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Compact Models for Ultrathin Body FETs

9.1 Introduction

This chapter presents compact models for the emerging ultrathin-body 
(UTB) field-effect-transistors (FETs). The UTB FETs include multiple-gate or 
multigate FinFETs and silicon-on-insulator (SOI) multigate UTB-FETs (UTB-
SOI FETs) [1,2]. FinFETs and UTB-SOI FETs have emerged as the real alter-
natives to MOSFETs (metal-oxide-semiconductor field-effect transistors) and 
planar CMOS (complementary metal-oxide-semiconductor) technology to 
surmount the continuous scaling challenges of MOSFET devices. The con-
tinuous miniaturization of the conventional planar MOSFET devices has 
become more challenging at the same rate of Moore’s law [3–6] due to sev-
eral fundamental device-physics constraints such as short channel effects 
(SCEs). Shrinking the gate length, L, in the decananometer regime degrades 
the transfer characteristics of planar MOSFETs, degrades the subthreshold 
swing (S), and decreases Vth (e.g., Vth roll-off) [3] as discussed in Chapter 5. This 
implies that the scaled MOSFETs cannot be turned off easily by lowering the 
gate voltage Vg due to SCEs [7]. Because of SCEs, the device characteris-
tics become increasingly sensitive to L variations and process-induced vari-
ability imposes a serious challenge in continued scaling of bulk MOSFETs as 
discussed in Chapter 8 [8,9]. The early theoretical and modeling approaches on 
SCEs [10–12] suggest increasing the gate control by reducing the gate dielec-
tric thickness in proportion to L, which increases manufacturing process com-
plexity. Another constraint for the continuous scaling of conventional bulk 
MOSFETs is controlling leakage current in scaled devices [12]. It is observed 
that at gate length below 20 nm, the leakage paths several nanometers below 
the silicon-dielectric interface (subsurface leakage paths) are primarily respon-
sible for the leakage current. These leakage paths are weakly controlled by 
the gate irrespective of gate oxide thickness and their potential barriers can be 
easily lowered by drain bias Vd through the enhanced electric field coupling 
to the drain, referred to as the drain-induced barrier lowering [12]. This new 
challenge to scaling L led to engineering efforts on channel-profile engineering, 
shallow source-drain extensions (SDE), and halo implants around SDEs as dis-
cussed in Chapter 5 [13–19].
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In order to overcome the increasing challenges in continuous scaling of the 
conventional planar MOSFETs, the major research and development efforts 
for the last two decades have been exploring alternative device architectures 
and materials [20–28]. Among the exploratory devices, FinFETs [29–36] and 
UTB-SOI MOSFETs [37–40] have emerged as the most promising devices for 
advanced nanometer scale VLSI (very-large-scale-integrated) technology 
and beyond. The multiple-gates of multigate FETs offer strong electrostatic 
control over the channel and reduce the coupling between the source and 
drain in the subthreshold region, thus enabling continuous scaling of FETs. 
Multigate FETs have a great potential to mitigate the risk of process vari-
ability by using undoped channel. The efforts are under way to enable large-
scale manufacturing of multigate FETs [41–44]. A reduction of four orders 
of magnitude in the leakage current over the 32 nm planar manufacturing 
process has been reported [29]. UTB-SOI FETs [45], deeply depleted chan-
nel MOSFETs [46], and BH-halo MOSFETs [47] are close competitors to the 
FinFET architecture along with IBM’s aggressively scaled planar MOSFET 
down to the 10 nm node [48]. Thus, ultrathin body enables continuous scal-
ing down of FETs by overcoming the major scaling constraints such as SCE 
and random discrete doping (RDD) of the conventional bulk MOSFETs dis-
cussed in Chapters 5 and 8. For computer analysis of the performance of 
these emerging multigate FETs in VLSI circuits, compact models are critical. 
This chapter presents surface potential–based compact models for multigate 
FET devices.

9.2 Multigate Device Structures

The desirables from any alternative device structure include surmounting 
the impending L scaling barrier, preserving today’s CMOS technology as 
much as possible, and using innovative device architectures to eliminate 
major problems in scaled planar MOSFETs including undesirable leakage 
currents and excessive static power. Among the alternative architectures, 
FinFETs [29–36] and UTB-MOSFETs [37–40] are found to offer solutions to 
major issues for the continuous scaling of FETs. Both of these structures 
show potential to eliminate the leakage paths that are far from the gate(s) by 
limiting the thickness of semiconductor body in the immediate vicinity of 
the gate(s) [29].

9.2.1 Bulk-Multigate Device Structure

Figure  9.1 shows a 3D cross section of an ideal double-gate MOSFET 
(DG-MOSFET) device structure [49]. As shown in Figure 9.1, the structure 
consists of a thin film of undoped silicon body, referred to as the fin, a front 
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and a back gate oxide layers, a source and a drain regions, and front and 
back gates. If the body is sufficiently thin, any line drawn between the source 
and drain including possible leakage paths would not be far from one of the 
gates. In this structure, channel doping is not required for suppressing SCEs. 
Thus, RDD, a major contributor to the variation in the performance of IC 
devices and VLSI circuits, is eliminated [8,9].

Figure  9.2 shows a typical manufacturable version of the multiple-fin 
FinFET device structure commonly referred to as the multigate structure [50]. 
The fin can be fabricated on SOI or cost-effective bulk silicon substrates using 
the standard patterning and etching technologies.

