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2.1 Introduction

Compact device models for circuit CAD (computer-aided design) requires 
detailed description of the transistor characteristics in the circuit environment 
under various biasing conditions. Transistor characteristics, however, depend 
on the material properties of the basic building blocks of each transistor along 
with its geometrical and structural information. IC (integrated circuit) transis-
tors are fabricated on a semiconductor substrate such as silicon to achieve the 
desired device characteristics for the target circuit performance. These device 
characteristics are modulated by the transport of current-carrying fundamen-
tal constituents of matter referred to as the electrons and holes. Again, the elec-
tronic properties of semiconductors, primarily, depend on the transport of the 
majority carrier electrons or holes. The semiconductors with the majority car-
rier concentration as electrons are referred to as the n-type, whereas, the semi-
conductors with the majority carrier concentration as holes are referred to as 
the p-type. Thus, in order to understand the compact device models for circuit 
CAD, it is essential to understand the basic physics of the elemental n-type, and 
p-type semiconductors along with the transport properties of electrons and 
holes in building IC devices. Though a number of published titles are avail-
able on the subject, the objective of this chapter is to present a brief overview 
of the basic semiconductor theory along with the basics of n-type and p-type 
semiconductors in contact forming pn-junctions that are necessary to develop 
compact transistor models for circuit CAD. The review is brief and covers only 
those topics that have direct relevance to the field-effect transistor ICs. For more 
exclusive treatments, the readers are referred to textbooks on the subject [1–13].

2.2 Semiconductor Physics

Crystalline silicon is a widely used semiconductor-starting material in the 
fabrication of IC devices and chips. Thus, unless otherwise specified, in 
this book, the semiconductor physics is described with reference to silicon. 
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The  silicon wafers used in the IC fabrication processes are cut parallel to 
either the <111> or <100> crystal planes. However, the <100> material is most 
commonly used due to the fact that, during IC fabrication processes, <100> 
wafers produce the lowest amount of charges at the silicon/silicon-dioxide 
(Si/SiO2) interface and offer higher carrier mobility [14,15].

2.2.1 Energy Band Model

In a silicon crystal, each atom has four valence electrons and four nearest 
neighboring atoms. Each atom shares its valence electrons with its four 
neighbors in a paired configuration called covalent bond. It is predicted by 
quantum mechanics (QM) that the allowed energy levels of electrons in a 
solid is grouped into two bands, called the valence band (VB) and the con-
duction band (CB). These bands are separated by an energy range that the 
electrons in a solid cannot possess and is referred to as the forbidden band 
or forbidden gap. The VB is the highest energy band and its energy levels 
are mostly filled with electrons forming the covalent bonds. The CB is the 
next higher energy band with its energy levels nearly empty. The electrons 
that occupy the energy levels in the CB are called free electrons or conduction 
electrons.

Typically, the energy is a complex function of momentum in a three- 
dimensional space and there are many allowed energy levels for a large 
number of electrons in silicon, and therefore, the energy band diagram is 
also complex. For the simplicity of representation, only the edge levels of 
each of the allowed energy bands are shown in the energy band diagram in 
Figure 2.1. In Figure 2.1, Ec and Ev are the bottom edge of the CB and the top 
edge of the VB, respectively, and Eg is the bandgap energy separating Ec and 
Ev. And, at any ambient temperature T(K), Eg is given by

 E E Eg c v= −  (2.1)

When a valence electron is given sufficient energy (≥Eg), it can break out of the 
chemical bonding state and excite into the CB to become a free electron leav-
ing behind a vacancy, or hole in the VB. A hole is associated with a positive 
charge since a net positive charge is associated with the atom from which the 
electron broke away. Note that both the electron and hole are generated simul-
taneously from a single event. The electrons move freely in the CB and holes 
move freely in the VB. In silicon, the bandgap is small (~1.12 eV); therefore, 
even at room temperature a small fraction of the valence electrons are excited 
into the CB, generating electrons and holes. This allows limited conduction 
to take place from the motion of the electrons in the CB and holes in the VB. 
As shown in Figure 2.1, when an electron in the CB gains energy, it moves up 
to an energy E > Ec, while a hole in the VB gains energy, it moves down to an 
energy E < Ev. Thus, the energy of the electrons in the CB increases upward 
while the energy of the holes in the VB increases downward.
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The bandgap energy, Eg, for silicon at room temperature (300 K) is ~1.12 eV. 
As  the temperature increases, the value of Eg for most semiconductors 
decreases due the increase in the crystal lattice spacing by thermal expan-
sions. For silicon, the temperature coefficient of Eg at 300 K temperature is: 
dE dTg ≅ − × −2 73 10 4. eV/K [16]. The temperature dependence of Eg for sili-
con can be modeled by using polynomial equations valid for different range 
of temperatures [16,17]. However, in circuit CAD tool SPICE (Simulation 
Program with Integrated Circuit Emphasis) [18], the temperature depen-
dence of Eg is modeled by [19]
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where:
T is the temperature in Kelvin (K)
Eg(T) is in eV

2.2.2 Carrier Statistics

The electrical properties of a semiconductor are determined by the num-
ber of carriers available for conduction. This number is determined from the 
density of states and the probability that these states are occupied by carri-
ers. The probability that an available state with energy E is occupied by an 
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FIGURE 2.1
Energy band diagram of a semiconductor like silicon: Ec is the bottom edge of the CB and Ev is 
the top edge of the VB; the CB and VB are separated by an energy gap Eg = Ec–Ev. 
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electron under a thermal equilibrium condition is given by the Fermi–Dirac 
probability density function f(E), also called the Fermi function [1–11].
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(2.3)

where:
Ef is the Fermi energy or Fermi level
k = 1.38 × 10–23 J K–1 is the Boltzmann constant
T is the ambient temperature

The Fermi level is the energy at which the probability of finding an electron, 
at any T > 0° K, is exactly one-half (Equation 2.3). From Equation 2.3, we find 
that when E = Ef, f(E) = 1/2, which means that the electron is equally likely to 
have an energy above Ef as below it. At absolute zero temperature (T = 0° K): 
f(E) = 1 for E < Ef, indicating that the probability of finding an electron below 
Ef is unity and above Ef is zero (that is, f(E) = 0 for E > Ef). In other words, all 
energy levels below Ef are filled and all energy levels above Ef are empty. At 
finite temperatures, some states above Ef are filled and some states below Ef 
become empty. As T increases above absolute zero, the function f(E) changes 
as shown in Figure 2.2. Thus, the probability that the energy levels above Ef 

are filled increases with temperature. It is important to note that the Fermi 
function or Fermi energy applies only under equilibrium conditions.
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FIGURE 2.2
Fermi–Dirac (F–D) and Maxwell–Boltzmann (M–B) distribution functions in a semiconductor; 
the plots show that the F–D distribution can be approximated to M–B distribution at tempera-
ture, T > 3 kT. 
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Equation 2.3 describes the probability of an allowed energy state occupied 
by an electron with E > Ef. Then the probability of a state not occupied by an 
electron (with E < Ef) is given by

 1
1

1
− =

+ −( ) 
f E

E E kTf
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exp

 (2.4)

Equation 2.4 is the probability function describing that a hole exists.
As shown in Figure 2.2, the probability distribution f(E) makes a smooth 

transition from unity to zero as the energy increases across the Fermi level. 
The width of the transition is governed by the thermal energy kT. The value 
of thermal energy at room temperature is about 26 mV. Thus, for all energy 
at least several kT (~3 kT) above Ef, the function f(E) in Equations 2.3 and 2.4 
can be approximated by the simple expressions
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Equations 2.5 and 2.6 are identical to Maxwell Boltzmann density function 
for classical gas particles. For most device applications at room temperature, 
the function f(E) given by Equation 2.5 is a good approximation as shown in 
Figure 2.2.

Fermi level can be considered to be the chemical potential for electrons and 
holes. Since the condition for any system in equilibrium is that the chemical 
potential must be constant throughout the system, it follows that the Femi 
level must be constant throughout a semiconductor in equilibrium.

2.2.3 Intrinsic Semiconductors

An intrinsic semiconductor is a perfect single crystal semiconductor with no 
impurities or lattice defects. In such materials, the VB is completely filled 
with electrons and the CB is completely empty. Therefore, in intrinsic semi-
conductors, there are no charge carriers at 0° K. At higher temperatures 
 electron–hole pairs are generated as VB electrons are thermally excited 
across the bandgap to the CB. In intrinsic semiconductors, all the electrons 
in the CB are thermally excited from the VB. In other words, at a given tem-
perature, the number of holes in the VB equals the number of electrons in 
the CB of an intrinsic semiconductor. Thus, if n and p are the concentrations 
of free electrons and holes, respectively, then
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 n p ni= =  (2.7)

or,

 np ni= 2  (2.8)

where:
ni is called the intrinsic carrier concentration and is the free electron 

(or hole) concentration in an intrinsic semiconductor

2.2.3.1 Intrinsic Carrier Concentration

From the effective densities of carriers and probability distribution function, 
we can derive the expression for the intrinsic carrier concentration in a semi-
conductor. Thus, from Equations 2.5 and 2.6, we can write the concentration 
of electrons in the CB as

 n N
E E

kT
c
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



exp  (2.9)

and the concentration of holes in the VB as
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where:
Nc and Nv are the effective densities of states in the CB and VB, respectively

The expressions for Nc and Nv are derived from QM considerations [5]. Both 
Nc and Nv are proportional to T 3 2/ . For an intrinsic semiconductor, n = p = ni 
and Ef is called the intrinsic Fermi level, or the intrinsic energy level, Ei. Then 
(using n = p = ni) we can write from Equations 2.9 and 2.10,
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Now, solving Equation 2.11 for Ef  = Ei, we get the expression for the intrinsic 
energy level as

 E E
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= = + − 
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2 2

ln  (2.12)

From Equation 2.12, it can be shown that the intrinsic Fermi level, Ei, is only 
about 7.3 meV below the mid-gap at T = 300° K. Since kT E Ec v<< +( ), Equation 
2.12 can be simplified to
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 E E
E E

i f
c v= ≅ +

2  (2.13)

Thus, the intrinsic Fermi level in a semiconductor material is very close to 
the midpoint between the CB and the VB, and for all practical purposes, it 
can be assumed that Ei is in the middle of the energy gap. Thus, Ei is com-
monly referred to as the mid-gap energy level.

In order to derive an expression for the intrinsic carrier concentration as a 
function of T, we multiply Equations 2.9 and 2.10 to get
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where:
C is a constant
Eg is the bandgap energy defined in Equation 2.1
k is the Boltzmann constant (8.62 × 10–5 eV K–1)
The term kT has the dimension of energy and is called thermal energy and 

is equal to 25.86 meV at T = 300° K

Substituting the values for Nc and Nv [6], we can express Equation 2.14 as
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If Eg(TNOM) and ni(TNOM) are the values of Eg and ni at the nominal or the refer-
ence temperature TNOM, respectively, then we can show
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where Eg(T) is given by Equation 2.2. The above expression is used in circuit 
CAD for calculation of ni at any temperature T with ni = 1.45 × 1010 cm–3 at 
T = 300° K [6].

2.2.3.2 Effective Mass of Electrons and Holes

The electrons in the CB and holes in the VB move freely throughout the  crystal 
like free particles, suffering only occasional scattering by impurities and 
defects present in the crystal. The free electrons experience Coulomb force 
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due to the charged atomic cores of the host atoms in a regular lattice, giving 
rise to a periodic potential energy. The effect of the periodic potential of the 
crystal lattice on the motion of electrons in the CB and holes in the VB is rep-
resented by the effective masses of the electrons (mn

* ) and holes (mp
*), respec-

tively. In practice, there are several types of mass used for a given material 
and carrier type [1–11]. The effective mass required to calculate the carrier 
(electron and hole) concentration is called the density of states effective mass, 
whereas the mass required to calculate carrier mobility is called the conductiv-
ity effective mass. These effective masses depend on temperature. There is a 
large variation in the reported values of mn

*  and mp
*  [16]. The commonly used 

values for the effective mass for electrons and holes at room temperature are 
summarized in Table 2.1 [6].

2.2.4 Extrinsic Semiconductors

An extrinsic semiconductor is a semiconductor material with added elemen-
tal impurities called dopants. As we discussed in Section 2.2.3, the intrinsic 
semiconductor at room temperature has an extremely low number of free-
carrier concentration, yielding very low conductivity. The added impurities 
introduce additional energy levels in the forbidden gap and can easily be 
ionized to add either electrons to the CB or holes to the VB, depending on the 
type of impurities and impurity levels.

