
Chapter 6 

Intermediate- Code 
Generation 

In the analysis-synthesis model of a compiler, the front end analyzes a source 
program and creates an intermediate representation, from which the back end 
generates target code. Ideally, details of the source language are confined to the 
front end, and details of the target machine to the back end. With a suitably 
defined intermediate representation, a compiler for language i and machine j 
can then be built by combining the front end for language i with the back 
end for machine j .  This approach to creating suite of compilers can save a 
considerable amount of effort : m x n compilers can be built by writing just m 
front ends and n back ends . 

This chapter deals with intermediate representations, static type checking, 
and intermediate code generation. For simplicity, we assume that a com
piler front end is organized as in Fig. 6 . 1 ,  where parsing, static checking, and 
intermediate-code generation are done sequentially; sometimes they can be com
bined and folded into parsing. We shall use the syntax-directed formalisms of 
Chapters 2 and 5 to specify checking and translation. Many of the translation 
schemes can be implemented during either bottom-up or top-down parsing, us
ing the techniques of Chapter 5. All schemes can be implemented by creating 
a syntax tree and then walking the tree. 

Static 
Checker 

front end 

Intermediate intermediate Code Code 
Generator code Generator 

--------------�·�I�.--back end ----

Figure 6 . 1 :  Logical structure of a compiler front end 

Static checking includes type checking, which ensures that operators are ap
plied to compatible operands. It also includes any syntactic checks that remain 
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358 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

after parsing. For example, static checking assures that a break-statement in 
C is enclosed within a while- , for- , or switch-statement ; an error is reported if 
such an enclosing statement does not exist. 

The approach in this chapter can be used for a wide range of intermediate 
representations , including syntax trees and three-address code, both of which 
were introduced in Section 2 .8. The term "three-address code" comes from 
instructions of the general form x = y op z with three addresses: two for the 
operands y and z and one for the result x. 

In the process of translating a program in a given source language into code 
for a given target machine, a compiler may construct a sequence of intermediate 
representations , as in Fig. 6 .2 .  High-level representations are close to the source 
language and low-level representations are close to the target machine. Syntax 
trees are high level; they depict the natural hierarchical structure of the source 
program and are well suited to tasks like static type checking. 

S High Level ource . 
P ---- Intermediate � . . .  rogram . RepresentatIOn 

Low Level 
Intermediate-.- Target 

Code Representation 

Figure 6.2 : A compiler might use a sequence of intermediate representations 

A low-level representation is suitable for machine-dependent tasks like reg
ister allocation and instruction selection. Three-address code can range from 
high- to low-level, depending on the choice of operators. For expressions, the 
differences between syntax trees and three-address code are superficial, as we 
shall see in Section 6 .2 .3 .  For looping statements, for example, a syntax tree 
represents the components of a statement, whereas three-address code contains 
labels and jump instructions to represent the flow of control, as in machine 
language. 

The choice or design of an intermediate representation varies from compiler 
to compiler. An intermediate representation may either be an actual language 
or it may consist of internal data structures that are shared by phases of the 
compiler. C is a programming language, yet it is often used as an intermediate 
form because it is flexible, it compiles into efficient machine code, and its com
pilers are widely available. The original C++ compiler consisted of a front end 
that generated C ,  treating a C compiler as a back end. 

6 . 1  Variants of Syntax Trees 

Nodes in a syntax tree represent constructs in the source program; the children 
of a node represent the meaningful components of a construct. A directed 
acyclic graph (hereafter called a DAG) for an expression identifies the common 
subexpressions (sub expressions that occur more than once) of the expression. 
As we shall see in this section, DAG's can be constructed by using the same 
techniques that construct syntax trees. 
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6 . 1 . 1  Directed Acyclic Graphs for Expressions 
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Like the syntax tree for an expression, a DAG has leaves corresponding to 
atomic operands and interior codes corresponding to operators. The difference 
is that a node N in a DAG has more than one parent if N represents a com
mon subexpression; in a syntax tree, the tree for the common sub expression 
would be replicated as many times as the sub expression appears in the original 
expression. Thus, a DAG not only represents expressions more succinctly, it 
gives the compiler important clues regarding the generation of efficient code to 
evaluate the expressions. 

Example 6 .1 : Figure 6.3 shows the DAG for the expression 

a + a * (b - c) + (b - c) * d 

The leaf for a has two parents, because a appears twice in the expression. 
More interestingly, the two occurrences of the common sub expression b-c are 
represented by one node, the node labeled - .  That node has two parents ,  
representing its two uses in the sub expressions a* (b-c)  and (b-c)  *d. Even 
though b and c appear twice in the complete expression, their nodes each have 
one parent , since both uses are in the common sub expression b-c. 0 

a 
/ �  

b c 

Figure 6.3 : Dag for the expression a + a * (b - c )  + (b - c )  * d 

The SDD of Fig. 6.4 can construct either syntax trees or DAG's. It was 
used to construct syntax trees in Example 5 . 1 1 ,  where functions Leaf and Node 
created a fresh node each time they were called. It will construct a DAG if, 
before creating a new node, these functions first check whether an identical node 
already exists .  If a previously created identical node exists, the existing node 
is returned. For instance, before constructing a new node, N ode( op, left, right) 
we check whether there is already a node with label op, and children left and 
right, in that order. If so, Node returns the existing node; otherwise, it creates 
a new node. 

Example 6 .2 : The sequence of steps shown in Fig. 6 .5 constructs the DAG 
in Fig. 6.3 ,  provided Node and Leaf return an existing node, if possible, as 
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PRODUCTION 

1 )  E --+ El + T 

2)  E --+ El - T 

3) E --+ T 

4) T --+ ( E ) 

5) T --+ id 

6) T --+ nnm 

SEMANTIC RULES 

E . node new Node(' +' , El .node, T.node) 

E .node ::::: new Node(/-' , El .node, T.node) 

E .node ::::: T.node 

T.node ::::: E . node 

T.node ::::: new Leaf (id, id. entry) 

T. node ::::: new Leaf (nnm, num. va0 

Figure 6.4: Syntax-directed definition to produce syntax trees or DAG's 

1) Pl ::::: Leaf(id, entry-a) 
2) P2 Leaf(id, entry-a) ::::: PI 
3) Ps Leaf (id, entry-b) 
4) P4 ::::: Leaf (id, entry-c) 
5) Ps ::::: Node(' -' , P3 , P4) 
6) P6 Node(' *' , Pl , P5) 
7) P7 ::::: Node(/+' , Pb P6) 
8) Ps ::::: Leaf (id, entry-b) ::::: P3 
9) P9 Leaf (id, entry-c) P4 

10) PlO ::::: Node(' -' , pg, P4) ::::: P5 
1 1) PH ::::: Leaf (id, entry-d) 
12) PI2 Node(' *' , PS ,Pl1 ) 
13) P13 ::::: Node(' +' , P7 , Pl2 ) 

Figure 6 .5: Steps for constructing the DAG of Fig. 6 .3 

discussed above. We assume that entry-a points to the symbol-table entry for 
a, and similarly for the other identifiers. 

When the call to Leaf (id, entry-a) is repeated at step 2, the node created 

by the previous call is returned, so P2 ::::: Pl . Similarly, the nodes returned at 

steps 8 and 9 are the same as those returned at steps 3 and 4 (i .e . , Ps ::::: P3 
and P9 ::::: P4) ' Hence the node returned at step 10 must be the same at that 

returned at step 5; Le. , PlO ::::: P5 '  0 

6. 1 . 2  The Value-Number Method for Constructing DAG's 

Often, the nodes of a syntax tree or DAG are stored in an array of records, as 
suggested by Fig. 6.6. Each row of the array represents one record, and therefore 
one node. In each record, the first field is an operation code, indicating the label 
of the node. In Fig. 6 .6 (b) , leaves have one additional field, which holds the 
lexical value (either a symbol-table pointer or a constant, in this case) , and 
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interior nodes have two additional fields indicating the left and right children. 

i 10 

(a) DAG 

1 id 1 
to entry 

I----t---------:-....... for i 
2 num 1 10 
3 �-+---7-: _1 --+-1 _2--i 
4 = : 1 1 3 

f---------'---i 
5 

(b) Array. 

Figure 6 .6 :  Nodes of a DAG for i = i + 10 allocated in an array 

In this array, we refer to nodes by giving the integer index of the record 
for that node within the array. This integer historically has been called the 
value number for the node or for the expression represented by the node. For 
instance, in Fig. 6.6 , the node labeled + has value number 3, and its left and 
right children have value numbers 1 and 2 ,  respectively. In practice, we could 
use pointers to records or references to objects instead of integer indexes, but 
we shall still refer to the reference to a node as its "value number ." If stored 
in an appropriate data structure, value numbers help us construct expression 
DAG's efficiently; the next algorithm shows how. 

Suppose that nodes are stored in an array, as in Fig. 6.6 ,  and each node is 
referred to by its value number . Let the signature of an interior node be the 
triple ( op, l , r) , where op is the label, 1 its left child's value number, and r its 
right child's value number. A unary operator may be assumed to have r = O. 

Algorithm 6.3 : The value-number method for constructing the nodes of a 
DAG. 

INPUT: Label op, node 1 ,  and node r.  

OUTPUT: The value number of a node in the array with signature ( op, 1 ,  r) . 
METHOD: Search the array for a node M with label op, left child l ,  and right 
child r. If there is such a node, return the value number of M. If not , create in 
the array a new node N with label op, left child 1 , and right child r, and return 
its value number. 0 

While Algorithm 6.3 yields the desired output, searching the entire array 
every time we are asked to locate one node is expensive, especially if the array 
holds expressions from an entire program. A more efficient approach is to use a 
hash table, in which the nodes are put into "buckets/' each of which typically 
will have only a few nodes . The hash table is one of several data structures 
that support dictionaries efficiently.1 A dictionary is an abstract data type that 

l See Aho, A. v.,  J. E. Hopcroft , and J. D. Ullman, Data Structures and Algorithms, 
Addison-Wesley, 1983, for a discussion of data structures supporting dictionaries. 
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allows us to insert and delete elements of a set , and to determine whether a 
given element is currently in the set . A good data structure for dictionaries, 
such as a hash table, performs each of these operations in time that is constant 
or close to constant, independent of the size of the set . 