Let us consider an ideal symmetric double-gate FinFET (DG-FinFet) 
structure with channel length L and the channel thickness defined by fin 
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FIGURE 9.1
3D cross section of an ideal DG-MOSFET device structure with an undoped thin film silicon 
body; all leakage paths are close to the gates due to thin body, thus suppressing the short-
channel effects. (Data from N. Paydavosi et al., IEEE Access, 1, pp. 201–215, 2013.)
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FIGURE 9.2
3D cross section of a typical multifin FinFET structure used in manufacturing; in the structure, 
W is the channel width, Hfin is the fin height, and T tfin fin≡  is the fin thickness. (Data from N. 
Paydavosi et al., IEEE Access, 1, pp. 201–215, 2013.)
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thickness tfin as shown in Figure 9.3. In order to ensure a complete gate con-
trol of the channel, it is required that tfin is completely depleted by gate bias 
Vgs so that the fin depletion width (Xch,g) satisfies the relation

 X
t

ch g
fin

, ≥
2

 (9.1)

and, in order to suppress source-drain punchthrough, the lateral channel 
depletion (Ych,d) due to Vds at each end of the channel must be such that the 
neutral channel length (L/2 − Ych,sd) in the y direction along the channel must 
satisfy

 X
L

Ych g ch sd, ,<< −
2

 (9.2)

From the above inequalities, we can show that in order to suppress SCE, the 
device structure must satisfy the conditions given in Equations 9.1 and 9.2. 
Combining Equations 9.1 and 9.2 and expressing Ych,d in terms of equivalent 
gate oxide thickness (Equation 3.82), we get the condition for scaling FinFET 
device structure
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Typically, Ych,d is very small. Therefore, the scaling rule for FinFETs can safely 
be defined by

 
t Lfin

2 2
<<  (9.4)
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FIGURE 9.3
A typical symmetric DG-nMOSFET device structure: tfin, Tox, and Nb are the fin thickness, gate 
oxide thickness, and body doping concentration, respectively; Ych,sd is the depletion width in 
the y direction along the channel due to the applied drain bias Vds.
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Thus, if the fin is sufficiently thin with a thickness, tfin, smaller than L, then 
SCEs are suppressed and subthreshold slope (S) is expected to be near its 
ideal value of about 60 mV per decade (at room temperature) [29]. Thus, the 
new device architecture results in a new scaling rule given in Equation 9.3; 
that is, L can be scaled by maintaining the condition tfin < L, relaxing the scal-
ing of gate dielectric and body doping.

In 1988 and 1999, 45 and 18 nm working DG-FinFETs, respectively, were 
reported [30,31]. Subsequently, 10 nm double-gate [32], 10 nm triple-gate 
(Q gate) [33], 5 nm nanowire [34], and 3 nm all-around gate [35] FinFETs 
were reported.

9.2.2 UTB-SOI Device Structure

Figure 9.4 shows 3D cross section of an ideal UTB-SOI transistor structure. 
If tfin in an SOI-MOSFET is only several nanometers (e.g., thinner than about 
one-half of L), the leakage paths far from the gate will be eliminated and 
SCEs can be significantly suppressed. It is found that the transistor leakage 
current is reduced by about ten times for every nanometer drop in tfin [37]. 
The UTB-SOI MOSFETs require SOI substrates with extremely uniform sili-
con films (sub-nanometer uniformity). In 2009, SOI wafer supplier, Soitec, 
developed SOI wafers with a desired tolerance of ±0.5 nm using a process 
called smart cut [51]. It is reported that UTB-SOI MOSFETs with tfin ≈ 3 nm 
have been experimentally realized [52]. The most attractive channel materi-
als for UTB-SOI MOSFETs are the monolayer semiconductors such as gra-
phene [22], MoS2 [23], and WSe2 monolayer [53].
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FIGURE 9.4
3D cross section of an ultrathin body SOI MOSFET device structure: the body can be a thin 
film of silicon, or any monolayer semiconductors; appropriate thickness of the buried oxide, 
BOx can be used as the back gate oxide to bias the body for the target dynamic Vth shift. (Data 
from N. Paydavosi et al., IEEE Access, 1, pp. 201–215, 2013.)
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In a UTB transistor, the thickness of the buried oxide (BOx) layer is reduced 
to use the substrate immediately below the BOx as a back gate to bias the 
body of the device and to enable a multi-Vth technology, especially for system-
on-chip design [54–56].

The multiple-gate FET structures can be classified as (1) common mul-
tigate (CMG) structure where a common gate terminal is used to bias the 
device and the gate dielectric thicknesses is the same and (2) independent 
multigate (IMG) structure where gates are independently biased and the 
gate dielectric thickness is different for each gate.

9.3 Common Multiple-Gate FinFET Model

The term common gate defines all gates in the multigate (double-gate or 
triple-gate or quadruple-gate) FinFET, which are electrically interconnected 
and are biased at the same electrical terminal voltage. It is also assumed 
that the gate work functions and the dielectric thicknesses on all sides to the 
silicon fin are the same. However, the carrier mobilities in the inversion are 
dependent on crystal orientations and/or strain.

9.3.1 Core Model: Poisson-Carrier Transport

The core CMG model is formulated using gradual channel approximation 
(GCA) [57], described in Chapter 4, and assuming physical effects such as 
mobility degradation can safely be neglected. Several basic models have 
been proposed for the FinFET, where charge [58] and surface potential [59,60] 
modeling approaches have been mainly used for model formulations. The 
core model described in the following section is based on the solution of 
Poisson’s drift/diffusion equations for a long channel DG-FinFET assuming 
a finite doping in the channel [29]. The reported simulation data obtained 
by  the core model agree very well with the numerical device simulation 
data [60,61].