Silicon is a column-IV element with four valence electrons per atom. There 
are two types of impurities in silicon that are electrically active: those from 
column V such as arsenic (As), phosphorous (P), and antimony (Sb); and those 
from column III such as boron (B). A column-V atom in a silicon lattice tends 
to have one extra electron loosely bound after forming covalent bonds with 
silicon atoms as shown in Figure 2.3a. In most cases, the thermal energy at 
room temperature is sufficient to ionize the impurity atom and free the extra 
electron to the CB. Such type of impurities (P, Sb, and As) are called donor 
atoms, since they donate an electron to the crystal lattice and become posi-
tively charged. Thus, the P, Sb, and As doped silicon is called n-type material 
that contains excess electrons and its electrical conductivity is dominated 
by electrons in the CB. On the other hand, a column-III impurity atom in 
a silicon lattice tends to be deficient of one electron when forming covalent 
bonds with other silicon atoms as shown in Figure 2.3b. Such an impurity (B) 
atom can also be ionized by accepting an electron from the VB, which leaves 

TABLE 2.1

Effective Mass Ratio for Silicon at 300 K (m0 is the Free Electron Mass)

Carriers
Density of states effective mass

( )m mn
* / 0

Conductivity effective mass
( )m mn

*
0/

Electrons 1.08 0.26
Holes 0.81 0.386



27Review of Basic Device Physics

a freely moving hole that contributes to electrical conduction. These impuri-
ties (e.g., B) are called acceptors, since they accept electrons from the VB, and 
the doped silicon is called p-type that contains excess holes.

Thus, we can see from Figure 2.3, the donor and acceptor atoms occupy 
substitutional lattice sites and the extra electrons or holes are very loosely 
bound, that is, can easily move to the CB or VB, respectively. In terms of 
energy band diagrams, donors add allowed electron states in the bandgap 
close to the CB edge as shown in Figure 2.4a whereas acceptors add allowed 
states just above the VB edge as shown in Figure 2.4b. Figure 2.4 also shows 
the positions of the Fermi level due to donors (Figure  2.4c) and acceptors 
(Figure 2.4d). Donor levels contain positive charge when ionized (emptied). 
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FIGURE 2.3
Extrinsic semiconductors forming covalent bonds: (a) an arsenic donor atom in silicon provid-
ing one electron for conduction in the CB and (b) a boron acceptor atom in silicon creating a 
hole for conduction in the VB.
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Acceptor levels contain negative charge when ionized (filled). A donor level 
Ed shown in Figure  2.4a is measured from the bottom of the CB whereas 
an acceptor level Ea shown in Figure 2.4b is measured from the top of the 
VB. The ionization energies for donors and acceptors are (Ec–Ed) and (Ea–Ev), 
respectively.

It is possible to dope silicon so that p = n. Material of this type is called 
compensated silicon. In practice, however, one type of impurity dominates 
over the other so that the semiconductor is either n-type or p-type. A semi-
conductor is said to be nondegenerate if the Fermi level lies in the bandgap 
more than a few kT (~3 kT) from either band edge. Conversely, if the Fermi 
level is within a few kT (~3  kT) of either band edge, the semiconductor is 
said to be degenerate. In the nondegenerate case, the carrier concentration obeys 
Maxwell-Boltzmann statistics given by Equations 2.5 and 2.6. However, for 
the degenerate case where the dopant concentration is in excess of approxi-
mately 1018 cm–3 (heavy doping), one must use Femi-Dirac distribution func-
tion given by Equations 2.3 and 2.4. Unless otherwise specified, we will 
assume the semiconductor to be nondegenerate.

2.2.4.1 Fermi Level in Extrinsic Semiconductor

In contrast to intrinsic semiconductor, the Fermi level in extrinsic semicon-
ductor is not located at the mid-gap. The Fermi level in an n-type silicon 
moves up toward the CB, consistent with the increase in electron density 
described by Equation 2.9. On the other hand, the Fermi level in a p-type 
silicon moves toward the VB, consistent with the increase in hole density 
described by Equation 2.10. These cases are depicted in Figure 2.4c and d. 
The exact position of the Fermi level depends on both the ionization energy 
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FIGURE 2.4
Energy band diagram representation in extrinsic semiconductors: (a) donor level Ed, (b) accep-
tor in silicon Ea, (c) intrinsic energy level and Fermi level in an n-type semiconductor, and 
(d) intrinsic energy level and Fermi level in a p-type semiconductor. 
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and concentration of dopants. For example for an n-type material with a 
donor impurity concentration Nd, the charge neutrality condition in silicon 
requires that

 n N pd= ++  (2.17)

where:
Nd

+ is the density of ionized donors

Using Equation 2.4 we can write

 N N f E N
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where:
f(Ed) is the probability that a donor state is occupied by an electron in the 

normal state
Ed is the energy of the donor level

The factor 1/2 in the denominator of f(Ed) arises from the spin degeneracy 
(up or down) of the available electronic states associated with an ionized 
level [20].

Substituting Equations 2.9 and 2.10 for n and p, respectively, and Equation 
2.18 for Nd

+ in Equation 2.17, we get
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Equation 2.19 can be solved for Ef. For an n-type semiconductor, n  >>  p; 
therefore, the second term on the right hand side of Equation 2.19 can be 
neglected. Now, assuming (Ed–Ef) >> kT, exp /− −( )  <<E E kTd f 1. Therefore, 
from Equation 2.19 we get after simplification

 E E kT
N
N

c f
c

d
− = 







ln  (2.20)

In this case, the Fermi level is at least a few kT below Ed and essentially all 
the donor levels are ionized, that is, n N Nd d= =+  for an n-type semiconduc-
tor. Then from Equation 2.8, the hole density in an n-type semiconductor is 
given by

 p
n
N

i

d
=

2

 (2.21)
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Similarly, for a p-type silicon with a shallow acceptor concentration Na, the 
Fermi level is given by

 E E kT
N
N

f v
v

a
− = 







ln  (2.22)

In this case, the hole density is p N Na a= =− , and the electron density is

 n
n
N

i

a
=

2

 (2.23)

Instead of using Equations 2.20 and 2.22, we can express these in terms of Ef 
and Ei using Equations 2.9 and 2.10. From Equation 2.9, the intrinsic carrier 
concentration can be shown as
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Then substituting for Ec from Equation 2.25 into Equation 2.20, we get for an 
n-type silicon,

 E E kT
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Similarly, using Equation 2.10, we can express Equation 2.22 for a p-type 
 silicon by

 E E kT
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
ln  (2.27)

Equations 2.26 and 2.27 are the measure of the Fermi level with reference 
to the mid-gap energy level for the n-type and p-type semiconductors, 
respectively.

2.2.4.2 Fermi Level in Degenerately Doped Semiconductor

For heavily doped silicon, the impurity concentration Nd or Na can exceed 
the effective density of states Nc or Nv, so that Ef ≥ Ec and Ef ≤ Ev according 
to Equations 2.20 and 2.22. In other words, the Fermi level moves into the CB 
for n+ silicon, and into VB for the p+ silicon. In addition, when the impurity 
concentration is higher than 1018 cm–3, the donor (or acceptor) levels broaden 
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into bands. This results in an effective decrease in the ionization energy until 
finally the impurity band merges with the CB (or VB) and the ionization energy 
becomes zero. Under these circumstances, the silicon is said to be degenerate. 
Strictly speaking, Fermi statistics should be used for the calculation of elec-
tron concentration when E E kTc f−( ) ≤  [20]. For practical purposes, it is a good 
approximation within a few kT to assume that the Fermi level of the degenerate 
n+ silicon is at the CB edge, and that the degenerate p+ silicon is at the VB edge.

2.2.5 Carrier Transport in Semiconductors

In thermal equilibrium, mobile (CB) electrons are in random thermal motion 
with an average velocity of thermal motion, vth ≅ 1 × 107 cm sec–1 at 300° K. 
However, due to the random thermal motion of electrons, no net current 
flows through the material. On the other hand, in the presence of an electric 
field E, electrons move opposite to the direction of E. This process is called 
electron drift and causes a net current flow through the material. Also, if there 
is a carrier concentration gradient in the material, the carriers diffuse away 
from the region of higher concentration to the lower concentration, produc-
ing a net current flow in the semiconductor. Thus, the carrier transport or 
current flow in a semiconductor is the result of two different mechanisms: 
(1) the drift of carriers (electrons and holes), which is caused by the presence 
of an electric field and (2) the diffusion of carriers, which is caused by an 
electron or hole concentration gradient in the semiconductor. We will now 
consider factors involved in both phenomena.

2.2.5.1 Carrier Mobility and Drift Current

When an electric field is applied to a conducting medium containing free carri-
ers, the carriers are accelerated in proportion to the force of the field. However, 
the accelerating carriers within a semiconductor will collide with various 
scattering centers including the atoms of the host lattice (lattice scattering), 
the impurity atoms (impurity scattering), and other carriers (carrier–carrier 
scattering). In the case of an electron, these different scattering mechanisms 
tend to redirect its momentum and in many cases tend to dissipate the energy 
gained from the electric field. Thus, under the influence of a uniform electric 
field, the process of energy gain from the field and energy loss due to the scat-
tering balance each other and carriers attain a constant average velocity, called 
the drift velocity (vd). At low electric fields, vd is proportional to the electric field 
strength E and is given by

 v Ed = µ  (2.28)

where:
μ is the constant of proportionality and is called the mobility of the carriers 

in units of cm2 V–1sec–1
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The mobility is proportional to the time interval between collisions and 
inversely proportional to the effective mass of the carriers. The total mobility is 
determined by combining the mobilities for different scattering mechanisms 
such as mobility due to lattice scattering μL and mobility due to ionized impurity 
scattering μI. Assuming different scattering mechanisms are independent, we 
can write the expression for total mobility using Mathiessen’s rule

 1 1 1
µ µ µ
= + +

L I
  (2.29)

The measurement data show that the electron mobility (μn) in an n-type silicon 
is about three times the hole mobility (μp) in a p-type silicon since the effective 
mass of electrons in the CB is much lighter than that of holes in the VB.

Carrier mobility in bulk silicon is a function of the doping concentrations. 
Figure 2.5 shows plots of electron and hole mobilities in silicon as a func-
tion of doping concentration at room temperature. It is observed from the 
plots that at low impurity levels, the mobilities are mainly limited by carrier 
collisions with the silicon lattice or acoustic phonons. As the doping con-
centration increases beyond 1 × 1015 cm–3, the mobilities decrease due to the 
increase in the collisions with the charged (ionized) impurity atoms through 
Coulomb interaction. At high temperatures, the mobility tends to be limited 
by lattice scattering and is proportional to T–3/2, relatively insensitive to the 
doping concentration. At low temperatures, the mobility is higher; however, 
it strongly depends on doping concentration as it becomes more limited by 
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Electron and hole mobilities in bulk silicon at 300 K as a function of doping concentration. 
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impurity scattering. The detailed temperature dependence of mobility can 
be found in Arora and Arora et al. [17,21].

The carrier mobility discussed earlier is the bulk mobility applicable to con-
duction in the silicon substrate far away from the surface. In the channel 
region of MOSFET (metal-oxide-semiconductor field-effect transistor) devices, 
the current flow is governed by the surface mobility. The surface mobility is 
much lower than the bulk mobility due to additional scattering mechanism 
between the carriers and Si/SiO2 interface in the presence of the high electric 
field normal to the channel as discussed in Section 5.3.1 of Chapter 5.

2.2.5.2 Electrical Resistivity

The drift of charge carriers under an applied electric field E results in a cur-
rent, called the drift current. For a homogeneous n-type silicon, if there are n 
number of electrons per unit volume each carrying a charge q flow with a 
drift velocity vd, then the electron drift current density is given by

 J qnv qn En drift d n, = = µ  (2.30)

where we have used Equation 2.28 for vd; in Equation 2.30, q = 1.6 × 10–19 C 
is the electronic charge and μn is the electron mobility. From Ohm’s law, 
the resistivity ρ of a conducting material is defined by E/Jn; therefore, from 
Equation 2.30, the resistivity ρn to electron current flow is given by

 ρ
µ

n
nqn

= 1
 (2.31)

Similarly, for a p-type silicon, the hole drift current density, Jp,drift, and resis-
tivity, ρp are given by

 J qpv qp Ep drift d p, = = µ  (2.32)

 ρ
µ

p
pqp

= 1
 (2.33)

where:
μp is the hole mobility

If the silicon is doped with both donors and acceptors, then the total resistiv-
ity can be expressed as

 ρ
µ µ

=
+
1

qn qpn p
 (2.34)

Thus, the resistivity of a semiconductor depends on the electron and hole 
concentrations and their mobilities. Empirical resistivity versus impurity 
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concentrations plots are shown in Figure 2.6 for uniformly doped silicon at 
300° K. The plot for n-type is lower than p-type doped silicon because elec-
tron mobility is higher than the hole mobility.

2.2.5.3 Sheet Resistance

The resistance of a uniform conductor of length L, width W, and thickness t 
is given by

 R
L

tW
= ρ  (2.35)

where:
ρ is the resistivity of the conductor in ohm-centimeter

Typically, in an IC technology, the thickness t of a diffusion region is uni-
form and normally much less than both L and W of the region. Therefore, it 
is useful to define a new variable ρsh, called the sheet resistance, which has the 
dimension of Ohm (Ω) and is given by

 ρ ρ
sh

t
=  (2.36)

Then Equation 2.35 becomes

 R
L

W
sh= ρ  (2.37)
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From Equation 2.37, it is found that when L  =  W, the diffused layer 
becomes a square with R = ρsh. Thus, the total resistance of a diffusion 
line is simply ρsh times the number of squares in the path of current and 
is expressed in units of Ω per square (Ω/□). The process parameters that 
determine the sheet resistance of a layer are the resistivity and thickness t 
of the layer. Since the resistivity is a function of carrier concentration and 
mobility, both of which are functions of temperature, ρsh is temperature 
dependent.