To construct a hash table for the nodes of a DAG, we need a hash function 
h that computes the index of the bucket for a signature ( op, l, r) , in a way that 
distributes the signatures across buckets ,  so that it is unlikely that any one 
bucket will get much more than a fair share of the nodes . The bucket index 
h( op, l, r) is computed deterministically from op, l, and r, so that we may repeat 
the calculation and always get to the same bucket index for node ( op, l, r) . 

The buckets can be implemented as linked lists, as in Fig. 6 .7. An array, 
indexed by hash value, holds the bucket headers, each of which points to the 
first cell of a list . Within the linked list for a bucket, each cell holds the value 
number of one of the nodes that hash to that bucket . That is, node ( op, l ,  r) 
can be found on the list whose header is at index h(  op, l ,  r) of the array. 

Array of bucket 
headers indexed 
by hash value 

o 

9 

20 

List elements 
representing nodes 

Figure 6.7: Data structure for searching buckets 

Thus, given the input node op, l, and r, we compute the bucket index 
h( op, l, r) and search the list of cells in this bucket for the given input node. 
Typically, there are enough buckets so that no list has more than a few cells. 
We may need to look at all the cells within a bucket, however, and for each 
value number v found in a cell, we must check whether the signature ( op, l, r) 
of the input node matches the node with value number v in the list of cells (as 
in Fig. 6.7) .  If we find a match, we return v . If we find no match, we know 
no such node can exist in any other bucket, so we create a new cell, add it to 
the list of cells for bucket index h( op, I, r) , and return the value number in that 
new cell. 

6 .1 .3 Exercises for Section 6 . 1  

Exercise 6 . 1 . 1 : Construct the DAG for the expression 

( (x + y) - ( (x + y) * (x - y) ) )  + ( (x + y) * (x - y)) 
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Exercise 6 . 1 .2 : Construct the DAG and identify the value numbers for the 
sub expressions of the following expressions, assuming + associates from the left . 

a) a + b + (a + b) .  

b) a + b + a + b .  

c) a + a + ((a + a + a + (a + a + a + a) ) . 

6 . 2  Three-Address Code 

In three-address code, there is  at most one operator on the right side of an 
instruction; that is , no built-up arithmetic expressions are permitted. Thus a 
source-language expression like x+y*z might be translated into the sequence of 
three-address instructions 

where t l  and t2 are compiler-generated temporary names. This unraveling of 
multi-operator arithmetic expressions and of nested flow-of-control statements 
makes three-address code desirable for target-code generation and optimization, 
as discussed in Chapters 8 and 9. The use of names for the intermediate values 
computed by a program allows three-address code to be rearranged easily. 

Example 6.4 : Three-address code is a linearized representation of a syntax 
tree or a DAG in which explicit names correspond tb the interior nodes of the 
graph. The DAG in Fig. 6.3 is repeated in Fig. 6 .8 ,  together with a correspond
ing three-address code sequence. 0 

a 
/ '" b c 

(a) DAG 

t l b - C 
t2 a * t l  
t 3  a + t2 
t 4  t l * d 
t 5  t3  + t 4  

(b) Three-address code 

Figure 6.8 :  A DAG and its corresponding three-address code 
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6.2 .1  Addresses and Instructions 

Three-address code is built from two concepts :  addresses and instructions. In 
object-oriented terms, these concepts correspond to classes, and the various 
kinds of addresses and instructions correspond to appropriate subclasses. Al
ternatively, three-address code can be implemented using records with fields 
for the addresses; records called quadruples and triples are discussed briefly in 
Section 6.2 .2 .  

An address can be one of the following: 

• A name. For convenience, we allow source-program names to appear as 
addresses in three-address code. In an implementation, a source name 
is replaced by a pointer to its symbol-table entry, where all information 
about the name is kept. 

• A constant. In practice, a compiler must deal with many different types 
of constants and variables . Type conversions within expressions are con
sidered in Section 6.5 .2 . 

• A compiler-generated temporary. It is useful, especially in optimizing com
pilers, to create a distinct name each time a temporary is needed. These 
temporaries can be combined, if possible, when registers are allocated to 
variables . 

We now consider the common three-address instructions used in the rest of 
this book. Symbolic labels will be used by instructions that alter the flow of 
control. A symbolic label represents the index of a three-address instruction in 
the sequence of instructions. Actual indexes can be substituted for the labels, 
either by making a separate pass or by "backpatching," discussed in Section 6 .7. 
Here is a list of the common three-address instruction forms: 

1. Assignment instructions of the form x = y op Z ,  where op is a binary 
arithmetic or logical operation, and x, y ,  and z are addresses. 

2. Assignments of the form x = op y, where op is a unary operation. Essen
tial unary operations include unary minus, logical negation, shift opera
tors, and conversion operators that , for example, convert an integer to a 
floating-point number. 

3. Copy instructions of the form x = y, where x is assigned the value of y .  

4 .  An unconditional jump goto L. The three-address instruction with label 
L is the next to be executed. 

5. Conditional jumps of the form if x goto L and if False x goto L. These 
instructions execute the instruction with label L next if x is true and 
false, respectively. Otherwise, the following three-address instruction in 
sequence is executed next, as usual. 
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6. Conditional jumps such as if x relop y goto L, which apply a relational 
operator « ,  ==, >=, etc.) to x and y, and execute the instruction with 
label L next if x stands in relation relop to y. If not, the three-address 
instruction following if x relop y goto L is executed next , in sequence. 

7. Procedure calls and returns are implemented using the following instruc
tions: param x for parameters; call p ,  n and y = call p ,  n for procedure 
and function calls, respectively; and return y, where y, representing a 
returned value, is optional. Their typical use is as the sequence of three
address instructions 

param Xl 

param X2 

param xn 
call p , n 

generated as part of a call of the procedure p( Xl , X2 , . . . , xn ) . The in
teger n, indicating the number of actual parameters in "call p ,  n," is 
not redundant because calls can be nested. That is , some of the first 
param statements could be parameters of a call that comes after p returns 
its value; that value becomes another parameter of the later call . The 
implementation of procedure calls is outlined in Section 6 .9 .  

8 . Indexed copy instructions of the form x = y [i] and x [i] = y .  The instruc
tion x = y [i] sets x to the value in the location i memory units beyond 
location y. The instruction x [i] = y sets the contents of the location i 
units beyond x to the value of y .  

9. Address and pointer assignments of  the form x = & y , x = * y , and * x  = y .  
The instruction x = & Y sets the r-value of x to be the location ( l-value) 
of y .

2 Presumably y is a name, perhaps a temporary, that denotes an 
expression with an I-value such as A [i] [j ] ,  and x is a pointer name or 
temporary. In the instruction x = * y ,  presumably y is a pointer or a 
temporary whose r-value is a location. The r-value of x is made equal 
to the contents of that location. Finally, * x = y sets the r-value of the 
object pointed to by x to the r-value of y. 

Example 6 .5 : Consider the statement 

do i = i+ l ;  while (a [i] < v) ; 

Two possible translations of this statement are shown in Fig. 6.9 . The transla
tion in Fig. 6.9 uses a symbolic label L, attached to the first instruction. The 

2From Section 2.8 .3 ,  l- and r-values are appropriate on the left and right sides of assign
ments, respectively. 
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translation in (b) shows position numbers for the instructions, starting arbitrar
ily at position 100. In both translations, the last instruction is a conditional 
jump to the first instruction. The multiplication i * 8 is appropriate for an 
array of elements that each take 8 units of space. 0 

L :  tl = i + 1 100: tl = i + 1 
i = tl 101 :  i = tl 
t2 = i * 8 102: t2 = i * 8 
t3 = a [ t2 ] 103: t3 = a [ t2 ] 
if t3 < v goto L 104: if t3 < v goto 100 

(a) Symbolic labels. (b) Position numbers. 

Figure 6.9: Two ways of assigning labels to three-address statements 

The choice of allowable operators is an important issue in the design of an 
intermediate form. The operator set clearly must be rich enough to implement 
the operations in the source language. Operators that are close to machine 
instructions make it easier to implement the intermediate form on a target 
machine. However, if the front end must generate long sequences of instructions 
for some source-language operations, then the optimizer and code generator 
may have to work harder to rediscover the structure and generate good code 
for these operations. 

6.2 .2 Quadruples 

The description of three-address instructions specifies the components of each 
type of instruction, but it does not specify the representation of these instruc
tions in a data structure. In a compiler, these instructions can be implemented 
as objects or as records with fields for the operator and the operands . Three 
such representations are called "quadruples ," "triples," and "indirect triples." 

A quadruple (or just "quaff' ) has four fields , which we call op, argl ' arg2 , 
and result. The op field contains an internal code for the operator. For instance, 
the three-address instruction x = y + Z is represented by placing + in op, y in 
argl ' z in arg2 , and x in result. The following are some exceptions to this rule: 

1. Instructions with unary operators like x = minus y or x = y do not use 
arg2 . Note that for a copy statement like x = y ,  op is =,  while for most 
other operations, the assignment operator is implied. 

2. Operators like param use neither arg2 nor result. 

3. Conditional and unconditional jumps put the target label in result. 

Example 6.6 : Three-address code for the assignment a = b * - c + b * - c ; 
appears in Fig. 6 .10(a) . The special operator minus is used to distinguish the 
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unary minus operator, as in - c, from the binary minus operator, as in b - c .  
Note that the unary-minus "three-address" statement has only two addresses, 
as does the copy statement a = t5 ·  

The quadruples in  Fig. 6 . 10 (b) implement the three-address code in (a) . 0 

op arg1 arg2 result 
t l minus c 0 minus I c I I t l 
t2 b * tl  1 * I b I tl I t2 
t3 minus c 2 minus I c I I t3 
t4 b * t3 3 * I b I t3 I t4 
t5 t2 + t4 4 + I t2 I t4 I t5 

a = t5 5 = I t5 I I a 
. . . 

(a) Three-address code (b) Quadruples 

Figure 6 .10 :  Three-address code and its quadruple representation 

For readability, we use actual identifiers like a, b, and c in the fields arg1 , 

arg2 , and result in Fig. 6 . 10(b) , instead of pointers to their symbol-table entries. 
Temporary names can either by entered into the symbol table like programmer
defined names , or they can be implemented as objects of a class Temp with its 
own methods . 

