
Chapter 7

Intermediate-Code Generation

7.1 Introduction

The final goal of a compiler is to get programs written in a high-level language
to run on a computer. This means that, eventually, the program will have to be
expressed as machine code which can run on the computer. This does not mean
that we need to translate directly from the high-level abstract syntax to machine
code. Many compilers use a medium-level language as a stepping-stone between
the high-level language and the very low-level machine code. Such stepping-stone
languages are called intermediate code.

Apart from structuring the compiler into smaller jobs, using an intermediate
language has other advantages:

• If the compiler needs to generate code for several different machine-archi-
tectures, only one translation to intermediate code is needed. Only the trans-
lation from intermediate code to machine language (i.e., the back-end) needs
to be written in several versions.

• If several high-level languages need to be compiled, only the translation to
intermediate code need to be written for each language. They can all share
the back-end, i.e., the translation from intermediate code to machine code.

• Instead of translating the intermediate language to machine code, it can be
interpreted by a small program written in machine code or a language for
which a compiler or interpreter already exists.

The advantage of using an intermediate language is most obvious if many languages
are to be compiled to many machines. If translation is done directly, the number
of compilers is equal to the product of the number of languages and the number of
machines. If a common intermediate language is used, one front-end (i.e., compiler

147



148 CHAPTER 7. INTERMEDIATE-CODE GENERATION

to intermediate code) is needed for every language and one back-end (interpreter
or code generator) is needed for each machine, making the total number of front-
ends and back-ends equal to the sum of the number of languages and the number
of machines.

If an interpreter for an intermediate language is written in a language for which
there already exist implementations for the target machines, the same interpreter
can be interpreted or compiled for each machine. This way, there is no need to
write a separate back-end for each machine. The advantages of this approach are:

• No actual back-end needs to be written for each new machine, as long as the
machine i equipped with an interpreter or compiler for the implementation
language of the interpreter for the intermediate language.

• A compiled program can be distributed in a single intermediate form for all
machines, as opposed to shipping separate binaries for each machine.

• The intermediate form may be more compact than machine code. This saves
space both in distribution and on the machine that executes the programs
(though the latter is somewhat offset by requiring the interpreter to be kept
in memory during execution).

The disadvantage is speed: Interpreting the intermediate form will in most cases be
a lot slower than executing translated code directly. Nevertheless, the approach has
seen some success, e.g., with Java.

Some of the speed penalty can be eliminated by translating the intermediate
code to machine code immediately before or during execution of the program. This
hybrid form is called just-in-time compilation and is often used for executing the
intermediate code for Java.

We will in this book, however, focus mainly on using the intermediate code for
traditional compilation, where the intermediate form will be translated to machine
code by a the back-end of the compiler.

7.2 Choosing an intermediate language

An intermediate language should, ideally, have the following properties:

• It should be easy to translate from a high-level language to the intermedi-
ate language. This should be the case for a wide range of different source
languages.

• It should be easy to translate from the intermediate language to machine
code. This should be true for a wide range of different target architectures.



7.2. CHOOSING AN INTERMEDIATE LANGUAGE 149

• The intermediate format should be suitable for optimisations.

The first two of these properties can be somewhat hard to reconcile. A language
that is intended as target for translation from a high-level language should be fairly
close to this. However, this may be hard to achieve for more than a small number
of similar languages. Furthermore, a high-level intermediate language puts more
burden on the back-ends. A low-level intermediate language may make it easy to
write back-ends, but puts more burden on the front-ends. A low-level intermediate
language, also, may not fit all machines equally well, though this is usually less of
a problem than the similar problem for front-ends, as machines typically are more
similar than high-level languages.

A solution that may reduce the translation burden, though it does not address
the other problems, is to have two intermediate levels: One, which is fairly high-
level, is used for the front-ends and the other, which is fairly low-level, is used for
the back-ends. A single shared translator is then used to translate between these
two intermediate formats.

When the intermediate format is shared between many compilers, it makes
sense to do as many optimisations as possible on the intermediate format. This
way, the (often substantial) effort of writing good optimisations is done only once
instead of in every compiler.

Another thing to consider when choosing an intermediate language is the “gran-
ularity”: Should an operation in the intermediate language correspond to a large
amount of work or to a small amount of work?

The first of these approaches is often used when the intermediate language is
interpreted, as the overhead of decoding instructions is amortised over more actual
work, but it can also be used for compiling. In this case, each intermediate-code op-
eration is typically translated into a sequence of machine-code instructions. When
coarse-grained intermediate code is used, there is typically a fairly large number of
different intermediate-code operations.

The opposite approach is to let each intermediate-code operation be as small as
possible. This means that each intermediate-code operation is typically translated
into a single machine-code instruction or that several intermediate-code operations
can be combined into one machine-code operation. The latter can, to some degree,
be automated as each machine-code instruction can be described as a sequence of
intermediate-code instructions. When intermediate-code is translated to machine-
code, the code generator can look for sequences that match machine-code opera-
tions. By assigning cost to each machine-code operation, this can be turned into
a combinatorial optimisation problem, where the least-cost solution is found. We
will return to this in chapter 8.



150 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Program → [ Instructions ]

Instructions → Instruction
Instructions → Instruction , Instructions

Instruction → LABEL labelid
Instruction → id := Atom
Instruction → id := unop Atom
Instruction → id := id binop Atom
Instruction → id := M[Atom]
Instruction → M[Atom] := id
Instruction → GOTO labelid
Instruction → IF id relop Atom THEN labelid ELSE labelid
Instruction → id := CALL functionid(Args)

Atom → id
Atom → num

Args → id
Args → id , Args

Grammar 7.1: The intermediate language

7.3 The intermediate language

In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
guage, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.



7.4. SYNTAX-DIRECTED TRANSLATION 151

• A binary operator applied to a variable and an atomic expression, with the
result stored in a variable.

• A transfer from memory to a variable. The memory location is an atomic
expression.

• A transfer from a variable to memory. The memory location is an atomic
expression.

• A jump to a label.

