CHAPTER

11

FREQUENCY INDEPENDENT
ANTENNAS AND ANTENNA
MINIATURIZATION

11.1 INTRODUCTION

The numerous applications of electromagnetics to the advances of technology have
necessitated the exploration und utilization of most of the electromagnetic spectrum,
In addition. the advent of broadband systems have demanded the design of broadband
radiators. The use of simple, small. lightweight, and economical antennas, designed
to operate over the entire frequency band of a given system, would be mosl desirable,
Although in practice all the desired features and benefits cannot usuatly be derived
from a single radiator. most can effectively be accommodated. Previous to the 1950s,
antennas with broadband pattern and impedance characteristics had bandwidths not
greater than 2:1. In the 1950s, a breakthrough in antenna evolution was made which
extended the bandwidth to as great as 40:1 or more. The antennas introduced by the:
breakthrough were referred to as frequency independent, and they had geometnes that
were specified by angles. These antennas are primarily used in the 10-10,000 MHz
region in a variety of practical applications such as TV, point-to-point communication,
feeds for reflectors and lenses, and so forth.

In antenna scale modeling, characteristics such as impedance, pattern, polariza-
tion, and so [orth. are invariant to a change of the physical size if a similar change is
also made in the operating frequency or wavelength. For example, if afl the physical
dimensions are reduced by a factor of two, the performance of the antenna will remain
unchanged if the operating frequency is increased by a factor of two. In other words,
the performance is invariant if the electrical dimensions remain unchanged. This is
the principle on which antenna scale model measurements are made. For a complete
and thorough discussion of scaling, the reader is referred to Section 16.10 entitled
**Scale Model Measurements,™

The scaling characteristics of antenna model measurements also indicate that if
the shape ol the antenna were completely specified by angles, its performance would
have to be independent of frequency | !1]. The infinite biconical dipole of Figure 9.
is one such structure. To make infinite structures more practical, the designs usually
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require that the current on the structure decrease with distance away from the input
terminals. After a certain point the current is negligible, and the structure beyond that
point to infinity can be truncated and removed. Practically then the truncated antenna
has a lower cutoff frequency above which its radiation characteristics are the same as
those of the infinite structure. The lower cutot! frequency is that for which the current
at the point of truncation becomes negligible. The upper cutoff is limited to frequencies
for which the dimensions of the feed transmission line cease to look like a “*point’’
(usually about A,/8 where A, is the wavelength at the highest desirable frequency).
Practical bandwidths are on the order of about 40:1. Even higher ratios (i.e., 1,000:1)
can be achieved in antenna design but they are not necessary, since they would far
exceed the bandwidths of receivers and transmitters.

Even though the shape of the biconical antenna can be completely specified by
angles. the current on its structure does not diminish with distance away from the
input terminals, and its pattern does not have a limiting form with frequency. This
can be seen by examining the current distribution as given by (9-11). It is evident that
there are phuse but no amplitude variations with the radial distance r. Thus the
biconical structure cannot be truncated to form a frequency independent antenna. In
practice, however, antenna shapes exist which satisfy the general shape equation, as
proposed by Rumsey [1]. to have frequency independent characteristics in pattern,
impedance, polarization, and so forth, and with current distribution which diminishes
rapidly.

Rumsey's general equation will first be developed, and it will be used as the
unifying concept to link the major forms of frequency independent antennas. Classical
shapes of such antennas include the equiangular geometries of planar and conical
spiral structures investigated thoroughly by Dyson {2}, {31, and the logarithmically
periodic structures proposed and developed by DuHamel and Isbell [4], [5].

Fundamental limitations in electrically small antennas will be discussed in Section
11.5. These will be derived using spherical mode theory, with the antenna enclosed
in a virtual sphere. Minimum Q curves, which place limits on the achievable band-
width, will be included.

11.2 THEORY

The analytical treatment of frequency independent antennas presented here paraliels
that introduced by Rumsey [1] and simplified by Elliott [6] for three-dimensional
configurations.

We begin by assuming that an antenna. whose geometry is best described by the
spherical coordinates (r. 8, ¢), has both terminals infinitely close to the origin and
each is symmetrically disposed along the # = 0, m-axes. It is assumed that the antenna
is perfectly conducting, it is surrounded by an infinite homogeneous and isotropic
medium, and its surface or an edge on its surface is described by a curve

r= F(6, ¢) (11-1)

where r represents the distance along the surface or edge. If the antenna is to be scaled
to a frequency that is K times lower than the original frequency, the antenna’s physical
surface must be made K times greater 10 maintain the same electrical dimensions.
Thus the new surface is described by

r' = KF(6, ¢) (11-2)

The new and old surfaces are identical; that is, not only are they similar but they are
also congruent (if hoth surfaces are infinite). Congruence can be established only by
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rotation in ¢. Translation is not allowed because the terminals of both surfaces are at
the origin. Rotation in # is prohibitled because both terminals are symmetrically
disposed along the # = 0. m-axes.

For the second antenna to achieve congruence with the first, it must be rotated
by an angle C so that

KF@6, ¢) = F(8. ¢ + C) (11-3)

The angle of rotation C depends on K but neither depends on 6 or ¢. Physical
congruence implies that the original antenna electrically would behave the same at
both frequencies. However the radiation pattern will be rotated azimuthally through
an angle C. For unrestricted values of K (0 = K < =), the pattern will rotate by C in
¢ with frequency. because C depends on K. but its shape will be unaltered. Thus the
impedance and pattern will be frequency independent.

To obtain the functional representation of F(6, ¢). both sides of (11-3) are dif-
ferentiated with respect o C w yield

dK d
— F(4, = —|F(8. ¢ + C
(ICF(B b) Pa [Fe. & + )

0 .
= m“‘(f’- ¢ + C)l (11-4)

d
— | K F(#,
1 [KF(6, ¢)]

and with respect o ¢ to give

M8, b) _ i

Il

b
— [KF(0, b)) |F(8, ¢ + C))

i ad i
]
= ——|F(0. ¢ + C -
r'i((b+C')|( ¢ ] (11-5)

Equating (11-5) to (11-4) yields

dK L OF(8. 9)
dCF(H. d) =K Py (11-6)
Using (11-1) we can write ([ [-6) as
| dK { ar
KdC ~ rad (1-7)

Since the left side of (11-7) is independent of # and ¢, a general solution for the
surface r = F(6, ¢) of the untenna is

r = F0, ) = e"f(8) (11-8)
| dK
where @ =z (11-8a)

and f(#) is a completely arbitrary function.

Thus for any antenna to have frequency independent characteristics, its surface
must be described by (11-8). This can be accomplished by specitying the function
f18) or its derivatives. Subsequently, interesting, practical, and extremely useful an-
tenna contigurations will be introduced whose surfaces are described by (11-8).
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11.3 EQUIANGULAR SPIRAL ANTENNAS

The equiangular spiral is one geometrical configuration whose surface can be de-
scribed by angles. It thus fulfills all the requirements for shapes that can be used to
design frequency independent antennas. Since a curve along its surface extends 1o
infinity, it is necessary to designate the length of the arm to specify a finite size
antenna. The lowest frequency of operation occurs when the total arm length is
comparable to the wavelength [2]. For all frequencies above this, the pattern and
impedance characteristics are frequency independent.

11.3.1 Planar Spiral

The shape of an equiangular plane spiral curve can be derived by letting the derivative
of f(A)in (11-8) be

df ™
— / ) — — —— -
18 f'(a) A6(2 a) (11-9)

where A is a constant and 8 is the Dirac delta function. Using (11-9) reduces
(11-8) to

Ae?® = alap— o) o= 72
Hgmwgy = p = { Po¢ 7T (11-10)

0 elsewhere

where

A = pe (11-10a)

In wavelengths. (11-10) can be written as

py = % = Axt,mi: = Aeuld;—lnMJlnl = A" (11-1D)
where
|
¢ = —In(A) (11-11a)
a
Another form of (11-1{)) is
1 P p _
¢ = c—l]n i = tan ¢ In py = tan Y{ln p — In A) (11-12)

where 1/a is the rate of expansion of the spiral and ¢ is the angle between the radial
distance p and the tangent to the spiral. as shown in Figure [1.1(a).