2.2.5.4 Velocity Saturation

The field versus velocity linear relationship, given by Equation 2.28 in 
Section 2.2.5.1, is valid only for low electric field (<1 × 104 V cm–1) and carri-
ers are in equilibrium with the lattice. At higher electric fields, the average 
carrier energy increases and carriers lose their energy by optical-phonon 
emission nearly as fast as they gain it from the field. This causes a decrease 
in μ from its low field value as the field increases until finally the drift veloc-
ity reaches a limiting value vsat, referred to as the saturation velocity. This 
phenomenon is called the velocity saturation. For silicon, a typical value of 
vsat = 1.07 × 107 cm sec–1 for electrons and occurs at an electric field of about 
2 × 104 V cm–1. The corresponding values for holes are vsat = 8.34 × 106 cm 
sec–1 and E ≅ 5.0 × 104 V cm–1.

It is found that the measured value of drift velocity for electrons and holes 
in silicon is a function of the applied field E and can be approximated by the 
following expression

 v v
E E

E E
d sat

c

c

=
+ ( )





/

/
/

1
1β β  (2.38)

where:
Ec is the critical electric field at which carrier velocity saturates

The parameters vsat, Ec, and β in Equation 2.38 are given in Table 2.2.
Figure 2.7 shows the simulated value of drift velocity for electrons and 

holes at 300° K in silicon as a function of the applied field E obtained by 
Equation 2.38. It is observed from Figure 2.7 that at low fields, the carrier 

TABLE 2.2

Parameters for Field Dependence of Drift Velocity for Silicon at 300 K

Parameter vsat (cm sec–1) Ec (V cm–1) β

Electrons 1.07 × 107 6.91 × 103 1.11
Holes 8.34 × 106 1.45 × 104 2.637
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velocity increases linearly with the electric field indicating constant mobil-
ity. When the field exceeds about 2 × 104 V cm–1, carriers begin to lose energy 
by scattering with optical phonons and their velocity saturates. As the 
field exceeds 100  KV cm–1, carriers gain more energy from the field than 
what they can lose by scattering. Consequently, their energy with respect 
to the bottom of the CB (for electrons) or top of the VB (for holes) begins 
to increase. The carriers are no longer at thermal equilibrium with the lat-
tice. Since they acquire energy higher than the thermal energy (kT) they are 
called hot carriers. 

It is these hot carriers that are responsible for reducing the mobility at 
high fields. For a more heavily doped material, the low-field mobility is 
lower because of the impurity scattering. However, vsat remains the same, 
independent of impurity scattering. Also, vsat is weakly dependent on tem-
perature and decreases slightly as the temperature increases [17]. Figure 2.7 
shows carrier velocity as a function of electric field. It is observed from the 
plots that the carrier velocity increases linearly at low electric field, then 
the increase in the carrier velocity slows down with the increase in electric 
field, and finally above a certain critical electric field the carrier velocity 
saturates.

2.2.5.5 Diffusion of Carriers

In addition to the drift of electrons under the influence of an electric field, 
the carriers also diffuse if the carrier concentration is not uniform within 
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a semiconductor. This leads to an additional component of current in pro-
portion to the concentration gradient and is called the diffusion current. Thus, 
the diffusion is a gradient driven motion and occurs from high-concentra-
tion regions toward low-concentration regions as shown in Figure 2.8.

The diffusion flux is given by Fix’s first law,

 F D
dC
dx

= −  (2.39)

where:
F, D, and C are the flux of carriers, diffusion constant, and carrier density, 

respectively

The negative sign is due to the fact that the carriers flow from the higher 
concentration to lower concentration; that is, dC/dx is negative. If the carrier 
flow in a semiconductor material is electron, then the diffusion current flow 
due to the electron concentration gradient dn/dx is given by

 J qD
dn
dx

n diff n, =  (2.40)

Similarly, the hole diffusion current due to hole concentration gradient dp/dx 
is given by

 J qD
dp
dx

p diff p, = −  (2.41)

where:
Dn and Dp are called the diffusivity or diffusion constants for electrons and 

holes in the material, respectively
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FIGURE 2.8
Diffusion of carriers from high concentration to low concentration due to concentration 
gradient over different time intervals t1  <  t2  <  t3; t1 is the initial time and the background 
concentration ≈ 0. 
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and are related to the respective mobility by the relationship [6]

 
D D kT

q
vn

n

p

p
kT

µ µ
= = ≡  (2.42)

where:
v kT qkT ≡  is called the thermal voltage

Equation 2.42 is often referred to as the Einstein’s relation. For lightly 
doped silicon (e.g., Nd ≅ 1 × 1015 cm–3) at room temperature, Dn = 38 cm2 
sec–1 and Dp = 13 cm2 sec–1. The negative sign in Equation 2.41 implies that 
the hole current flows in a direction opposite to the hole concentration 
gradient.

2.2.5.6 Nonuniformly Doped Semiconductors and Built-In Electric Field

Let us consider an n-type material with nonuniformly doped Nd donor atoms 
as shown in Figure 2.9. Considering complete ionization of  donor atoms, 
we have n = Nd

+ = Nd.
Due to the concentration gradient, electrons diffuse from the high- 

concentration region to the low-concentration region. Then from Equation 
2.39 the diffusion flux of electrons is given by

 F D
dn x

dx
n diff n,

( )= −  (2.43)
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FIGURE 2.9
Drift and diffusion of carriers in a nonuniformly doped n-type semiconductor: Fn,diff is the 
electron diffusion flux from the high concentration to low concentration; Fn,drift is the drift flux 
of electrons due to the built-in electric field, Ex set up by the ionized donors and diffused elec-
trons in the semiconductor. 
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where:
the subscript n represents the parameters for electrons

As the electrons move (diffuse) away, they leave behind positively charged 
donor ions (Nd

+), which try to pull electrons back causing drift flux of 
electrons from the low- to high-concentration region. This drift of elec-
trons from low- to high-concentration regions sets up an electric field, Ex 
from the high-concentration to the low-concentration regions as shown in 
Figure 2.9. Then from Equation 2.30, the flux due to the drift of electrons 
is given by

 F n x v n En drift d n x, = =( ) µ  (2.44)

An equilibrium is established when diffusion = drift. Here n(x) is the num-
ber of electrons in the diffusion flux at any point x in the distribution and 
≠ Nd(x). Therefore, a built-in electric field is established that prevents diffu-
sion of electrons. Then from Equations 2.43 and 2.44, we get the expression 
for the built-in electric field for electrons in an n-type nonuniformly doped 
substrate as

 E
D

n
dn x

dx
v

n
dn x

dx
x

n

n
kT= − = −

µ
1 1( ) ( )

 (2.45)

Similarly, the built-in electric field for holes in a nonuniform p-type substrate 
is given by

 E
D

p
dp x

dx
v

p
dp x

dx
x

p

p
kT= =

µ
1 1( ) ( ) (2.46)

In Equations 2.45 and 2.46 we have used Einstein’s relation given in Equation 
2.42. This built-in electric field favors the transport of the minority carriers if 
created by an external source.

2.2.6 Generation–Recombination

In a semiconductor under thermal equilibrium, carriers possess an average 
thermal energy corresponding to the ambient temperature. This thermal 
energy excites some valence electrons to reach the CB. This upward transi-
tion of an electron from the VB to CB leaves behind a hole in the VB and an 
electron–hole pair is created. This process is called the carrier generation (G). 
On the other hand, when an electron makes a transition from the CB to the 
VB, an electron–hole pair is annihilated. This reverse process is called car-
rier recombination (R). Under thermal equilibrium, G = R so that the carrier 
concentration remains the same and the condition pn ni= 2  is maintained. 
The thermal G–R process is shown in Figure 2.10.
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The equilibrium condition of a semiconductor is disturbed by optically 
or electrically introducing free carriers exceeding their thermal equilibrium 
values resulting in pn ni> 2  or by electrically removing carriers resulting in 
pn ni< 2. The process of introducing carriers in access of thermal equilibrium 
values is called the carrier injection and the additional carriers are called the 
excess carriers. In order to inject excess carriers optically, we shine light with 
energy E = hν > Eg on an intrinsic semiconductor so that the valence electrons 
can be excited into the CB by the excess energy ΔE = (hν–Eg), where h and ν 
are Planck’s constant and frequency of light, respectively. In this process, we 
get optically generated excess electrons (nL) and holes (pL) in the semiconduc-
tor as shown in Figure 2.10. Therefore, the total nonequilibrium values of 
carrier concentration is given by

 
n n n

p n p

i L

i L

= +

= +






Injection of carriers by light  (2.47)

2.2.6.1 Injection Level

From Equation 2.47, we observe that both n and p are greater than the intrin-
sic carrier concentration of the semiconductor, and therefore, pn ni> 2  for 
injection of carriers into the semiconductor. If the injected carrier density 
is lower than the majority carrier density at equilibrium so that the latter 
remains essentially unchanged while the minority carrier density is equal 
to the excess carrier density, then the process is called the low-level injection. 
If  the injected carrier density is comparable to or exceeds the equilibrium 
value of the majority carrier density, then it is called the high-level injection.

To illustrate the injection levels, we consider an n-type extrinsic semicon-
ductor with Nd = 1015 cm–3. Then from Section 2.2.4.1, the equilibrium major-
ity carrier electron concentration is given by nno = 1 ×  1015  cm–3, whereas 
from Equation 2.21, the minority carrier hole concentration is given by 
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hv > Eg

Ec
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EvHoles
h = Planck’s constant
v = Frequency of incident light

FIGURE 2.10
Band-to-band generation of electron–hole pairs under optical illumination of photon energy 
hν, where h and ν are the Planck’s constant and the frequency of incident light, respectively. 
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pno = 1 × 105 cm–3. Here, nno and pno define the equilibrium concentrations 
of electrons and holes, respectively, in an n-type material. Now, we shine 
light on the sample so that 1 × 1013 cm–3 electron–hole pairs are generated 
in the material. Then using Equation 2.47, the total number of electrons 
nn = nno = 1 × 1015 cm–3 and pn = 1 × 1013 cm–3. Thus, the majority carrier concen-
tration nn remains unchanged, whereas the minority carrier concentration 
pn is increased significantly. This is an example of low-level injection. On the 
other hand, if 1 ×  1017  cm–3 electron–hole pairs are generated by incident 
light, then from Equation 2.47, we get nn ≅ 1 × 1017 cm–3 and pn = 1 × 1017 cm–3 
changing both the electron and hole concentrations in the semiconductor, 
resulting in a high-level injection. The mathematics for high-level injection are 
complex, and therefore, we will consider only low-level injection.

2.2.6.2 Recombination Processes

The semiconductor material returns to equilibrium through recombination 
of injected minority carriers with the majority carriers in the case of carrier 
injection or through generation of electron–hole pairs in the case of extrac-
tion of carriers.

The electron–hole recombination process occurs by transition of electrons 
from the CB to the VB. In a direct bandgap semiconductor like GaAs where 
the minimum of the CB aligns with the maximum of the VB, an electron in 
the CB can give up its energy to move down to occupy the empty state (hole) 
in the VB without a change in the momentum as shown in Figure 2.11a. Since 
the momentum (k) must be conserved in any energy level transition, an elec-
tron in GaAs can easily make direct transition from Ec to Ev across Eg. This 
is called the direct or band-to-band recombination. When direct recombination 
happens, the energy given up by electron will be emitted as a photon, which 
makes it useful for light-emitting diodes.

If we generate excess carriers (Δn, Δp) at a rate GL due to the incident light, 
then for low-level injection, we get Δp = Δn = Uτ = GLτ, where U is the net 
recombination rate and τ is the excess carrier lifetime. If po and no are the 
equilibrium concentrations of electrons and holes, respectively, and p and 
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FIGURE 2.11
Bandgap in semiconductors: (a) direct bandgap, (b) band-to-band recombination in a direct 
bandgap semiconductor, and (c) indirect bandgap. 
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n are the respective total concentrations due to generation, then Δp = p – po 

and Δn = n – no and the net recombination rate due to direct recombination 
is given by

 U
n p

n p
= =∆ ∆
τ τ

 (2.48)

where:
τn and τp are the excess carrier electron and hole lifetime, respectively

For band-to-band recombination, the excess carrier lifetime for an electron is 
equal to that of a hole since the single phenomenon annihilates an electron 
and a hole simultaneously.

For indirect bandgap semiconductors such as silicon and germanium 
(Figure 2.11c), the probability of direct recombination is very low. Physically, 
this means that the minimum energy gap between Ec and Ev does not occur at 
the same point in the momentum space as shown in Figure 2.11c. In this case, 
for an electron to reach the VB, it must experience a change of momentum 
as well as energy to satisfy the conservation principle. This can be achieved 
by recombination processes through intermediate trapping levels, called the 
indirect recombination as shown in Figure 2.12.