6.2 .3 Triples 

A triple has only three fields, which we call op, arg1 , and arg2 ' Note that 
the result field in Fig. 6 . 10 (b) is used primarily for temporary names. Using 
triples, we refer to the result of an operation x op y by its position, rather 
than by an explicit temporary name. Thus, instead of the temporary tl in 
Fig. 6 . 10(b) , a triple representation would refer to position (0) . Parenthesized 
numbers represent pointers into the triple structure itself. In Section 6 . 1 .2 ,  
positions or pointers to positions were called value numbers . 

Triples are equivalent to signatures in Algorithm 6.3 . Hence, the DAG and 
triple representations of expressions are equivalent . The equivalence ends with 
expressions, since syntax-tree variants and three-address code represent control 
flow quite differently. 

Example 6 .7 : The syntax tree and triples in Fig. 6 . 1 1  correspond to the 
three-address code and quadruples in Fig. 6 .10 .  In the triple representation in 
Fig. 6 . 1 1 (b) , the copy statement a = t5 is encoded in the triple representation 
by placing a in the argl field and (4) in the arg2 field. 0 

A ternary operation like x [iJ = y requires two entries in the triple structure; 
for example, we can put x and i in one triple and y in the next . Similarly, 
x = y [iJ can implemented by treating it as if it were the two instructions 
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Why Do We Need Copy Instructions? 

A simple algorithm for translating expressions generates copy instructions 
for assignments, as in Fig. 6 . 10 (a) , where we copy t5 into a rather than 
assigning t2 + t4 to a directly. Each subexpression typically gets its own, 
new temporary to hold its result , and only when the assignment operator = 
is processed do we learn where to put the value of the complete expression. 
A code-optimization pass, perhaps using the DAG of Section 6. 1 . 1  as an 
intermediate form, can discover that t5 can be replaced by a. 

/ "" 0 minus I C I a + 1 / "" 
* * 2 

* I b I (0) 
minus I c I 

/ \ / "" 3 
b minus b minus 4 

* I b I (2) 
+ I (1 )  I (3) 

I 5 = I a I (4) 
c c . . .  

(a) Syntax tree (b) Triples 

Figure 6 . 1 1 :  Representations of a + a * (b - c) + (b - c) � d 

t = y [i] and x = t, where t is a compiler-generated temporary. Note that the 
temporary t does not actually appear in a triple, since temporary values are 
referred to by their position in the triple structure. 

A benefit of quadruples over triples can be seen in an optimizing compiler, 
where instructions are oftep moved around. With quadruples, if we move an 
instruction that computes a temporary t, then the instructions that use t require 
no change. With triples, the result of an operation is referred to by its position, 
so moving an instruction may require us to change all references to that result . 
This problem does not occur with indirect triples, which we consider next. 

Indirect triples consist of a listing of pointers to triples, rather than a listing 
of triples themselves. For example, let us use an array instruction to list pointers 
to triples in the desired order. Then, the triples in Fig. 6 . 1 1 (b) might be 
represented as in Fig. 6 .12 .  

With indirect triples, an optimizing compiler can move an instruction by 
reordering the instruction list , without affecting the triples themselves. When 
implemented in Java, an array of instruction objects is analogous to an indi
rect triple representation, since Java treats the array elements as references to 
objects. 
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instruction 
35 (0) 0 minus I c I 
36 (1 ) 1 * I b I (0) 
37 (2) 2 minus I c I 
38 (3) 3 * I b I (2) 
39 (4) 4 + I (1 ) I (3) 
40 (5) 5 = I a I (4) 

. . . 

Figure 6 . 12 :  Indirect triples representation of three-address code 

6.2 .4 Static Single-Assignment Form 

Static single-assignment form (SSA) is an intermediate representation that fa
cilitates certain code optimizations. Two distinctive aspects distinguish SSA 
from three-address code. The first is that all assignments in SSA are to vari
ables with distinct names; hence the term static single-assigment. Figure 6 .13 
shows the same intermediate program in three-address code and in static single
assignment form. Note that subscripts distinguish each definition of variables 
P and q in the SSA representation. 

P = a + b 
q = p - c 
p = q * d 
P = e - p 
q = p + q 

Pl 
ql 
P2 
P3 
q2 

a + b 
Pl - C 
ql * d 
e - P2 
P3 + ql 

(a) Three-address code. (b) Static single-assignment form. 

Figure 6 . 13 :  Intermediate program in three-address code and SSA 

The same variable may be defined in two different control-flow paths in a 
program. For example, the source program 

if ( flag ) x = - 1 ; else x 1 ; 
y = x * a ;  

has two control-flow paths in which the variable x gets defined. If we use 
different names for x in the true part and the false part of the conditional 
statement, then which name should we use in the assignment y = x * a? Here 
is where the second distinctive aspect of SSA comes into play. SSA uses a 
notational convention called the ¢-function to combine the two definitions of x: 

if ( flag ) Xl = - 1 ; else X2 = 1 ;  
X3 = ¢(Xl ' X2 ) ;  
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Here, ¢(XI ' X2 ) has the value Xl if the control flow passes through the true 
part of the conditional and the value X2 if the control flow passes through the 
false part . That is to say, the ¢-function returns the value of its argument that 
corresponds to the control-flow path that was taken to get to tp.e assignment
statement containing the ¢-function. 

6.2 .5 Exercises for Section 6 .2 

Exercise 6 .2 .1 : Translate the arithmetic expression a + - (b + c) into: 

a) A syntax tree. 

b) Quadruples. 

c) Triples. 

d) Indirect triples. 

Exercise 6 .2 .2 : Repeat Exercise 6 .2 . 1  for the following assignment state
ments: 

z. a = b [i] + c [j ] . 

iii . X f (y+1 )  + 2 .  

iv .  x = *P + &y . 

! Exercise 6 .2 .3 : Show how to transform a three-address code sequence into 
one in which each defined variable gets a unique variable name. 

6 . 3  Types and Declarations 

The applications of types can be grouped under checking and translation: 

• Type checking uses logical rules to reason about the behavior of a program 
at run time. Specifically, it ensures that the types of the operands match 
the type expected by an operator. For example, the && operator in Java 
expects its two operands to be booleans; the result is also of type boolean. 

• Translation Applications. From the type of a name, a compiler can de
termine the storage that will be needed for that name at run time. Type 
information is also needed to calculate the address denoted by an array 
reference, to insert explicit type conversions, and to choose the right ver
sion of an arithmetic operator, among other things. 
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In this section, we examine types and storage layout for names declared 
within a procedure or a class. The actual storage for a procedure call or an 
object is allocated at run time, when the procedure is called or the object is 
created. As we examine local declarations at compile time, we can, however , 
lay out relative addresses, where the relative address of a name or a component 
of a data structure is an offset from the start of a data area. 

6 .3 . 1  Type Expressions 

Types have structure, which we shall represent using type expressions: a type 
expression is either a basic type or is formed by applying an operator called a 
type constructor to a type expression. The sets of basic types and constructors 
depend on the language to be checked. 

Example 6.8 : The array type int [2J [3J can be read as "array of 2 arrays 
of 3 integers each" and written as a type expression array(2, array(3, integer) ) .  
This type is represented by the tree in Fig. 6. 14. The operator array takes two 
parameters, a number and a type. 0 

array 
/ �  

2 array 

/ �  
3 integer 

Figure 6. 14: Type expression for int [2J [3J 

We shall use the following definition of type expressions : 

• A basic type is a type expression. Typical basic types for a language 
include boolean, char, integer, float, and void; the latter denotes "the 
absence of a value." 

• A type name is a type expression. 

• A type expression can be formed by applying the array type constructor 
to a number and a type expression. 

• A record is a data structure with named fields. A type expression can 
be formed by applying the record type constructor to the field names and 
their types . Record types will be implemented in Section 6.3.6 by applying 
the constructor record to a symbol table containing entries for the fields. 

• A type expression can be formed by using the type constructor -+ for func
tion types. We write s -+ t for "function from type s to type t ." Function 
types will be useful when type checking is discussed in Section 6.5 .  
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Type Names and Recursive Types 

Once a class is defined, its name can be used as a type name in C++ or 
Java; for example, consider Node in the program fragment 

public class Node { . . .  } 

public Node n ;  

Names can b e  used to define recursive types , which are needed for 
data structures such as linked lists. The pseudocode for a list element 

class Cell { int info ; Cell next ; . . . } 

defines the recursive type Cell as a class that contains a field info and 
a field next of type Cell. Similar recursive types can be defined in C 
using records and pointers. The techniques in this chapter carry over to 
recursive types . 

• If s and t are type expressions, then their Cartesian product s x t is a 
type expression. Products are introduced for completeness; they can be 
used to represent a list or tuple of types (e.g. , for function parameters) . 
We assume that x associates to the left and that it has higher precedence 
than -t . 

• Type expressions may contain variables whose values are type expressions. 
Compiler-generated type variables will be used in Section 6 .5.4. 

A convenient way to represent a type expression is to use a graph. The 
value-number method of Section 6 . 1 . 2 ,  can be adapted to construct a dag for a 
type expression, with interior nodes for type constructors and leaves for basic 
types, type names, and type variables; for example, see the tree in Fig. 6 . 14.3 

6.3 .2 Type Equivalence 

When are two type expressions equivalent? Many type-checking rules have the 
form, "if two type expressions are equal then return a certain type else error." 
Potential ambiguities arise when names are given to type expressions and the 
names are then used in subsequent type expressions. The key issue is whether 
a name in a type expression stands for itself or whether it is an abbreviation 
for another type expression. 

3Since type names denote type expressions, they can set up implicit cycles; see the box 
on "Type Names and Recursive Types." If edges to type names are redirected to the type 
expressions denoted by the names, then the resulting graph can have cycles due to recursive 
types. 
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When type expressions are represented by graphs, two types are structurally 
equivalent if and only if one of the following conditions is true: 

• They are the same basic type. 

• They are formed by applying the same constructor to structurally equiv
alent types . 

• One is a type name that denotes the other . 

If type names are treated as standing for themselves, then the first two condi
tions in the above definition lead to name equivalence of type expressions. 