• A conditional selection between jumps to two labels. The condition is found
by comparing a variable with an atomic expression by using a relational op-
erator (=, 6=, <, >, ≤ or ≥).

• A function call. The arguments to the function call are variables and the
result is assigned to a variable. This instruction is used even if there is no
actual result (i.e, if a procedure is called instead of a function), in which case
the result variable is a dummy variable.

An atomic expression is either a variable or a constant.
We have not specified the set of unary and binary operations, but we expect

these to include normal integer arithmetic and bitwise logical operations.
We assume that all values are integers. Adding floating-point numbers and

other primitive types is not difficult, though.

7.4 Syntax-directed translation

We will generate code using translation functions for each syntactic category, sim-
ilarly to the functions we used for interpretation and type checking. We generate
code for a syntactic construct independently of the constructs around it, except that
the parameters of a translation function may hold information about the context
(such as symbol tables) and the result of a translation function may (in addition to
the generated code) hold information about how the generated code interfaces with
its context (such as which variables it uses). Since the translation closely follows
the syntactic structure of the program, it is called syntax-directed translation.

Given that translation of a syntactic construct is mostly independent of the sur-
rounding and enclosed syntactic constructs, we might miss opportunities to exploit
synergies between these and, hence, generate less than optimal code. We will try
to remedy this in later chapters by using various optimisation techniques.



152 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Exp → num
Exp → id
Exp → unop Exp
Exp → Exp binop Exp
Exp → id(Exps)

Exps → Exp
Exps → Exp , Exps

Grammar 7.2: A simple expression language

7.5 Generating code from expressions

Grammar 7.2 shows a simple language of expressions, which we will use as our
initial example for translation. Again, we have let the set of unary and binary
operators be unspecified but assume that the intermediate language includes all
those used by the expression language. We assume that there is a function transop
that translates the name of an operator in the expression language into the name
of the corresponding operator in the intermediate language. The tokens unop and
binop have the names of the actual operators as attributes, accessed by the function
getopname.

When writing a compiler, we must decide what needs to be done at compile-
time and what needs to be done at run-time. Ideally, as much as possible should
be done at compile-time, but some things need to be postponed until run-time, as
they need the actual values of variables, etc., which are not known at compile-time.
When we, below, explain the workings of the translation functions, we might use
phrasing like “the expression is evaluated and the result stored in the variable”.
This describes actions that are performed at run-time by the code that is generated
at compile-time. At times, the textual description may not be 100% clear as to
what happens at which time, but the notation used in the translation functions make
this clear: Intermediate-language code is executed at run-time, the rest is done at
compile time. Intermediate-langauge instructions may refer to values (constants
and register names) that are generated at compile time. When instructions have
operands that are written in italics, these operands are variables in the compiler
that contain compile-time values that are inserted into the generated code. For
example, if place holds the variable name t14 and v holds the value 42, then the
code template [place := v] will generate the code [t14 := 42] .

When we want to translate the expression language to the intermediate lan-
guage, the main complication is that the expression language is tree-structured



7.5. GENERATING CODE FROM EXPRESSIONS 153

while the intermediate language is flat, requiring the result of every operation to
be stored in a variable and every (non-constant) argument to be in one. We use
a function newvar to generate new variable names in the intermediate language.
Whenever newvar is called, it returns a previously unused variable name.

We will describe translation of expressions by a translation function using a
notation similar to the notation we used for type-checking functions in chapter 6.

Some attributes for the translation function are obvious: It must return the code
as a synthesised attribute. Furthermore, it must translate variables and functions
used in the expression language to the names these correspond to in the intermedi-
ate language. This can be done by symbol tables vtable and f table that bind vari-
able and function names in the expression language into the corresponding names
in the intermediate language. The symbol tables are passed as inherited attributes
to the translation function. In addition to these attributes, the translation function
must use attributes to decide where to put the values of sub-expressions. This can
be done in two ways:

1) The location of the values of a sub-expression can be passed up as a synthe-
sised attribute to the parent expression, which decides on a position for its
own value.

2) The parent expression can decide where it wants to find the values of its sub-
expressions and pass this information down to these as inherited attributes.

Neither of these is obviously superior to the other. Method 1 has a slight advantage
when generating code for a variable access, as it does not have to generate any code,
but can simply return the name of the variable that holds the value. This, however,
only works under the assumption that the variable is not updated before the value
is used by the parent expression. If expressions can have side effects, this is not
always the case, as the C expression “x+(x=3)” shows. Our expression language
does not have assignment, but it does have function calls, which may have side
effects.

Method 2 does not have this problem: Since the value of the expression is
created immediately before the assignment is executed, there is no risk of other
side effects between these two points in time. Method 2 also has a slight advantage
when we later extend the language to have assignment statements, as we can then
generate code that calculates the expression result directly into the desired variable
instead of having to copy it from a temporary variable.

Hence, we will choose method 2 for our translation function TransExp, which
is shown in figure 7.3.

The inherited attribute place is the intermediate-language variable that the re-
sult of the expression must be stored in.



154 CHAPTER 7. INTERMEDIATE-CODE GENERATION

TransExp(Exp,vtable, f table, place) = case Exp of
num v = getvalue(num)

[place := v]
id x = lookup(vtable,getname(id))

[place := x]
unop Exp1 place1 = newvar()

code1 = TransExp(Exp1,vtable, f table, place1)
op = transop(getopname(unop))
code1++[place := op place1]

Exp1 binop Exp2 place1 = newvar()
place2 = newvar()
code1 = TransExp(Exp1,vtable, f table, place1)
code2 = TransExp(Exp2,vtable, f table, place2)
op = transop(getopname(binop))
code1++code2++[place := place1 op place2]

id(Exps) (code1, [a1, . . . ,an])
= TransExps(Exps,vtable, f table)

f name = lookup( f table,getname(id))
code1++[place := CALL f name(a1, . . . ,an)]

TransExps(Exps,vtable, f table) = case Exps of
Exp place = newvar()

code1 = TransExp(Exp,vtable, f table, place)
(code1, [place])

Exp , Exps place = newvar()
code1 = TransExp(Exp,vtable, f table, place)
(code2,args) = TransExps(Exps,vtable, f table)
code3 = code1++code2
args1 = place :: args
(code3,args1)

Figure 7.3: Translating an expression



7.5. GENERATING CODE FROM EXPRESSIONS 155

If the expression is just a number, the value of that number is stored in the
place.