Impurities that form electronic states deep in the energy gap assist the 
recombination of electrons and holes in the indirect bandgap semiconduc-
tors. Here the word deep indicates that the states are far away from the band 
edges and near the center of the energy gap. These deep states are commonly 
referred to as recombination centers or traps. Such recombination centers are 
usually unintentional impurities, which are not necessarily ionized at room 
temperature. These deep level impurities have concentrations far below the 
concentration of donor or acceptor impurities, which have shallow energy 
levels. Gold (Au) is a deep level impurity intentionally used in silicon to 
increase the recombination rate. This recombination via deep level impu-
rities or traps is often referred to as the indirect recombination. The process 
shown in Figure 2.12 consists of (1) an electron capture by an empty center, 
(2) electron emission from an occupied center, (3) hole capture by an occu-
pied center, and (4) hole emission by an empty center.

Ec
1 2

1 = Electron capture
2 = Electron emission
3 = Hole capture
4 = Hole emission
2 + 4 or 4 + 2: generation
1 + 3 or 3 + 1: recombination

3 4

Et

Ef

Ev

Ei

FIGURE 2.12
Generation and recombination in an indirect bandgap semiconductor; Et is the trap level deep 
into the bandgap; 1, 2, 3, and 4 represent the generation and recombination processes. 
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Let us consider the following example where an impurity like Au is 
 introduced that provides a trapping level or a set of allowed states at energy Et. 
The trap level Et is assumed to act like an acceptor (it can be neutral or nega-
tively charged). Recombination is accomplished by trapping an electron and 
a hole. (The analysis can be easily extended to the case where the trap acts 
like a donor, that is, positively charged or neutral charge states.) The indirect 
recombination process was originally proposed by Shockley and Read [22] 
and independently suggested by Hall [23] and, therefore, is often referred to 
as the Shockley–Read–Hall (SRH) recombination. By considering the transi-
tion processes shown in Figure 2.12, Shockley, Read, and Hall showed that 
for low-level injection, the net recombination rate is given by

 U
v N pn n

n p n E E kT
th t i

i t i

=
−( )

+ + −( ) 

σ 2

2 cosh
 (2.49)

where:
vth is the carrier thermal velocity (≈ 1 × 107 cm sec–1)
σ is the carrier capture cross section (≈10–15 cm2)
Nt is the density of trap centers
vthσNt is the capture probability or capture cross section

From Equation 2.49 we observe the following:

 1. The “driving force” or the rate of recombination is proportional to 
pn ni−( )2 , that is, the deviation from the equilibrium condition

 2. U = 0 when np ni=( )2 , that is, equilibrium condition
 3. U is maximum when Et = Ei, that is, trap levels near the mid-band 

are the most efficient recombination centers

Thus, for the simplicity of understanding, let us consider the case when 
Et = Ei. Then from Equation 2.49, the net recombination rate is given by

 U
v N pn n

n p n
th t i

i
=

−( )
+ +

σ 2

2
 (2.50)

For an n-type semiconductor with low-level injection, n >> p + 2ni; denoting 
p = pn as the total excess minority carrier concentration and p n nn io =( )2  as 
the equilibrium minority carrier concentration, we get after simplification of 
Equation 2.50

 U v N p p
p

th t n n
p

= −( ) =σ
τ

o
∆

 (2.51)
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where the minority carrier hole lifetime in an n-type semiconductor is given by

 τ
σ

p
th p tv N

= 1
 (2.52)

In an n-type material, lots of electrons are available for capture. Therefore, 
Equation 2.51 shows that the minority carrier hole lifetime τp is the limiting 
factor in recombination process in an n-type material.

Similarly, for a p-type semiconductor, we can show from Equation 2.50 that 
the net recombination rate for electrons is given by

 U
n

n
= ∆
τ

 (2.53)

where

 τ
σ

n
th n tv N

= 1
 (2.54)

is the minority carrier electron lifetime. Thus, for a p-type semiconductor the 
minority carrier electron lifetime is the limiting factor in the recombination 
process.

The other recombination process in silicon that does not depend on deep 
level impurities and that sets an upper limit on lifetime is Auger recombina-
tion. In this process, the electrons and holes recombine without trap lev-
els and the released energy (of the order of energy gap) is transferred to 
another majority carrier (a hole in a p-type and electron in an n-type silicon). 
Usually, Auger recombination is important when the carrier concentration 
is very high (>5 × 1018 cm–3) as a result of high doping or high-level injection.

2.2.7 Basic Semiconductor Equations

2.2.7.1 Poisson’s Equation

Poisson’s equation is a very general differential equation governing the oper-
ation of IC devices and is based on Maxwell’s field equation that relates the 
charge density to the electric field potential. Conventionally, the electrostatic 
potential, f in a semiconductor is defined in terms of the intrinsic Fermi level 
(Ei) such that

 φ = − E
q

i  (2.55)

The negative sign in Equation 2.55 is due to the fact that Ei is defined as 
the electron energy whereas f is defined for a positive charge. The electric 
field E, which is defined as the electrostatic force per unit charge, is equal to 
the negative gradient of f, such that
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 E
d
dx

= − φ
 (2.56)

Mathematically, Poisson’s equation (for silicon) is stated as
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x
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or, using Equation 2.56,
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where
ρ(x) is the net charge density at any point x
ε0 (=8.854 × 10–14 F cm–1) is the permittivity of free space
Ksi (=11.8) is the relative permittivity of silicon

If n and p are the free electron and hole concentrations, respectively, corre-
sponding to Nd

+ and Na
– ionized acceptor and donor concentrations, respec-

tively, in silicon, we can express Equation 2.58 as
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Assuming complete ionization of dopants, Nd
+ = Nd and Na

– = Na, we can 
write Poisson’s equation as
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Equation 2.60 is a one-dimensional (1D) equation and can easily be extended to 
three-dimensional (3D) space. 1D-Poisson equation is adequate for describing 
most of the basic device operations. However, for small geometry advanced 
devices 2D (two-dimensional) or 3D Poisson’s equation must be used.

Another form of Poisson’s equation is Gauss’s law, which is obtained by 
integrating Equation 2.57:

 E
K

x dx
Q

Ksi

s

si
= =∫1

0 0ε
ρ

ε
( )  (2.61)

It is to be noted that the semiconductor as a whole is charged neutral, that is, 
ρ must be zero. However, when the space charge neutrality does not apply, 
Poisson’s equation must be used.
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2.2.7.2 Carrier Concentration in Terms of Electrostatic Potential

In an n-type nondegenerate semiconductor the Fermi level Ef (or Fermi 
potential ff  =  –Ef/q) lies above the intrinsic level Ei (or intrinsic potential 
fi = –Ei/q) as shown in Figure 2.4c. Then from Equation 2.26 we can write

 N n
E E

kT
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q
kT

d i
f i

i i f=
−






 = −( )
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exp exp φ φ  (2.62)

while in a p-type semiconductor the Fermi level Ef (or Fermi potential ff) lies 
below the intrinsic level Ei (or intrinsic potential fi) as shown in Figure 2.4d, 
and from Equation 2.27 we can show
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exp exp φ φ  (2.63)

At room temperature, the available thermal energy is sufficient to ionize 
nearly all acceptor and donor atoms due to their low ionization energies. 
Hence it is safe approximation to say that in a nondegenerate silicon at room 
temperature:

 n N nd≈ ( )− type  (2.64)

 p N pa≈ ( )− type  (2.65)

where:
Nd is the concentration of donor atoms
Na is the concentration of acceptor atoms

In an n-type material, where Nd >> ni, electrons are majority carriers whose 
concentration is given by Equation 2.64, while the hole concentration pn (rep-
resenting concentration of p in an n-type material) from Equation 2.64 is 
given by

 p
n
N

n
i

d
≅

2

 (2.66)

The hole concentration pn is much smaller than nn in an n-type semiconductor. 
Thus, holes are minority carriers in an n-type semiconductor. Similarly, in a 
p-type semiconductor where Na >> ni, holes are the majority carriers given by 
Equation 2.65, while the minority carrier electron concentration is given by

 n
n
N

p
i

a
≅

2

 (2.67)
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Since np << p, electrons are minority carriers in a p-type semiconductor. 
Consequently, we often use the terminology of majority and minority carriers.

From Equation 2.62, we can write for an n-type semiconductor
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where:
ϕB  ≡  (ϕf – ϕi) is called the bulk potential and is negative for n-type 

semiconductors

Similarly, from Equation 2.63, for p-type semiconductor, we can show

 φ φ φf i kT
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N
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
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


 ≡ln  (2.69)

Thus, we can write a generalized expression for bulk potential in semicon-
ductors as

 φ φ φB i f kT
b

i
v

N
n

= −( ) = ± 







ln  (2.70)

where: 
the “+” sign is for p-type semiconductors with Nb = Na

the “–” sign is for n-type semiconductors with Nb = Nd

Note that the Fermi potential, ϕf, is not only a function of carrier concentra-
tion but also dependent on temperature through ni. From Equation 2.70, 
we observe that since ni increases with temperature according to Equation 
2.15, the magnitude of ϕB decreases and as ni approaches to Nb, ϕf approaches 
to ϕi. Thus, with an increase of temperature, the Fermi level approaches 
the mid-gap position, that is, the intrinsic Fermi level, showing thereby 
that the semiconductor becomes intrinsic at high temperature. Thus, the 
doped or extrinsic silicon will become intrinsic if the temperature is high 
enough. The temperature at which this happens depends upon the dop-
ant concentration. When the material becomes intrinsic, the device can no 
longer function, and therefore, the intrinsic region is avoided in device 
operation.

The temperature coefficient of ϕf can be obtained by differentiating 
Equation 2.70 giving
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Equation 2.71 gives dff/dT ~ 1 mV K–1. If we use Equation 2.15 for ni, then 
ff with reference to fi = 0 at any temperature T can be written in terms of 
TNOM as
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 (2.72)

Equation 2.72 is used in circuit CAD tools for modeling the temperature 
dependence of ff.

2.2.7.3 Quasi-Fermi Level

Under thermal equilibrium conditions, the electron and hole concentrations 
are given by Equations 2.62 and 2.63 (using n = Nd and p = Na), respectively, 
maintaining the condition pn ni= 2. However, when carriers are injected into 
the semiconductor or extracted out from the semiconductor, the equilibrium 
condition is disturbed. In nonequilibrium conditions: (1) injection, np > ni

2 or 
(2) extraction, np < ni

2, we cannot use Equations 2.62 and 2.63. And, the car-
rier densities can no longer be described by a constant Fermi level through 
the system. Here, we define quasi-Fermi levels such that Equations 2.62 and 
2.63 hold as given by

 n n
E E

kT
n

q
kT

i
fn i

i i fn=
−






 = −( )





exp exp φ φ  (2.73)

 p n
E E

kT
n

q
kT

i
i fp

i fp i=
−






 = −( )





exp exp φ φ  (2.74)

where:
Efn and Efp are the electron and hole quasi-Fermi levels, respectively

It is to be noted that Efn and Efp are the mathematical tools; their values are chosen 
so that the accurate carrier concentrations are given in the nonequilibrium situa-
tions. In general, Efn ≠ Efp.

From Equations 2.73 and 2.74, we can show

 pn n
E E

kT
i

fn fp=
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



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2 exp  (2.75)

In equilibrium condition, Efn = Efp = Ef and ffn = ffp so that Equations 2.73 and 
2.74 become same as Equations 2.62 and 2.63 for n = Nd and p = Na, respec-
tively. And, Equation 2.75 becomes pn ni= 2.
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2.2.7.4 Transport Equations

In Section 2.2.5.5, we have shown that the electron diffusion current 
 density Jn,diff due to concentration gradient in a semiconductor is given 
by Equation 2.40. On the other hand, the electron current density due to 
drift of electrons by an applied electric field described in Section 2.2.5.2 is 
given by Equation 2.30. Thus, when an electric field is present in addition 
to a concentration gradient, both the drift and diffusion current will flow 
through the semiconductor. The total electron current density Jn at any 
point x is then simply the sum of the diffusion and drift currents, that is, 
Jn (=Jn,drift + Jn,diff). Therefore, the total electron current in a semiconductor 
is given by

 J qn E qD
dn
dx

n n n= +µ  (2.76)

Similarly, the total hole current density Jp (=Jp,drift + Jp,diff) is given by

 J qp E qD
dp
dx

p p p= −µ  (2.77)

so that the total current density J = Jn + Jp. The current Equations 2.76 and 2.77 
are often referred to as the transport equations.

Under thermal equilibrium no current flows inside the semiconductor and 
therefore, Jn = Jp = 0. However, under nonequilibrium conditions Jn and Jp can 
be written in terms of quasi-Fermi potentials fn and fp for electric field, E, in 
Equations 2.76 and 2.77, respectively, to get
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φ
 (2.78)

2.2.7.5 Continuity Equations

When carriers diffuse through a certain volume of semiconductor, the cur-
rent density leaving the volume may be smaller or larger depending upon 
the recombination or generation taking place inside the volume. Let us con-
sider a small length Δx of a semiconductor as shown in Figure  2.13 with 
cross-sectional area A in the yz plane.