Name-equivalent expressions are assigned the same value number, if we use 
Algorithm 6 .3 .  Structural equivalence can be tested using the unification algo
rithm in Section 6 .5 .5 .  

6.3.3 Declarations 

We shall study types and declarations using a simplified grammar that declares 
just one name at a time; declarations with lists of names can be handled as 
discussed in Example 5 . 10 .  The grammar is 

D -+ 
T -+ 
B -+ 
C -+ 

T id ;  D I E  
B C I record '{' D ' } ' 

int I float 
E I [ num ] C 

The fragment of the above grammar that deals with basic and array types 
was used to illustrate inherited attributes in Section 5 .3 .2 .  The difference in 
this section is that we consider storage layout as well as types . 

Nonterminal D generates a sequence of declarations. Nonterminal T gen
erates basic, array, or record types . Nonterminal B generates one of the basic 
types int and float . Nonterminal C, for "component," generates strings of 
zero or more integers, each integer surrounded by brackets . An array type con
sists of a basic type specified by B, followed by array components specified by 
nonterminal C. A record type (the second production for T) is a sequence of 
declarations for the fields of the record, all surrounded by curly braces. 

6 .3 .4 Storage Layout for Local Names 

From the type of a name, we can determine the amount of storage that will be 
needed for the name at run time. At compile time, we can use these amounts to 
assign each name a relative address. The type and relative address are saved in 
the symbol-table entry for the name. Data of varying length, such as strings, or 
data whose size cannot be determined until run time, such as dynamic arrays , 
is handled by reserving a known fixed amount of storage for a pointer to the 
data. Run-time storage management is discussed in Chapter 7. 
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Address Alignment 

The storage layout for data objects is strongly influenced by the address
ing constraints of the target machine. For example, instructions to add 
integers may expect integers to be aligned, that is , placed at certain posi
tions in memory such as an address divisible by 4. Although an array of 
ten characters needs only enough bytes to hold ten characters, a compiler 
may therefore allocate 12 bytes - the next multiple of 4 - leaving 2 bytes 
unused. Space left unused due to alignment considerations is referred to as 
padding. When space is at a premium, a compiler may pack data so that 
no padding is left ; additional instructions may then need to be executed 
at run time to position packed data so that it can be operated on as if it 
were properly aligned. 

Suppose that storage comes in blocks of contiguous bytes, where a byte is 
the smallest unit of addressable memory. Typically, a byte is eight bits, and 
some number of bytes form a machine word. Multibyte objects are stored in 
consecutive bytes and given the address of the first byte. 

The width of a type is the number of storage units needed for objects of that 
type. A basic type, such as a character, integer, or float , requires an integral 
number of bytes. For easy access, storage for aggregates such as arrays and 
classes is allocated in one contiguous block of bytes.4 

The translation scheme (SDT) in Fig. 6 . 15  computes types and their widths 
for basic and array types; record types will be discussed in Section 6.3.6. The 
SDT uses synthesized attributes type and width for each nonterminal and two 
variables t and w to pass type and width information from a B node in a parse 
tree to the node for the production C -t E .  In a syntax-directed definition, t 
and w would be inherited attributes for C. 

The body of the T-production consists of nonterminal B ,  an action, and 
nonterminal C, which appears on the next line. The action between B and C 
sets t to B. type and w to B. width. If B -t int then B. type is set to integer and 
B .  width is set to 4, the width of an integer. Similarly, if B -t Boat then B. type 
is float and B.width is 8 ,  the width of a float. 

The productions for C determine whether T generates a basic type or an 
array type .  If C -t E, then t becomes C. type and w becomes C. width. 

Otherwise, C specifies an array component. The action for C -t [ num ] C1 
forms C. type by applying the type constructor array to the operands num. value 
and C1 . type. For instance, the result of applying array might be a tree structure 
such as Fig. 6. 14. 

4Storage allocation for pointers in C and C++ is simpler if all pointers have the same 
width. The reason is that the storage for a pointer may need to be allocated before we learn 
the type of the objects it can point to. 
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T -+ 

B -+ 

B -+ 

B 
C 

int 

float 

{ t = B. type; w = B.width; } 

{ B. type = integer; B. width = 4; } 

{ B. type = float; B.width = 8; } 

C -+ E { C. type = t; C.width = w; } 

C -+ [ num ] C1 { array(num.value, C1 . type) ; 
C. width = num. value x C1 . width; } 

Figure 6 .15 :  Computing types and their widths 
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The width of an array is obtained by multiplying the width of an element by 
the number of elements in the array. If addresses of consecutive integers differ by 
4, then address calculations for an array of integers will include multiplications 
by 4. Such multiplications provide opportunities for optimization, so it is helpful 
for the front end to make them explicit. In this chapter, we ignore other machine 
dependencies such as the alignment of data objects on word boundaries .  

Example 6 .9 : The parse tree for the type int [2] [3] is shown by dotted lines 
in Fig. 6. 16. The solid lines show how the type and width are passed from B, 
down the chain of C's through variables t and w, and then back up the chain 
as synthesized attributes type and width. The variables t and w are assigned 
the values of B. type and B. width, respectively, before the subtree with the C 
nodes is examined. The values of t and w are used at the node for C -+ E to 
start the evaluation of the synthesized attributes up the chain of C nodes . 0 

T type = array(2, array(3, integer) ) 
width = 24 

. � . . . .
. N . . . t = mteger · . C type = integer w = 4 

: width = 4 

hit 

"-
type = array(2, array(3, integer)) 

width = 24 
"-

C type = array(3, integer) 
width = 12 

c 

E 

"-
type = integer 

width = 4 

Figure 6. 16 : Syntax-directed translation of array types 



376 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

6.3.5 Sequences of Declarations 

Languages such as C and Java allow all the declarations in a sirigle procedure 
to be processed as a group. The declarations may be distributed within a Java 
procedure, but they can still be processed when the procedure is analyzed. 
Therefore, we can use a variable, say offset, to keep track of the next available 
relative address. 

the translation scheme of Fig. 6 .17 deals with a sequence of declarations 
of the form T id, where T generates a type as in Fig. 6 .15. Before the first 
declaration is considered, offset is set to o. As each new name x is seen, x is 
entered into the symbol table with its relative address set to the current value 
of offset, which is then incremented by the width of the type of x.  

p -+  { offset = 0 ;  } 
D 

D -+ T id ; { top.put(id. lexeme, T. type, offset) ; 
offset = offset + T. width; } 

Dr 
D -+ E 

Figure 6.17 :  Computing the relative addresses of declared names 

The semantic action within the production D -+ T id ;  Dr creates a symbol
table entry by executing top.put(id. lexeme, T. type, offset) . Hete top denotes 
the current symbol table. The method top.put creates a symbol-table entry for 
id. lexeme, with type T. type and relative address offset in its data area. 

The initialization of offset in Fig. 6 .17 is more evident if the first production 
appears on one line as : 

p -+ { offset = 0; } D (6 . 1) 

Nonterminals generating E, called marker nonterminals , can be used to rewrite 
productions so that all actions appear at the ends of right sides; see Sec
tion 5.5A. Using a marker nonterminal M, (6 .1 ) can be restated as: 

P -+ M D 
M -+ E { offset = 0; } 

6 .3 .6  Fields in Records and Classes 

The translation of declarations in Fig. 6 .17 carries over to fields in records and 
classes. Record types can be added to the grammar in Fig. 6 .15 by adding the 
following production 

T -+ record ' {' D '}' 
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The fields in this record type are specified by the sequence of declarations 
generated by D.  The approach of Fig. 6 . 17 can be used to determine the types 
and relative addresses of fields, provided we are careful about two things: 

• The field names within a record must be distinct ; that is, a name may 
appear at most once in the declarations generated by D . 

• The offset or relative address for a field name is relative to the data area 
for that record. 

Example 6 .10 : The use of a name x for a field within a record does not 
conflict with other uses of the name outside the record. Thus, the three uses of 
x in the following declarations are distinct and do not conflict with each other: 

float x ;  
record { float x ;  float y ;  } p ;  
record { int tag ;  float x ;  float y ;  } q ;  

A subsequent assignment x = p .  x + q .  x ; sets variable x to the sum of the fields 
named x in the records p and q. Note that the relative address of x in p differs 
from the relative address of x in q. 0 

For convenience, record types will encode both the types and relative ad
dresses of their fields, using a symbol table for the record type. A record type 
has the form record(t) , where record is the type constructor, and t is a symbol
table object that holds information about the fields of this record type. 

The translation scheme in Fig. 6 . 18 consists of a single production to be 
added to the productions for T in Fig. 6 .15 . This production has two semantic 
actions. The embedded action before D saves the existing symbol table, denoted 
by top and sets top to a fresh symbol table. It also saves the current offset, and 
sets offset to o. The declarations generated by D will result in types and relative 
addresses being put in the fresh symbol table. The action after D creates a 
record type using top, before restoring the saved symbol table and offset . 

T -+ record ' {' { Env.push( top) ; top = new EnvO ; 
Stack.push( offset) ; offset = 0; } 

D '}' { T.type = record(top) ; T.width = offset; 
top = Env.popO ;  offset = Stack.popO ; } 

Figure 6 . 18: Handling of field names in records 

For concreteness, the actions in Fig. 6 . 18 give pseudocode for a specific im
plementation. Let class Env implement symbol tables. The call Env.push( top) 
pushes the current symbol table denoted by top onto a stack. Variable top is 
then set to a new symbol table. Similarly, offset is pushed onto a stack called 
Stack. Variable offset is then set to O. 



378 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

After the declarations in D have been translated, the symbol table top holds 
the types and relative addresses of the fields in this record. Further, offset gives 
the storage needed for all the fields. The second action sets T. type to record( top) 
and T. width to offset. Variables top and offset are then restored to their pushed 
values to complete the translation of this record type. 

This discussion of storage for record types carries over to classes, since no 
storage is reserved for methods . See Exercise 6.3 .2 . 