If the expression is a variable, the intermediate-language equivalent of this vari-
able is found in vtable and an assignment copies it into the intended place.

A unary operation is translated by first generating a new intermediate-language
variable to hold the value of the argument of the operation. Then the argument is
translated using the newly generated variable for the place attribute. We then use
an unop operation in the intermediate language to assign the result to the inherited
place. The operator ++ concatenates two lists of instructions.

A binary operation is translated in a similar way. Two new intermediate-language
variables are generated to hold the values of the arguments, then the arguments are
translated and finally a binary operation in the intermediate language assigns the
final result to the inherited place.

A function call is translated by first translating the arguments, using the auxil-
iary function TransExps. Then a function call is generated using the argument vari-
ables returned by TransExps, with the result assigned to the inherited place. The
name of the function is looked-up in f table to find the corresponding intermediate-
language name.

TransExps generates code for each argument expression, storing the results into
new variables. These variables are returned along with the code, so they can be put
into the argument list of the call instruction.

7.5.1 Examples of translation

Translation of expressions is always relative to symbol tables and a place for storing
the result. In the examples below, we assume a variable symbol table that binds x,
y and z to v0, v1 and v2, respectively and a function table that binds f to _f. The
place for the result is t0 and we assume that calls to newvar() return, in sequence,
the variables t1, t2, t3, . . . .

We start by the simple expression x-3. This is a binop-expression, so the first
we do is to call newvar() twice, giving place1 the value t1 and place2 the value
t2. We then call TransExp recursively with the expression x. When translating this,
we first look up x in the variable symbol table, yielding v0, and then return the
code [t1 := v0]. Back in the translation of the subtraction expression, we assign
this code to code1 and once more call TransExp recursively, this time with the
expression 3. This is translated to the code [t2 := 3], which we assign to code2.
The final result is produced by code1++code2++[t0 := t1−t2] which yields [t1 :=
v0, t2 := 3, t0 := t1−t2]. We have translated the source-language operator - to
the intermediate-language operator -.

The resulting code looks quite suboptimal, and could, indeed, be shortened to
[t0 := v0−3]. When we generate intermediate code, we want, for simplicity, to



156 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Stat → Stat ; Stat
Stat → id := Exp
Stat → if Cond then Stat
Stat → if Cond then Stat else Stat
Stat → while Cond do Stat
Stat → repeat Stat until Cond

Cond → Exp relop Exp

Grammar 7.4: Statement language

treat each subexpression independently of its context. This may lead to superfluous
assignments. We will look at ways of getting rid of these when we treat machine
code generation and register allocation in chapters 8 and 9.

A more complex expression is 3+f(x-y,z). Using the same assumptions as
above, this yields the code

t1 := 3
t4 := v0
t5 := v1
t3 := t4−t5
t6 := v2
t2 := CALL _f(t3,t6)
t0 := t1+t2

We have, for readability, laid the code out on separate lines rather than using a
comma-separated list. The indentation indicates the depth of calls to TransExp that
produced the code in each line.

Suggested exercises: 7.1.

7.6 Translating statements

We now extend the expression language in figure 7.2 with statements. The exten-
sions are shown in grammar 7.4.

When translating statements, we will need the symbol table for variables (for
translating assignment), and since statements contain expressions, we also need
f table so we can pass it on to TransExp.



7.6. TRANSLATING STATEMENTS 157

Just like we use newvar to generate new unused variables, we use a similar
function newlabel to generate new unused labels. The translation function for state-
ments is shown in figure 7.5. It uses an auxiliary translation function for conditions
shown in figure 7.6.

A sequence of two statements are translated by putting the code for these in
sequence.

An assignment is translated by translating the right-hand-side expression using
the left-hand-side variable as target location (place).

When translating statements that use conditions, we use an auxiliary function
TransCond . TransCond translates the arguments to the condition and generates an
IF-THEN-ELSE instruction using the same relational operator as the condition. The
target labels of this instruction are inherited attributes to TransCond .

An if-then statement is translated by first generating two labels: One for the
then-branch and one for the code following the if-then statement. The condition
is translated by TransCond , which is given the two labels as attributes. When (at
run-time) the condition is true, the first of these are selected, and when false, the
second is chosen. Hence, when the condition is true, the then-branch is executed
followed by the code after the if-then statement. When the condition is false, we
jump directly to the code following the if-then statement, hence bypassing the
then-branch.

An if-then-else statement is treated similarly, but now the condition must
choose between jumping to the then-branch or the else-branch. At the end of
the then-branch, a jump bypasses the code for the else-branch by jumping to the
label at the end. Hence, there is need for three labels: One for the then-branch, one
for the else-branch and one for the code following the if-then-else statement.

If the condition in a while-do loop is true, the body must be executed, oth-
erwise the body is by-passed and the code after the loop is executed. Hence, the
condition is translated with attributes that provide the label for the start of the body
and the label for the code after the loop. When the body of the loop has been exe-
cuted, the condition must be re-tested for further passes through the loop. Hence, a
jump is made to the start of the code for the condition. A total of three labels are
thus required: One for the start of the loop, one for the loop body and one for the
end of the loop.

A repeat-until loop is slightly simpler. The body precedes the condition, so
there is always at least one pass through the loop. If the condition is true, the loop
is terminated and we continue with the code after the loop. If the condition is false,
we jump to the start of the loop. Hence, only two labels are needed: One for the
start of the loop and one for the code after the loop.

Suggested exercises: 7.2.