From Figure 2.13, the hole current density entering the volume A.Δx is 
Jp(x) whereas the density leaving is Jp(x  +  Δx). From the conservation of 
charge, the rate change of hole concentration in the volume is the sum of 
(1) net holes flowing out of the volume and (2) net recombination rate. That is,
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The negative sign is due to the decrease of holes due to recombination; and 
Gp and Rp are the generation and recombination rate of holes in the volume, 
respectively. Then from Equation 2.79, we can show
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Similarly, for electrons we can show

 − ∂
∂

= − ∂
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+ −( )n
t q

J
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n n

1  (2.81)

where:
Rn and Gn are the recombination and generation rate of electrons, 

respectively

Equations 2.80 and 2.81 are called the continuity equations for holes and elec-
trons, respectively, and describe the time-dependent relationship between 
current density, recombination and generation rates, and space. They are 
used for solving transient phenomena and diffusion with recombination–
generation of carriers.

Equations 2.60, 2.78, 2.80, and 2.81 constitute a complete set of 1D equations 
to describe carrier, current, and field distributions in a semiconductor; how-
ever, they can easily be extended to 3D space. Given appropriate boundary 

Δx

U

Jp(x + Δx)Jp(x)

FIGURE 2.13
Current continuity in a semiconductor: Jp(x) is the hole currents flowing into an elemental 
length Δx of the semiconductor and Jp(x + Δx) is the net current flowing out after carrier 
generation–recombination processes inside the element; U is the net recombination rate. 
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conditions, we can solve them for any arbitrary device structure. Generally, 
we will be able to simplify them based on physical approximations.

2.3 Theory of n-Type and p-Type Semiconductors in Contact

We have discussed the basic theory of intrinsic, n-type, and p-type semicon-
ductors in Section 2.2. In this section, we will discuss the underlying physics 
of a semiconductor substrate when one region is n-type and the immedi-
ate adjacent region is p-type, forming a junction called the pn-junction or 
 pn-junction diode or simply diode. In reality, a silicon pn-junction is formed by 
counter doping a local region of a larger region of doped silicon as shown in 
Figure 2.14. The pn junctions form the basis for all advanced semiconductor 
devices. Therefore, understanding their operation is basic to the understand-
ing of most advanced IC devices.

2.3.1 Basic Features of pn-Junctions

A silicon pn-junction structure is an alternating type of p-type and n-type 
doped silicon layers. The pn-junctions can be fabricated in a variety of 
techniques on a silicon substrate using photo mask → Implant → Drive-in. 
A typical final impurity profile along the active region can be simplified as 
an erfc or Gaussian as shown in Figure 2.14b and c.

As shown in Figure 2.14a, the basic structure includes an n-region doped 
on a p-type substrate. The vertical cross section of the intrinsic or active 
pn-junction is shown in Figure 2.14a by a vertical cutline A. The 1D-doping 

A: Vertical cutline along the
     active region of pn-junction

p-substrate

n

A

Nd Nd

Na

Step junction Linearly graded
junction

Na
x x

N
(x

)

N
(x

)

(a)

(b) (c)

Xj

Xj Xj

FIGURE 2.14
A typical pn-junction: (a) 2D cross section showing the cutline along the depth of the structure 
to obtain 1D doping profiles, (b) 1D-doping profile of an abrupt junction, and (c) 1D-doping 
profile of a graded junction. 
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profile along the cutline of the active device is shown in Figure 2.14b and c. 
The metallurgical junction depth Xj is indicated as the point where the net 
impurity concentrations of donors and acceptors are equal. For compact 
modeling, the actual impurity profile is approximated by a step or abrupt 
(high–low) shallow junctions, Figure 2.14b or a linearly graded (deep) junc-
tions, Figure 2.14c, so that a tractable circuit model can be developed. A step 
doping profile is characterized by constant p-type dopant concentration Na 
that changes with position in a stepwise fashion to a constant n-type dopant 
concentration Nd.

From the 1D impurity profiles in Figure 2.14b and c, we find that there is a 
large carrier concentration gradient at the junction resulting in carrier diffu-
sion. Holes from the p-side diffuse into the n-side, leaving behind negatively 
charged acceptor ions Na

−( ) and electrons from the n-side diffuse into the 
p-side leaving behind positively charged donor ions Nd

+( ). Consequently, a 
space charge region is formed (negative charge on the p-side and positive 
charge on the n-side), creating thereby an electric field E, and, hence, a poten-
tial difference as shown in Figure 2.15. The direction of the field (n-region to 
p-region) is such that it opposes further diffusion of carriers so that, in ther-
mal equilibrium, the net flow of carriers is zero; that is, an electric field is set 
up, which tends to pull electrons and holes back to the original positions. The 
internal potential difference between the two sides of the junction is called 
the built-in potential or barrier height, fbi. The space charge region on two sides 
of the metallurgical junction is often called the depletion region, because the 
region is depleted of the free carriers.

Figure  2.16a shows the energy-band diagram of a p-type silicon and 
n-type silicon physically separated from each other. As discussed in Section 
2.2.4, the Fermi level for an n-type silicon lies close to its CB, and for a p-type 
silicon lies close to its VB. Also, as we will show later, the Fermi level of a 
semiconductor is flat, that is, spatially constant, when there is no current 
flow in it. Therefore, as the p-type region and the n-type region are brought 

Depletion
region

E

np

Holes

Electrons

FIGURE 2.15
Formation of built-in electric field due to the space charges left behind by mobile carriers after 
diffusion from the high- to the low-concentration region on either side of the junction. 
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together to form a pn-junction, the Fermi level must remain flat across the 
entire structure if there is no current flow in and across the junction. This 
causes the energy band bending, as shown in Figure 2.16b. The potential 
difference between the corresponding energy bands on the p- and n-sides 
is called the built-in potential, fbi, of the pn-junction as shown in Figure 2.16b.

2.3.2 Built-In Potential

In pn-junctions at equilibrium, the diffusion of carriers is balanced by the 
drift of carriers by the built-in electric field. To facilitate the description of 
both the n-side and the p-side of a pn-junction simultaneously, when nec-
essary for clarity, we will distinguish the parameters on the n-side from 
the corresponding ones on the p-side by adding a subscript n to the sym-
bols associated with the parameters on the n-side, and subscript p to the 
symbols associated with the parameters on the p-side. For example, Efp and 
Efn denote the Fermi level, respectively, on the p-side and n-side. Similarly, 
nn and pn denote the electron concentration and hole concentration, respec-
tively, on the n-side, and np and pp denote the electron concentration and 
hole concentration, respectively, on the p-side. Thus, nn and pp specify the 
majority carrier concentrations, while np and pn specify the minority carrier 
concentrations.

Consider the n-side of a pn-junction at thermal equilibrium. If the n-side is 
nondegenerately doped to a concentration of Nd, then the separation between 
its Fermi level, which is flat across the junction, and its intrinsic Fermi level 
is given by Equations 2.62 and 2.63:

Ec

Ei
Efp

p-type(a) n-type

Efn

Ev

(b)
p-type n-type

Ec

Ei

Ev

E

Ef
q ϕbp

−q ϕbn

Depletion
region

FIGURE 2.16
Energy band diagram of a pn-junction at equilibrium: (a) isolated n- and p-regions and (b) p-n 
regions are in contact to form a pn-junction. 
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where:
nno and ppo represent the equilibrium concentrations in the n-type and 

p-type semiconductors, respectively

Since at equilibrium, Ef is a constant across the pn-junction, that is, Efp = Efn, 
therefore, the built-in potential across the pn-junction is given by
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From pn-product equation, n p n n pno no i po po= =2 , therefore, Equation 2.83 can 
also be written as
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Thus, fbi given by Equation 2.84 or 2.85 exists across a pn-junction without an 
applied bias at thermal equilibrium to counteract diffusion. The typical value 
of fbi is in between 0.5 and 0.9 V for silicon junctions and is strongly depen-
dent on temperature due to dependence on ni. And, fbi across a pn-junction 
increases as Nd or Na increases.

2.3.3 Step Junctions

The analysis of pn-junction is much simpler if the junction is assumed to 
be abrupt, that is, the doping impurities are assumed to change abruptly 
from p-type on one side to n-type on the other side of the junction. The 
abrupt junction approximation is reasonable for modern VLSI (very-large-
scale-integrated) devices, where the use of ion implantation for doping 
the junctions, followed by low thermal cycle diffusion and/or annealing, 
resulting in junctions that are fairly abrupt. Besides, the abrupt-junction 
approximation often leads to closed-form solutions for easier understand-
ing of device physics.
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2.3.3.1 Junction Potential and Electric Field

The analysis of an abrupt junction becomes even simpler in the depletion 
approximation in which the pn-junction is approximated by three regions 
as illustrated in Figure 2.17. Both the bulk p-region, that is, the region with 
x < –xp, and the bulk n-region, that is, the region with x > xn, are assumed 
to be charge neutral, while the transition region, that is, the region with 
–xp < x < xn, is assumed to be depleted of mobile electrons and holes. The 
width Wd of the depletion region can be obtained by solving Poisson’s equa-
tion 2.60 as repeated below:

 
d
dx

q
K

p x n x N x N x
si

d a

2

2
0

φ
ε

= − −  + −[ ]{ }( ) ( ) ( ) ( )  (2.86)

Let us assume that the free carrier concentrations n and p are negligibly 
small compared to the fixed ionized impurities N Na a

− ≅  and N Nd d
+ ≅  over 

the entire region defined by the depletion width bounded by -xp and xn, that 
is, Nd >> nn or pn and Na >> pp or np as shown in Figure 2.17. This assumption 
is often referred to as the depletion approximation. It is often used during the 
development of analytical device models.

For the simplicity of modeling, we will assume that all the donors and 
acceptors within the depletion region are ionized, and that the junction is 
abrupt and not compensated; that is, there are no donor impurities on the 
p-side and no acceptor impurities on the n-side. With these assumptions, 
Equation 2.86 becomes
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and,
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Wd
ρ = qNa,

Depletion approximation
(ignores boundary layers)

for −xp < x < 0
for  0 < x < xn
for  x > xn and x < −xp

ρ = qNd,
ρ = 0,p

−xp xn0

n

FIGURE 2.17
The pn-junction charge condition under depletion approximation in three different regions: the 
equilibrium depletion region is bounded by −xp and xn on the p-region and n-regions, respec-
tively; the depletion region is assumed to be free of mobile carriers with ρ = 0. 
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Integrating Equation 2.87 from x = –xp to at any point x < 0 and Equation 
2.88 from x > 0 to x = xn using the boundary condition df/dx = 0 at x = –xp 
and x = xn, we get the electric field distribution in the depletion region. 
Thus, assuming a step pn-junction so that Na and Nd are uniform in p- and 
n-regions, respectively, and depletion approximation the electric field, E(x) 
distribution within the depletion region can be shown as
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Since the electric field must be continuous at x = 0, we get from Equations 
2.89 and 2.90 the maximum electric field Emax as
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or

 qN x qN xa p d n=  (2.92)

which gives the distribution of charge on either side of the junction and 
shows that the negative charge on the p-side exactly equals the positive 
charge on the n-side. Equation 2.92 also shows that the width of the deple-
tion region on each side of the junction varies inversely with the dopant con-
centration; the higher the doping concentration, the narrower the depletion 
region. Equations 2.89 and 2.90 also show that E varies linearly between 0 
and Emax as shown in Figure 2.17.

Let fm is the total potential drop across the pn-junction; that is, 
φ φ φm n px x= ( ) − ( ) . Then the total potential drop can be obtained by integrat-
ing Equations 2.89 and 2.90 from x = –xp to x = xn. Now, we can get:
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where:
Wd = (xn + xp) is the total width of the depletion layer
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It can be seen from Equation 2.93 that fm is equal to the area under the E(x) 
versus x plot, that is, Figure 2.18. Eliminating Emax from Equations 2.91 and 
2.93, we can show that

 W
K N N

qN N
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si a d

a d
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+( )2 0ε φ  (2.94)

In order to derive expressions for xp and xn, we integrate Equations 2.89 and 
2.90 once again. Remembering that E = –df/dx, and the potential difference 
between the p and n sides is fbi, it can be shown that
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FIGURE 2.18
Depletion approximation of a pn-junction: the equilibrium distribution of charge, ρ; electric 
field, E; and electrostatic potential, f within the depletion region. 
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So that the total depletion width Wd (=xp + xn) becomes
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Note that Equation 2.97 shows that Wd strongly depends on the doping on 
the lightly doped side and particularly Wd is inversely proportional to the 
square root of the doping concentration on the lightly doped side. The value 
of Wd given above is at thermal equilibrium without any external voltage 
applied to the pn-junction.

From Equations 2.91 and 2.92, the charge per unit area on either side of the 
depletion region is

 Q qN x qN x E Kd d p d n max si= = = ε0  (2.98)

We can show that, the depletion layer capacitance per unit area is given by
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d Q
d

K
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d
d

m

si

d
= =

φ
ε0  (2.99)

Equation 2.99 shows that the depletion capacitance of a pn-junction is equiva-
lent to a parallel-plate capacitor of separation Wd and dielectric constant Ksi. 
Physically, this is due to the fact that only the mobile charge at the edges of 
the depletion layer, but not the space charge within the depletion region, 
responds to changes of the applied voltage.