9.3.1.1 Electrostatics

For the simplicity of model formulation, let us consider 2D (two-dimensional) 
cross section of an ideal n-type FinFET device structure as a common double-
gate transistor as shown in Figure 9.5. First of all, we obtain surface potential 
fs within the device by solving 1D Poisson’s equation given by (Equation 3.30)
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where:
f(x, y) is the electrostatic potential at any point (x, y) in the channel
q is the magnitude of the electronic charge
Ksi and ε0 are the dielectric constant of the silicon channel (fin) and permit-

tivity of free space, respectively
p(x, y), n(x, y), N x yd

+ ( ), , and N x ya
− ( ),  are the hole, electron, ionized donor, 

and ionized acceptor concentrations at any point (x, y) of the semicon-
ductor substrate, respectively

For a p-type substrate, the minority carrier concentration at any point (x, y) of 
the substrate is given by (Equation 3.40)
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where:
Na is the acceptor doping concentration in a p-type substrate (assuming 

complete ionization)
ni is the intrinsic carrier concentration
vkT is the thermal voltage given by kT/q
k and T are the Boltzmann constant and ambient temperature, respectively

Again, from Equation 3.35, we can show that for a p-type substrate
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FIGURE 9.5
Schematic of an idealized symmetric common DG-nMOSFET device used to derive device 
 equations: Tox, tfin, and Nb are the gate oxide thickness, fin or body thickness, and body dop-
ing concentration, respectively; the origin of the coordinate system (0,0) is at the center at 
(L = 0, tfin/2); fs and fd are the surface potentials at the source and drain ends of the device, 
respectively. 
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and
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where:
fB is the bulk potential

Typically, FinFETs are undoped or lightly doped channel devices; therefore, 
we consider only the inversion carrier electron concentration n(x, y) at any 
point (x, y) given by Equation 9.6 and uniformly doped p-type body doping 
concentration, Na(x, y) ≡ Nb. Let us assume that Vch(y) is the channel potential 
at any point y and GCA as described in Chapter 4 is valid [57]. Then for a 
double-gate FET (DG-FET) shown in Figure  9.5, we can express Poisson’s 
Equation 9.5 as
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where:
Vch(y) is given by Vch(0) = Vs at the source and Vch(L) = Vd at the drain

From Equation 9.9, the electrostatic potential f(x, y) at any point (x, y) in the 
channel can be written as

 φ φ φ( , ) ( , ) ( , )x y x y x y≅ +1 2  (9.10)

In Equation 9.10, f1(x, y) is the contribution to f(x, y) due to the inversion carri-
ers without the effect of the ionized body dopants, and f2(x, y) is the contribu-
tion to f(x, y) due to body dopants, Nb. Therefore, we have
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If tfin is less than the width of the depletion region, then for a certain gate bias 
Vg, the silicon fin is fully depleted and consequently the inversion carriers 
are spread throughout the entire body. Thus, Qi >> Qb, and therefore, we can 
safely neglect the term containing Nb in Equation 9.9 and the channel poten-
tial is obtained by solving Equation 9.11.

We know that for a symmetric double-gate structure, the vertical compo-
nent of the electric field Ex is zero at the center, that is, at x = 0, df1/dx = 0 
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and f1(x = 0, y) = f0(y); then using Equation 3.47 and following the procedure 
described in Section 3.4.2, we get f1(x, y) by integrating Equation 9.11 twice as
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where:
f0(y) is the potential at the center of the body as shown in Figure 9.5 and we 

have used Equation 9.8 to express fB in terms of ni and Nb

Similarly, in order to solve for f2(x, y), we apply the boundary conditions: Ex = 0 
at the center of the channel (x = 0) and f2(x = 0, y) = 0, and integrate Equation 
9.12 twice. Again, using Equation 3.47, we can express Equation 9.12 as
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Now, integrating Equation 9.14 from df2(x = 0, y)/dx = 0, f2(x = 0, y) = 0 to any 
point df2(x, y)/dx, f2(x, y) we get

 d
x y
x

qN
K

d x y
d dx

b

si

x y
∂

∂






 =∫ ∫φ

ε
φ

φ φ

2
2

0
0

2

0

2 2

2
( , )

( , )
( , )

 (9.15)

After integration and simplification, we get from Equation 9.15
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Integrating Equation 9.16, from x = 0, f2(x = 0, y) = 0 to any point x, f2(x, y), 
we can show
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The surface potential fs(y) at any point y along the surface is obtained by 
evaluating the sum of f1(x,y) and f2(x,y) at the surface (x = −tfin/2) such that
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In Equation 3.23 we have shown that
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Q
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where:
Vgs is the gate voltage
Vfb is the flat-band voltage
Qs is the total charge in the body
Cox is the gate oxide capacitance per unit area, given by Koxε0/Tox, with Kox 

and Tox are the permittivity of oxide and oxide thickness, respectively

Then from Gauss’s law at the channel/oxide interface, we get

 Q K Es si xs= – ε0  (9.20)

where:
Exs is the vertical component of the electric field at the surface

Substituting Equation 9.20 in Equation 9.19, we get
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Now, following the procedure to obtain Exs for bulk MOS (metal-oxide-
semiconductor) capacitor system in Equation 3.51, we can show for a DG-FET 
device

 
d

dx
d
dx

q
K

n
x y V y

v
N

si
i

B ch

kT
b

φ
ε

φ φ





 =

− −





+





2

0

2
exp

( , ) ( ) 



d
dx
φ

 (9.22)