6 .3 .7  Exercises for Section 6.3  

Exercise 6 .3 .1 : Determine the types and relative addresses for the identifiers 
in the following sequence of declarations : 

float x ;  
record { float x ;  float y ;  } p ;  
recorq { int tag ;  float x ;  float y ;  } q ;  

! Exercise 6 .3 .2 : Extend the handling of field names in Fig. 6 . 18 t o  classes and 
single-inheritance class hierarchies. 

a) Give an implementation of class Env that allows linked symbol tables, so 
that a subclass can either redefine a field name or refer directly to a field 
name in a superclass. 

b) Give a translation scheme that allocates a contiguous data area for the 
fields in a class, including inherited fields. Inherited fields must maintain 
the relative addresses they were assigned in the layout for the superclass. 

6 . 4  Translation of Expressions 

The rest of this chapter explores issues that arise during the translation of ex
pressions and statements. We begin in this section with the translation of ex
pressions into three-address code. An expression with more than one operator, 
like a + b * c, will translate into instructions with at most one operator per in
struction. An array reference A[i] [j] will expand into a sequence of three-address 
instructions that calculate an address for the reference. We shall consider type 
checking of expressions in Section 6.5 and the use of boolean expressions to 
direct the flow of control through a program in Section 6.6 . 

6.4. 1 Operations Within Expressions 

The syntax-directed definition in Fig. 6 .19 builds up the three-address code for 
an assignment statement S using attribute code for S and attributes addr and 
code for an expression E. Attributes S. code and E. code denote the three-address 
code for S and E, respectively. Attribute E. addr denotes the address that will 
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PRODUCTION SEMANTIC RULES 

S -t id = E ;  S: eode = E. code " 
gen( top.get(id. lexeme) ' =' E.addr) 

E -t El + E2 E. addr = new Temp 0 
E. eode = E1 . code " E2 . code I I  

gen(E. addr ' =' E1 . addr '+' E2 . addr) 

- El E. addr = new Temp () 
E. code = El . code I I  

gen( E .  addr ' =' I minus' El . addr) 

( El ) E. addr = E1 . addr 
E. code = El . Code 

I id E. addr = top.get(id . lexeme) 
E. code = " 

Figure 6 .19 :  Three-address code for expressions 
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hold the value of E. Recall from Section 6 .2 . 1  that an address can be a name, 
a constant , or a compiler-generated temporary. 

Consider the last production, E -t id, in the syntax-directed definition in 
Fig. 6. 19. When an expression is a single identifier, say x, then x itself holds the 
value of the expression. The semantic rules for this production define E. addr 
to point to the symbol-table entry for this instance of id. Let top denote the 
current symbol table. Function top.get retrieves the entry when it is applied to 
the string representation id. lexeme of this instance of id. E. code is set to the 
empty string. 

When E -t ( E1 ) , the translation of E is the same as that of the sub ex
pression E1 . Hence, E. addr equals E1 . addr, and E. code equals E1 . code. 

The operators + and unary - in Fig. 6 . 19 are representative of the operators 
in a typical language. The semantic rules for E -t El + E2 , generate code to 
compute the value of E from the values of El and E2 . Values are computed 
into newly generated temporary names. If El is computed into E1 . addr and 
E2 into E2 . addr, then El + E2 translates into t = E1 . addr + E2 . addr, where t is 
a new temporary name. E. addr is set to t. A sequence of distinct temporary 
names t1 , t2 , . " is created by successively executing new TempO . 

For convenience, we use the notation gen(x '=' y '+' z) to represent the 
three-address instruction x = y + z. Expressions appearing in place of variables 
like x, y, and z are evaluated when passed to gen, and quoted strings like '=' 
are taken literally.5 Other three-address instructions will be built up similarly 

5In syntax-directed definitions, gen builds an instruction and returns it . In translation 
schemes, gen builds an instruction and incrementally emits it by putting it into the stream 
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by applying gen to a combination of expressions and strings. 
When we translate the production E -+ El + E2 , the semantic rules in 

Fig. 6. 19 build up E. code by concatenating E1 . code, E2 . code, and an instruc
tion that adds the values of El and E2 . The instruction puts the result of the 
addition into a new temporary name for E, denoted by E. addr. 

The translation of E -+ - El is similar. The rules create a new temporary 
for E and generate an instruction to perform the unary minus operation. 

Finally, the production S -+ id = E ; generates instructions that assign the 
value of expression E to the identifier id. The semantic rule for this production 
uses function top.get to determine the address of the identifier represented by 
id, as in the rules for E -+ id. S. code consists of the instructions to compute 
the value of E into an address given by E. addr, followed by an assignment to 
the address top.get(id. lexeme) for this instance of id. 

Example 6 . 11 : The syntax-directed definition in Fig. 6 .19 translates the as
signment statement a = b + - c ; into the three-address code sequence 

o 

tl = minus c 
t2 = b + tl  
a = t2  

6 .4.2 Incremental Translation 

Code attributes can be long strings, so they are usually generated incremen
tally, as discussed in Section 5 .5 .2 .  Thus, instead of building up E. code as in 
Fig. 6 . 19, we can arrange to generate only the new three-address instructions, 
as in the translation scheme of Fig. 6.20. In the incremental approach, gen not 
only constructs a three-address instruction, it appends the instruction to the 
sequence of instructions generated so far. The sequence may either be retained 
in memory for further processing, or it may be output incrementally. 

The translation scheme in Fig . 6 .20 generates the same code as the syntax
directed definition in Fig. 6 .19 .  With the incremental approach, the code at
tribute is not used, since there is a single sequence of instructions that is created 
by successive calls to gen. For example, the semantic rule for E -+ El + E2 in 
Fig. 6.20 simply calls gen to generate an add instruction; the instructions to 
compute El into E1 . addr and E2 into E2 . addr have already been generated. 

The approach of Fig. 6 .20 can also be used to build a syntax tree. The new 
semantic action for E -+ El + E2 creates a node by using a constructor, as in 

E -+ El + E2 { E. addr = new Node('+' , E1 . addr, E2 . addr) ; } 

Here, attribute addr represents the address of a node rather than a variable or 
constant . 

of generated instructions. 
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S -+ id = E ; { gen( top.get(id. lexeme) '=' E. addr) ; } 

E -+ El + E2 { E. addr = new Temp O ;  
gen(E. addr '=' El . addr '+' E2 . addr) ; } 

- El { E. addr = new Temp 0 ;  
gen(E. addr '=' 'minus' El . addr) ; } 

( El ) { E. addr = El . addr; } 

id { E. addr = top.get(id. lexeme) ; } 

Figure 6.20: Generating three-address code for expressions incrementally 

6.4.3 Addressing Array Elements 

Array elements can be accessed quickly if they are stored in a block of consecu
tive locations. In C and Java, array elements are numbered 0 , 1 ,  . . .  , n  - 1 ,  for 
an array with n elements. If the width of each array element is w ,  then the ith 
element of array A begins in location 

base + i x W (6 .2) 

where base is the relative address of the storage allocated for the array. That 
is, base is the relative address of A[O] . 

The formula (6.2) generalizes to two or more dimensions. In two dimensions, 
we write A[i l ] [i2] in C and Java for element i2 in row h .  Let Wl be the width 
of a row and let W2 be the width of an element in a row. The relative address 
of A[i l ] [i2] can then be calculated by the formula 

base + il x Wl + i2 X W2 (6.3) 

In k dimensions, the formula is 

base + i l  x Wl + i2 X W2 + . . . + ik X Wk (6.4) 

where Wj , for 1 S j S k ,  is the generalization of Wl and W2 in (6.3) . 
Alternatively, the relative address of an array reference can be calculated 

in terms of the numbers of elements nj along dimension j of the array and the 
width W = Wk of a single element of the array. In two dimensions (i .e. , k = 2 
and W = W2) ,  the location for A[h ] [i2] is given by 

(6.5) 

In k dimensions , the following formula calculates the same address as (6.4) : 

base + ( ( - . .  (il x n2 + i2 ) x n3 + i3 ) " ' ) x nk + i k )  x W (6.6) 
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More generally, array elements need not be numbered starting at O .  In a 
one-dimensional array, the array elements are numbered low, low + 1 ,  . . .  , high 
and base is the relative address of A[low] . Formula (6.2) for the address of A[i] 
is replaced by: 

base + (i - low) x w (6.7) 

The expressions (6 .2) and (6.7) can be both be rewritten as i x w + c, where 
the subexpression c = base - low x w can be precalculated at compile time. 
Note that c = base when low is O. We assume that c is saved in the symbol 
table entry for A, so the relative address of A[i] is obtained by simply adding 
i x w to c. 

Compile-time precalculation can also be applied to address calculations for 
elements of multidimensional arrays; see Exercise 6 .4 .5 .  However, there is one 
situation where we cannot use compile-time precalculation: when the array's 
size is dynamic. If we do not know the values of low and high (or their gen
eralizations in many dimensions) at compile time, then we cannot compute 
constants such as c. Then, formulas like (6.7) must be evaluated as they are 
written, when the program executes. 

The above address calculations are based on row-major layout for arrays, 
which is used in C and Java. A two-dimensional array is normally stored in 
one of two forms, either row-major (row-by-row) or column-major (column-by
column) . Figure 6.21 shows the layout of a 2 x 3 array A in (a) row-major form 
and (b) column-major form. Column-major form is used in the Fortran family 
of languages. 

T A[l , l] T 
First column 

A[l , l] 

First row t 
Second row 

1 

A[1, 2] 

A[1 , 3] 

A[2, 1] 

A[2 , 2] 

A[2, 3] 

+ 
Second column 

+ 
Third column 

l 

A[2 , l] 

A[1 , 2] 

A[2 , 2] 

A[1 , 3] 

A[2, 3} 

(a) Row Major (b) Column Major 

Figure 6 .2 1 :  Layouts for a two-dimensional array. 

We can generalize row- or column-major form to many dimensions . The 
generalization of row-major form is to store the elements in such a way that , 
as we scan down a block of storage, the rightmost subscripts appear to vary 
fastest, like the numbers on an odometer. Column-major form generalizes to 
the opposite arrangement, with the leftmost subscripts varying fastest . 
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6 .4.4 Translation of Array References 

The chief problem in generating code for array references is to relate the address
cakulation formulas in Section 6.4.3 to a grammar for array references. Let 
nonterminal L generate an array name followed by a sequence of inqex expres
sions: 

L -+ L [ E ]  I id [ E ] 

As in C and Java, assume that the lowest-numbered array element is O. 
Let us calculate addresses based on widths, using the formula (6.4) , rather 
than on numbers of elements, as in (6.6) . The translation scheme in Fig. 6.22 
generates three-address code for expressions with array references . It consists of 
the productions and semantic actions from Fig . 6.20, together with productions 
involving nonterminal L.  