2.3.4 pn-Junctions under External Bias

An externally applied voltage, Vd across a pn-junction has the effect of shift-
ing the Fermi level of the bulk neutral n-region relative to that of the bulk 
neutral p-region. That is, the total potential drop is the sum of the built-in 
potential and the externally applied potential:

 φ φm bi dV= ±  (2.100)

where:
“+” sign is for the case where the junction is reverse biased and fm > fbi 

the “–” sign is for the case where the junction is forward biased and 
fm < fbi

Thus, when the pn-junction is in a nonequilibrium condition, with voltage 
Vd applied to it, then, as stated earlier, the potential barrier height becomes 
(fbi – Vd), so that the depletion width as a function of voltage becomes
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Vd
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




 −( )2 1 10ε φ.  (2.101)

This shows that a forward bias Vd (≡ Vf) will result in a decrease in the deple-
tion width due to the decrease in the barrier height, while a reverse bias –Vd 
(≡ Vr) will result in an increase in the depletion width due to a higher barrier 
height as shown in Figure 2.19.

Using Equation 2.95 for xp or 2.96 for xn in Equation 2.91, the maximum 
electric field Emax in the depletion region becomes

 E
q

K
N N

N N
Vmax

si

a d

a d
bi d=

+( )
−( )2

0ε
φ  (2.102)

Equation 2.102 shows that the higher the reverse voltage (e.g., –Vd), the higher 
is the electric field across the pn-junction.

2.3.4.1 One-Sided Step Junctions

If the impurity concentration on one side of a pn-junction is much higher 
than the other side, the junction is called a one-sided step junction. In this case, 

Ec

p-type n-type

Ef
Ev

ϕbi

Ec

Ef

Ef

ϕbi + Vd

Ev
Vd < 0

Ec

Ef
Ev

Ef

ϕbi − Vd

Vd > 0

(a)

(b)

(c)

FIGURE 2.19
The pn-junction in equilibrium and under external bias: (a) equilibrium, (b) forward bias, and 
(c) reverse bias. 
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the depletion region extends almost totally into the lighter doped side. For 
example, in the case of an n+ p junction (Nd >> Na and xn << xp), the depletion 
width Wd is almost entirely in the p-side. Thus, from Equation 2.101, we can 
show that the general expression for Wd for a one-sided step junction is

 W
K
qN

Vd
si

b
bi d= ±( )2 0ε φ.  (2.103)

where:
Nb = Na for n+ p junction
Nb = Nd for p+ n junction

A more accurate result for the depletion width can be obtained by considering 
the majority carrier distribution tails or spillover (electrons in the n-side and 
holes in the p-side by Debye length, Ld) as shown by dashed lines in Figure 2.20. 
Each contributes a correction factor vkT to fbi. Thus, the depletion width is still 
given by Equation 2.103 except that fbi is replaced by (fbi – 2vkT) so that, using this 
more accurate expression, Wd for a one-sided step junction becomes

 W
K
qN

v Vd
si

b
bi kT d= − ±( )2

20ε φ.  (2.104)

However, Equation 2.103 is accurate to within about 3% for the biases nor-
mally encountered in the VLSI circuits.

2.3.5 pn-Junction Equations

In considering I–V characteristics of a pn-junction, it is much more convenient 
to work with the quasi-Fermi potentials, instead of the intrinsic potential. 

Neutral
p-region Boundary

layer

Boundary
layer Neutral

n-region
Depletion region

ρ ≅ 0 outside depletion region; ρ ≅ |Na−Nd| within
depletion region; boundary layer spread ≈ 3Ld.

ρ

FIGURE 2.20
Majority carrier spillover (broken lines) outside the depletion region forming a boundary layer 
of about 3Ld at the boundary of the neutral bulk region; Ld is the Debye length defining the 
abruptness of the junction. 
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The quasi-Fermi potentials and the current densities for doped semiconductors 
given by Equations 2.73, 2.74, and 2.78 can be expressed as

 
J qn

d
dx

J qp
d
dx

n n
n

p p
p

= −

= −

µ φ

µ
φ

 (2.105)

where:
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where:
fn and fp are the quasi-Fermi potentials for electrons and holes, respectively

2.3.5.1  Relationship between Minority Carrier 
Density and Junction Voltage

Under forward bias Vd, the barrier to majority carrier flow is reduced. And, 
electrons are injected from n-region to p-region and holes are injected from 
p-region to n-region. The electrons going from n-region to p-region become 
minority carriers in the p-region. Similarly, holes going from p-region to 
n-region become minority carriers in the n-region. Therefore, the minority 
carrier behavior is of fundamental importance to understand the behavior 
of a pn-junction. The minority carriers injected across the barrier will tend to 
recombine if given sufficient time. They will also tend to diffuse away from 
the region of the junction.

In order to calculate diode current in thermal equilibrium, let us consider 
nno and ppo are the equilibrium majority carrier concentrations in the neu-
tral n- and p-regions, respectively; and npo and pno are the equilibrium minor-
ity carrier electron and hole concentrations in the neutral p- and n-regions, 
respectively, as shown in Figure 2.21. Then from carrier statistics discussed in 
Section 2.2.7.2, we have in the neutral n-region
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2

 (2.107)

and, in the neutral p-region

 p N n
n
N

po a po
i

a
≅ ≅;  

2

 (2.108)
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From Equation 2.85, the equilibrium carrier concentrations in a pn-junction 
are given by the expressions
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Therefore, from Equation 2.109, we can write for a pn-junction at equilibrium
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Now, under the applied bias Vd, we replace fbi by (fbi ± Vd); therefore, from 
Equation of 2.110, the nonequilibrium carrier concentrations are given by
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where:
np is the nonequilibrium minority electron concentration at the edge of the 

depletion region in the neutral p-region
pn is the nonequilibrium hole concentration at the edge of the depletion 

region in the neutral n-region as shown in Figure 2.21b

p n p n
ppo pponno nno

npo pno npo pno

np pn

Depletion region Depletion region

(a) (b)

FIGURE 2.21
Carrier concentrations at the edge of depletion region: (a) pn-junction at equilibrium where ppo 

and nno are the equilibrium majority carrier hole and electron concentrations in the p-type and 
n-type regions, respectively, whereas npo and pno are the equilibrium minority carrier electron 
and hole concentrations in the p-type and n-type regions, respectively and (b) pn-junction after 
minority carrier np and pn injection in the bulk p-region and n-region, respectively. 
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Let us further assume low-level injection, that is, the injected carrier densities are 
lower than the background concentrations, so that nn = nn0 and pp = pp0. Then 
from Equations 2.110 and 2.111, we get
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In Equation 2.112 np and pn are the injected minority carrier concentrations 
at the edge of the depletion region in the p- and n-regions, respectively. The 
expressions in Equation 2.112 define the minority carrier densities at the edge 
of the space charge region under an applied bias and are the most important 
boundary conditions governing a pn-junction. They relate the minority car-
rier concentrations at the boundaries of the depletion layer to their thermal 
equilibrium values and to the applied voltage across the junction. They apply 
to both a forward-biased (Vd >  0) junction resulting in np >> npo at x = –xp 
and pn >> pno at x = xn, and to a reverse-biased (Vd < 0) junction resulting in 
np << npo at x = –xp and pn << pno at x = xn. Expressions in Equations 2.112 can 
be expressed as
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Again, for low-level injection in the p-region, ppo = p and np = n; similarly, 
in the n-region, nno = n and pn = p; therefore, we get from Equation 2.112 or 
Equation 2.113

 pn n
V
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kT
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


2 exp  (2.114)

Equation 2.114 defines the pn-product of carriers at the depletion edge under 
the applied voltage Vd as shown in Figure 2.21. Thus, the applied bias in a 
pn-junction sets up the following processes as shown in Figure 2.22:

• The injected carriers in the n- and p-regions momentarily set up an 
electric field (from n to p)

• This field draws in majority carriers in each region
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• These majority carriers neutralize the injected carriers and reestab-
lish the charge neutrality

• While this process is going on, the injected minority carriers diffuse 
into the n- and p-regions; that is, recombination process takes place 
over some distance

The distribution of carriers in the n-region of the pn-junction is shown 
in Figure  2.23. The majority carrier concentration shown by broken line 
remains unchanged whereas the minority carrier concentration decays 
exponentially and approaches to the equilibrium concentration in each side 
of the junction.

The injected excess carriers set up a momentary electric field, E, in the 
regions of excess carrier concentration. Then the current due to this drift 
electric field in the n-region is Idrift = qμnnE for majority carrier electrons and 
Idrift = qμppE for minority carrier holes. Since n >> p, the hole drift current is 
negligible in the n-region. Similarly, electron drift current is negligible in the 
neutral p-region. The minority carriers move primarily by diffusion while 
the majority carriers are pulled to the junction by drift. Since the injected 

p-type

pp

np

npo

nn

Unaffected by injection

Related exponentially to
 npo and pno as exp(Vd/vkT)

Related exponentially to
nn and pp as exp(ϕbi/vkT)

pn

pno

n-type

FIGURE 2.22
Carriers in a pn-junction under applied bias showing the corresponding dependence on built-
in potential and applied bias.

The injected hole concentration
decays to equilibrium level
over some distance

Majority carrier concentration
is essentially unchanged

nn
qΔn(x)

Nd = nno
 = 1015 >> 1012 = pn

qΔp(x)

x

x

Δn(0) = 1012 cm−3

Δp(0) = 1012 cm−3

nno = 1015

pn

pno = 1005

FIGURE 2.23
The carrier profile in the n-region of a pn-junction with applied bias; the majority carrier elec-
tron concentration, nno is 1 × 1015 cm−3 and injected carrier concentration is 1 × 1012 cm–3 describ-
ing low-level injection. 
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minority carriers control the current flow in a pn-junction, the current flow in 
pn-junctions can be considered as the diffusion current only. Thus, we see that 
the minority carriers really control the behavior of pn-junctions.

2.3.6 pn-Junctions I–V Characteristics

We discussed in Section 2.3.2 that the drift component of the current 
caused by the electric field in the depletion region is exactly balanced 
out by the diffusion component of the current caused by the electron and 
hole concentration gradient across the junction, resulting in zero current 
flow in the pn-junction device. When an external voltage is applied, this 
current component balance is upset, and current will flow in the diode. 
If carriers are generated by light or some other external means, thermal 
equilibrium is disturbed, and current can also flow in a pn-junction. Here, 
the current flow in a pn-junction as a result of an external applied voltage 
is described.

Let us consider a forward-biased pn-junction. Electrons are injected from 
the n-side into the p-side, and holes are injected from the p-side to n-side. 
If the generation and recombination in the depletion region are negligible, 
then the hole current leaving p-side is the same as the hole current entering 
the n-side. Similarly, the electron current leaving the n-side is equal to the 
electron current entering the p-side. To determine the total current flowing 
in the pn-junction, we need to determine either hole current entering the 
p-side or electron current entering to n-side of the pn-junction.

The starting point for describing I–V characteristics of a pn-junction is the 
continuity equations. From Equation 2.81, the electron continuity equation 
is given by
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where:
Rn and Gn are the electron recombination and generation rates, respectively

Equation 2.115 can be rewritten as
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where τn is the electron lifetime defined in terms of the excess electron con-
centration n over the thermal equilibrium value no in Equations 2.48 and 2.53 
and is given by
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Now, substituting Equation 2.76 for Jn in Equation 2.116, we get
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Equation 2.118 is the general equation that is solved under appropriate 
boundary conditions to derive an expression for electron current flow across 
a pn-junction under an applied bias.

In order to calculate the diode current, we assume that the injected minor-
ity carriers move away from the depletion region by diffusion only—diffusion 
approximation. We calculate the diode current under the following assumptions:

 1. The step junction profile is applicable
 2. The depletion approximation is valid
 3. Low-level injection is maintained in the bulk
 4. No generation–recombination takes place in the depletion region
 5. There is no voltage drop in the bulk region so that Vd is sustained 

entirely across the depletion region
 6. The width of the bulk p- and n-regions outside the depletion region 

is much longer than the minority carrier diffusion length for holes 
and electrons Lp and Ln, respectively (long-base diode)

With the above simplifying assumptions, the current through a pn-junction 
can be shown to be
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where Is is called the reverse saturation current and is given by
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where:
Ad is the active area of the pn-junction
Wn and Wp are the width of the neutral n- and p-regions, respectively
Dn and Dp are the minority carrier electron and hole diffusion constants, 

respectively
Ln and Lp are the minority carrier electron and hole diffusion lengths, 

respectively
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Actual diodes may represent intermediate cases, that is, Wn > Lp and Wp < Ln 
and vice versa. In either case, the lightly doped side of the junction largely 
determines the diode current Id in Equation 2.119. Figure 2.24 shows a typical 
I–V characteristics of a pn-junction.