158 CHAPTER 7. INTERMEDIATE-CODE GENERATION

TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 7.5: Translation of statements



7.7. LOGICAL OPERATORS 159

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relop Exp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 opt2 THEN labelt ELSE label f ]

Figure 7.6: Translation of simple conditions

7.7 Logical operators

Logical conjunction, disjunction and negation are often available for conditions, so
we can write, e.g., x = y or y = z, where or is a logical disjunction operator. There
are typically two ways to treat logical operators in programming languages:

1) Logical operators are similar to arithmetic operators: The arguments are eval-
uated and the operator is applied to find the result.

2) The second operand of a logical operator is not evaluated if the first operand
is sufficient to determine the result. This means that a logical and will not
evaluate its second operand if the first evaluates to false, and a logical or will
not evaluate the second operand if the first is true.

The first variant is typically implemented by using bitwise logical operators and
uses 0 to represent false and a nonzero value (typically 1 or −1) to represent true.
In C, there is no separate boolean type. The integer 1 is used for logical truth1 and
0 for falsehood. Bitwise logical operators & (bitwise and) and | (bitwise or) are
used to implement the corresponding logical operations. Logical negation is not
handled by bitwise negation, as the bitwise negation of 1 is not 0. Instead, a special
logical negation operator ! is used that maps any non-zero value to 0 and 0 to 1.
We assume an equivalent operator is available in the intermediate language.

The second variant is called sequential logical operators. In C, these are called
&& (logical and) and || (logical or).

Adding non-sequential logical operators to our language is not too difficult.
Since we have not said exactly which binary and unary operators exist in the inter-
mediate language, we can simply assume these include relational operators, bitwise
logical operations and logical negation. We can now simply allow any expression2

as a condition by adding the production

1Actually, any non-zero value is treated as logical truth.
2If it is of boolean type, which we assume has been verified by the type checker.



160 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Cond→ Exp

to grammar 7.4. We then extend the translation function for conditions as follows:

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relop Exp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f ]

Exp t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code1++[IF t 6= 0 THEN labelt ELSE label f ]

We need to convert the numerical value returned by TransExp into a choice between
two labels, so we generate an IF instruction that does just that.

The rule for relational operators is now actually superfluous, as the case it han-
dles is covered by the second rule (since relational operators are assumed to be
included in the set of binary arithmetic operators). However, we can consider it an
optimisation, as the code it generates is shorter than the equivalent code generated
by the second rule. It will also be natural to keep it separate when we add sequential
logical operators.

7.7.1 Sequential logical operators

We will use the same names for sequential logical operators as C, i.e., && for logical
and, || for logical or and ! for logical negation. The extended language is shown
in figure 7.7. Note that we allow an expression to be a condition as well as a
condition to be an expression. This grammar is highly ambiguous (not least because
binop overlaps relop). As before, we assume such ambiguity to be resolved by the
parser before code generation. We also assume that the last productions of Exp and
Cond are used as little as possible, as this will yield the best code.

The revised translation functions for Exp and Cond are shown in figure 7.8.
Only the new cases for Exp are shown.

As expressions, true and false are the numbers 1 and 0.
A condition Cond is translated into code that chooses between two labels.

When we want to use a condition as an expression, we must convert this choice
into a number. We do this by first assuming that the condition is false and hence
assign 0 to the target location. We then, if the condition is true, jump to code that as-
signs 1 to the target location. If the condition is false, we jump around this code, so



7.7. LOGICAL OPERATORS 161

Exp → num
Exp → id
Exp → unop Exp
Exp → Exp binop Exp
Exp → id(Exps)
Exp → true
Exp → false
Exp → Cond

Exps → Exp
Exps → Exp , Exps

Cond → Exp relop Exp
Cond → true
Cond → false
Cond → ! Cond
Cond → Cond && Cond
Cond → Cond || Cond
Cond → Exp

Grammar 7.7: Example language with logical operators



162 CHAPTER 7. INTERMEDIATE-CODE GENERATION

TransExp(Exp,vtable, f table, place) = case Exp of
...

true [place := 1]
false [place := 0]
Cond label1 = newlabel()

label2 = newlabel()
code1 = TransCond(Cond, label1, label2,vtable, f table)
[place := 0]++code1

++[LABEL label1, place := 1]
++[LABEL label2]

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relopExp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f ]

true [GOTO labelt ]
false [GOTO label f ]
! Cond1 TransCond(Cond1, label f , labelt ,vtable, f table)
Cond1 && Cond2 arg2 = newlabel()

code1=TransCond(Cond1,arg2, label f ,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Cond1 || Cond2 arg2 = newlabel()
code1=TransCond(Cond1, labelt ,arg2,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Exp t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code1++[IF t 6= 0 THEN labelt ELSE label f ]

Figure 7.8: Translation of sequential logical operators



7.7. LOGICAL OPERATORS 163

the value remains 0. We could equally well have done things the other way around,
i.e., first assign 1 to the target location and modify this to 0 when the condition is
false.

It gets a bit more interesting in TransCond , where we translate conditions. We
have already seen how comparisons and expressions are translated, so we move
directly to the new cases.

The constant true condition just generates a jump to the label for true condi-
tions, and, similarly, false generates a jump to the label for false conditions.

Logical negation generates no code by itself, it just swaps the attribute-labels
for true and false when translating its argument. This negates the effect of the
argument condition.

Sequential logical and is translated as follows: The code for the first operand is
translated such that if it is false, the second condition is not tested. This is done by
jumping straight to the label for false conditions when the first operand is false. If
the first operand is true, a jump to the code for the second operand is made. This is
handled by using the appropriate labels as arguments to the call to TransCond . The
call to TransCond for the second operand uses the original labels for true and false.
Hence, both conditions have to be true for the combined condition to be true.

Sequential or is similar: If the first operand is true, we jump directly to the label
for true conditions without testing the second operand, but if it is false, we jump to
the code for the second operand. Again, the second operand uses the original labels
for true and false.

Note that the translation functions now work even if binop and unop do not
contain relational operators or logical negation, as we can just choose the last rule
for expressions whenever the binop rules do not match. However, we can not in the
same way omit non-sequential (e.g., bitwise) and and or, as these have a different
effect (i.e., they always evaluate both arguments).