It is evident from (11-11) that changing the wavelength is equivalent to varying
¢ which results in nothing more than a pure rotation of the infinite structure pattern,
Within limitations imposed by the arm length, similar characteristics have been ob-
served for finite structures. The same result can be concluded by examining (11-12).
Increasing the logarithm of the frequency (In f) by C, is equivalent to rotating the
structure by C, tan . As a result, the pattern is merely rotated but otherwise unaltered.
Thus we have frequency independent antennas.



546 Chapter 11 Frequency Independent Antennas and Antenna Miniaturization

(1) Single spiral (b) Two spiral (¢ =0, m
(c) Muluple spiral (d) Multiple spiral
(o =0, /2, w. 37/} g =0.7/2. 7, 39/2)

Figure 11.1 Spiral wire antennas.

The total length L of the spiral can be calculated by

" 2(105: 12
L= L.. [p (dp) + 1] dp (11-13)

which reduces, using (11-10), to

L=(p— po | +ai (11-14)

where p, and p, represent the inner and outer radii of the spiral.

Various geometrical arrangements of the spiral have been used to form different
antenna systems. If ¢, in (11-10) is 0 and r, the spiral wire antenna takes the form
of Figure 11.1(b). The arrangements of Figures 11.1(c) and 11.1(d) are each obtained
when ¢, = 0. #/2, 7. and 3#%/2. Numerous other combinations are possible.

An equiangular metallic solid surface, designated as P, can be created by defining
the curves of its edges, using (11-10), as

p = pyle?® (11-15a)
py = pa'et? = pyletd® (11-15b)
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where
p = pyle (11-15¢)

such that
K=__=(,—m$<| (“_]6)

The two curves, which specify the edges of the conducting surface, are of identical
relative shape with one magnilied relative to the other or rotated by an angle § with
respect to the other. The magnification or rotation allows the arm of conductor P 1o
have a finite width, as shown in Figure 11.2(a).

The metallic arm of a second conductor. designated as @, can be defined by

Py = p f(,ml- = pa eri“f’— “ i-l?)

where
p.;' — pzve—u‘:r (11-17a)
ps _ ’)5‘6'(“/' = p.#teu(q’o—ﬁ] = p- H(lfl - &) (I i-]g)

where
pS’ — pare"uﬁ — P‘A'@( u( T+ &) ([l-lga)

The system composed of the two conducting arms, P and Q, constitutes a balanced
system, and it is shown in Figure 1 1.2(a). The finite size of the structure is specified
by the fixed spiraling length L, along the centerline of the arm. The entire structure
can be completely specified by the rotation angle 8. the arm length Ly, the rate of
spiral 1/a, and the terminal size p,'. However, it has been found that most character-
istics cun be described adequately by only three: that is, Ly, py'. and K = e ™ as
given by (11-16). In addition each arm is usually tapered at its end. shown by dashed
lines in Figure 11.2(a). to provide a better matching termination.

The previous analytical formulations can be used to describe two ditferent anten-
nas. One antenna would consist of two metallic arms suspended in free-space. as
shown in Figure 11.2(a). and the other of a spiraling slot on a large conducting plane,
as shown in Figure 11.2(b). The second is also usually tapered to provide betler
matching termination. The slot antenna is the most practical. because it can be con-
veniently fed by a balanced coaxial arrangement [2] to maintain its overall balancing.
The antenna in Figure 11.2(a) with 6 = #/2 is self-complementary. as defined by
Babinet's principle [7], and its input impedance for an infinite structure should be
L. = Z. = 188.5 = 607 ohms (for discussion of Babinet's Principle see Section
12.8). Experimentally, measured mean input impedances were found to be only about
164 ohms. The difference between theory and experiment is attributed to the finite
arm length, linite thickness of the plate. and nonideal feeding conditions.

Spiral slot antennas, with good radiation characteristics, can be built with one-
half 1 three wurns. The most optimum design seems to be that with 1.25 to 1.5 wrns
with an overall length equal ta or greater than one wavelength. The rate of expansion
should not exceed about 10 per turn. The patterns are bidirectional. single-lobed,
broadside (maximum normal to the plane). and must vanish along the directions
occupied by the infinite structure. The wave is circularly polarized near the axis of
the main lobe over the usable part of the bandwidth. For a fixed cut, the beamwidth
will vary with frequency since the pattern rotates. Typical variations are on the order
of 10°. In general, however, slot antennas with more broad arms and/or more tightly
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) Spiral plite

1 Spiral slot
Figure 11,2 Spiral plate and slot antennas,

wound spirals exhibit smoother and more uniform patterns with smaller variations in
beamwidth with frequency. For symmetrical structures. the pattern is also symmetrical
with no tilt to the lobe structure.

To maintain the symmetrical characteristics, the antenna must be fed by an
electrically and geometrically balanced line. One method that achicves geometrical
balancing requires that the coax is embedded into one of the arms of the spiral, To
maintain symmetry. a dummy cable is usually placed into the other arm. No appre-
ciable currents flow on the feed cables because of the rapid attenuation of the fields
along the spiral. If the feed line is electrically unbalanced, a balun must be used. This
limits the bandwidth of the system.

The polarization of the radiated wave is controlled by the length of the arms. For
very low frequencies, such that the total arm length is small compared to the wave-
length. the radiated field is linearly polarized. As the frequency increases, the wave
becomes elliptically polarized and eventually achieves circuiar polarization. Since the
pattern is essentially unaltered through this frequency range, the polarization change
with frequency can be used as a convenient criterion to select the lower cutoff
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Figure 11.3 On-axis polarization as 4 function of frequency for one-turn spiral slot.
(SOURCE: J. D. Dyson, ‘*The Equiangular Spiral Antenna.”' JRE Trans. Antennas Propagat.,
Vol. AP-7. pp. 181-187, April 1959. © (1959) IEEE}

frequency of the usable bandwidth. In many practical cases, this is chosen to be the
point where the axial ratio is equal or less than 2 to 1, and it occurs typically when
the overall armlength is about one wavelength, A typical variation in axial ratio of
the on-axis field as a function of frequency for a one-turn slot antenna is shown in
Figure 11.3. The off-axis radiated field has nearly circular polarization over a smaller
part of the bandwidth. In addition to the limitation imposed on the bandwidth by the
overall length of the arms, another critical factor that can extend or reduce the
bandwidth is the construction precision of the feed.

The input impedance of a balanced equiangular slot antenna converges rapidly
as the frequency is increased, and it remains reasonably constant for frequencies for
which the arm length is greater than aboutl one wavelength. Measured values for a
700-2.500 MHz antenna [2] were about 75-100 ohms with VSWR's of less than 2
to | for 50-ohm lines.

For slot antennas radiating in free-space, without dielectric material or cavity
backing, typical measured efficiencies are about 98% for arm lengths equal to or
greater than one wavelength. Rapid decreases are observed for shorter arms.

11.3.2 Conical Spiral

The shape of a nonplanar spiral can be described by defining the derivative of f(6)
to be
L] = f(8) = A8(B - 6) (11-19)
aé
in which B is allowed to take any value in the range 0 < 8 = . For a given value
of B, (11-19) in conjunction with (11-8) describes a spiral wrapped on a conical
surface. The edges of one conical spiral surface are defined by

r, = rgre(usin b _ )'Q'E.’I"/' (1‘_20:1)

ry = ,-3’(;"5"!(4)0') = rz'easinﬂm(d'i— & (11-20b)
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where

P =g MR (11-20¢)

and 8, is half of the total included cone angle. Larger values of #, in 0 = 6 = 7/2
represent less tightly wound spirals, These equations correspond to (11-15a)-(11-15¢)
for the planar surface. The second arm of a balanced system can be defined by shifting
gach of (11-20a)—(11-20c) by 180°. as was done for the planar surface by (1 1-17)-
(11-18a). A conical spiral metal strip antenna of elliptical polarization is shown in
Figure 11.4 |8].