S -+ id = E ; { gen( top.get(id. lexeme) '=' E. addr) ; } 

L = E ; { gen(L . addr. base ' [' L . addr ' ] '  '=' E. addr) ; } 

E -+ E1 + E2 { E. addr = new Temp 0 ;  
gen(E. addr '=' E1 . addr '+' E2 . addr) ; } 

id { E. addr = top.get(id. lexeme) ; } 

L { E. addr = new Temp O ;  
gen(E. addr '=' L.array. base ' [' L . addr '] ' ) ;  } 

L -+ id [ E ] { L. array = top.get(id. lexeme) ; 
L. type = L. army. type. elem; 
L. addr = new Temp 0 ;  
gen(L. addr '=' E. addr ' *' L. type�width) ; } 

L1 [ E ]  { L . array = L1 . army; 
L . type = L1 . type. elem; 
t = new Temp 0 ;  
L .  addr = new Temp 0 ;  
gen(t ' =' E. addr ' *' L. type. width) ; } 
gen(L. addr '=' L1 . addr '+' t) ; } 

Figure 6.22: Semantic actions for array references 

Nonterminal L has three synthesized attributes : 

1 .  L. addr denotes a temporary that is used while computing the offset for 
the array reference by summing the terms ij x Wj in (6 .4) . 
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2 .  L . array is a pointer to the syml;>oI-table entry for the array name. The 
base address of the array, say, L. array. base is used to determine the actual 
l-value of an array reference after all the index expressions are analyzed. 

3. L. type is the type of the sub array generated by L. For any type · t , we 
assume that its width is given by t .  width. We use types as attributes, 
rather than widths, since types are needed anyway for type checking. For 
any array type t , suppose that t . elem gives the element type. 

The production S -+ id = E ;  represents an assignment to a nonarray vari
able, which is handled as usual. The semantic action for S -+ .L  = E ;  generates 
an indexed copy instruction to assign the value denoted by expression E to the 
location denoted by the array reference L. Recall that attribute L� array gives 
the symbol-table entry for the array. The array's base address - the address 
of its Oth element -:- is given by L. array. base. Attribute L. addr denotes the 
temporary that holds the offset for the array reference generated by L. The 
location for the array reference is therefore L. array. base[L. addr] . The generated 
instruction copies the r-value from address E.addr into the location for L. 

Productions E -+ El + E2 and E -+ id are the same as before. The se
mantic action for the new production E -+ L generates code to copy the 
value from the location denoted by L into a new temporary. This location is 
L; array. base[L; addr] ,  as discussed above for the produ,ction S -+ L = E ; .  Again, 
attribute L. array gives the array name, and L. array. base gives its base address; 
Attribute L. addr denotes the temporary that holds the offset . The code for the 
array reference places the r-value at the location designated by the base and 
offset into a new temporary denoted by E. addr. 

Example 6 .12 : Let a denote a 2 x 3 array of integers, and le� c, i ,  and 
j all denote integers .  Then, the type of a is array(2 , array(3, integer) ) .  Its 
width w is 24, assuming that the width of an integer is 4. The type of a [i] is 
array(3, integer) , of width Wl = 12 .  The type of a U] [j] is integer. 

An annotated parse tree for the expression c + a [i] [j ] is shown in Fig. 6.23. 
The expression is translated into the sequence of three-address instructions in 
Fig. 6.24. As usual, we have used the name of each identifier to refer to its 
symbol-table entry. 0 

6.4.5 Exercises for Section 6.4 

Exercise 6 .4. 1 : Add to the translation of Fig. 6 . 19 rules for the following 
productions: 

a) E -+ El * E2 · 

b) E -+ + El (unary plus) . 

Exercise 6.4.2 : Repeat Exercise 6.4. 1 for the incremental translation of Fig. 
6.20. 
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E. addr = t5 � l �  
E. addr = c E. addr = t4 

I I 
c L. array = a 

L. type = integer 
L. addr = t3 
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L . array = a  � / � � 
L. type = array(3, integer) [ E. addr = j ] 
L. addr = tl I 

� / � � j 
[ a. type 

= array(2 ,  array(3 ,  integer) )  

E. addr = i 
I 

] 

i 

Figure 6.23: Annotated parse tree for c + a [i] [j ] 

tl i * 12  
t2  j * 4 
t3 tl + t2 
t4  a [ t3 ] 
t5 = C + t4 

Figure 6.24: Three-address code for expression c + a [i] [j ] 

Exercise 6.4.3 : Use the translation of Fig. 6.22 to translate the following 
assignments: 

a) x = a [i] + b [j ] . 

b) x = a [i] [j ] + b [i] [j ] .  

! c) x = a [b [i] [j ] ]  [c [k] ] . 

! Exercise 6.4.4 : Revise the translation of Fig. 6.22 for array references of the 
Fortran style, that is , id[EI ' E2 , • . •  , En] for an n-dimensional array. 

Exercise 6.4.5 : Generalize formula (6.7) to multidimensional arrays , and in
dicate what values can be stored in the symbol table and used to compute 
offs�ts .  Consider the following cases : 

a) An array A of two dimensions, in row-major form. The first dimension 
has indexes running from h to hI , and the second dimension has indexes 
from l2 to h2 . The width of a single array element is w .  
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Symbolic Type Widths 

The intermediate code should be relatively independent of the target ma
chine, so the optimizer does not have to change much if the code generator 
is replaced by one for a different machine. However, as we have described 
the calculation of type widths, an assumption regarding how basic types 
is built Into the translation scheme. For instance, Example 6 .12 assumes 
that each element of an integer array takes four bytes. Some intermediate 
codes, e.g. , P-code for Pascal, leave it to the code generator to fill in the 
size of array elements, so the intermediate code is independent of the size 
of a machine word. We could have done the same in our translation scheme 
if we replaced 4 (as the width of an integer) by a symbolic constant. 

b) The same as (a) , but with the array stored in column-major form. 

! c) An array A of k dimensions, stored in row-major form, with elements of 
size w .  The jth dimension has indexes running from lj to hj . 

! d) The same as (c) but with the array stored in column-major form. 

Exercise 6 .4.6 : An integer array A[i ,  j] has index i ranging from 1 to 10 and 
index j ranging from 1 to 20. Integers take 4 bytes each. Suppose array A is 
stored starting at byte O. Find the location of: 

a) A[4, 5] b )A[10, 8] c) A[3, 17] .  

Exercise 6.4.7 : Repeat Exercise 6 .4;6 if A i s  stored in column-major order. 

Exercise 6.4.8 : A real array A[i, j, k] has index i ranging from 1 to 4, index 
j ranging from 0 to 4, and index k ranging from 5 to 10 .  Reals take 8 bytes 
each. Suppose array A is stored starting at byte O. Find the location of: 

a) A[3, 4, 5] b)A[1 , 2 , 7] c) A[4, 3, 9] . 

Exercise 6.4.9 : Repeat Exercise 6.4.8 if A is stored in column-major order. 

6 . 5  Type Checking 

To do type checking a compiler needs to assign a type expression to each com
portent of the source program. The compiler must then determine that these 
type expressions conform to a collection of logical rules that is called the type 
system for the source language. 

Type checking has the potential for catching errors in programs. In principle, 
any check can be done dynamically, if the target code carries the type of an 
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element along with the value of the element . A sound type system eliminates the 
need for dynamic checking for type errors, because it allows us to determine 
statically that these errors cannot occur when the target program runs . An 
implementation of a language is strongly typed if a compiler guarantees that the 
programs it accepts will run without type errors. 

Besides their use for compiling, ideas from type checking have been used 
to improve the security of systems that allow software modules to be imported 
and executed. Java programs compile into machine-independent bytecodes that 
include detailed type information about the operations in the bytecodes. Im
ported code is checked before it is allowed to execute, to guard against both 
inadvertent errors and malicious misbehavior. 

6 .5 . 1  Rules for Type Checking 

Type checking can take on two forms: synthesis and inference. Type synthesis 
builds up the type of an expression from the types of its subexpressions. It 
requires names to be declared before they are used. The type of El + E2 is 
defined in terms of the types of El and E2 . A typical rule for type synthesis 
has the form 

if f has type s -+ t and x has type s ,  
then expression f (x) has type t (6.8) 

Here, f and x denote expressions, and s -+ t denotes a function from s to t .  
This rule for functions with one argument carries over to functions with several 
arguments. The rule (6.8) can be adapted for El +E2 by viewing it as a function 
application add( El , E2) '  6 

Type inference determines the type of a language construct from the way it 
is used. Looking ahead to the examples in Section 6 . 5.4, let null be a function 
that tests whether a list is empty. Then, from the usage null(x) , we can tell 
that x must be a list . The type of the elements of x is not known; all we know 
is that x must be a list of elements of some type that is presently unknown. 

Variables representing type expressions allow us to talk about unknown 
types . We shall use Greek letters ex, 13, . " for type variables in type expressions .  

A typical rule for type inference has the form 

if f (x) is an expression, 
then for some ex and 13, f has type ex -+ 13 and x has type ex 

(6 .9) 

Type inference is needed for languages like ML, which check types , but do not 
require names to be declared. 

6We shall use the term "synthesis" even if some context information is used to determine 
types. With overloaded functions, where the same name is given to more than one function, 
the context of El + E2 may also need to be considered in some languages. 
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In this section, we consider type checking of expressions. The rules for 
checking statements are similar to those for expressions. For example, we treat 
the conditional statement "if (E) S;" as if it were the application of a function 
if to E and S. Let the special type void denote the absence of a value. Then 
function if expects to be applied to a boolean and a void; the result of the 
application is a void. 

6.5 .2 Type Conversions 

Consider expressions like x + i, where x is of type float and i is of type inte
ger . Since the representation of integers and floating-point numbers is different 
within a computer and different machine instructions are used for operations 
on integers and floats, the compiler may need to convert one of the operands of 
+ to ensure that both operands are of the same type when the addition occurs. 