We have, in the above, used two different nonterminals for conditions and ex-
pressions, with some overlap between these and consequently ambiguity in the
grammar. It is possible to resolve this ambiguity by rewriting the grammar and get
two non-overlapping syntactic categories in the abstract syntax. Another solution
is to join the two nonterminals into one, e.g., Exp and use two different transla-
tion functions for this: Whenever an expression is translated, the translation func-
tion most appropriate for the context is chosen. For example, if-then-else will
choose a translation function similar to TransCond while assignment will choose a
one similar to the current TransExp.

Suggested exercises: 7.3.



164 CHAPTER 7. INTERMEDIATE-CODE GENERATION

7.8 Advanced control statements

We have, so far, shown translation of simple conditional statements and loops, but
some languages have more advanced control features. We will briefly discuss how
such can be implemented.

Goto and labels. Labels are stored in a symbol table that binds each to a corre-
sponding label in the intermediate language. A jump to a label will generate a GOTO
statement to the corresponding intermediate-language label. Unless labels are de-
clared before use, an extra pass may be needed to build the symbol table before the
actual translation. Alternatively, an intermediate-language label can be chosen and
an entry in the symbol table be created at the first occurrence of the label even if it
is in a jump rather than a declaration. Subsequent jumps or declarations of that la-
bel will use the intermediate-language label that was chosen at the first occurrence.
By setting a mark in the symbol-table entry when the label is declared, it can be
checked that all labels are declared exactly once.

The scope of labels can be controlled by the symbol table, so labels can be local
to a procedure or block.

Break/exit. Some languages allow exiting loops from the middle of the loop-
body by a break or exit statement. To handle these, the translation function for
statements must have an extra inherited parameter which is the label that a break
or exit statement must jump to. This attribute is changed whenever a new loop is
entered. Before the first loop is entered, this attribute is undefined. The translation
function should check for this, so it can report an error if a break or exit occurs
outside loops. This should, rightly, be done during type-checking (see chapter 6),
though.

C’s continue statement, which jumps to the start of the current loop, can be
handled similarly.

Case-statements. A case-statement evaluates an expression and selects one of
several branches (statements) based on the value of the expression. In most lan-
guages, the case-statement will be exited at the end of each of these statements.
In this case, the case-statement can be translated as an assignment that stores the
value of the expression followed by a nested if-then-else statement, where each
branch of the case-statement becomes a then-branch of one of the if-then-else
statements (or, in case of the default branch, the final else-branch).

In C, the default is that all case-branches following the selected branch are
executed unless the case-expression (called switch in C) is explicitly terminated
with a break statement (see above) at the end of the branch. In this case, the case-
statement can still be translated to a nested if-then-else, but the branches of



7.9. TRANSLATING STRUCTURED DATA 165

these are now GOTO’s to the code for each case-branch. The code for the branches is
placed in sequence after the nested if-then-else, with break handled by GOTO’s
as described above. Hence, if no explicit jump is made, one branch will fall through
to the next.

7.9 Translating structured data

So far, the only values we have used are integers and booleans. However, most
programming languages provide floating-point numbers and structured values like
arrays, records (structs), unions, lists or tree-structures. We will now look at how
these can be translated. We will first look at floats, then at one-dimensional arrays,
multi-dimensional arrays and finally other data structures.

7.9.1 Floating-point values

Floating-point values are, in a computer, typically stored in a different set of regis-
ters than integers. Apart from this, they are treated the same way we treat integer
values: We use temporary variables to store intermediate expression results and
assume the intermediate language has binary operators for floating-point numbers.
The register allocator will have to make sure that the temporary variables used for
floating-point values are mapped to floating-point registers. For this reason, it may
be a good idea to let the intermediate code indicate which temporary variables hold
floats. This can be done by giving them special names or by using a symbol table
to hold type information.

7.9.2 Arrays

We extend our example language with one-dimensional arrays by adding the fol-
lowing productions:

Exp → Index
Stat → Index := Exp
Index → id[Exp]

Index is an array element, which can be used the same way as a variable, either as
an expression or as the left part of an assignment statement.

We will initially assume that arrays are zero-based (i.e.. the lowest index is 0).
Arrays can be allocated statically, i.e., at compile-time, or dynamically, i.e., at

run-time. In the first case, the base address of the array (the address at which index
0 is stored) is a compile-time constant. In the latter case, a variable will contain
the base address of the array. In either case, we assume that the symbol table for
variables binds an array name to the constant or variable that holds its base address.



166 CHAPTER 7. INTERMEDIATE-CODE GENERATION

TransExp(Exp,vtable, f table, place) = case Exp of
Index (code1,address) = TransIndex(Index,vtable, f table)

code1++[place := M[address]]

TransStat(Stat,vtable, f table) = case Stat of
Index := Exp (code1,address)=TransIndex(Index,vtable, f table)

t = newvar()
code2 = TransExp(Exp,vtable, f table, t)
code1++code2++[M[address] := t]

TransIndex(Index,vtable, f table) = case Index of
id[Exp] base = lookup(vtable,getname(id))

t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code2 = code1++[t := t ∗4, t := t +base]
(code2, t)

Figure 7.9: Translation for one-dimensional arrays

Most modern computers are byte-addressed, while integers typically are 32 or
64 bits long. This means that the index used to access array elements must be
multiplied by the size of the elements (measured in bytes), e.g., 4 or 8, to find the
actual offset from the base address. In the translation shown in figure 7.9, we use 4
for the size of integers. We show only the new parts of the translation functions for
Exp and Stat.

We use a translation function TransIndex for array elements. This returns a
pair consisting of the code that evaluates the address of the array element and the
variable that holds this address. When an array element is used in an expression,
the contents of the address is transferred to the target variable using a memory-load
instruction. When an array element is used on the left-hand side of an assignment,
the right-hand side is evaluated, and the value of this is stored at the address using
a memory-store instruction.