We integrate Equation 9.22 from center potential f(x = 0, y) ≡ f0(y), df(x = 0, y)/
dx = 0 to any point f(x, y) and df(x, y)/dx to get
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After integration and simplification, we can express Equation 9.23 as
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where in Equation 9.24, we have used Equation 9.7 for Nb/ni. Thus, the 
vertical electric field at any point y along the surface of the channel is 
given by
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Combining Equations 9.21 and 9.25, we get
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Equations 9.18 and 9.26 represent a self-consistent system of equations that 
can be solved to obtain f0(y) and fs(y) for a fully depleted DG-FET structure 
under a set of external biases.

In the partially depleted DG-FETs, the depletion width Xd is bias dependent. 
At the edge of depletion region, f1(x = Xd, y) = 0. With these changes, the sur-
face potential can be derived for the partially depleted devices similar to the 
fully depleted devices. It can be shown that for the partially depleted body
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In order to obtain continuous expressions for terminal currents and charges, it 
is necessary to capture the transition between the fully depleted and partially 
depleted regimes in a smooth manner. Also, the solution of Equations 9.27 and 
9.28 is computationally intensive due to the complex f2(x, y) term. To overcome 
these issues, a simplified expression is used for f2(x,y) = fpert which is continu-
ous between the partially depleted and fully depleted regimes. Here, fpert is used 
as a small perturbation term. Thus, using fpert, a surface potential in both the 
regimes is calculated through a single continuous equation. The transformation 
variable β is the argument of the cosine function in f1(tfin/2, y) in Equation 9.13
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and, from Equation 9.17, fpert ≡ f2(tfin/2, y) is given by
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Thus, through a change of variable, the unified surface potential fs equation 
can be written as
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Equation 9.31 (implicit in β) is the basic surface potential equation (SPE) 
in Berkeley Short Channel IGFET Model (BSIM) CMG [50]. It is solved by 
first using an analytical approximation for the initial guess [61], followed 
by two Householder’s cubic iterations (third-order Newton-Raphson itera-
tions); together these make the model numerically robust and accurate. The 
surface potentials at the source end fs0 and drain end fsL are calculated 
by setting Vch(y =  0) = Vs and Vch (y = L) = Vd, respectively. For a lightly 
doped body, Equation 9.31 can be further simplified [62] to speed up the 
simulation.

From Equation 9.30: if fpert ≈ 0, then in Equation 9.31 we have exp φpert kTv( ) = 1 
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Therefore, we can simplify Equation 9.31 as
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A separate surface potential expression is used for the cylindrical gate 
geometry [63].
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9.3.1.2 Drain Current Model

The drain-to-source current Ids for the long channel DG-FinFETs is obtained 
from the solution of drift-diffusion equation (Equation 4.63)

 I y T WQ y
dV
dy

ds i
ch( ) ( ) ( )= µ  (9.33)

where:
μ(T) is the low-field and temperature-dependent mobility
W is the total effective width
Qi is the inversion charge per unit area in the upper half part of the body

Equation 9.33 includes drift and diffusion transport mechanisms through the 
use of the quasi-Fermi potential. Integrating both sides of Equation 9.33, and 
considering the fact that under quasistatic operation Ids is constant along the 
channel, we can express Equation 9.33 in its integral form:
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where:
L is the effective channel length
Qis and Qid are the inversion charge densities at the source and drain ends, 

respectively

From the relation QS = (Qi + Qb), we get
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From Gauss’s Law, we get the total charge in the fin, QS = −Ksiε0Exs; then we 
can show from Equation 9.25
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Note that the second term in the square bracket is due to bulk charge. For 
lightly doped body, Qb << Qi; therefore, neglecting the bulk charge term in 
Equation 9.36, we can express inversion charge as
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Equation 9.37 can be further simplified as
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In strong inversion fs(y) >> f0(y); therefore, 1 0− − e y y vs kTφ φ( ) ( )  approaches 1. 
In weak inversion, we can simplify this term assuming liner profile from 
x = 0 to x = −tfin/2. If Eavg is the average electric field in the region between 
x = −tfin/ 2 to the mid-potential at x = 0, then using Gauss’s law, we can write
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If we assume that surface potential varies linearly from center potential f0(y) 
to the surface potential fs(y), then Equation 9.39 can be expressed as
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Thus, the inversion charge is given by
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where Csi = Ksiε0/tfin; substituting Equation 9.41 in Equation 9.38 and perform-
ing Taylor’s series expansion, the inversion charge for lightly doped DG-FETs 
is given by
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Equation 9.42 is an implicit equation in Qi and is solved iteratively to obtain 
drain current from Equation 9.33. Using Qs ≈ Qi,LD in Equation 9.19, we can 
compute Vgs versus inversion charge Q C V Vi LD ox gs fb s, = − − −( )φ .