The conducting conical spiral surface can be constructed conveniently by forming.
using printed circuit techniques. the conical arms on the dielectric cone which is also
used as a support. The feed cable can be bonded to the metal arms which are wrapped
around the cone. Symmetry can be preserved by observing the same precautions, like
the use of a dummy cable, as was done for the planar surface.

A distinct difference between the planar and conical spirals is that the latrer
provides unidirectional radiation (single lobe) toward the apex of the cone with the
maximum along the axis. Circular polarization and relatively constant impedances are
preserved over large bandwidths. Smoother patterns have been observed for unidirec-
tional designs. Conical spirals can be used in conjunction with a ground plane. with
a reduction in bandwidth when they are flush-mounted on the plane.
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Figure 11.4 Conical spiral metal strip antenna. (SOURCE: Antennas, Antenna Masts and
Mounting Adaptors, American Electronic Laboratories, Inc., Lansdale, Pa., Catalog 7.5M-
7-79. Courtesy of American Electronic Laboratories, Inc., Montgomeryville, PA 18936 USA)
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(b) Log~-periodic metal strip antenna ~

Figure 11.5 Typical metal strip log-periodic configuration and antenna structure.

11.4 LOG-PERIODIC ANTENNAS

Another type of an antenna configuration, which closely parallels the frequency in-
dependent concept, is the log-periodic structure introduced by DuHamel and Isbell
14). Because the entire shape of it cannot be solely specified by angles. it is not truly
frequency independent.

11.4.1 Planar and Wire Surfaces

A planar log-periodic structure is shown in Figure {1.5(a). It consists of a metal strip

whose edges are specified by the angle a/2. However, in order to specify the length

from the origin to any point on the structure. a distance characteristic must be included.
In spherical coordinates (r, 8, ¢) the shape of the structure can be written as

@ = periodic function of [b In(r)] (-2

=6, sin[b ln(i)] (11-22)
ro

It is evident irom (11-22) that the values of # are repeated whenever the logarithm of
the radial frequency In(w) = In(2w} differs by 27/b. The performance of the system
is then periodic as a function of the logarithm of the frequency; thus the name
logarithmic-periodic or log-periodic.

A typical log-periodic antenna configuration is shown in Figure 11.5(b). It consists
of two coplanar arms of the Figure 11.5(a) geometry. The pattern is unidirectional

An example of it would be
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Feed

/ h ~— « — __'_’_,/\
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Figure 11.6 Planar and wire logarithmically periodic antennas.

toward the apex of the cone formed by the two arms. and it is linearly polarized,
Afthough the patterns of this and other log-periodic structures are not completely
frequency independent, the amplitude variations of certain designs are very slight.
Thus practically they are frequency independent.

Log-periodic wire antennas were introduced by DuHamel |4]. While investigating
the current distribution on log-periodic surface structures of the form shown in Figure
11.6(a). he discovered that the fields on the conductors attenuated very sharply with
distance. This suggested that perhaps there was a strong current concentration at or
near the edges of the conductors. Thus removing part of the inner surface to form a
wire antenna as shown in Figure 11,6(b) should not seriously degrade the performance
of the antenna. To verify this, a wire antenna, with geometrical shape identical to the
pattern formed by the edges of the conducting surface, was built and it was investigated
experimentally. As predicted, it was found that the performance of this antenna was
almost identical o that of Figure 11.6(a); thus the discovery of a much simpler, lighter
in weight, cheaper, and less wind resistant antenna. Nonplanar geometries in the form
of a V, formed by bending one arm relative to the other, are also widely used.

If the wires or the edges of the plates are linear (instead of curved), the geometries
of Figure 11.6 reduce. respectively, to the trapezoidal tooth log-periodic structures of
Figure 11.7. These simplifications result in more convenient fabrication geometries
with no loss in operational performance. There are numerous other bizarre but practical
configurations of log-periodic structures, including log-periodic arrays.

If the geometries of Figure 11.6 use uniform periodic teeth, we define the geo-
metric ratio of the log-periodic structure by

R,
Rn + |

(11-23)

T =
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Figure 11.7 Planar and wire trapezoidal toothed log-periodic antennas.

and the width of the antenna slot by

.t
X =R

witl

(11-24)

The geometric ratio 7 of (11-23) defines the period of operation. For example, if two
frequencies f, and f> are one period apart, they are related to the geometric ratio 7 by

_h
f

Extensive studies on the performance of the antenna of Figure 11.6(b) as a
function of a, B, 7, and . have heen performed [9]. In general. these structures
performed almost as well as the planar and conical structures. The only major differ-
ence is that the log-periodic configurations are linearly polarized instead of circular.

A commercial lightweight, cavity-backed. linearly polarized. Hush-mounted log-
periodic slot antenna and its associated gain characteristics are shown in Figures
11.8(a) and (b) |8]. Typical electrical characteristics are: VSWR—2:1; E-plane beam-
width—70° H-plane beamwidth—70°. The maximum diameter of the cavity is about
2.41in. (6.1 cm), the depth is 1.75 in. (4.445 cm), and the weight is near 5 oz (0.14 kg).

fr > fi (11-25)

11.4.2 Dipole Array

To the layman, the most recognized log-periodic antenna structure is the configuration
introduced by Isbell [5] which is shown in Figure 11.9(a). It consists of a sequence
of side-by-side parallel linear dipoles forming a coplanar array. Although this antenna
has similar directivities as the Yagi-Uda array (7-12 dB), they are achievable and
maintained over much wider bandw1dths There are. however. major differences be-
tween them.

While the geometrical dimensions of the Yagi-Uda array elements do not follow
any set pattern, the lengths (/,'s), spacings (R,’s), diameters (d,’s). and even gap



554 Chapter 11 Frequency Independent Antennas and Antenna Miniaturization

6 —
_} f—
= 3
A
=]
5 o
—4
2 I8
Frequency (GHz)
la) Antenna (1) Gain charcteristics

Figure 11.8 Linearly polarized flush-mounted cavity-bucked log-periodic slot an-
tenna and Lypical gain charactenistics, (SOURCE: Antennas, Antenna Masts and
Mounting Adapitors, American Electronic Laboratories, Inc., Lansdale, Pa., Catalog
7.5M-7-79. Courtesy of American Electronic Laboratories, Inc,. Montgomeryville,
PA 18936 USA)

spacings at dipole centers (s,'s) of the log-periodic array increase logarithmically as
defined by the inverse of the geometric ratio 7. That is,

.I.:IJ_EZI,_”I!=E:_R”‘|=HJ—.2:(—-—A-—I”+jﬂ:\.—2:.—-L;”_| {ll_j[—”
T | "’r: R I RH dl lf-jl!r N S

Another parameter that is usually associated with a dipole array is the spacing factor
o deflined by

Rwa =4 (11-26a)
S ST i

Straight lines through the dipole ends meet to form an angle 2e¢ which is a character-
istic of frequency independent structures.

Because it is usually very difficult to obtain wires or tubing of many differen
diameters and 1o maintain tolerances of very small gap spacings. constant dimensions
in these can be used, These relatively minor factors will not sufficiently degrade the
overall performance.

While only one element of the Yagi-Uda array is directly energized by the feed
line, while the others operate in a parasitic mode, all the elements of the log-periodic
array are connected. There are two basic methods, as shown in Figures 11.9(b) and
11.9(c), which could be used to connect and feed the elements of a log-periodic dipole
array. In both cases the antenna is fed at the small end of the structure.

The currents in the elements of Figure 11.9(b) have the same phase relationship
as the terminal phases. If in addition the elements are closely spaced, the phase
progression of the currents is to the right. This produces an endfire beam in (he
direction of the longer elements and interference effects to the pattern result.