2.3.6.1 Temperature Dependence of pn-Junction Leakage Current

From Equation 2.120 we see that the temperature dependence of the elec-
tron and hole diffusion currents is dominated by the temperature depen-
dence of the parameter ni

2 , which is proportional to exp(–Eg/kT) as shown 
in Equation 2.14, where Eg is the bandgap energy. Then substituting for ni(T) 
from Equation 2.14 in Equation 2.120, we can show the temperature depen-
dence of Is with reference to TNOM as

 

      I T I T
T

T
E T

kT
E T

kT
s s NOM

NOM

g NOM

NOM

g( ) exp
( )

= ( )








( )
−





3







= ( )








( )
−









I T

T
T

E T
kT

E T
kT

s NOM
NOM

XTI
g NOM

NOM

gexp
( )

 (2.121)

where exponent 3 is replaced by the parameter XTI. In advance pn-junction 
model for circuit CAD, two parameters XTI and NJ, called temperature expo-
nent coefficient fitting parameters, are used to express Equation 2.121 as
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2.3.6.2 Limitations of pn-Junction Current Equation

The ideal pn-junction current Equation 2.119 accurately describes the device 
characteristics of pn-junctions over a certain range of applied voltage. However, 

0

5
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Id (mA)

0.6 Vd(V)

FIGURE 2.24
Current voltage characteristics of a typical pn-junction; Is is the reverse saturation current; 
an applied voltage of about 0.6  V is required to overcome the built-in voltage and device 
conduction. 
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Equation 2.119 becomes inaccurate over a significant range of device operations 
both in the forward- and reverse-biased modes.

The current voltage characteristics of a forward-biased silicon pn-junction 
diode are shown in Figure 2.25 where the ideal diode current is shown by 
the broken line. Two different regions of nonideal behavior are shown in 
this plot. At a very low value of the forward bias (Vd < 0.3 V), the injected 
carrier densities are relatively small. When these carriers move through the 
depletion region, some of them may be lost by recombination in this region, 
thereby forming a recombination current Irec, which is added to the ideal 
diode diffusion current. The result is a larger total current than that predicted 
by the ideal diode Equation 2.119, particularly in the low current level, and 
violates assumption 4. Thus, Irec dominates in the silicon diode at very low 
current levels and negligibly small at higher current levels.

In deriving Equation 2.119, we have assumed that all the minority carriers 
cross the depletion region. In practice, some recombine through trapping 
centers. Then, using the SRH theory of generation and recombination, it can 
be shown that the space-charge recombination current Irec is
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In Equation 2.123, τrec is the lifetime associated with the recombination of 
excess carriers in the depletion region. τrec is analogous to, but usually greater 
than, τn and τp for the neutral regions and is generally approximately equal 
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FIGURE 2.25
Forward characteristics of a real pn-junction: plot shows the deviation of ideal current equation 
at the low- and high-current levels due to generation–recombination and high-level injections, 
respectively. 
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to 2 τ τp n . Thus, the total diode saturation current, Is, is the sum of Equations 
2.120 and 2.123. In general, until Vd reaches a value of about 0.4 V, the neutral 
region diffusion current will be less than Irec.

At high current levels, the injected minority carrier density is comparable 
to the majority carrier concentration (high-level injection), and therefore, 
assumption 3 is invalid. For high-level injection, majority carrier concentra-
tion increases significantly above its equilibrium value, giving rise to an elec-
tric field. Thus, in such cases both drift and diffusion components must be 
considered. The presence of the electric field results in a voltage drop across 
this region and thus reduces the applied voltage across the junction, result-
ing in a lower current than expected. It can be shown that under high-level 
injection the diode current Id is
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which indicates that high-level current depends on 1/2vkT rather than on 1/vkT as 
shown in Figure 2.25. Thus, depending on the magnitude of the applied forward 
voltage, the current through a pn-junction can be represented by an empirical 
expression
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where nE is called the ideality factor and is a measure of the deviation of the 
real and the ideal I–V plots. When recombination current dominates or when 
there is high-level injection nE = 2 and when diffusion current dominates 
nE = 1.

In the case of a reverse-biased pn-junction, Figure 2.26 shows the current 
through the pn-junction where Is is the current due to an ideal pn-junction 
(Equation 2.119). Clearly, the current in a real pn-junction does not saturate 
at −Is as predicted by Equation 2.119. This is because when the pn-junction 
is reverse biased, generation of electron–hole pairs in the depletion region 
takes place, which was neglected in the ideal pn-junction equation. In fact, 
the generation current dominates because carrier concentrations are smaller 
than their thermal equilibrium values. Again, using SRH theory, it can be 
shown that the generation current Igen is

 I
qA nW

gen
d i d

gen
=

2τ
 (2.126)

where:
τgen is the generation lifetime of the carriers in the depletion region and is 

approximately equal to 2τp if we assume τp = τn
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Note that while Is is proportional to ni
2, Igen is proportional to ni only. Thus, Igen 

will dominate when ni is small as is the case at room and low temperatures. 
Further, since the space charge width Wd increases as the square root of the 
reverse bias (Equation 2.103), the generation current increases with reverse 
bias voltage as shown in Figure 2.26. Thus, taking into account Igen, the total 
reverse current Ir becomes Ir ≡ –Id = –(Is + Igen). This value of Ir agrees well 
with the measured value of reverse current and also it provides proper volt-
age dependence of the reverse current in properly constructed silicon planar 
pn-junctions.

In real pn-junctions there is a third component of leakage current, called 
the surface leakage current Isl. This current can be treated as a special 
case of Igen modeled at the surface where a high concentration of disloca-
tions at the oxide-silicon interface, often referred to as fast surface states, 
provides additional generation centers over those present in the bulk. It is 
very much process dependent and is responsible for large variation in the 
leakage current. Both process-induced and electrically induced defects at 
the surface generally increase the generation rate by an order of magni-
tude compared with the bulk recombination–generation rate. In that case 
Isl dominates over the other components of Ir and is thus responsible for 
higher leakage current for a pn-junction compared to that predicted by 
the sum of Igen and Is. Leakage current is highly temperature dependent 
due to the presence of ni term. Also, note that the generation limited leak-
age current is proportional to ni while diffusion limited leakage current is 
proportional to ni

2.

Reverse bias

C

B
A

Vbr

Id

Vd

Igen Is

Ibr

Forward bias

FIGURE 2.26
Reverse characteristics of a real pn-junction; Vbr and Ibr are the breakdown voltage and current, 
respectively; Is is the ideal reverse saturation current; and Igen is the generation current in the 
depletion region. 
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2.3.6.3 Bulk Resistance

At high current levels, bulk resistance and the metal–silicon contact resis-
tance can produce a significant voltage drop (assumption 5), resulting in a 
smaller voltage across the junction and thus a lower current. Usually, the 
bulk resistance and contact resistance are combined into one resistor called 
series resistance rs (Figure 2.27). Thus, if Vd is the applied voltage to the diode 
terminals and V'd is the voltage across the diode junction, resulting in the 
current Id as shown in Figure 2.24, we have

 V V r Id d s d= ′ +  (2.127)

Under the ideal conditions when rs = 0, Vd = V'd, that is related to Id by 
Equations 2.119 or 2.125. Thus, in the presence of the series resistance, I–V 
expression of a pn-junction becomes

 I I
V I r

n v
d s

d d s
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Rearranging this equation yields
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
 +ln 1  (2.129)

Clearly, when Id is large, the terminal voltage Vd will increase linearly with Id 
because Idrs increases faster than the logarithmic term.

2.3.6.4 Junction Breakdown Voltage

From Equation 2.126, we observe that the reverse (or leakage) current of a 
pn-junction depends on Wd, and from Equation 2.101 we observe that Wd 
depends on the reverse bias Vd = Vr. Also, we notice from Equation 2.102 that 
the electric field in the depletion region increases with the increase of Vr. 
When the field reaches a certain critical field Ec corresponding to the reverse 
voltage Vr  =  Vbr, called the breakdown voltage, a slight increase of reverse 

p

Vd

Vd′

rs

n

FIGURE 2.27
Diode model at high-level current: rs is the diode resistance due to contact and the neutral bulk 
regions. 
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voltage causes a very large increase of current as shown in Figure 2.26 
(region BC). This condition is often called the breakdown condition and is 
a most important consideration in device design. The breakdown occurs 
because carriers, while moving through the depletion region, acquire suf-
ficient energy to create new electron–hole pairs through impact ionization 
[24,25]. The newly generated electron–hole pairs can also acquire sufficient 
energy from the field to create additional electron–hole pairs. Since the elec-
trons and holes travel in opposite directions, the carriers can multiply a few 
times in the depletion region before they reach the electrodes. This multi-
plicative process results in an avalanche effect. The resulting breakdown 
voltage, Vbr, is called the avalanche breakdown voltage and can be obtained 
using Equation 2.102.

 E
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K
N N

N N
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si

a d

a d
bi r=

+( )
+( )2

0ε
φ  (2.130)

At the breakdown condition, Emax = Ec and Vr = Vbr; since Vbr >> fbi, we can 
safely neglect fbi in Equation 2.130 to obtain the expression for breakdown 
voltage for a pn-junction
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Equation 2.131 shows that any increase in the doping, either of n- or p-region, 
results in a decrease in the breakdown voltage Vbr. Further, it shows that 
Vbr is controlled by the concentration Nb of the lightly doped region and is 
proportional to 1/Nb. In a pn-junction, Vbr generally varies as N–2/3 [13]. For 
moderately doped silicon (1 × 1014 to 1 × 1016 cm–3), the value of the critical 
field is Ec ~ 4 × 105 V cm–1 and for a first approximation Vbr is independent 
of doping [26].

If the pn-junction is heavily doped (concentration >1 × 1018 cm–3) on both 
sides, the depletion layer is very narrow. Carriers cannot gain enough 
energy within the depletion region so that avalanche breakdown is not 
possible. However, in the depletion region, the electric field is high; Emax 
can be close to 1  ×  106  V cm–1. In such a  heavily doped p+  n+  junction 
under reverse bias, electrons at the VB of the p+ side tunnel through the 
forbidden gap into the CB of the n+  side. This tunneling process can be 
approximated by a particle penetrating a triangular potential barrier, with 
a height higher than its energy by the semiconductor bandgap Eg. This 
tunneling process contributes to the current resulting in breakdown of the 
junction. This mechanism of breakdown is called the Zener breakdown. In 
the source-drain pn-junction of a MOSFET, the avalanche breakdown dom-
inates [27,28].
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2.3.7 pn-Junction Dynamic Behavior

Besides electrostatic behavior, pn-junctions are often subject to varying 
 voltages. In such dynamic operations, charges in the pn-junction vary, result-
ing in an additional current not predicted by the DC current (Equation 2.119). 
There are two types of stored charge in a pn-junction: (1) the charge Qdep due 
to the depletion or space-charge region on each side of the junction and (2) 
the charge Qdif due to minority carrier injection. Remember that it is these 
injected (excess) mobile carriers that generate current Id and also represent a 
stored charge Qdif in a pn-junction. The latter is given by the area between the 
curve representing pn (or np) and the steady state level pno (or npo) as shown in 
Figure 2.23. These two types of stored charges result in two types of capaci-
tances: the junction capacitance Cj due to Qdep and the diffusion capacitance 
due to Qdif, as discussed in Sections 2.3.7.1 and 2.3.7.2, respectively.

2.3.7.1 Junction Capacitance

In a pn-junction, a small change in the applied voltage causes an incremental 
change in the depletion region charge Qdep due to the corresponding change 
in the depletion width. If the applied voltage is returned to its original value, 
carriers flow in such a direction that the previous increment of charge is 
neutralized. The response of the pn-junction to the incremental voltage thus 
results in a generation of an effective capacitance Cj referred to as the transi-
tion capacitance, junction capacitance, or depletion layer capacitance. Recalling 
the definition of capacitance per unit area in terms of an incremental charge 
dQdep per unit area induced by an applied voltage dVd, we have

 C
dQ
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j
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d
=  (2.132)

Considering, Qdep = qNaxp = qNdxn from Equation 2.92, we can show
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Then using Equation 2.95 or 2.96, the pn-junction capacitance per unit area 
can be shown as
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Equation 2.134 is the expression for the diode capacitance for a step profile 
in terms of the physical parameters of the device. Remember that Equation 
2.134 is valid for Vd < fbi, that is, for reverse bias only. Comparing Equations 
2.134 and 2.101, it is easy to see that
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 C
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W

j
si

d
= ε0  (2.135)

Equation 2.135 states that the junction capacitance is equivalent to that of 
a parallel plate capacitor with silicon as the dielectric and separated by a 
distance Wd, the depletion width. Though the derivation of Equation 2.134 
is based on a step profile, it can be shown that the relationship is valid for any 
arbitrary doping profile.

It should be pointed out that although the pn-junction capacitance can be 
calculated using the parallel plate capacitor formula, there are differences 
between the two types of capacitors. While true parallel plate capacitance is 
independent of applied voltage, pn-junction capacitance given by Equation 
2.134 becomes voltage dependent through Wd. Therefore, the total charge 
in a pn-junction cannot be obtained by simply multiplying the capacitance 
by the applied voltage, although a small variation in the charge can still 
be obtained by multiplying a small variation in the voltage by the instan-
taneous capacitance value. Another difference is that, in a pn-junction, the 
dipoles in the transition region have their positive charge in the n-side 
depletion region and negative charge in the p-side depletion region, while in 
a parallel plate capacitor the separation between the charges in the dipoles 
is much less and the dipoles are distributed homogenously throughout the 
dielectric.