Suppose that integers are converted to floats when necessary, using a unary 
operator (float ) . For example, the integer 2 is converted to a float in the code 
for the expression 2 * 3 . 14: 

tl (float )  2 
t2 tl * 3 . 14 

We can extend such examples to consider integer and float versions of the 
operators; for example, int* for integer operands and float*  for floats. 

Type synthesis will be illustrated by extending the scheme in Section 6.4 .2 
for translating expressions .  We introduce another attribute E.type, whose value 
is either integer or float. The rule associated with E ,,-+ El + E2 builds on the 
pseudocode 

if ( E1 . type = integer and E2 . type = integer ) E.type = integer; 
else if ( E1 . type = float and E2 . type = integer ) 

As the number of types subject to conversion increases , the number of cases 
increases rapidly. Therefore with large numbers of types , careful organization 
of the semantic actions becomes important . 

Type conversion rules vary from language to language. The rules for Java 
in Fig. 6.25 distinguish between widening conversions, which are intended to 
preserve information, and narrowing conversions, which can lose information. 
The widening rules are given by the hierarchy in Fig. 6 .25(a) : any type lower 
in the hierarchy can be widened to a higher type . Thus, a char can be widened 
to an int or to a float, but a char cannot be widened to a short. The narrowing 
rules are illustrated by the graph in Fig. 6 .25(b) : a type s can be narrowed to a 
type t if there is a path from s to t. Note that char, short, and byte are pairwise 
convertible to each other. 

Conversion from one type to another is said to be implicit if it is done 
automatically by the compiler. Implicit type conversions , also called coercions, 
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double double 
I t 

float float 
I t 

long long 
I t 

int int 
/ � � t �  

short char char --- short --- byte 
I � 

byte 

(a) Widening conversions (b) Narrowing conversions 

Figure 6 .25: Conversions between primitive types in Java 

are limited in many languages to widening conversions. Conversion is said to 
be explicit if the programmer must write something to cause the conversion. 
Explicit conversions are also called casts. 

The semantic action for checking E -+ El + E2 uses two functions: 

1 .  max( h , t2 ) takes two types tl and t2 and returns the maximum (or least 
upper bound) of the two types in the widening hierarchy. It declares an 
error if either h or t2 is not in the hierarchy; e.g. ,  if either type is an array 
or a pointer type. 

2 .  widen( a, t, w) generates type conversions if needed to widen an address 
a of type t into a value of type w. It returns a itself if t and w are the 
same type. Otherwise, it generates an instruction to do the conversion 
and place the result in a temporary t, which is returned as the result . 
Pseudocode for widen, assuming that the only types are integer and float, 
appears in Fig. 6 .26. 

Addr widen(Addr a ,  Type t , Type w) 
if ( t = w ) return a; 

} 

else if ( t = integer and w = float ) { 
temp = new TempO ;  
gen(temp '=' ' (float)' a) ; 
return temp; 

} 
else error; 

Figure 6.26: Pseudocode for function widen 
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The semantic action for E -+ El + E2 in Fig. 6.27 illustrates how type 
conversions can be added to the scheme in Fig. 6 .20 for translating expressions. 
In the semantic action, temporary variable al is either E1 . addr, if the type of 
El does not need to be converted to the type of E, or a new temporary variable 
returned by widen if this conversion is necessary. Similarly, a2 is either E2 . addr 
or a new temporary holding the type-converted value of E2 . Neither conversion 
is needed if both types are integer or both are float. In general, however, we 
could find that the only way to add values of two different types is to convert 
them both to a third type. 

E -+ El + E2 { E. type = max(E1 . type, E2 . type) ; 
al = widen( E1 . ciddr, E1 . type, E. type) ; 
a2 = widen(E2 . addr, E2 . type, E. type) ;  
E. addr = new Temp 0 ;  
gen(E. addr '=' al '+' a2 ) ; } 

Figure 6.27: Introducing type conversions into expression evaluation 

6.5 .3 Overloading of Functions and Operators 

An overloaded symbol has different meanings depending on its context . Over
loading is resolved when a unique meaning is determined for . each occurrence 
of a name. In this section, we restrict attention to overloading that can be 
resolved by looking only at the arguments of a function, as in Java. 

Example 6 .13 : The + operator in Java denotes either string concatenation 
or addition, depending on the types of its operands. User-defined functions can 
be overloaded as well, as in 

void err ( )  { . . .  } 
void err (String s )  { . .  , } 

Note that we can choose between these two versions of a function err by looking 
at their arguments. 0 

The following is a type-synthesis rule for overloaded functions: 

if f can have type Si -+ ti , for 1 ::; i ::; n , where Si i- Sj for i i- j 
and x has type S k ,  for some 1 ::; k ::; n 
then expression f (x) has type tk 

(6. 10) 

The value-number method of Section 6 . 1 . 2  can be applied to type expres
sions to resolve overloading based on argument types, efficiently. In a DAG 
representing a type expression, we assign an integer index, called a value num
ber, to each node. Using Algorithm 6.3, we construct a signature for a node, 
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consisting of its label and the value numbers of its children, in order from left to 
right . The signature for a function consists of the function name and the types 
of its arguments. The assumption that we can resolve overloading based on 
the types of arguments is equivalent to saying that we can resolve overloading 
based on signatures . 

It is not always possible to resolve overloading by looking only at the argu
ments of a function. In Ada, instead of a single type ,  a sub expression standing 
alone may have a set of possible types for which the context must provide suffi
cient information to narrow the choice down to a single type (see Exercise 6.5 .2) . 

6 .5 .4 Type Inference and Polymorphic Functions 

Type inference is useful for a language like ML, which is strongly typed, but 
does not require names to be declared before they are used. Type inference 
ensures that names are used consistently. 

The term "polymorphic" refers to any code fragment that can be executed 
with arguments of different types . In this section, we consider parametric poly
morphism, where the polymorphism is characterized by parameters or type 
variables . The running example is the ML program in Fig. 6 .28, which defines 
a function length. The type of length can be described as , "for any type 0: ,  

length maps a list of elements of type 0: to an integer ." 

fun length( x ) = 
if null(x) then ° else length( tl(x) )  + 1 ;  

Figure 6.28: ML program for the length of a list 

Example 6 . 14 : In Fig . 6.28, the keyword fun introduces a function definition; 
functions can be recursive. The program fragment defines function length with 
one parameter x. The body of the function consists of a conditional expression. 
The predefined function null tests whether a list is empty, and the predefined 
function tl (short for "tail" ) returns the remainder of a list after the first element 
is removed. 

The function length determines the length or number of elements of a list 
x. All elements of a list must have the same type, but length can be applied to 
lists whose elements are of any one type. In the following expression, length is 
applied to two different types of lists (list elements are enclosed within " [" and 
"]" ) : 

length( [" sun" ,  "mon" , " tue " ] ) + length( [10, 9 , 8, 7] ) (6. 1 1) 

The list of strings has length 3 and the list of integers has length 4, so expres
sion (6. 1 1) evaluates to 7. D 
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U sing the symbol V (read as "for any type" ) and the type constructor list, 
the type of length can be written as 

Va. list( a) --+ integer (6 . 1 2) 

The V symbol is the universal quantifier, and the type variable to which it 
is applied is said to be bound by it .  Bound variables can be renamed at will, 
provided all occurrences of the variable are renamed. Thus, the type expression 

V (3. list({3) --+ integer 

is equivalent to (6 . 12) . A type expression with a V symbol in it will be referred 
to informally as a "polymorphic type." 

Each time a polymorphic function is applied, its bound type variables can 
denote a different type. During type checking, at each use of a polymorphic 
type we replace the bound variables by fresh variables and remove the universal 
quantifiers. 

The next example informally infers a type for length, implicitly using type 
inference rules like (6.9) , which is repeated here: 

if f (x) is an expression, 
then for some a and {3, f has type a --+ {3 and x has type a 

Example 6 .15 : The abstract syntax tree in Fig. 6.29 represents the definition 
of length in Fig. 6 .28 .  The root of the tree, labeled fun, represents the function 
definition. The remaining nonleaf nodes can be viewed as function applications. 
The node labeled + represents the application of the operator + to a pair of 
children. Similarly, the node labeled if represents the application of an operator 
if to a triple formed by its children (for type checking, it does not matter that 
either the then or the else part will be evaluated, but not both) . 

fun 
/ / � 

length x if 
/ I �  

apply 0 + 
/ "" / "" 

null x apply 1 
/ "" 

length apply 
/ "" 

tl x 

Figure 6.29: Abstract syntax tree for the function definition in Fig. 6 .28 

From the body of function length, we can infer its type .  Consider the children 
of the node labeled if, from left to right . Since null expects to be applied to 
lists, x must be a list. Let us use variable a as a placeholder for the type of the 
list elements ;  that is , x has type "list of a." 
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Substitutions, Instances, and Unification 

If t is a type expression and S is a substitution (a mapping from type vari
ables to type expressions) , then we write S(t) for the result of consistently 
replacing all occurrences of each type variable a in t by S(a) . S(t) is 
called an instance of t. For example, list(integer) is an instance of list(a) , 
since it is the result of substituting integer for a in list(a) . Note, however, 
that integer -+ float is not an instance of a -+ a, since a substitution must 
replace all occurrences of a by the same type expression. 

Substitution S is a unifier of type expressions h and t2 if S(tl ) = 
S(t2 ) '  S is the most general unifier of tl and t2 if for any other unifier of 
h and t2 , say S' , it is the case that for any t , S' (t) is an instance of S(t) . 
�n words, S' imposes more constraints on t than S does. 

If nUll(x) is true, then length(x) is O. Thus, the type of length must be 
"function from list of a to integer." This inferred type is consistent with the 
usage of length in the else part, length( tl( x )) + 1. D 

Since variables can appear in type expressions, we have to re-examine the 
notion of equivalence of types . Suppose El of type 8 -+ 8' is applied to E2 of 
type t. Instead of simply determining the equality of 8 and t , we must "unify" 
them. Informally, we determine whether 8 and t can be made structurally 
equivalent by replacing the type variables in 8 and t by type expressions. 