[t was recognized that by mechanically crisscrossing or transposing the feed
between adjacent elements, as shown in Figure 11.9(c), a 180° phase is added to the
terminal ol each element. Since the phase between the adjacent closely spaced short
elements is almost in opposition, very little energy is radiated by them and their
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Figure 11.9 Log-periodic dipole array and associated connections.
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interference effects are negligible. However. at the same time. the longer and larger
spaced elements radiate. The mechanical phase reversal between these clements pro-
duces a phase progression so that the energy is beamed endfire in the direction of the
shorter elements. The most active clements for this feed arrangement are those that
are near resonant with a combined radiation pattern toward the vertex of the array.

The feed arrangement of Figure 11.9(¢) is convenient provided the input feed line
is a balanced line like the two-conductor transmission line. Using a coaxial cable as
a feed line. a practical method to achieve the 180° phase reversal between adjacent
elements is shown in Figure 11.9(d). This feed arrangement provides a built-in broad-
band balun resulting in a balanced overall system. The elements and the feeder line
of this array are usually made of piping. The coaxial cable is brought to the feed
through the hollow part of one of the feeder line pipes. While the outside conductor
of the coax is connected to that conductor at the feed, its inner conductor is extended
and it is connectled 10 the other pipe of the fecder line.

If the geometrical pattern of the log-periodic array, as defined by (11-26), is to
be maintained to achieve a truly log-periodic configuration, an infinite structure would
result. However. to be useful as a practical broadband radiator, the structure is trun-
cated at both ends. This limits the frequency ot operation to a given bandwidth.

The cutoff frequencies of the truncated structure can be determined by the elec-
tricat lengths of the longest and shortest clements of the structure. The lower cutoff
frequency occurs approximately when the longest element is A/2: however, the high
cutoff frequency occurs when the shortest element is nearly A/2 only when the active
region is very narrow. Usually it extends beyond that element. The active region of
the log-periodic dipole array is near the elements whose lengths are nearly or slightly
smaller than A/2. The role of active elements is passed from the longer to the shorter
elements as the frequency increases. Also the energy from the shorter active elements
traveling toward the longer inactive elements decreases very rapidly so that a negli-
gible amount is reflected from the truncated end. The movement of the active region
of the antenna, and its associated phase center, is an undesirable characteristic in the
design of feeds for reflector and lens antennas,

The decrease of energy toward the longer inactive elements is demonstrated in
Figure 11.10(a). The curves represent typical computed and measured transmission
line voltages (amplitude and phase) on a log-periodic dipole array [10] as a function
of distance from its apex. These are feeder-line voltages at the base of the elements
of an array with 7 = 0.95, ¢ = 0.0564, N = 3. and I,/d, = 177. The frequency of
operation is such that element No. 10 is A/2. The amplitude voltage is nearly constant
from the first (the feed) to the eighth clement while the corresponding phase is
uniformly progressive. Very rapid decreases in amplitude and nonlinear phase varia-
tions are noted beyond the eighth element.

The region of constant voltage along the structure is referred to as the transmission
region, because it resembles that of a matched transmission line. Along the structure,
there is about 150° phase change for every A/4 free-space length of transmission line,
This indicates that the phase velocity of the wave traveling along the structure is
y, = 0.6y, where w, is the free-space velocity. The smaller velocity results from the
shunt capacitive loading of the line by the smaller elements. The loading is almost
constant per unit length because there are larger spacings between the longer elements,

The corresponding current distribution is shown in Figure 11.10(b). It is noted
that the rapid decrease in voltage is associated with strong current excitation of
elements 7-10 followed by a rapid decline. The region of high current excitation is.
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Input impedance

i i
log(f)) logi f;)

Logarithm of frequency

Figure 11.11 Typical input impedance variation of a log-periodic antenna
as a function of the logarithm of the frequency.

designated as the active region, and it encompasses 4 to 5 elements for this design,
The voltage and current excitations of the longer elements (beyond the ninth) are
relatively small, reassuring that the truncated larger end of the structure is not affecting
the performance. The smaller elements, because of their length. are not excited effec-
tively. As the frequency changes, the relative voltage and current patterns remain
essentially the same, but they move toward the direction of the active region.

There is a linear increase in current phase, especially in the active region, from
the shorter to the longer elements. This phase shift progression is opposite in direction
to that of an unloaded line. It suggests that on the log-periodic antenna structure there
is a wave that travels toward the feed forming a unidirectional endfire pattern toward
the vertex.

The radiated wave of a single log-periodic dipole array is linearly polarized, and
it has horizontal polarization when the plane of the antenna is parallel 10 the ground,
Bidirectional patterns and circular polarization can be abtained by phasing multiple
log-periodic dipole arrays. For these, the overall effective phase center can be main-
tained at the feed.

If the input impedance of a log-periodic antenna is plotted as a function of
frequency. it will be repetitive. However, if it is plotted as a function of the logarithm
of the frequency, it will be periodic (not necessarily sinusoidal) with each cycle being
exactly identical to the preceding one. Hence the name log-periodic, because the
variations are periodic with respect to the logarithm of the frequency. A typical
variation of the impedance as a function of frequency is shown in Figure 11.11, Other
parameters that undergo similar variations are the pattern, directivity, beamwidth, and,
side lobe level.

The periodicity of the structure does not ensure broadband operation. However,
if the variations of the impedance, pattern. directivity, and so forth within one cycle
are made sufficiently small and acceptable for the corresponding bandwidth of the:
cycle, broadband characteristics are ensured within acceptable limits of variation. The
total bandwidth is determined by the number of repetitive cycles for the given trun-
cated structure,

The relative frequency span A of each cycle is determined by the geometric ratio
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TABLE 11.1 INPUT RESISTANCES (R;, IN OHMS) AND DIRECTIVITIES
{dB ABOVE ISOTROPIC) FOR LOG-PERIODIC DIPOLE ARRAYS

Q v = 0.8l T =089 T = (.95
R;,(ochms) D(dB) R;.(ohms) Dy(dB) R (ohms) Dy(dB)
10 98 — 82 9% 1.5 10.7
12.5 — — 77 — — —
15 — 7.2 — — — —
17.5 — — 76 1.3 62 8RR
20 — — 74 — — —
25 — — 63 7.2 — 8.0
30 80 — 64 — 54 —
35 — — 56 6.5 — —
45 65 5.2 59 6.2 — —

sourci: D, E. Ishell. “*Log Periodic Dipole Arrays,”’ IRE Trans. Antennus Propagar,, Vol AP-8, pp.
260-267. May 1960, & (1960) [EEE.

as defined by (11-25) and (11-26}.* Taking the logarithm of hoth sides in (11-25)
reduces to

A=In(H) - In(fy) = ln(%_) (11-27)
The variations that occur within a given cycle (fy < [ =< fo = [fi/7) will repeat
identically at other cycles of the bandwidth defined by fi/7"~' < f=< fi/m".n = |.
23,

Typical designs of log-periodic dipole arrays have apex half angles of 10° < «
=< 45% and 0.95 = 7= ().7. There is a relation between the values of @ and 7. As «
increases, the corresponding 7 values decrease. and vice versa. Larger values of « or
smaller values of 7 result in more compact designs which require smaller number of
elements separated by larger distances. In contrast, smaller values of « or larger values
of 7 require a larger number of elements that are closer together. For this type of a
design, there ure more elements in the active region which are nearly A/2. Therefore
the variations of the impedance and other characteristics as a function of frequency
are smaller, because of the smoother transition between the elements. and the gains
are larger.