For a one-sided step junction, for example, n+p diode with Nd  >>  Na, 
Equation 2.134 becomes
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For the circuit CAD, it is more convenient to express capacitance in terms of 
model parameters. If Cj0 is the junction capacitance at equilibrium, that is, at 
Vd = 0, then from Equation 2.134 we get
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Then using Equation 2.137 in Equation 2.134, the junction capacitance for a 
pn-junction is given by

 C
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d bi
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− ( )
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1 φ
 (2.138)

In IC pn-junctions, the doping profile is neither abrupt nor linearly graded as 
assumed in the derivation for Cj, and therefore, to calculate the capacitance 
for real devices, we replace the one-half power in Equation 2.138 by mj, called 
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the junction grading coefficient, resulting in the following generalized equa-
tion for Cj as

 C
C

V
j

j

d bi
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=
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1 φ
 (2.139)

For IC pn-junctions, mj ranges between 0.2 and 0.6. Figure 2.28 shows a plot 
of the junction capacitance Cj as a function of junction voltage Vd. Note that 
the capacitance Cj decreases as the reverse-biased |Vd| increases (Vd is 
negative). When the diode is forward biased (Vd is positive), the capac-
itance Cj increases and becomes infinite at Vd = fbi as shown in Figure 2.28 
(Curve 1). This is because Equation 2.139 no longer applies due to the deple-
tion approximation becoming invalid. A more exact analysis of the Cj as 
a function of the behavior of the forward bias Vd is shown by Curve  2. 
However, in SPICE a straight line is used instead of Curve 2 in Figure 2.28. In 
this case, we define a parameter Fc, 0 < Fc < 1, such that when the pn-junction 
is forward biased and Vd ≥ Fcfbi, the following equation for Cj is used. By 
Taylor series expansion of 1− ( ) 

−
Vd bi

mj
φ  at Vd = Fc.fbi, we can show

 1 1 1 11−








 = −( ) 







 + − +( )




−
− +( )V

FC m
V

FC md

bi

m
m

j
d

bi
j

j
j

φ φ 
  (2.140)

−2.0 −1.5 −1.0 −0.5 0.0
Applied voltage (V)

1.E−08

1.E−07 Vd ≤ FC.ϕbi

Vd ≥ FC.ϕbi

C
jc

 (F
/c

m
2 )

1.E−06

C
ur

ve
 1

Curve 2

1.E−05

0.5 1.0 1.5 2.0

FIGURE 2.28
Junction capacitance of a typical pn-junction obtained by using the expressions in Equation 2.141; 
curve 1 represents Equation 2.138 for Vd < fbi and curve 2 is obtained by analytical expression to 
ensure convergence in circuit simulation during forward biasing a pn-junction. 
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Then we can show
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2.3.7.2 Diffusion Capacitance

The diffusion capacitance Cdif is associated with the rearrangement of the 
excess minority carriers in response to an incremental change in the applied 
forward voltage. The variation in the stored charge Qdif, associated with the 
excess minority carrier injection in the bulk region under forward bias, is mod-
eled by the capacitance Cdif. The capacitance Cdif is called the diffusion capaci-
tance, because the minority carriers move across the bulk region by diffusion; 
since Qdif is proportional to the current Id, for an n+ p junction we can write

 Q
A

I
d

p ddif =
1 τ  (2.142)

For a short base diode, τp is replaced by τt, the transit time of the pn-junction. 
For the case of a long base diode the transit time is the excess minority car-
rier lifetime. Differentiating Equation 2.142 gives

 C
dQ
dV A v

V
vd

pI

d kT

d

kT

s
dif

dif= = 









τ
exp  (2.143)

where we have used Equation 2.119 for Id. A more accurate derivation shows 
that the value of Cdif is half of the value in Equation 2.143.

EXAMPLE:
Let us compare the magnitude of the two capacitances for a forward 
bias of 0.3 V; assume we have an n+ p diode with Na = 1 × 1015 cm–3 and 
Nd = 1 × 1019 cm–3; then Equation 2.84 gives fbi = 0.814 V. For a forward 
bias of 0.3 V, Equation 2.101 gives Wd = 8.15 × 10–5 cm and Equation 2.134 
gives Cj = 1.27 × 10–8 F cm–2.

Again, assuming τt = 1 × 10–7 sec, and Is = 4 × 10–12 A for a junction area of 
20 × 20 μm2 gives Cdif = 4 × 10–7 F cm–2, which is much larger than Cj. 

It should be noted that under forward bias, Cdif increases much faster with 
increasing Vd (=Vf), due to the exponential dependence on Vd, as compared 
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to Cj. However, under reverse bias, Cj decreases much more slowly with 
increasing Vd (=–Vr), as compared to Cdif. Therefore, Cj is the dominant capaci-
tance for reverse bias and small for forward bias (Vd < fbi/2), while diffusion 
capacitance Cdif is dominant for forward bias (Vd > fbi/2).

2.3.7.3 Small Signal Conductance

In the model discussed in Section 2.3.7.2, referred to as the large-signal model, 
we did not place any restriction on the allowed voltage variation. However, 
in some circuit situations, voltage variations are sufficiently small so that the 
resulting small current variations can be expressed using linear relationships. 
This is the so called small signal behavior of a pn-junction. An example of 
linear relations are the capacitances Cj and Cdif in Equations 2.141 and 2.143, 
respectively, as they represent an overall nonlinear charge storage effect in 
terms of linear circuit elements (capacitors), although we did not label them 
as such.

For small variations about the operating point, which is set by the DC con-
dition, the nonlinear junction current can be linearized so that the incremen-
tal diode current is proportional to the incremental applied bias. This linear 
relationship is used to calculate the small signal conductance gd
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Using (2.119) for Id, we have
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Thus, Equation 2.145 clearly shows that gd is proportional to the slope of the 
DC characteristics at the operating point. When the diode is forward biased, 
Id is much larger than Is and therefore, gd is proportional to Id. However, when 
the diode is reverse biased, Id  =  –Is and therefore, from Equation 2.145, gd 
becomes zero. But in real diodes, gd ≠ 0 in the reverse bias condition due to 
the fact that the generation current Igen (Equation 2.126) is dominant conduc-
tion mechanism.

2.3.8 Diode Equivalent Circuit for Circuit CAD

The small signal equivalent circuit of a pn-junction is shown in Figure 2.29. 
In Figure 2.29, rs represents the series resistance due to ohmic drop across the 
neutral n- and p-regions; Cj is junction capacitance; Cd is the diffusion capaci-
tance due to the minority carrier diffusion through the neutral regions; and 
gd is the small signal conductance of the pn-junctions.
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2.4 Summary

This chapter presented a brief overview of the basic semiconductor phys-
ics and basic theory of extrinsic semiconductors forming pn-junctions. 
First of all, the basic properties of intrinsic semiconductor materials 
including bond and band structures, intrinsic carrier concentration, and 
energy levels are discussed. Then the behavior of extrinsic semicon-
ductors, carrier  statistics of electrons and holes, carrier transport, and 
transport equations are discussed. After the discussion of p-type and 
n-type semiconductors, the basic properties of n- and p-type semicon-
ductors forming pn- junctions are described. Then the basic theory of pn-
junctions,   current transport,  and dynamic characteristics are discussed. 
Finally, a basic equivalent circuit model of pn- junction for circuit CAD is 
presented.

Physical Constants

Constants Symbol Magnitude Units

Electronic charge q 1.602 × 10–19 C
Free-electron mass m 9.11 × 10–28 g
Boltzmann’s constant k 1.38 × 10–23 J K–1

8.62 × 10–5 eV K–1

Planck’s constant h 6.25 × 10–34 J s
Permittivity of free space ε0 8.854 × 10–14 F cm–1

Thermal voltage at 300 K kT/q = vkT 0.02586 V
Thermal energy at 300 K kT 0.02586 eV

gd

rs

Cd Cj

FIGURE 2.29
An equivalent circuit for a pn-junction showing the relevant circuit elements: rs is the series 
resistance of the neutral n- and p-regions; Cj is junction capacitance; Cd is the diffusion capaci-
tance; and gd is the small-signal conductance. 
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Exercises

2.1 Experimental results show that the bandgap energy (Eg) in silicon 
decreases with temperature (T). The Eg versus T behavior is modeled 
by an empirical relation in circuit CAD given by
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1108 T
eV  (E2.1)

 Here, T is in Kelvin.
 a. Compute and plot Eg for 0 ≤ T ≤ 600 K.
 b. From the plot extract Eg(T = 300 K).
 c. Eg versus T is also modeled by polynomial equations given below:

 E T Tg( ) . .= − −1 206 2 73 10 4×    (eV)  (E2.2)

 and

 E T Tg( ) .= − −1 16 3 10 4×    (eV)  (E2.3)

 Calculate Eg (T) using the polynomial equations and plot Eg versus 
T characteristics on the same graph in part (a) (superimpose). From 
the plots, show the range of temperature at which the polynomial 
equations are valid. Extract the values of Eg(T = 300° K) from the poly-
nomial equations and compare with that in part (a).

2.2 Use Equation E2.1 to compute and plot ni versus T for 0 ≤ T ≤ 600 K 
from the following equation:
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 From the plot, extract ni at T = 300° K and compare your results with 
that obtained for silicon.

2.3 A p-type semiconductor is doped with Na = 1 × 1016 cm–3 and has the 
minority carrier lifetime = 10 μsec.

 a. Calculate the steady state electron and hole concentrations under 
light that creates 1018 cm–3 sec–1 electron–hole pairs.

 b. Calculate and sketch the position of equilibrium Fermi level Ef 
relative to Ei.

 c. Calculate and sketch the position of quasi-Fermi levels Efn and Efp 
relative to Ei.
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 d. Compare the position of equilibrium Fermi level in part (b) with 
that of the steady state quasi-Fermi levels under the light in part 
(c). What are the similarities and differences? Explain.

 e. Calculate and compare the pn-products under the equilibrium 
and nonequilibrium conditions at room temperature.

2.4  Consider an abrupt n+ p-junction with Nd = 1020 cm–3, Na = 1 × 1016 cm–3, 
and area = 20 × 20 μm2:

 a. Calculate the built-in potential (fbi) and zero-bias capacitance (Cj0).
 b. Calculate the junction capacitance for an applied bias V = –5 V.

2.5 An IC resistor is shown in Figure  E2.1. The doping concentra-
tions for the n- and p-type regions are Nd  =  2.5  ×  1016  cm–3 and 
Na = 2.5 × 1015 cm–3, respectively. The junction depth Xj = 0.4 μm, the 
width of the n-type region W = 2.5 μm, and its length is L = 20 μm. 
The contact regions are each 3W × 3W in area as shown in Figure E2.1.

 a. Calculate the depletion width into the n- and p-sides of the 
 pn-junction at Vd = 0.

 b. Calculate the sheet resistance of the n-type region. Assume that 
the depletion region does not contribute to resistivity.

 c. Calculate and sketch the position of quasi-Fermi levels Efn and Efp 
relative to Ei.

 d. Calculate the maximum electric field at the pn-junction.
 e. Assuming the DC voltage Vd = 0, calculate the depletion capaci-

tance Cd in fF between the n-region and the p-type substrate.
 f. Compute and plot Cj–V characteristics for applied bias range 

–2.0  V to fbi of the pn-junction for the doping gradient factor 
m = 0.3, 0.4, and 0.5. Explain your results.

 g. Use series expansion to show that the expression in Equation 
2.141 is valid for Vd ≥ FC.fbi.

Contact
window

Vd
Oxide

I n Xj

Metal

x
p-substrate

FIGURE E2.1
pn-junction capacitance modeling.
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 h. Compute and plot Cj–V characteristics for –1.2  V  ≤  Vd  ≤  1.2 V 
using Equation 2.141 for Vd  ≤  FC.fbi and Vd  ≥  FC.fbi. Consider 
m = 0.36. State any assumptions you make including the fitting 
parameter FC. Explain your results.

2.6 In the derivation of the forward I–V characteristic of a pn-junction, 
we assumed quasi-equilibrium; that is, we assumed that we could sim-
ply subtract Vd as a small perturbation on the equilibrium situation. 
We will examine the validity of this assumption in this problem. 
Consider the diode shown in Figure E2.2 (the contacts are remote).

 a. Assuming Dn = 25 cm2 sec–1, Dp = 10 cm2 sec–1, and Ln = Lp = 10 μm, 
calculate the current that flows across the junction at an applied 
forward bias of 0.4 V.

 b. With Vd = 0, electrons and holes will flow across the junction due 
to drift and diffusion, such that the currents due to drift and dif-
fusion exactly cancel each other (I = 0). Estimate the hole diffusion 
current that would flow if there were no electric field to stop it.

 c. What do your answer in part (a) and (b) tell you about the validity 
of our quasi-equilibrium assumption.

p-type
Na = 1019cm−3

n-type
Na = 1017cm−3

FIGURE E2.2
pn-junction I–V characteristics.