The address of an array element is calculated by multiplying the index by the
size of the elements and adding this to the base address of the array. Note that
base can be either a variable or a constant (depending on how the array is allocated,
see below), but since both are allowed as the second operator to a binop in the
intermediate language, this is no problem.

Allocating arrays

So far, we have only hinted at how arrays are allocated. As mentioned, one pos-
sibility is static allocation, where the base-address and the size of the array are



7.9. TRANSLATING STRUCTURED DATA 167

known at compile-time. The compiler, typically, has a large address space where it
can allocate statically allocated objects. When it does so, the new object is simply
allocated after the end of the previously allocated objects.

Dynamic allocation can be done in several ways. One is allocation local to a
procedure or function, such that the array is allocated when the function is entered
and deallocated when it is exited. This typically means that the array is allocated
on a stack and popped from the stack when the procedure is exited. If the sizes of
locally allocated arrays are fixed at compile-time, their base addresses are constant
offsets from the stack top (or from the frame pointer, see chapter 10) and can be
calculated from this at every array-lookup. However, this does not work if the sizes
of these arrays are given at run-time. In this case, we need to use a variable to
hold the base address of each array. The address is calculated when the array is
allocated and then stored in the corresponding variable. This can subsequently be
used as described in TransIndex above. At compile-time, the array-name will in the
symbol table be bound to the variable that at runtime will hold the base-address.

Dynamic allocation can also be done globally, so the array will survive until the
end of the program or until it is explicitly deallocated. In this case, there must be
a global address space available for run-time allocation. Often, this is handled by
the operating system which handles memory-allocation requests from all programs
that are running at any given time. Such allocation may fail due to lack of memory,
in which case the program must terminate with an error or release memory enough
elsewhere to make room. The allocation can also be controlled by the program
itself, which initially asks the operating system for a large amount of memory and
then administrates this itself. This can make allocation of arrays faster than if an
operating system call is needed every time an array is allocated. Furthermore, it
can allow the program to use garbage collection to automatically reclaim arrays
that are no longer in use.

These different allocation techniques are described in more detail in chapter 12.

Multi-dimensional arrays

Multi-dimensional arrays can be laid out in memory in two ways: row-major and
column-major. The difference is best illustrated by two-dimensional arrays, as
shown i Figure 7.10. A two-dimensional array is addressed by two indices, e.g.,
(using C-style notation) as a[i][j]. The first index, i, indicates the row of the
element and the second index, j, indicates the column. The first row of the array
is, hence, the elements a[0][0], a[0][1], a[0][2], . . . and the first column is
a[0][0], a[1][0], a[2][0], . . . .3

In row-major form, the array is laid out one row at a time and in column-major

3Note that the coordinate system, following computer-science tradition, is rotated 90◦ clockwise
compared to mathematical tradition.



168 CHAPTER 7. INTERMEDIATE-CODE GENERATION

1st column 2nd column 3rd column · · ·
1st row a[0][0] a[0][1] a[0][2] · · ·
2nd row a[1][0] a[1][1] a[1][2] · · ·
3rd row a[2][0] a[2][1] a[2][2] · · ·
...

...
...

...
. . .

Figure 7.10: A two-dimensional array

form it is laid out one column at a time. In a 3×2 array, the ordering for row-major
is

a[0][0], a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

For column-major the ordering is

a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

If the size of an element is size and the sizes of the dimensions in an n-dimensional
array are dim0,dim1, . . . ,dimn−2,dimn−1, then in row-major format an element at
index [i0][i1] . . . [in−2][in−1] has the address

base+((. . .(i0 ∗dim1 + i1)∗dim2 . . .+ in−2)∗dimn−1 + in−1)∗ size

In column-major format the address is

base+((. . .(in−1 ∗dimn−2 + in−2)∗dimn−3 . . .+ i1)∗dim0 + i0)∗ size

Note that column-major format corresponds to reversing the order of the indices of
a row-major array. i.e., replacing i0 and dim0 by in−1 and dimn−1, i1 and dim1 by
in−2 and dimn−2, and so on.

We extend the grammar for array-elements to accommodate multi-dimensional
arrays:

Index → id[Exp]
Index → Index[Exp]

and extend the translation functions as shown in figure 7.11. This translation is for
row-major arrays. We leave column-major arrays as an exercise.

With these extensions, the symbol table must return both the base-address of the
array and a list of the sizes of the dimensions. Like the base-address, the dimension
sizes can either be compile-time constants or variables that at run-time will hold the
sizes. We use an auxiliary translation function CalcIndex to calculate the position of



7.9. TRANSLATING STRUCTURED DATA 169

TransExp(Exp,vtable, f table, place) = case Exp of
Index (code1,address) = TransIndex(Index,vtable, f table)

code1++[place := M[address]]

TransStat(Stat,vtable, f table) = case Stat of
Index := Exp (code1,address) = TransIndex(Index,vtable, f table)

t = newvar()
code2 = TransExp(Exp2,vtable, f table, t)
code1++code2++[M[address] := t]

TransIndex(Index,vtable, f table) =
(code1, t,base, []) = CalcIndex(Index,vtable, f table)
code2 = code1++[t := t ∗4, t := t +base]
(code2, t)

CalcIndex(Index,vtable, f table) = case Index of
id[Exp] (base,dims) = lookup(vtable,getname(id))

t = newvar()
code = TransExp(Exp,vtable, f table, t)
(code, t,base, tail(dims))

Index[Exp] (code1, t1,base,dims) = CalcIndex(Index,vtable, f table)
dim1 = head(dims)
t2 = newvar()
code2 = TransExp(Exp,vtable, f table, t2)
code3 = code1++code2++[t1 := t1 ∗dim1, t1 := t1 + t2]
(code3, t1,base, tail(dims))

Figure 7.11: Translation of multi-dimensional arrays



170 CHAPTER 7. INTERMEDIATE-CODE GENERATION

an element. In TransIndex we multiply this position by the element size and add the
base address. As before, we assume the size of elements is 4.