Similarly, the inversion charge density for heavily doped DG-FETs can be 
shown as
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From the similarities of charge expressions in Equations 9.42 and 9.43, a uni-
fied expression is used to calculate the inversion charge density for a wide 
range of devices as a function of Qb and is given by
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where:
Q0 = 2Qb + 5CsivkT, with Csi = Ksiε0/tfin

Qb is the fixed depletion charge and is given by qNbtfin

It is reported that the unified charge density model agrees very well with the 
inversion charge density calculated using an exact equation for a wide range 
of body doping concentration [60]. Then from Equation 9.44, the gradient in 
Vch(y), term dVch/dQi can be calculated as a function of Qi using a simple but 
accurate implicit equation for Qi [60]
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Equation 9.34 can be integrated analytically using Equation 9.44 to calculate 
dVch/dQi to obtain the following basic equation for Ids
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Equation 9.46 describes the drain current model for symmetric DG-FETs. 
The model equation predicts the drain current in all operation regions: sub-
threshold, linear, and saturation of both fully depleted and lightly depleted 
channel symmetric DG-FETs. Figure 9.6 shows the simulated I–V character-
istics of a bulk FinFET device obtained by multigate drain current model 
with the measured data.
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FIGURE 9.6
Drain current model used to compare the measured and simulated I–V characteristics of mod-
erately doped symmetric bulk n-channel FinFET devices: (a) Ids − Vgs characteristics for different 
Vds; (b) Ids − Vds characteristics for different Vgs. Device data are L = 50 nm, tfin = 25 nm, and TiN 
gate with equivalent Tox = 1.95 nm; symbols are measured data and lines represent compact drain 
current model. (Data from M.V. Dunga et al., IEEE Symposium on VLSI Technology, pp. 60–61, 2007.)
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A unique behavior of lightly doped DG-FETs with thin body is that the 
inversion charge is no longer confined to interface and the entire film is 
inverted. For any gate voltage, the electrostatic potential increases at the inter-
faces as well as in the volume of the film in all mode of device operation: the 
depletion, weak inversion, and the strong inversion. As a result, the potential 
shift or total band bending exceeds 2fB in every region and in the entire film. 
This is referred to as the volume inversion [61, 63–65]. Due to volume inversion 
(1) the potential as well as the inversion carrier density is nearly independent of 
the position inside the body because of the negligible potential drop between 
the surface and the center of the body as shown in Figure 9.7a; (2) the poten-
tial as well as the inversion charge density is weakly dependent on the body 
thickness; any small increase in the gate voltage in the subthreshold region 
increases the potential throughout the entire body, causing inversion in the 
entire body; and (3) since the electronic potential is virtually independent of 
the body thickness, the total integrated charge inside the body is proportional 
to the body thickness. Thus, as a result of volume inversion, the subthreshold 
region drain current is also proportional to tfin as shown in Figure 9.7.

9.3.2 Modeling Physical Effects of Real Device

This subsection briefly reviews some of the real-device effects for the mod-
ern multigate transistors, highlighting the key physical effects and imple-
mentations, and outlining the proper references for further details.
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9.3.2.1 Short Channel Effects

SCEs originate from 2D electrostatics where the drain significantly affects 
the potential barrier at the source due to its close proximity to source region. 
SCEs degrade the device performance through Vth roll-off and S degradation.

There are several approaches to model SCEs [66–70]. However, the approach 
assuming a parabolic potential function perpendicular to the silicon-insulator 
interface to solve the 2D Poisson’s equation is shown to maintain a balance 
between the model accuracy and model computation time [68,69].

Vth roll-off: In order to model Vth roll-off in DG-FETs, 2D Poisson’s equa-
tion is solved in the x direction into the body and in the y direction along 
the length of the channel, assuming that the inversion charge is negligible 
and the electric field Ex is independent of y whereas the electric field Ey is 
independent of x. Then assuming a parabolic potential distribution along 
the x direction, the minimum potential at the center of the channel f0(y) is 
determined [70]. Then the minimum potential fc,min [61] is expressed in terms 
of the terminal voltages Vgs and Vds, L, and the characteristic field-penetration 
length λ, and is defined as
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λ is known as the scale length that defines the extent of penetration of the 
electric field from the drain into the body as function of physical parameters 
Tox and tfin and, therefore, the amount of SCE in a transistor. The change in 
Vth is then defined as

 ∆V L V L V Vth ds
L

gs ds, , lim , , ,,λ φ λ( ) ≡ ( )
→∞

c min  (9.48)

The term ΔVth(L, λ, Vds) is further enhanced with more parameters for sim-
plicity of the parameter extraction procedure and to improve modeling accu-
racy [71]. In BSIM-CMG model, ΔVth is subtracted from Vfb [72–74].

Figure 9.8 shows the dependence of ΔVth on the gate oxide thickness and 
silicon body thickness. As the oxide thickness and body thickness decrease, 
the gate control on the body increases, thus suppressing SCE as expected [64].

Subthreshold slope degradation: The subthreshold swing, S, in a planar 
MOSFET is defined as (Equation 4.124)
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where:
Cd is the depletion capacitance associated with the depletion region
CIT is the capacitance due to interface states
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CDSC is the coupling capacitance between source/drain to channel, which 
has similar L, λ, and Vds dependencies as ΔVth discussed earlier

The degradation in subthreshold swing is then modeled through a modifica-
tion in vkT as

 nv
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ox
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


1  (9.50)

where nvkT is substituted for vkT in all bias-dependent calculations.