Experimental models of log-periodic dipole arrays have been built and measure-
ments were made [S|. The input impedances (purely resistive) and corresponding
directivities (ubove isotropic) for three different designs are listed in Table 11.1.
Larger directivities can be achieved by arraying multiple log-periodic dipole arrays.
There are other configurations of log-periodic dipole array designs, including those
with V instead of lincar elements (111, This array provides moderate bandwidths with
good directivities at the higher frequencies, and it is widely used as a single TV
antenna covering the entire frequency spectrum from the lowest VHF channel (54
MHz) to the highest UHF (806 MHz). Typical gain, VSWR. and E- and H-plane half-

*In some cases, the impedance (but pot the pattern) may vary with a period which is one-half ol (11-27),
Thatis. A = % In(1/7),
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Figure 11.12 Typical gain, VSWR, and half-power beamwidth of commercial
log-periodic dipole arrays. (SOURCE: Antennas, Antenna Musts and Mounting
Adaptors. American Electronic Laboratories, Inc., Lansdale, Pa.. Catalog 7.5M-7-
79. Courtesy of American Electronic Laboratories, Inc.. Montgomeryville, PA
18936 USA)

power beumwidths of commercial log-periodic dipole arrays are shown in Figures:
I'1.12(a). (b). (c). respectively [8]. The overall length of each of these antennas i,
about 103 in. (266.70 cm) while the largest element in each has an overall length of
about 122 in. {309.88 cm). The weight of each antenna is about 31 1b (=14 kg).
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11.4.3 Design of Dipole Array

The ultimate goal of any antenna configuration is the design that meets certain spec-
ifications. Probably the most introductory, complete, and practical design procedure
for a log-periodic dipole array is that by Carrel [10]. To aid in the design, he has a
set of curves and nomographs. The general configuration of a log-periodic array is
described in terms of the design parameters 7, a. and o related by

az=l'an"[l _T] (11-28)

4¢r

Once two of them are specified, the other can be found. Directivity (in dB) contour
curves as a function of 7 for various values of o are shown in Figure 11.13.

The original directivity contour curves in [10] are in error because the expression
for the E-plane field pattern in [10} is in error. To correct the error, the leading sin{ )
function in front of the summation sign of equation 47 in [10] should be in the
denominator and not in the numerator [i.e., replace sin 8 by 1/sin(8)] [12]. The
influence of this error in the contours of Figure 11.13 is variable and leads to -2 dB
higher directivities. However it has been suggested that, as an average. the directivity
of each original contour curve be reduced by about 1 dB. This has been implemented
already. and the curves in Figure 11.13 are more accurate as they now appear.

0.22 T
0.2+ _
AEY S .4
o 016l 4B i
gn
5 o1 | 10,5 dB -
6
£ g o |
5
& -,
g.i0fF 9.5dB P i
0.08 1~ 9 4B —
0.06 | 8.5dB ]
dB 3
8 734dB 74 6.5 dB
0.0 1 L 1 1 i 1 f 1 { { (
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Scale factor T
Figure 11.13 Computed contours of constant directivity versus o and 7
for log periodic dipole arrays. (SOURCE: R. L. Carrel, **Analysis and Design
of the Log-Periodic Dipole Antenna,”” Ph.D. Dissertation, Elec. Eng. Dept..
University of Illinois, 1961, University Microfilms, Inc., Ann Arbor
Michigan)
Note: The initial curves led 10 designs whose directivitics are 1-2 dB 100
high. They have been reduced by an average of 1dB (see P. C. Butson and
G. T. Thompson, “*A Note on the Calculation of the Gain of Log-Periodic
Dipole Antennas,”” IEEE Trans. Antennas Propagat., AP-24, pp. 105-106,
January 1976).
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A. Design Equations
In this section a number of equations will be introduced that can be used to design a
log-periodic dipole array.

While the bandwidth of the system determines the lengths of the shortest and
longest elements of the structure, the width of the active region depends on the specific
design. Carrel [10] has introduced a semiempirical equation to calculate the bandwidth
of the active region B,, related to «w and 7 by

B, =11+ 77 - Dlcota (11-29)

In practice a slightly larger bandwidth (B,) is usually designed than that which is
required {B). The two are related by

B, = BB, = B[l.l + 7.7(1 — 7)° cot «] (11-30)

where

B, = designed bandwidth
B = desired bandwidth
B, = active region bandwidth

The total length of the structure L, from the shortest (/) to the longest (/)
element, is given by

_ Amnx _ _1_ .
L= 1 (i Bﬁ) cot a (11-31)
where
v
Arncm = 21mnx = f_ (“-31&)
J min
From the geometry of the system, the number of elements are determined by
In(B,)
N=1+ : -9y
In(1/7) (11-32)

The center-to-center spacing s of the feeder line conductors can be determined
by specifying the required input impedance (assumed 1o be real). and the diameter of
the dipole elements and the feeder line conductors. To accomplish this, we first define
an average characteristic impedance of the elements given by

Z, = lzo[ln(gi) - 2.25] (11-33)

"

where /,/d,, is the length-to-diameter ratio of the nth element of the array. For an idea
log-periodic design, this ratio should be the same for all the elements of the array,
Practically. however. the elements are usually divided into one, two, three or more
groups with all the elements in each group having the same diameter but not the same
length. The number of groups is determined by the total number of elements of the:
array. Usually three groups (for the small. middle. and large elements) should be,
sufficient.
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Figure 11.14 Relative characteristic impedance of a feeder line as a function of
relative characteristic impedance of dipole element. (soUrCE: R. L. Carrel,
“*Analysis and Design of the Log-Periodic Dipole Antenna,”’ Ph.D. Dissertation,
Elec. Eng. Dept., University of Hlinois, 1961, University Microfilms, Inc., Ann
Arbor, Michigan)

the graphs shown in Figure 11.14 where

o' = o/\/T = relative mean spacing

Z, = average characteristic impedance of the elements
R, = input impedance (real)

Z, = characteristic impedance of the feeder line

563

The effective loading of the dipole elements on the input line is characterized by

The center-to-center spacing s between the two rods of the feeder line, each of
identical diameter 4, is determined by

Z
120

B. Design Procedure
A design procedure is outlined here, based on the equations introduced above and in
the previous page, and assumes that the directivity (in dB), input impedance R;, (real),
diameter of elements of feeder line (d), and the lower and upper frequencies (B =
Jmax! fmin) Of the bandwidth are specified. It then proceeds as follows:

Ny e

Given D, (dB). determine o and 7 from Figure 11,13,
Determine « using {11-28).

Determine B,,, using (11-29) and B, using (11-30).
Find L using (11-31) and N using (11-32).

Determine Z, using (11-33) and o' = o/\/7.
Determine Zy/ R;, using Figure 11,14,

Find s using (11-34).

s =d cosh(—) (11-34)
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Example 11.1

Design a log-periodic dipole antenna. of the form shown in Figure 11.9(d). to cover
all the VHF TV channels (starting with 54 MHz for channel 2 and ending with 216
MHz for channel 13. See Appendix IX.) The desired directivity is 8 dB and the input
impedance is 50 ohms (ideal for a match o 50-ohm coaxial cable). The elements
should be made of aluminum tubing with { in. (1.9 cm) outside diameter for the largest
element and the feeder line and % in. (0.48 cm) for the smallest element. These
diameters yield identical //d ratios for the smaliest and largest elements.

SOLUTION
1. From Figure 11.13, for D, = 8 dB the optimum o is o
corresponding 7is 7 = 0.865.
2. Using (11-28)
I — 0.865
= N—| = 12.13° = 12°
a = tan [ 20.157) ] 3 12
3. Using (11-29)
B, = 1.1 + 7.7(1 — 0.865) cot(12.13°) = 1.753
and from (11-30)
216 ,
B, = BB, = —57(1.753) = 4(1.753) = 7.01
4. Using (11-31a)
v 3 x 108
Aoy = ];; = m = 5556 m (18.227 f1)
From (11-31)
5.556 ] o .
L= 1 (l - 7.()1) cot(12.13%) = 5.541 m (18.178 1)
and from (11-32)
In(7.01)
=1 4+ — = 1443 (Il 5 S
N =1 In(1/0.865) 4.43 (14 or 15 elements)
o 0.157
5. o = = = (.169
T TVr 0865
At the lowest frequency
_ Amax 18227
Inmx - ~ - 5 - 9‘ 135 ﬁ

r -

lmax _ 9.1135(12)
A 0.75

Using (11-33)
Z, = 120[In(145.816) — 2.25] = 327.88 ohms

= 145.816

= 0.157 and the
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Thus
Z 327.88
— == = 6.5
R, 50 6.558

6. From Figure 11.14 7
Zy = 1.2R;, = L2(50) = 60 ohms

7. Using (11-34). assuming the feeder line conductor is made of the same size tubing
as the largest clement of the array, the center-to-center spacing of the feeder
conductors is

=3¢ h(6—0 = ().846 = 0.85 i
s = 5 coshl o, = 0.846 = 0.85 in.

which allows for a (.1-in. separation between their conducting surfaces.