In some cases, the sizes of the dimensions of an array are not stored in separate
variables, but in memory next to the space allocated for the elements of the array.
This uses fewer variables (which may be an issue when these need to be allocated
to registers, see chapter 9) and makes it easier to return an array as the result of
an expression or function, as only the base-address needs to be returned. The size
information is normally stored just before the base-address so, for example, the size
of the first dimension can be at address base−4, the size of the second dimension
at base− 8 and so on. Hence, the base-address will always point to the first ele-
ment of the array no matter how many dimensions the array has. If this strategy
is used, the necessary dimension-sizes must be loaded into variables when an in-
dex is calculated. Since this adds several extra (somewhat costly) loads, optimising
compilers often try to re-use the values of previous loads, e.g., by doing the loading
once outside a loop and referring to variables holding the values inside the loop.

Index checks

The translations shown so far do not test if an index is within the bounds of the
array. Index checks are fairly easy to generate: Each index must be compared to
the size of (the dimension of) the array and if the index is too big, a jump to some
error-producing code is made. If the comparison is made on unsigned numbers, a
negative index will look like a very large index. Hence, a single conditional jump
is inserted at every index calculation.

This is still fairly expensive, but various methods can be used to eliminate some
of these tests. For example, if the array-lookup occurs within a for-loop, the
bounds of the loop-counter may guarantee that array accesses using this variable
will be within bounds. In general, it is possible to make an analysis that finds cases
where the index-check condition is subsumed by previous tests, such as the exit test
for a loop, the test in an if-then-else statement or previous index checks. See
section 11.4 for details.

Non-zero-based arrays

We have assumed our arrays to be zero-based, i.e., that the indices start from 0.
Some languages allow indices to be arbitrary intervals, e.g., −10 to 10 or 10 to
20. If such are used, the starting-index must be subtracted from each index when
the address is calculated. In a one-dimensional array with known size and base-
address, the starting-index can be subtracted (at compile-time) from base-address
instead. In a multi-dimensional array with known dimensions, the starting-indices
can be multiplied by the sizes of the dimensions and added together to form a



7.9. TRANSLATING STRUCTURED DATA 171

single constant that is subtracted from the base-address instead of subtracting each
starting-index from each index.

7.9.3 Strings

Strings are usually implemented in a fashion similar to one-dimensional arrays.
In some languages (e.g. C or pre-ISO-standard Pascal), strings are just arrays of
characters.

However, strings often differ from arrays in that the length is not static, but
can vary at run-time. This leads to an implementation similar to the kind of arrays
where the length is stored in memory, as explained in section 7.9.2. Another dif-
ference is that the size of a character is typically one byte (unless 16-bit Unicode
characters are used), so the index calculation does not multiply the index by the
size (as this is 1).

Operations on strings, e.g., concatenation and substring extraction, are typically
implemented by calling library functions.

7.9.4 Records/structs and unions

Records (structs) have many properties in common with arrays. They are typically
allocated in a similar way (with a similar choice of possible allocation strategies),
and the fields of a record are typically accessed by adding an offset to the base-
address of the record. The differences are:

• The types (and hence sizes) of the fields may be different.

• The field-selector is known at compile-time, so the offset from the base ad-
dress can be calculated at this time.

The offset for a field is simply the sum of the sizes of all fields that occur before
it. For a record-variable, the symbol table for variables must hold the base-address
and the offsets for each field in the record. The symbol table for types must hold
the offsets for every record type, such that these can be inserted into the symbol
table for variables when a record of this type is declared.

In a union (sum) type, the fields are not consecutive, but are stored at the same
address, i.e., the base-address of the union. The size of an union is the maximum
of the sizes of its fields.

In some languages, union types include a tag, which identifies which variant of
the union is stored in the variable. This tag is stored as a separate field before the
union-fields. Some languages (e.g. Standard ML) enforce that the tag is tested
when the union is accessed, others (e.g. Pascal) leave this as an option to the
programmer.



172 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Suggested exercises: 7.8.

7.10 Translating declarations

In the translation functions used in this chapter, we have several times required that
“The symbol table must contain . . . ”. It is the job of the compiler to ensure that
the symbol tables contain the information necessary for translation. When a name
(variable, label, type, etc.) is declared, the compiler must keep in the symbol-table
entry for that name the information necessary for compiling any use of that name.
For scalar variables (e.g., integers), the required information is the intermediate-
language variable that holds the value of the variable. For array variables, the
information includes the base-address and dimensions of the array. For records, it
is the offsets for each field and the total size. If a type is given a name, the symbol
table must for that name provide a description of the type, such that variables that
are declared to be that type can be given the information they need for their own
symbol-table entries.

The exact nature of the information that is put into the symbol tables will de-
pend on the translation functions that use these tables, so it is usually a good idea to
write first the translation functions for uses of names and then translation functions
for their declarations.

Translation of function declarations will be treated in chapter 10.

7.10.1 Example: Simple local declarations

We extend the statement language by the following productions:

Stat → Decl ; Stat
Decl → int id
Decl → int id[num]

We can, hence, declare integer variables and one-dimensional integer arrays for use
in the following statement. An integer variable should be bound to a location in the
symbol table, so this declaration should add such a binding to vtable. An array
should be bound to a variable containing its base address. Furthermore, code must
be generated for allocating space for the array. We assume arrays are heap allocated
and that the intermediate-code variable HP points to the first free element of the
(upwards growing) heap. Figure 7.12 shows the translation of these declarations.
When allocating arrays, no check for heap overflow is done.

7.11 Further reading

A comprehensive discussion about intermediate languages can be found in [35].



