
Designing a robust clock tree structure
Amol Agarwal and Priyanka Garg - Freescale Semiconductor - August 06, 2012

Clock tree synthesis (CTS) is at the heart of ASIC design and clock tree network robustness is one of
the most important quality metrics of SoC design. With technology advancement happened over the
past one and half decade, clock tree robustness has become an even more critical factor affecting
SoC performance. Conventionally, engineers focus on designing a symmetrical clock tree with
minimum latency and skew. However, with the current complex design needs, this is not enough.

Today, SoCs are designed to support multiple features. They have multiple clock sources and user
modes which makes the clock tree architecture complex. Merging test clocking with functional
clocking and lower technology nodes adds to this complexity. Due to the increase in derate numbers
and additional timing signoff corners, timing margins are shrinking.   

To meet the current requirements, designs that are timing friendly are needed and provide minimum
power dissipation. This article describes the factors which a designer should consider while defining
clock tree architecture. It presents some real design examples that illustrate how current EDA tools
or conventional methodologies to design clock trees are not sufficient in all cases. A designer has to
understanding the nitty -gritty of clock tree architecture to be able to guide an EDA tool to build a
more efficient clock tree.  First, the basics of CTS and requirements for good clock tree are
presented.

Clock tree quality parameters

The primary requirements for ideal synchronous clocks are:

Minimum Latency – The latency of a clock is defined as the total time that a clock signal takes1.
to propagate from the clock source to a specific register clock pin inside the design.  The
advantages of building a clock with minimum latency are obvious – fewer clock tree buffers,
reduced clock power dissipation, less routing resources and relaxed timing closure.
Minimum skew – The difference in arrival time of a clock at flip-flops is defined as skew. 2.
Minimum skew helps with timing closure, especially hold timing closure. However there is a word
of caution - targeting  too aggressive minimum skews can be counterproductive because it may
not help meeting hold timing but it can end up having other problems like increasing overall clock
latency and increasing uncommon paths between registers in order to achieve minimum skew.
Duty Cycle – Maintaining a good duty cycle for the clock network is another important3.
requirement. Many sequential devices, like flash, require minimum pulse width on the input clock
to ensure error-free operation. Moreover many IO interfaces like DDR and QSPI can work on both
edges of clock.  A clock tree must be designed with these considerations and symmetrical cells
having similar rise-fall delays should be used to build the clock tree.
Minimum Uncommon path - The logically connected registers  must have minimum uncommon4.
clock path. Timing derates are applied to the clock path to model process variations on the die. 
Using a standard timing derates methodology, derates are applied only on uncommon path of
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launch and capture clock path because it is unlikely that common clock paths can have different
process variations in launch and capture cycle. This concept is also called CRPR adjustment. The
important concept is that a clock path should have minimum uncommon path between two
connected registers.

 

Figure 1: Common and ucommon clock paths between two  registers
Signal Integrity – Clock signals are more prone to signal integrity problems because of high5.
switching activity. To avoid the effect of noise and to avoid EM violations, clock trees should be
constructed using a DWDS(Double width double spacing ) rule. Increased spacing will help in
minimizing noise effect. Similarly, increased width will help to avoid EM violations.
Minimum Power Dissipation – This is one of the most important quality parameter of a clock tree.6.
At the architecture level, clock gating is done at multiple levels to save power and certain things
are expected to done while building clock trees such as maintaining good clock transition,
minimum latency etc.

EDA tool role in clock tree synthesis
Today, a lot of R&D has been done on EDA tools to design an ideal clock tree. The CTS engines of
these tools support most of the SOC requirements to design a robust clock tree. These tools even
generate clock spec definitions from SDC(timing constraint files).  A typical clock spec file includes:

All clock sources information●

Synchronous/Asynchronous relationships between various clocks●

Through pins●

Exclude pins●

Clock pulling pushing information●

Leaf Pin●

Going one level down in SoC to design an ideal clock tree
For most SoCs, the existing EDA tools are sufficient for CTS engine to generate an ideal clock tree.
However, this is not always the case.  This approach presented in this paper is suitable for SoCs or
IPs, which have few clock sources and a simple clock architecture with minimum muxing of multiple
clocks.



Today’s microcontrollers generally don’t have such a simple clock architecture.  Microcontrollers
designed for the automotive world have multiple IPs integrated into a single SoC.  For example, a
single SOC may have multiple cores, IO peripherals like SPI, DSPI, LIN, DDR interfaces for multiple
automotive control applications. Considering human safety in automotive SoCs, testing requirements
are also very stringent in terms of test coverage such as atspeed and stuckat.  This leads to a very
complex clocking architecture because it requires multiple clock sources (both on SoC clock sources
such as PLLs, IRC oscillators and off SoC clock sources like EXTAL) and clock dividers in order to
supply the required clock frequency to multiple IPs within a SoC.