For such a high-gain antenna, this is obviously a good practical design. If a lower
gain is specified and designed for, a smaller length will result.

C. Design and Analysis Computer Program

A computer program entitled LOG-PERIODIC DIPOLE ARRAY has been developed
based on the design equations of (11-28)—(11-34), and Figures 11.13 and 11.14, to
design a log-periodic dipole array whose geometry is shown in Figure 11.9(a). Al-
though most of the program is based on the same design equations as outlined in the
design subsection. this program takes into account more design specifications than
those included in the previous design procedure, and it is more elaborate. Once the
design is completed, the computer program can be used to analyze the design of the
antenna. It is included at the end of this chapter. and the listing is found in the
computer disc available with this book. The program has been developed based on
input specifications, which are listed in the program at the end of the chapter. It can
be used as a design tool to determine the geometry of the array (including the number
of elements and their corresponding lengths, diameters. and positions) along with the
radiation characteristics of the array (including input impedance, VSWR. directivity,
front-to-back ratio, E- and H-plane patterns, etc.) based on desired specifications. The
input data includes the desired directivity, lower and upper frequency of the operating
band. length-to-diameter ratio of the elements, characteristic impedance of the input
transmission line, desired input impedance. termination (load) impedance, etc. These
and others are listed in the program at the end of the chapter.

The program assumes that the current distribution on each antenna element is
sinusoidal. This approximation would be very accurate if the elements were very far
from each other. However, in the active region the elements are usually separated by
a distance of about 0.1A when a = 15° and 7 = 0.9. Referring to Figure 8.21, one
can see that two A/2 dipoles separated by 0.1A have a mutual impedance (almost real)
of about 70 ohms. If this mutual impedance is high compared to the resistance of the
transmission line (not the characteristic impedance). then the primary method of
coupling energy to each antenna will be through the transmission line, If the mutual
impedance is high compared to the self-impedance of each element. then the effect
on the radiation pattern should be small. In practice, this is usually the case. and the
approximation is relatively good. However, an integral equation formulation with a
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Moment Method numerical solution would be more accurate. The program uses (8-
60a) for the selt-resistance and (8-60b) for the self-reactance. It uses (8-68) for the
mutual impedance, which for the side-by-side configuration reduces to the sine and
cosine integrals in [13], similar in form to (8-71a)~(8-71e) lor the / = A/2 dipole.

The geometry of the designed log-periodic dipole array is that of Figure 11.9,
except that the program also allows for an input transmission line (connected to the
first/shortest element), a termination transmission line (extending beyond the last/
longest element). and a termination (load) impedance. The length of the input trans-
mission line changes the phase of computed data (such as voltage, current, reflection
coefficient, etc.) while its characteristic impedance is used to calculate the VSWR,
which in turn affects the input impedance measured at the source. The voltages and
currents are found based on the admittance method of Kyle [14]. The termination
transmission line and the termination (load) impedance allow for the insertion of a
matching section whose primary purpose is 1o absorb any energy which manages to
continue past the active region. Without the termination (load) impedance, this energy
would be reflecied along the transmission line back into the active region where it
would affect the radiation charactenistics of the array design and performance.

In designing the array. the user has the choice to select o and 7 (bul not the
directivity) or to select the directivity (but not ¢ and 7). In the latter case. the program
finds o and 7 by assuming an optimum design as defined by the dashed line of Figure
11.13. For the geometry of the array. the program assumes that the elements are placed
along the z-axis (with the shortest at 2 = 0 and the longest along the positive z-axis).
Each linear element of the array is directed along the v-axis (i.e., the array lies on the
vz-plane). The angle @ is measured from the z axis toward the xy-plane while angle
¢ is measured from the x-axis (which is normal to the plane of the array) toward the
v-axis along the xv-plane. The E-plane of the array is the yz-plane (¢ = 90° 270°%
0° < @ = [80°) while the H-plane is the xz-plane (¢ = 0° 180°% 0° = 8 =< 180°).

11.5 FUNDAMENTAL LIMITS OF ELECTRICALLY
SMALL ANTENNAS

In all areas of electrical engineering, especially in electronic devices and computers,
the attention has been shifted toward miniaturization. Electromagnetics, and antennas
in particular, are of no exception. A large emphasis in the last few years has been
placed toward electrically small antennas, including printed bouard designs. However,
there are fundamental limits as to how small the antenna elements can be made. The
basic limitations are imposed by the {ree-space wavelength to which the antenna
element must couple to, which has not been or is expected to be miniaturized [15].
An excellent paper on the fundamental limits in antennas has been published {15],
and most of the material in this section is drawn from it. It reviews the limits of
electrically small, superdirective, super-resolution. and high-gain antennas. The limits
on electrically small antennas are derived by assuming that the entire antenna structure
(with a largest linear dimension of 2r), and its transmission line and oscillator are all
enclosed within a sphere of radius r as shown in Figure 11.15(a). Because of the
arbitrary current or source distribution of the antenna inside the sphere, its radiated
field outside the sphere is expressed as a complete set of orthogonal spherical vector
waves or modes. For vertically polarized omnidirectional antennas, only TMy, cir-
cularly symmetric (no azimuthal variations) modes are required. Each mode is used
to represent a spherical wave which propagates in the outward radial direction. This
approach was introduced first by Chu [16], and it was followed by Harrington [17].
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Earlier papers on the fundamental limitations and performance of small antennas were
published by Wheeler [18]~[20). He derived the limits of a small dipole and a small
loop (used as a magnetic dipole) from the limitations ot a capacitor and an inductor,
respectively. The capacitor and inductor were chosen to occupy, respectively, volumes
equal to those of the dipole and the loop.

Using the mathematical formulation introduced by Chu [ 16], the source or current
distribution of the antenna system inside the sphere is not uniquely determined by the
field distribution outside the sphere. Since it is possible to determine an infinite number
of different source or current distributions inside the sphere, for a given field config-
uration outside the sphere. Chu [ 16] confined his interest to the most favorable source
distribution and its corresponding antenna structure that could exist within the sphere.
This approach was taken to minimize the details and to simplify the task of identifying
the antenna structure. [t was also assumed that the desired current or source distribution
minimizes the amount of energy stored inside the sphere so that the input impedance
at a given frequency is resistive.

Because the spherical wave modes outside the sphere are orthogonal, the total
energy (electric or magnetic) outside the spher¢ and the complex power transmitted
across the closed spherical surface are equal, respectively, to the sum of the energies
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and complex powers associated with each corresponding spherical mode. Therefore
there is no coupling, in energy or power, between any (wo modes outside the sphere.
As a result, the space outside the sphere can be replaced by a number of independent
equivalent circuits as shown in Figure 11.15(b). The number of equivalent circuits is
equal to the number of spherical wave modes outside the sphere, plus one. The
terminals of each equivalent circuit are connected to a box which represents the inside
of the sphere. and from inside the box a pair of terminals are drawn to represent the
input terminals. Using this procedure. the antenna space problem has been reduced to
one of equivalent circuits.

The radiated power of the antenna is calculated from the propagating modes while
all modes contribute to the reactive power. When the sphere (which encloses the
antenna element) becomes very small. there exist no propagating modes. Therefore
the Q of the system becomes very large since all modes are evanescent (below
cutoff) and contribute very little power. However. unlike closed waveguides, each
cvanescent mode here has a real part (even though it is very small).

