it becomes self-resonant. For a dipole with radius of a = A/200 radiating
in free-space, find the

{a) nearest length by which the A2 dipole becomes self-resonant

(b) radiation resistance (referred to the current maximum) of the new resonant dipole
(c) input resistance

(d) VSWR when the dipole is connected to a 50-ohm line

Find the length, at the first resonance, of linear dipoles with wire radii of

(a) 10 A (b) 107*A

(©) 1074 (d) 10732\

Compute the radiation resistance of cach.

A quarter-wavelength monopole of radius @ = 107 2A is placed upon an infinite ground
plane. Determine the

(1) impedance of the monopole

(b} length by which it must be shortened lo become self-resonant (first resonance)

{c) impedance of the monopole when its length is that given in part b.

{d) VSWR when the monopole of part b is connected to a 50-ohm line.

For two halt-wavelength dipoles radiating in free-space, compute (using equations, not
curves) the mutual impedance Z,,,,, referred to the current maximum for

(a) side-by-side arrangement with d = A/4

(b) collinear configuration with s = A/4

Verify using the computer program SELF AND MUTUAL IMPEDANCES at the end
of the chapter.

Two identical linear A/2 dipoles are placed in a collinear arrangement a distance s =
0.35A apart. Find the driving point impedance of each. Verity using the computer
program SELF AND MUTUAL IMPEDANCES at the end of the chapter.

Two identical linear A/2 dipoles are placed in a collinear arrangement. Find the spacings
between them so that the driving point impedance of each has the smallest reactive
part.



COMPUTER PROGRAM - MOMENT METHOD
el Il I I L T T T L T Ty T L T YT
C
C THIS IS A FORTRAN MOMENT METHOD PROGRAM USING

I. POCKLINGTON'S [Equ. (8-24)}
II. HALLEN'S [Equ. (8-27)]

INTEGRAL EQUATIONS TO COMPUTE THE:

A. CURRENT DISTRIBUTION
B. INPUT IMPEDANCE
C. NORMALIZED AMPLITUDE RADIATION PATTERN

C OF ALINEAR SYMMETRICALLY EXCITED DIPOLE.

C THIS PROGRAM USES PULSE EXPANSION FOR THE ELECTRIC
C CURRENT MODE AND POINT-MATCHING THE ELECTRIC
C FIELD AT THE CENTER OF EACH WIRE SEGMENT

C

C DELTA-GAP FEED MODEL IS USED IN BOTH FORMULATIONS.

C IN ADDITION, MAGNETIC-FRILL. GENERATOR IS AVAILABLE IN
C THE POCKLINGTON'S INTEGRAL EQUATION

oleioleivieieieivie

@]

OPTION 1. POCKLINGTON'S INTEGRAL EQUATION
OPTION II. HALLEN'S INTEGRAL EQUATION

*+INPUT PARAMETERS

1. TL = TOTAL LENGTH OF THE DIPOLE (in wavelengths)
2. RA = RADIUS OF THE WIRE (in wavelengths)
3. NM = TOTAL NUMBER OF SUBSECTIONS
(must be an odd integer)
4, IEX = OPTION TO USE EITHER MAGNETIC-FRILL
GENERATOR OR DELTA-GAP FEED
IEX = 1: MAGNETIC-FRILL GENERATOR
IEX = 2: DELTA-GAP FEED
**NOTE

IGNORE INPUT PARAMETER IEX WHEN CHOOSING OPTION I
(i.e., HALLEN'S FORMULATION)
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COMPUTER PROGRAM - SELF AND MUTUAL IMPEDANCES

Cos eSS4 5000420 R SRS RS A ESELRRARSORSIREREEERERSRRANR SRS e

C
C THIS IS A FORTRAN PROGRAM THAT COMPUTES THE:

I. SELF IMPEDANCE FOR ANY LENGTH DIPOLE
I1. MUTUAL IMPEDANCE BETWEEN TWO IDENTICAL
LINEAR DIPOLES

BASED ON THE INDUCED EMF METHOD AND THE IDEAL CURRENT
DISTRIBUTION OF EQUATION (4-56)

THE IMPEDANCES CAN BE COMPUTED BASED EITHER ON THE CURRENT
AT THE INPUT, OR ON THE CURRENT MAXIMUM:

L. SELF IMPEDANCE (INPUT IMPEDANCE)

1. BASED ON CURRENT AT THE INPUT:
Zin =Rp+jXpy
R;; =INPUT RESISTANCE [Equs.(8-60a) and (8-61a)]
Xin =INPUT REACTANCE [Equs.(8-60b) and (8-61b)]

2. BASED ON CUR!}ENT MAXIMUM:
Ziom =Rigm + ] Xinm
Ripm = SELF RESISTANCE [Equ. (8-60a)]
Xinm = SELF REACTANCE [Equ. (8-60b)]

IL MUTUAL IMPEDANCE

1. BASED ON CUR_RENT AT THE INPUT:
Zy1; =Ry +j Xyy4 [Equ. (8-68)]
Ry; = MUTUAL RESISTANCE

Xm = MUTUAL REACI‘ANCE

2. BASED ON CURRENT MAXIMUM:

Zyim =Raim +j X21m [Equ. (8-70)]
Ryym =MUTUAL RESISTANCE
Xo1m =MUTUAL REACTANCE

C THE DIPOLES FOR MUTUAL IMPEDANCE COMPUTATIONS MUST BE
C IDENTICAL WITH LENGTH OF ODD MULTIPLES OF A/2
C (=nM2,n=135.).

ACONOOONONNANNONOOCAONNNONOCAACHOOON

OPTION 1. SELF IMPEDANCE (INPUT IMPEDANCE)

**ARRAY INPUT PARAMETERS
1. 1 =LENGTH OF THE DIPOLE
2. a =RADIUS OF THE DIPOLE

ONOOONONn

(continued on next page)
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(continued)

OPTION II. MUTUAL IMPEDANCE
CHOICE A: SIDE-BY-SIDE [see Fig. 8.19(a)]

**ARRAY INPUT PARAMETERS
1. | =LENGTH OF THE DIPOLES
2. d =HORIZONTAL DISPLACEMENT OF DIPOLES

CHOICE B: COLLINEAR [see Fig. 8.19(b)]

**ARRAY INPUT PARAMETERS
1. | =LENGTH OF THE DIPOLES
2. h =VERTICAL DISPLACEMENT OF DIPOLES

CHOICE C: PARALLEL-IN-ECHELON [see Fig. 8.19(c)]

**ARRAY INPUT PARAMETERS

1. | =LENGTH OF THE DIPOLE

2. h =VERTICAL DISPLACEMENT OF DIPOLES

2. d =HORIZONTAL DISPLACEMENT OF DIPOLES

**NOTE
ALL THE INPUT DATA ARE IN WAVELENGTHS.
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