In such cases, CTS engines cannot be relied upon to build a clock tree. Due to complicated muxing
of various clock sources in multiple functional and test modes , EDA tools sometimes are not able to
build the clock tree properly, often resulting in problems of increased latency, skew mismatch and
huge uncommon clock path problems.
 
In the next section some real design case studies are used to illustrate how current EDA tools might
fail to build the clock tree as expected by the designer and how a backend engineer can help design
a robust clock tree either by providing proactive feedback to architecture designers or to improve
the clock structure at the RT level itself or by using better implementing techniques.

 Case study 1 - Clock logic cloning
Suppose a clock tree is required for the following logic.

In functional mode there is one master clock source func and one generated clock source gen_clk1.
In test modes there is one test clocks tck1.  In functional mode register set 2 is clocked by gen_clk1
but in test mode, test clock tck1 is used instead.

The conventional way to define the clock tree spec for this design fragment would be to define the
master clock sources (func and tck1) and generated clock (gen_clk1) and to define through pin for
generated clock source so as to balance the latency of the master clock and the total latency of the
generated clock(source latency to register clock pin plus latency from flop output to register
group3). Defining a through pin for the generated clock source ensures that a CTS engine does not
consider the generated clock flop as a sink pin and instead traces the clock path through CK-> Q arc
of flop.

Assume that the latency of func clock while in functional mode is constrained by register set2
(highlighted in red in figure 2).  This will force a CTS engine to build the generated clock source flop
2 with minimum latency. This will only be possible if the minimum buffering is done from func clock
source to mux1 input D0 as well as from mux1 output to generated clock source gen_clk1. In order
to balance the latency of register set 1 and register set 2, the tool will be forced to insert buffering
between mux1 output and register set 1 clock pins.  This implementation is correct in functional
mode but will cause problems in test mode.



Figure 2: Original design

Test mode CTS:  The architecture of the design is such that test clock tck1 to all register sets 1-3
can be built with very low latency. However due to functional mode clocking constraints, as
explained above, clock latency for the test clock will be high. The latency for test mode will be
constrained by register set 1 as shown in above diagram by green line.  This cannot be avoided
because of the need to balance register set1 and register set 2 latency in functional mode and
buffering can only be done after mux1 output because it is not possible to increase the latency of the
generated clock source. The consequence of this is that there is no option other than to increase the
latency of register set 2 and register set 3 in test modes.  This is a serious problem because the
latency of the test clock is increased because of functional mode clocking constraints. As discussed
above in robust clock tree guidelines, an increase in clock latency can lead to multiple problems.
This problem cannot be solved using advanced features like MMMC (Multi Mode Multi Corner)CTS
of current EDA tools.

Solution: The solution to problem lies in cloning the clock logic as shown in figure 3.  EDA tools
generally do not implement cloning of non-buffer logic in the clock path network.  The problem can
be solved if there is a separate dedicated clock mux for the generated clock source flop. The
limitation of placing clock buffers after the mux output has been removed and for register set 1, the
clock buffering to balance latency in functional mode can be done between func clock source and
cloned mux input D0.  Since there is now the bare minimum buffering done between cloned mux
output D0 and register set 1, the latency numbers in test mode are not limited by register set 1 and
it is possible to achieve minimum latency in test mode.



Figure 3: Modified design with cloned mux

Case study 2 - Clock muxing of two synchronous clocks

 
             Figure 4(a)                                       Figure 4(b)

Figure 4: Design  with two synchronous clocks

In this example clock 1 and clock2 are synchronous to each other. The assumption is that the
minimum latency of both clock1 and clock2 is not limited by register group 1-3, but by some other
clock group (not shown in diagram).

A typical behavior of most of CTS engines would be to insert clock buffers after the mux output to
register group2 in order to save overall clock buffers. However this will introduce a problem of
larger uncommon path between register group 1 and register group2 as well as between register
group 2 and register group3. A CTS engine is not intelligent enough to understand that the
architecture ensures that mux select will not toggle on the fly and there cannot be a case of launch
on clock 1 and capture on clock 2 for register group2.  An alternate approach for CTS for these type
of cases is shown in Figure 4(b). In figure 4(b), the clock buffers have been moved for both clock 1
and clock2 before the clock mux in order to have a greater common clock path between register set
1-2 and register set 2-3. Note that this is under the same assumption that latency of clocks Clk1 and
Clk2 is limited by some other register group other than 1-3 and extra clock buffers were placed by



the CTS engine after clock mux to balance skew requirements.  
Case study 3 - Centralized vs decentralized clocking scheme

There is debate among designers about how to manage clock muxing and clock divider logic for the
SoC. Proponents of a centralized clocking scheme argue that doing all clock muxing at a single place
helps managing things in a better way, while opponents question this approach citing timing issues
that crop up due to centralized muxing. Both possibilities will be considered.