For a lossless antenna (radiation efficiency e, = 100%), the equivalent circuit
of each spherical mode is a single network section with a series C and a shunt L. The
total circuit is a ladder network of L — C sections (one for each mode) with a final
shunt resistive load, as shown in Figure 11.15(c). The resistive load is used to represent
the normalized antenna radiation resistance.

From this circuit structure, the input impedance is found. The @ of each mode is
formed by the ratio of its stored to its radiated energy. When several modes are
supported, the  is formed from the contributions of all the modes.

It has been shown that the higher order modes within a sphere of radius r become
evanescent when kr < |. Therefore the @ of the system. for the lowest order TM
mode. reduces to |15]

0= 1+ 2kr)° bt |
TR+ Rt kr)?

(11-35)

When two modes are excited, one TE und the other TM, the values of Q are halved,
Equation (11-35), which relates the lowest achievable Q to the largest linear dimension
of an electrically small antenna, is independent of the geometrical configuration of
the antenna within the sphere of radius r. The shape of the radiating element within
the bounds of the sphere only determines whether TE, TM, or TE and TM modes are
excited. Therefore (11-35) represents the fundamental limit on the electrical size of
an antenna. In practice. this limit is only approached but is never exceeded or even
equaled.

The losses of an antenna can be taken into account by including a loss resistance
in series with the radiation resistance. as shown by the equivalent circuits of Figures
2.21(b) and 2.22(b). This influences the Q of the system and the antenna radiation
etficiency as given by (2-90).

Computed values ol Q versus kr [or idealized antennas enclosed within a sphere
of radius r. and with radiation efficiences of e, = 100, 50. 10, and 5. are shown
plotted in Figure 11.16. These curves represent the minimum values of Q that can be
obtained from an antenna whose structure can be enclosed within a sphere of radius
r and whose radiated field. outside the sphere. can be represented by a single spherical
wave mode.
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For antennas with equivalent circuits of fixed values, the fractional bandwidth is
related to the Q of the system by

fractional bandwidth = FBW = g =

1
— (11-36)
f Q

where

Jo = center frequency
Af = bandwidth

The relationship of (11-36) is valid for Q > | since the equivalent resonant circuit
with fixed values is a good approximation for an antenna, For values of @ < 2,
(11-36) is not accurate.

To compare the results of the minimum Q curves of Figure 11.16 with values of
practical antenna structures, data points for a small linear dipole and a Goubau [21]
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antenna are included in the sume figure. For a small linear dipole of length / and wire
radius a. its impedance is given by [15]
!
]
! 2a

z, = 20772(—-) — j120 (11-37)

A i
t —_
an TI’A)

and its corresponding Q by

Q=—— (11-38)
(’IT‘;') taﬂ(ﬂi)

The real part in (11-37) is identical to (4-37). The computed Q values of the small
dipole were for k/2 = kr = 0.62 and 1.04 with [/2a = I/d = 50. and of the Goubau
antenna were for kr = 1.04.

It is apparent that the Q's of the dipole are much higher than the corresponding
values of the minimum @ curves even for the 100% efficient antennas. However the
Goubau antenna, of the same radius sphere, demonstrates a lower value of Q and
approaches the values of the 100% minimum @ curve. This indicates that the fractional
bandwidth of the Goubau antenna, which is inversely proportional to its Q as defined
by (11-36). is higher than that of a dipole enclosed within the same radius sphere. In
turn, the bandwidth of an idealized antenna. enclosed within the same sphere, is even
larger.

From the above, it is concluded that the bandwidth of an antenna (which can be
closed within a sphere of radius r) can be improved only if the antenna utilizes
efficiently, with its geometrical configuration, the availuble volume within the sphere,
The dipole. being a one-dimensional structure, is a poor utilizer of the available
volume within the sphere. However a Goubau antenna, being a clover leal dipole with
coupling loops over a ground plane (or a double cover leaf dipole without a ground
plane), is a more effective design for utilizing the available three-dimensional space
within the sphere. A design that utilizes the space even more efficiently than the
Goubau antenna would possess a lower @ and a higher fractional bandwidth. Ult-
mately, the values would approach the minimum Q curves. In practice, these curves
are only approached but are never exceeded or even equaled.
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PROBLEMS

11.1.  Design a symmetrical two-wire plane spiral (¢, = O, #) at f = 10 MHz with total

feed terminal separation of 10 “A. The lotal length of each spiral should he one
wavelength and each wire should be of one twm.
(a) Determine the rate of spiral of each wire.
(b) Find the radius (in A and in meters) of each spiral at its terminal point.
(c) Plot the geometric shape of one wire. Use meters for its length.
1.2, Verify (11-28).
11.3.  Design log-periodic dipole arrays, of the form shown in Figure 11.9(d). cach with

directivities of 9 dB. input impedance of 75 ohms, and each with the following addi-

tional specifications: Cover the (see Appendix 1X)

(a) VHF TV channels 2-13 (54-216 MHz). Use aluminum tubing with outside diam-
eters of § in. (1.905 cm) and % in. (0.476 cm) for the largest and smallest elements,
respectively.

{(b) VHF TV channels 2-6 (54-88 MH2). Use diameters of 1.905 and 1.1169 ¢m for
the largest and smallest elements, respectively.

{c) VHF TV channels 7-13 (174-216 MHz). Use diameters of 0.6 and 0.476 ¢m lor
the largest and smallest elements, respectively.
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11.6.

117

11.8.

19,

111,
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(d) UHF TV channels (512—-806 MHz). The largest and smallest elements should have
diamecters of 0.2 and (.128 ¢m. respectively.

(¢) FM band of 88-108 MHz (100 chunnels at 200 KHz apart). The largest and
smallest elements should have diameters ol 1.169 and 0.9525 ¢m, respectively.

In each design, the feeder line should have the same diameter as the largest element,

For each design in Problem 11.3. determine the

(1) span of each period over which the radiation characteristics will vary slightly

(b) number of periods (cycles) within the desired bandwidth

Using the LOG-PERIODIC DIPOLE ARRAY computer program and Appendix 1X,

design an array which covers the VHF television band. Design the antenna for 7 dBi

gain optimized in terms of o-7. The antenna should be matched to a 75-ohm coaxial
input cable. For this problem, set the input line length to () meters, the source resistance

10 0 ohms, the termination line length to 0 meters, the termination impedance to 100

Kohms, Lhe length-to-diameter ratio to 40, and the boom diameter to [0 cm. To make

the actual input impedance 75 ohms, one must iteratively find the optimal desired

input impedance.

(a) Plot the gain, magnitude of the input impedance. and VSWR versus frequency
from 30 MHz to 400 MHz.

(b) Based on the ripples in the plot of gain versus frequency, what is 77 Compare this
value to the value calculated by the computer program,

(c) Why does the gain decrease rapidly for frequencies less than the lower design
frequency yet decrcase very stowly for frequencies higher than the upper design
frequency”!

For the antenna of Problem 1 1.5, replace the 100-Kohm load with a 75-ohm resistor,

(a) Plot the gain, magnitude of the input impedance, and VSWR versus frequency
from 30 MHz 10 400 MHz.

(b) What does the termination resistor do which makes this antenna an improvement
over the antenna of Problem 11.5?

For the antenna of Problem 1 1.5. replace the 100-Kohm termination (load) with a 75-

ohm resistor and make the source resistance 10 ohms. This resistance represents the

internal resistance of the power supply as well as losses in the inpul line,

(a) Plot the gain versus frequency from 30 MHz to 400 MHz.

(b) What is the antenna efficiency of this antenna?

(¢) Based on your result from parts (a) and (b), what should the gain versus frequency
plot look like for Problem 11.67?

Design a log-periodic dipole array which operates from 470 MHz to 806 MHz (UHF

band) with 8 dBi gain. This antenna should be matched to a 50-ohm cable of length

2 meters with no source resistance. The termination should be left open. Select the

length-lo-diameter ratio to be 25. At 600 MHz, do the following. Use the computey

program at the end of this chapter.

(a) Plot the E- and H- plane pauterns.

(b) Calculate the E- and H-plane half-power beamwidths.

(¢) Find the front-to-back ratio.