EXERCISES 173

TransStat(Stat,vtable, f table) = case Stat of
Decl ; Stat1 (code1,vtable1) = TransDecl(Decl,vtable)

code2 = TransStat(Stat1,vtable1, f table)
code1++code2

TransDecl(Decl,vtable) = case Decl of
int id t1 = newvar()

vtable1 = bind(vtable,getname(id), t1)
([], vtable1)

int id[num] t1 = newvar()
vtable1 = bind(vtable,getname(id), t1)
([t1 := HP, HP := HP+(4∗getvalue(num))], vtable1)

Figure 7.12: Translation of simple declarations

Functional and logic languages often use high-level intermediate languages,
which are in many cases translated to lower-level intermediate code before emit-
ting actual machine code. Examples of such intermediate languages can be found
in [23], [8] and [6].

Another high-level intermediate language is the Java Virtual Machine [29].
This language has single instructions for such complex things as calling virtual
methods and creating new objects. The high-level nature of JVM was chosen for
several reasons:

• By letting common complex operations be done by single instructions, the
code is smaller, which reduces transmission time when sending the code over
the Internet.

• JVM was originally intended for interpretation, and the complex operations
also helped reduce the overhead of interpretation.

• A program in JVM is validated (essentially type-checked) before interpreta-
tion or further translation. This is easier when the code is high-level.

Exercises

Exercise 7.1

Use the translation functions in figure 7.3 to generate code for the expression
2+g(x+y,x*y). Use a vtable that binds x to v0 and y to v1 and an f table that
binds g to _g. The result of the expression should be put in the intermediate-code
variable r (so the place attribute in the initial call to TransExp is r).



174 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Exercise 7.2

Use the translation functions in figures 7.5 and 7.6 to generate code for the state-
ment

x:=2+y;
if x<y then x:=x+y;
repeat

y:=y*2;
while x>10 do x:=x/2

until x<y

use the same vtable as in exercise 7.1.

Exercise 7.3

Use the translation functions in figures 7.5 and 7.8 to translate the following state-
ment

if x<=y && !(x=y || x=1)
then x:=3
else x:=5

use the same vtable as in exercise 7.1.

Exercise 7.4

De Morgan’s law tells us that !(p || q) is equivalent to (!p) && (!q). Show that
these generate identical code when compiled with TransCond from figure 7.8.

Exercise 7.5

Show that, in any code generated by the functions in figures 7.5 and 7.8, every
IF-THEN-ELSE instruction will be followed by one of the target labels.

Exercise 7.6

Extend figure 7.5 to include a break-statement for exiting loops, as described in
section 7.8, i.e., extend the statement syntax by

Stat → break

and add a rule for this to TransStat . Add whatever extra attributes you may need to
do this.



EXERCISES 175

Exercise 7.7

We extend the statement language with the following statements:

Stat → labelid :
Stat → goto labelid

for defining and jumping to labels.
Extend figure 7.5 to handle these as described in section 7.8. Labels have scope

over the entire program (statement) and need not be defined before use. You can
assume that there is exactly one definition for each used label.

Exercise 7.8

Show translation functions for multi-dimensional arrays in column-major format.
Hint: Starting from figure 7.11, it may be a good idea to rewrite the productions
for Index so they are right-recursive instead of left-recursive, as the address formula
for column-major arrays groups to the right. Similarly, it is a good idea to reverse
the list of dimension sizes, so the size of the rightmost dimension comes first in the
list.

Exercise 7.9

When statements are translated using the functions in figure 7.5, it will often be the
case that the statement immediately following a label is a GOTO statement, i.e., we
have the following situation:

LABEL label1
GOTO label2

It is clear that any jump to label1 can be replaced by a jump to label2, and that this
will result in faster code. Hence, it is desirable to do so. This is called jump-to-jump
optimisation, and can be done after code-generation by a post-process that looks for
these situations. However, it is also possible to avoid most of these situations by
modifying the translation function.

This can be done by adding an extra inherited attribute endlabel, which holds
the name of a label that can be used as the target of a jump to the end of the code
that is being translated. If the code is immediately followed by a GOTO statement,
endlabel will hold the target of this GOTO rather than a label immediately preceding
this.

a) Add the endlabel attribute to TransStat from figure 7.5 and modify the rules
so endlabel is exploited for jump-to-jump optimisation. Remember to set
endlabel correctly in recursive calls to TransStat .



176 CHAPTER 7. INTERMEDIATE-CODE GENERATION

b) Use the modified TransStat to translate the following statement:

while x>0 do {
x := x-1;
if x>10 then x := x/2

}

The curly braces are used as disambiguators, though they are not part of
grammar 7.4.

Use the same vtable as exercise 7.1 and use endlab as the endlabel for the
whole statement.

Exercise 7.10

In figure 7.5, while statements are translated in such a way that every iteration of
the loop executes an unconditional jump (GOTO in addition to the conditional jumps
in the loop condition.

Modify the translation so each iteration only executes the conditional jumps in
the loop condition, i.e., so an unconditional jump is saved in every iteration. You
may have to add an unconditional jump outside the loop.

Exercise 7.11

Logical conjunction is associative: p∧ (q∧ r)⇔ (p∧q)∧ r.
Show that this also applies to the sequential conjunction operator && when

translated as in figure 7.8, i.e., that p&&(q&&r) generates the same code (up to
renaming of labels) as (p&&q)&&r.

Exercise 7.12

Figure 7.11 shows translation of multi-dimensional arrays in row-major layout,
where the address of each element is found through multiplication and addition.
On machines with fast memory access but slow multiplication, an alternative im-
plementation of multi-dimensional arrays is sometimes used: An array with dimen-
sions dim0, dim1, . . . ,dimn is implemented as a one-dimensional array of size dim0
with pointers to dim0 different arrays each of dimension dim1, . . . ,dimn, which
again are implemented in the same way (until the last dimension, which is imple-
mented as a normal one-dimensional array of values). This takes up more room, as
the pointer arrays need to be stored as well as the elements. But array-lookup can
be done using only addition and memory accesses.



EXERCISES 177

a) Assuming pointers and array elements need four bytes each, what is the total
number of bytes required to store an array of dimensions dim0, dim1, . . . ,dimn?

b) Write translation functions for array-access in the style of figure 7.11 using
this representation of arrays. Use addition to multiply numbers by 4 for
scaling indices by the size of pointers and array elements.