Assume there are three IPs and one clock of 200 MHz frequency. The design requirement says that
both IP1 and IP2 require two synchronous 200 MHz and 100 MHz clocks. Moreover, IP1 and IP2 can
handshake data synchronously both at 200 MHz and 100 MHz.  Now, there are two options to
implement a clocking scheme that meets this requirement. First is to divide the 200 MHz clock to
generate the 100 MHz clock inside a centralized clocking module and then provide both 200 MHz
and 100 MHz clocks to both IPs. The second option is to divide the 200 MHz clock separately in both
IPs.  In this scenario, option one is the better option because IP1 and IP2 both need divided clocks
and they are exchanging data synchronously as well. If division is done independently in both IPs,
there is duplication of the divider logic and there are chances of phase mismatch in the divided
clocks and additional logic may be required to solve this problem.  In this case, a centralized
clocking scheme is better than decentralized one even though there may be some problem of
uncommon path between the 200MHz and 100MHz clocks.

For IP3, a decentralized clocking scheme is the best approach. IP3 requires 200MHz, 100MHz and
50 MHz clocks and IP3 is exchanging data only with the external world and not with any other IP
within the SoC.  In this case there is no point placing the dividers in one centralized clocking block
because it will introduce uncommon path between all divided clocks. The better option would be to
divide the 200 MHz clock inside IP3 to generate 100MHz and 50MHz clocks.

Figure 5: centralized and decentralized clocking

In summary, it might look tempting and convenient to keep all clock muxing and dividing logic in
one place, but in some cases it might introduce timing closure problems. The better approach is to
analyze the impact of centralized/decentralized clocking on a case to case basis and to take the
appropriate decision after that analysis.



Case study 4 - Power vs. timing
A clock tree designer often has to choose between power and timing. One such example is shown in
figure 6. Different CTS engines can behave differently.  The first CTS tools prefers power saving
over
uncommon path because when clock gating is done, the maximum number of clock buffers will stop
toggling . The second solution favors timing over power as both register groups now have the
minimum uncommon path. A CTS designer must choose their preference between power and timing
on a case by case basis. Whatever the tool algorithm, the clock spec can be modified to force the
CTS tool to build the required structure.
 

Figure 6: Alternative ways of building a clock tree

Case study 5 – Back-to-back clock gating cells

Many times due to third party IPs and logic synthesis clock gating insertion, back-to-back clock
gating cells may have been created. Because of this, clock latency to that register group can
increase since a clock gating cell typically has a higher delay than a clock buffer. This can be
rectified either by merging these clock gating cells at the RT level or if that is not possible because
of integration and third-party IP issues, it can also be done during logic synthesis. Most EDA tools
doing logic synthesis have a feature to merge such back-to-back clock gating cells, but the default is
not to merge these clock gating cells in order to preserve the RTL implementation . This feature can
be used on a case to case basis.
 

Figure 7: back-to-back clock cells



Recommendations and guidelines/experiments for designing clock trees
For a new design when the clock tree is being constructed for first time, it is important to know
optimum latency and skew numbers. Some suggested experiments for this include:

Build a clock tree with no skew balancing requirements. This will force the CTS engine to build a1.
clock tree  to all registers at its lowest latency possible without caring about skew balancing. The
clock path of the register group having the highest latency should be analyzed in detail because
when that clock tree is going to be built with skew requirements specified, this register group will
determine the latency of that whole clock group. Explore architectural improvement that can be
made to reduce latency for this register group. This exercise should be repeated for subsequent
highest latency register groups until no further latency improvements can be made.  
After minimum latency has been established, skew numbers should be targeted. Two or three2.
experiments, with different skew numbers, should be performed to see if overall latency is
increasing in order to meet clock skew requirements.  Inappropriate clock buffer selection could
be an issue. Skew numbers should be double checked. Very low skew numbers might look
tempting but too aggressive skew numbers can increase overall clock latency and can increase
peak power dissipation due to all flops toggling at the same time.
Another suggested way to target uncommon path problem is to compare timing reports between3.
pre CTS stage and post CTS stages.  Ideally the timing status of a design should remain the same
between pre CTS and post CTS stages because projected deterioration in the timing profile is
already taken care of at pre CTS by extra clock skew and derate uncertainty.  If timing violation
are seen after post CTS stage and a clock tree with respectable skew numbers has been built, the
culprit is probably a huge uncommon path between launch and capture registers. Root cause
analysis of the uncommon path should be done to determine if architectural improvements can be
made to reduce the uncommon path.

Conclusion
The case studies, guidelines and experiments are neither compulsory nor exhaustive enough to cover
all aspects of an ideal clock tree. Moreover, there are a lot of other issues such as signal integrity
and clock gate ratio which have not been considered. These could be important, particularly in
smaller technology nodes. This article should serve as an eye opener to change the perception about
how CTS activity is taken generally in our design cycle. With timing margins being reduced, it has
become very important to scrutinize the clock tree architecture thoroughly and look for every single
possibility of improving clock structure.
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