9.3.2.2 Quantum Mechanical Effects

Quantum mechanical confinement of inversion carriers is well known in 
bulk MOSFETs for a long time [13,75,76]. The large vertical electric field leads 
to strong band bending at the surface and the inversion carriers are con-
fined to dimensions along the length and width of the transistor as shown 
in Figure  9.9a. This carrier confinement, also known as electrical confine-
ment (EC), leads to splitting of energy bands into discrete sub-bands, which 
reflects as an increase in the threshold voltage of the transistor and a decrease 
in the gate capacitance, both of which act to reduce the current drive of the 
transistor [13,61].

In the case of DG-FETs, unlike bulk FETs, there is strong carrier confinement 
even at low electric fields, making the QME (quantum mechanical effect) 
even more complex [77]. The carriers are bounded by gate insulator on two 
sides, which is similar to carriers confined in a rectangular well  [61,78–80]. 
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Symposium on VLSI Technology, pp. 60–61, 2007.) 
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This is referred to as structural confinement (SC) since it arises from the very 
physical structure of DG-FET as shown in Figure  9.9b. In order to capture 
the QME in its entirety it is necessary to model the effect of both EC and SC 
(Figure 9.9) on the performance of DG-FETs. Several groups have reported dif-
ferent analytical and numerical approaches to capture the QME in DG-FETs 
[78–80].

The quantum mechanical confinement of the inversion carriers increases 
the device Vth, degrades the gate capacitance, and reduces the effective width 
of the device (see Figure 9.7a) due to a shift in the inversion charge centroid 
as discussed in Section 3.4.2.2 (Figure  3.19) away from the Si/SiO2 inter-
face [13,61]. A shift in the bottom of the conduction/valence band due to the 
SC [61] is used to modify Vch at the source and drain SPEs. In order to model 
EC, the bias-dependent charge centroid thickness Δz is used to modify Tox 
(Equation 3.82) and calculate the reduction in the width of the device [79]. 
The simulation results are in an excellent agreement with those calculated 
from a self-consistent Schrödinger–Poisson approach [61].

9.3.2.3 Mobility Degradation

Similar to surface mobility degradation in bulk MOSFETs discussed in Section 
5.3.1 (Figure 5.9b), the degradation of carrier mobility in FinFET also occurs 
due to four main scattering mechanisms: Coulomb scattering, acoustic pho-
non scattering, surface roughness scattering, and optical phonon scattering. 
The first three scattering mechanisms have vertical (transverse) field depen-
dency and they are each dominant at different regions of device operation: 
Coulomb scattering at weak inversion, acoustic phonon scattering at mid-
inversion, and surface roughness scattering at strong inversion (Figure 5.9b). 
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FIGURE 9.9
Energy-band diagrams showing the carrier confinement and associated quantization of elec-
tronic energy levels in DG-MOSFETs: (a) electrical confinement due to band bending at the top 
and bottom gate silicon/SiO2 interface and (b) structural confinement due to ultrathin body.
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Similar to bulk MOSFETs (Section 5.3.1), these mechanisms together are 
modeled through a submodel called low field mobility degradation and used to 
get the effective mobility [71].

At high lateral field due to high applied Vds, the dominant scattering mecha-
nism is optical phonon scattering since the electrons are able to gain enough 
energy to emit optical phonons. This high lateral field scattering causes the car-
rier velocity saturation. The velocity saturation is calculated using a submodel 
called current saturation and it degrades the drain-to-source current directly [71].

9.3.2.4 Series Resistances

In thin body source-drain transistors, series resistance is large. In order to 
reduce the parasitic resistances in FinFETs and UTB transistors, raised source-
drain regions are used in device architecture [Figure 9.4]. Thus, the parasitic 
source-drain resistance submodel includes a bias-dependent extension resis-
tance Rext, a spreading resistance Rsp, and a distributed contact resistance Rcon.

The components of contact resistance include resistance ΔRs of the raised 
source-drain bulk regions and silicon/silicide inter-face resistance ΔRc. And, 
Rcon is modeled as a lumped resistance using a distributed network.

The spreading resistance Rsp is due to current crowding as the current 
flows from the raised drain region into the drain extension; this results in 
an increase in the resistance by Rsp. The spreading resistance is, modeled in 
terms of the device and source-drain areas and a shape parameter [81].

The extension resistance Rext contributes the most to the series resistance. 
The fringe field from the gate can cause surface accumulation at the inter-
faces of the extension region and the gate oxide/offset spacer; this modulates 
the resistivity of the region and makes Rext bias-dependent. Rext is modeled 
as a resistance network with two bias-independent resistances Rext1 and Rext2, 
and a bias-dependent resistance Racc. Since the exact extension doping profile 
is often unknown, analytical expressions with fitting parameters are used to 
obtain the values of these components of Rext [81].

9.4 Independent Multiple-Gate FET Model

The model developed for common-gate FinFETs cannot be used for transis-
tors with different gate dielectric thickness and independently biased gate 
terminals. In this section, we will derive a surface potential–based compact 
model targeted for UTB-SOI MOSFETs. The model could be used for com-
puter analysis of emerging devices including graphene nanoribbon transis-
tors [22,23,52]. Many of the real-device effects presented for a CMG model 
can be used with appropriate changes for independent gate operation. Thus, 
only a description of the core model is presented in the following section.
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9.4.1 Electrostatics

In order to derive electrostatic potential of asymmetric independent DG-FETs, 
let us consider 2D cross-sectional view of the channel as shown in Figure 9.10. 
The asymmetric independent DG-FET includes different front- and back-
gate dielectric thicknesses (Tox1 and Tox2) and different gate-work functions 
(fM1 and fM2). Since the threshold voltage of an independent DG-FET can 
be optimized by adjusting the back-gate bias (Vbg), there is no need for sig-
nificant body doping, Nb. Therefore, we can develop surface potential-based 
model using a lightly doped body so that Qb << Qi.