{d) Why does the E-plane pattern have deep nulls while the H-plane pattern does not?

The overall length of a small lincar dipole antenna (Tike a biconical antenna, or ¢ylin-

drical dipole, or any other) is A/7. Assuming the antenna is 100% efficient, what is:

(a) The smallest possible value of Q for an antenna of such a length? Practically it
will be larger than that value.

(b) The largest Iractional bandwidth (Afif;, where f;, is the center frequency)

It is desired to design a 100% cfficient biconical dipole antenna whose overall length

is A/20. The design guidelines specify a need to optimize the frequency response

(bandwidth). To accomplish this, the quality factor (2 of the antenna should be mini-

mized. In order to get some indications as to the fundamental limits ol the design:

(a) What is the lowest possible limit of the @ for this size antenna?

(b) In order to approach this lower fundamental limit, should the included angle of
the biconical antenna be made larger or smaller, and why?



COMPUTER PROGRAM - LOG-PERIODIC DIPOLE ARRAY

CHs22 2L 82 AR XA NLASXR AR AR RN SR SRR AL N ER RS EERE RS LR ERER R KR

OO NANNNNNO OO NAAANNAAOON NN NN NNN O ACOONNNNOOOCNANO

THIS IS A FORTRAN PROGRAM, AND IT DESIGNS AND ANALYZES A
LOG-PERIODIC DIPOLE ARRAY BASED ON THE GEOMETRY OF FIGURE
11.9(a), THE DATA IN FIGURES 11.13 AND 11.14, AND THE DESIGN
EQUATIONS OF (11-28) - (11-34).

THE USER CAN TAILOR THE DESIGN AND ANALYSIS BY FOLLOWING
THE LISTED STEPS AND SELECTING THE APPROPRIATE OPTIONS.
FOR MORE DETAILS, SEE THE LPDA.DOC FILE IN THE COMPUTER DISC.

**DESIGN PROCEDURE

STEP I: CHOOSE ONE OF THE FOLLOWING OPTIONS
SPECIFY o AND t. THIS SETS THE DIRECTIVITY.

SPECIFY THE DIRECTIVITY. THIS SETS ¢ AND t FOR
OPTIMUM DIRECTIVITY DESIGN.

STEP II: CHOOSE ONE OF THE FOLLOWING OPTIONS

- CHOOSE THE BOOM SPACING AND BOOM DIAMETER. THIS

SETS THE CHARACTERISTIC IMPEDANCE OF THE
TRANSMISSION LINE.
CHOOSE THE DESIRED INPUT IMPEDANCE AND BOOM
DIAMETER. THIS SETS THE BOOM SPACING.

STEP INl: CHOOSE ONE OF THE FOLLOWING OPTIONS
ROUND THE CALCULATED ELEMENT DIAMETERS TO THE
NEAREST AVAILABLE WIRE DIAMETERS.

DO NOT ROUND THE CALCULATED ELEMENT DIAMETERS.

AFTER CHOOSING THE DESIGN OPTIONS, PROCEED TO THE
ANALYSIS. THE OUTPUT DEPENDS ON ANALYSIS OPTIONS CHOSEN.

**ANALYSIS PROCEDURE

STEP IV: SELECT ANY COMBINATION OF THE FOLLOWING OPTIONS
(DO ONE, TWO, THREE OR ALL OF THE FOLLOWING)

NO ANALYSIS

OUTPUT: *DESIGN SUMMARY (lists physical parameters and geometry)

ANALYZE DESIGN AT A SINGLE FREQUENCY

OUTPUT: *DESIGN SUMMARY (lists physical parameters and geometry)
*E- AND H-PLANE PATTERN ANALYSIS
«CRITICAL PARAMETERS AT ANALYSIS FREQUENCY

ANALYZE DESIGN AT A SINGLE FREQUENCY

OUTPUT: +DESIGN SUMMARY (lists physical parameters and geometry)
*CUSTOM-PLANE PATTERN ANALYSIS
*CRITICAL PARAMETERS AT ANALYSIS FREQUENCY

«  ANALYZE DESIGN OVER A FREQUENCY BAND

OUTPUT: »DESIGN SUMMARY (lists physical parameters and geometry,

*CRITICAL PARAMETERS AS A FUNCTION OF
FREQUENCY, INCLUDING GAIN AT BORESIGHT

(continued on next page)
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(continued)

TO COMPLETE THE DESIGN AND ANALYSIS OF ANY OPTION, THE
FOLLOWING INPUT AND OUTPUT PARAMETERS WILL. GENERALLY BE
EITHER SPECIFIED OR CALCULATED. NOT ALL THE PARAMETERS ARE
REQUIRED FOR ALL DESIGN AND DESIGN OPTIONS.

**INPUT PARAMETERS FOR ARRAY DESIGN

1. Tide = NAME OF DESIGN

2. DO = DESIRED DIRECTIVITY (dBi)

3. Fhigh = UPPER DESIGN FREQUENCY (MHz)

4. Flow = LOWER DESIGN FREQUENCY (MHz)

5. Rs = SOURCE RESISTANCE (ohms)

6. ZCin = CHARACTERISTIC IMPEDANCE OF INPUT LINE (ohms)

7. Rin = DESIRED INPUT IMPEDANCE (REAL); TYPICALLY
EQUAL TO CHARACTERISTIC IMPEDANCE ZCin

8. LLin = LENGTH OF THE INPUT TRANSMISSION LINE; FROM
THE SOURCE TO FIRST/SHORTEST ELEMENT (m)

9. Zout = TERMINATION IMPEDANCE (ohms); TYPICALLY EQUAL

TO CHARACTERISTIC IMPEDANCE ZCin

LENGTH OF THE TERMINATION TRANSMISSION LINE;
FROM THE LAST-LONGEST ELEMENT TO THE LOAD (m)
DESIRED LENGTH-TO-DIAMETER RATIO OF ELEMENTS
NO. OF AVAILABLE ELEMENT DIAMETERS (dimensionless)
DIAMETERS OF AVAILABLE WIRES OR TUBES (cm)
CENTER-TO-CENTER BOOM SPACING (cm)

DIAMETER OF BOOM TUBES OR WIRES (cm)

ANALYSIS FREQ. FOR E- AND H-PATTERNS (MHz)
ANALYSIS FREQ. FOR CUSTOM PLANE PATTERN (MHz
HIGHEST FREQ. FOR SWEPT FREQUENCY DATA (MHz)
LOWEST FREQ. FOR SWEPT FREQUENCY DATA (MHz)
ANGLE OF PLANE [(E-, H-) AND/OR CUSTOM] (degrees)

**PROGRAM OUTPUT OF ARRAY DESIGN

= NUMBER OF ANTENNA ELEMENTS (integer)

= LENGTHS OF ANTENNA ELEMENTS (m)

STATION (POSITION) OF EACH ARRAY ELEMENT (m)
DIAMETER OF EACH ARRAY ELEMENT (cm)

VSWR IN INPUT TRANSMISSION LINE

ACTUAL INPUT IMPEDANCE OF DESIGN (ohms)
ACTUAL DIRECTIVITY OF DESIGN ALONG (dBi)
PEAK DIRECTIVITY ALONG ANY AXIS (dBi)
FRONT-TO-BACK RATIO OF AMPLITUDE PATTERN (dB)
FRONT-TO-MAXIMUM SIDE LOBE LEVEL (dB)
CURRENT IN INPUT TRANSMISSION LINE (A)
CURRENTS IN ARRAY ELEMENTS (A)
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13. Iout = CURRENT IN TERMINATION TRANSMISSION LINE (A)
14. Vin = VOLTAGE AT THE SOURCE (V)

15. Vel = VOLTAGES OF ARRAY ELEMENTS (V)

16. Vout = VOLTAGE AT THE LOAD (V)

17. Epat = E-PLANE PATTERN (dBi)

18. Hpat = H-PLANE PATTERN (dBi)

19. Cpat = ANY DESIRED CUSTOM PLANE PATTERN (dBi)
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