Let us consider GCA, Boltzmann’s distribution function, an undoped chan-
nel, and only the dominant mobile carriers in deriving the surface potential. 
Then Poisson’s equation can be written as

 
d x y

dx
q

K
n

x y V y
vsi

i
ch

kT

2

2
0

φ
ε

φ( , )
exp

( , ) ( )
=

−













 (9.51)

Again, using the identity (Equation 3.47) d dx d dx d dx d dx/ / / /( )( ) = ( )⋅( )φ φ φ
2 2 22  

in Equation 9.51 and integrating the resultant expression along the x axis, we 
can show that
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where:
Es1 and Es2 are the surface electric fields at the front and back gates, 

respectively
fs1 and fs2 are the front and back surface potentials, respectively, as shown 

in Figure 9.10
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FIGURE 9.10
2D cross-sectional view of the channel region of a planar independent DG-FET; Tox1 and Tox2 are 
the front and back gate oxide thickness, respectively; tch and Nb are the substrate thickness and 
doping concentration, respectively.
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Using Gauss’s law at the front- and back-gate silicon surfaces, we can write
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where:
Vfg and Vbg are the front- and back-gate voltages, respectively
Vfb1 and Vfb2 are the flat band voltages for the front and back gates, respectively
Cox1 and Cox2 are the front- and back-gate oxide capacitances given by Koxε0/

Tox1 and Koxε0/Tox2, respectively, where Tox1 and Tox2 are the front and back 
oxide thicknesses, respectively, and Kox is the dielectric constant of oxide

Substituting Equation 9.53 in Equation 9.52, we get an implicit equation in 
fs1 and fs2.

Now, in order to solve the implicit Equation 9.52 with two interdependent 
unknowns, fs1 and fs2, the back surface is approximated to be always in weak 
inversion. Using the equation for the potential of a capacitive divider node 
held between the two potentials fs1 and Vbg, we can write

 φ α φ αs si s ox bg fbV V2 1 2= + −( )  (9.54)

where
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and, C K tsi si ch= ε0 , with tch being the channel thickness.
Substituting Equation 9.54 in Equation 9.52, the implicit SPE for the IMG 

transistor basic model is obtained
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Equation 9.55 is solved using Householder’s method to obtain the front sur-
face potential and electric field, fs1 and Es1, respectively, at the source end (by 
setting Vch(y = 0) = Vs) [82]. The front surface potential and electric field, fd1 
and Ed1, are also found for the drain end (by setting Vch(y = L) = Vd). The cor-
responding back-gate surface potentials fs2 and fd2 and electric fields Es2 and 
Ed2 are then computed from Equations 9.54 and 9.53, respectively.

Finally, assuming lightly doped body, that is, Qb << Qi, so that Qs ≅ Qi, 
we get the expression for the inversion charge density as
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 Q K E Ei si s s= −( )ε0 1 2  (9.56)

9.4.2 Drain Current Model

For long channel UTB-FET devices, the drain current is derived by solving 
drift-diffusion transport expression given by Equation 9.33. Integrating both 
sides of Equation 9.33 and considering the fact that under quasistatic opera-
tion Ids is constant along the channel, it is possible to express Equation 9.33 in 
its integral form as
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Again, assuming that the back surface is weak, a simplified form of surface 
potential expression
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is used to compute the drain current by following the procedure described next:

 1. Solving for Es1 in Equation 9.58 and using it in Equation 9.56, we can 
write
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 2. Taking the derivatives of both sides of Equation 9.59 with respect to 
y, it is possible to write
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Here, η varies from 1 to 2 going from subthreshold to strong inver-
sion and is a function of y. To simplify the integral in Equation 9.57, 
η can be approximated to be independent of position, thus replacing 
Qi(y) and Es2(y) by their average values at the source and drain ends.

 3. Evaluating the integral in Equation 9.57 using Equation 9.60 leads to 
the following basic equation for Ids [49]
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The model has been extensively verified for a wide range of reliability and 
scalability [83]

9.5 Dynamic Model

9.5.1 Common Multigate C–V Model

This section presents the dynamic model of the CMG DG-FETs for transient 
analysis of the devices in circuit CAD. The intrinsic capacitance model that 
describes the transient behavior of the transistors are derived from the ter-
minal charges as described in Chapter 6.

For DG-FETs, the total charge in the body is given by the charges on the 
top- and bottom-gate electrodes. The total charge is computed by integrating 
the charge along the channel. Since the two gates are electrically intercon-
nected, we have
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where:
QG denotes the charge on the electrically interconnected gate

The inversion charge in the body is divided between the source and the 
drain terminals using Ward–Dutton charge partition approach discussed in 
Chapter 6 [84,85]. The charge on source terminal (QS) is given by
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Using charge conservation principle, the charge on the drain terminal (Qd) 
can be expressed as
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The surface potential as a function of the position y along the length of the 
transistor, fs(y) is obtained using current continuity. Current continuity 
states that the current is conserved along the length of the transistor.
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 I L I y y Ld d( ) ( )= ≤ ≤, where 0  (9.66)

The expression for the drain current in Equation 9.46 is very complex and is 
not practical for applying current continuity. For the purpose of determining 
fs(y), a simplified version of I–V model as shown below is used [61,72]
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where the function g Q yi( )( ) follows from Equation 9.46 after neglecting the 
third term in the square bracket is defined as
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The approximate Equations 9.67 and 9.68 retain good accuracy in the strong 
inversion regime but overestimate the drain current in the subthreshold 
regime. The advantage of using a mathematically simple analytical expres-
sion for terminal charges outweighs the resulting error in the accuracy of 
C–V model in the subthreshold regime. Using Equations 9.67 and 9.68, fs(y) 
can be expressed as
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where fs0 and fsL represent the surface potential at the source and drain ends, 
respectively, and the parameter B is defined as
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The terminal charges are obtained by substituting fs(y) in Equations 9.63 
through 9.65 and evaluating of the integrals [73] so that
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The expressions for terminal charges are continuous and are valid over sub-
threshold, linear, and saturation regimes of operation.

Equation 9.71 forms the C–V model for BSIM-CMG. The terminal charges 
are used as state variables in the circuit simulation. All the capacitances are 
derived from the terminal charges to ensure charge conservation. The capac-
itances are defined as
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i

j
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 (9.72)

where:
i and j denote the multigate FET terminals

Note that Cij satisfies

 C Cij

i

ij

j
∑ ∑= = 0  (9.73)

due to charge conservation.
The capacitances from C–V model are plotted as a function of gate voltage 

and drain voltage in Figure 9.11a and b, respectively.

9.5.2 Independent Multigate C–V Model

We model the C–V using a charge-based approach [84,85] to ensure charge con-
servation. The charge associated with each terminal is modeled. The capacitive 
current flowing into each terminal is expressed as the time derivative of charge.
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where x, y = d, fg, bg, s; each transcapacitance is defined as
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The charge associated with the front gate fg can be calculated as
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where:
ΔΦ1 is the work function of the front gate with reference to that of n+ 

source

In order to integrate Equation 9.76, the relation between front surface poten-
tial fs1(y) and position y is needed. This can be obtained by applying current 
continuity to Equation 9.62.
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Since Qi(y) is unknown, the capacitor divider approximation is used to relate 
the front surface potential fs1 and charge Qi:
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Combining Equations 9.77 and 9.78 and noting that Q Q yis is s s s= = φ φ1 1( ) , , 
we obtain the position dependence of surface potential as
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Substituting Equation 9.79 in Equation 9.76 and performing integration, 
we get
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where

 ′ = − + ⋅ −( ) + +( )A V V vfg c bg kT c∆Φ ∆Φ1 2 1γ γ  (9.81)

and,
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The charge associated with the back gate can be simply calculated by replac-
ing fs s d1, ( ) with fs s d2, ( ), swapping Vfg −( )∆Φ1  and Vbg −( )∆Φ2 , and swapping 
Cox1 and Cox2 in Equation 9.80, following an argument of symmetry.

The front- and back-gate charges are further partitioned into a source 
component and a drain component according to Ward–Dutton charge parti-
tion method [84,85]. The drain charge associated with the front gate is given 
by [79]
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After using Equation 9.79 and integrating, we obtain
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Similarly, the drain charge, QD2 associated with the back gate is obtained by 
replacing fs s d1, ( ) with fs s d2, ( ), swapping Vfg −( )∆Φ1  and Vbg −( )∆Φ2 , and swap-
ping Cox1 and Cox2 in Equation 9.84.

The total drain charge is the sum of QD1 and QD2. Since QS, QD, Qfg, and Qbg 
must sum up to 0, the source charge can be calculated as

 Q Q Q QS fg bg D= − − −  (9.85)

Similar to Figure 9.11, the transcapacitances can be computed from the above 
terminal charges.
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9.6 Summary

This chapter presented an overview of the present state-of-the-art surface 
potential–based compact models of thin-body CMG and IMG FET devices 
for circuit CAD. Each device model consists of a core model for large devices 
and real device submodels to analyze the physical and geometrical effects on 
these devices. The basic features of the model include capturing the impor-
tant physics of thin-body multigate transistors such as the volume inver-
sion and the dynamic Vth shift for body bias in ultrathin body transistors. 
The models are valid for digital as well as analog circuit analysis with the 
C–V models that simulate the transcapacitances. This chapter is intended to 
provide readers the present state-of-the-art modeling activities in thin-body 
FET devices. The detailed models and modeling methodologies including 
updates can be found in the literature [74].

Exercises

9.1 Complete the mathematical steps following the procedure described 
in Chapter 3 to derive Equation 9.13 for channel potential f1(x, y) at any 
point (x, y) in the channel of a typical symmetric DG-MOSFET device.

9.2 Complete the mathematical steps following the procedure described 
in Chapter 3 to derive Equation 9.17 for channel potential f2(x, y) at 
any point (x, y) in the channel of a typical symmetric DG-MOSFET 
device.

9.3 Use Equations from exercises 9.1 and 9.2 to derive:
 a. Vertical electrical field at any point y along the channel of the 

symmetric DG-MOSFET device
 b. Gate voltage for a fully depleted symmetrical DG-MOSFET 

structure
9.4 What is the volume inversion in DG-MOSFETs? Describe the effect 

of volume inversion on DG-MOSFET device performance.
9.5 Describe the difference between the electrical and structural 

Quantum Mechanical effects in DG-MOSFETs; qualitatively plot the 
centroid of inversion charge as a function of body thickness. Explain 
your results.