A substitution is a mapping from type variables to type expressions . We 
write S(t) for the result of applying the substitution S to the variables in type 
expression t; see the box on "Substitutions, Instances, and Unification. " Two 
type expressions tl and t2 unify if there exists some substitution S such that 
S(td = S(t2 ) '  In practice, we are interested in the most general unifier, which 
is a substitution that imposes the fewest constraints on the variables in the 
expressions. See Section 6.5 .5 for a unification algorithm. 

Algorithm 6 .16 : Type inference for polymorphic functions. 

INPUT: A program consisting of a sequence of function definitions followed by 
an expression to be evaluated. An expression is made up of function applications 
and names, where names can have predefined polymorphic types . 

OUTPUT: Inferred types for the names in the program. 

METHOD: For simplicity, we shall deal with unary functions only. The type of a 
function f (Xl , X2 ) with two parameters can be represented by a type expression 
81 x 82 -+ t , where 81 and 82 are the types of Xl and X2 , respectively, and t is the 
type of the result f (Xl , X2 ) .  An expression f (a, b) can be checked by matching 
the type of a with 81 and the type of b with 82 . 
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Check the function definitions and the expression in the input sequence. Use 
the inferred type of a function if it is subsequently used in an expression. 

D 

• For a function definition fun id1 (id2 ) = E, create fresh type variables a 
and 13· Associate the type a -t 13 with the function id1 , and the type a 
with the parameter id2 . Then, infer a type for expression E. Suppose 
a denotes type 8 and 13 denotes type t after type inference for E. The 
inferred type of function id1 is 8 -t t .  Bind any type variables that remain 
unconstrained in 8 -t t by V quantifiers . 

• For a function application El (E2 ) ,  infer types for El and E2 • Since El is 
used as a function, its type must have the form 8 -t 8 ' .  (Technically, the 
type of El must unify with 13 -t 'Y, where 13 and 'Y are new type variables) . 
Let t be the inferred type of E1 • Unify 8 and t. If unification fails , the 
expression has a type error. Otherwise, the inferred type of El (E2 ) is 8' . 

• For each occurrence of a polymorphic function, replace the bound vari
ables in its type by distinct fresh variables and remove the V quantifiers. 
The resulting type expression is the inferred type of this occurrence . 

• For a name that is encountered for the first time, introduce a fresh variable 
for its type. 

Example 6 .17 : In Fig. 6.30 , we infer a type for function length. The root of 
the syntax tree in Fig. 6.29 is for a functioIi definition, so we introduce variables 
13 and 'Y, associate the type 13 -t 'Y with function length, and the type 13 with X;  

see lines 1-2 of Fig. 6.30. 
At the right child of the root , we view if as a polymorphic function that is 

applied to a triple, consisting of a boolean and two expressions that represent 
the then and else parts. Its type is Va. boolean x a x a -t a. 

Each application of a polymorphic function can be to a different type, so we 
make up a fresh variable ai (where i is from "if" ) and remove the V; see line 3 
of Fig. 6.30. The type of the left child of if must unify with boolean, and the 
types of its other two children must unify with ai .  

The predefined function null has type Va. li8t(a) -t boolean. We use a fresh 
type variable an (where n is for "null" ) in place of the bound variable a; see 
line 4. From the application of null to X, we infer that the type 13 of X must 
match list(an) ;  see line 5 . 

At the first child of if, the type boolean for nUll( x) matches the type expected 
by if. At the second child, the type ai unifies with integer; see line 6. 

Now, consider the sub expression length(tl(x) )  + 1 .  We make up a fresh 
variable at (where t is for "tail" ) for the bound variable a in the type of tl; see 
line 8. From the application tl(x) ,  we infer list(at ) = 13 = list(an) ; see line 9. 

Since length( tl( x)) is an operand of +, its type 'Y must unify with integer; 
see line 10. It follows that the type of length is list( an) -t integer. After the 
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LINE EXPRESSION TYPE UNIFY 

1 )  length : f3 -+ 'Y 
2) x f3 
3) if boolean x ai x ai -+ ai 
4) null : list( an ) -+ boolean 
5) null(x) boolean list( an) = f3 
6) 0 integer ai = integer 
7) + integer x integer -+ integer 
8) tl list( at ) -+ list( at ) 
9) tl(x) : list( at ) list( at ) = list( an ) 

10) length( tl( x ) ) : 'Y 'Y = integer 
1 1 )  1 integer 
12) length( tl( x ) ) + 1 integer 
13) if( . . .  ) integer 

Figure 6.30: Inferring a type for the function length of Fig. 6.28 

function definition is checked, the type variable an remains in the type of length. 
Since no assumptions were made about an, any type can be substituted for it 
when the function is used. We therefore make it a bound variable and write 

for the type of length. 0 

6.5 .5  An Algorithm for Unification 

Informally, unification is the problem of determining whether two expressions 
s and t can be made identical by substituting expressions for the variables in 
s and t. Testing equality of expressions is a special case of unification; if s 
and t have constants but no variables, then s and t unify if and only if they 
are identical . The unification algorithm in this section extends to graphs with 
cycles, so it can be used to test structural equivalence of circular types .7 

We shall implement a graph-theoretic formulation of unification, where types 
are represented by graphs. Type variables are represented by leaves and type 
constructors are represented by interior nodes . Nodes are grouped into equiv
alence classes; if two nodes are in the same equivalence class, then the type 
expressions they represent must unify. Thus, all interior nodes in the same 
class must be for the same type constructor, and their corresponding children 
must be equivalent . 

Example 6.18 : Consider the two type expressions 
7In some applications, it is an error to unify a variable with an expression containing that 

variable. Algorithm 6 . 19 permits such substitutions. 
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( (a1 -+ a2) x list(a3 ) )  -+ list(a2 ) 
( (a3 -+ a4) x list(a3 ) )  -+ a5 

The following substitution S is the most general unifier for these expressions 

x S(x) 
a1 a1 
a2 a2 
a3 a1 
a4 a2 
a5 list(a2) 

This substitution maps the two type expressions to the following expression 

The two expressions are represented by the two nodes labeled -+:  1 in Fig. 6.31 . 
The integers at the nodes indicate the equivalence classes that the nodes belong 
to after the nodes numbered 1 are unified. 0 

--+: 1 --+: 1 

Figure 6 .31 :  Equivalence classes after unification 

Algorithm 6 .19 : Unification of a pair of nodes in a type graph. 

INPUT: A graph representing a type and a pair of nodes m and n to be unified. 

OUTPUT: Boolean value true if the expressions represented by the nodes m 

and n unify; false, otherwise. 

METHOD: A node is implemented by a record with fields for a binary operator 
and pointers to the left and right children. The sets of equivalent nodes are 
maintained using the set field. One node in each equivalence class is chosen to be 
the unique representative of the equivalence class by making its set field contain 
a null pointer. The set fields of the remaining nodes in the equivalence class will 
point (possibly indirectly through other nodes in the set) to the representative. 
Initially, each node n is in an equivalence class by itself, with n as its own 
representative node. 

The unification algorithm, shown in Fig. 6.32, uses the following two oper
ations on nodes: 
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boolean unify(Node m, Node n) { 
8 = find(m) ; t = find(n) ;  
if ( 8 = t ) return true; 
else if ( nodes 8 and t represent the same basic type ) return true; 

} 

else if (8 is an op-node with children 81 and 82 and 
t is an op-node with children h and t2) { 

union(8 , t) ; 
return unifY(81 , h ) and unifY(82 , t2 ) ;  

} 
else if 8 or t represents a variable { 

union(8 ,  t) ; 
return true; 

} 
else return false; 

Figure 6.32: Unification algorithm . 

• find(n) returns the representative node of the equivalence class currently 
containing node n . 

• union(m, n) merges the equivalence classes containing nodes m and n. If 
one of the representatives for the equivalence classes of m and n is a non
variable node, union makes that nonvariable node be the representative 
for the merged equivalence class; otherwise, union makes one or the other 
of the original representatives be the new representative. This asymme
try in the specification of union is important because a variable cannot 
be used as the representative for an equivalence class for an expression 
containing a type constructor or basic type. Otherwise, two inequivalent 
expressions may be unified through that variable. 

The union operation on sets is implemented by simply changing the set field 
of the representative of one equivalence class so that it points to the represen
tative of the other . To find the equivalence class that a node belongs to, we 
follow the set pointers of nodes until the representative (the node with a null 
pointer in the set field) is reached. 

Note that the algorithm in Fig . 6 .32 uses 8 = find(m) and t = find(n) rather 
than m and n, respectively. The representative nodes s and t are equal if m 
and n are in the same equivalence class. If 8 and t represent the same basic 
type, the call unify( m, n) returns true. If s and t are both interior nodes for a 
binary type constructor, we merge their equivalence classes on speculation and 
recursively check that their respective children are equivalent . By merging first , 
we decrease the number of equivalence classes before recursively checking the 
children, so the algorithm terminates. 
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The substitution of an expression for a variable is implemented by adding 
the leaf for the variable to the equivalence class containing the node for that 
expression. Suppose either m or n is a leaf for a variable. Suppose also that 
this leaf has been put into an equivalence class with a node representing an 
expression with a type constructor or a basic type. Then find will return 
a representative that reflects that type constructor or basic type, so that a 
variable cannot be unified with two different expressions. D 

Example 6.20 : Suppose that the two expressions in Example 6 . 18 are repre
sented by the initial graph in Fig. 6.33 , where each node is in its own equiv
alence class. When Algorithm 6 . 19 is applied to compute unify(1 , 9) ,  it notes 
that nodes 1 and 9 both represent the same operator. It therefore merges 1 and 
9 into the same equivalence class and calls unify(2, 10) and unify(8 , 14) . The 
result of computing unify(l , 9) is the graph previously shown in Fig. 6 .31 .  D 

-+ :  1 -+: 9 

/ �  / �  
x : 2 list : 8 x : 10 Ct5 : 14 

/ 
-+: ( )<st 6� /y�t: 13 

Ct l : 4 Ct2 : 5 Ct3 : 7 Ct4 : 12 

Figure 6.33: Initial graph with each node in its own equivalence class 

If Algorithm 6 . 19 returns true, we can construct a substitution S that acts 
as the unifier, as follows. For each variable a, find(a) gives the node n that 
is the representative of the equivalence class of a. The expression represented 
by n is 8(a) . For example, in Fig. 6.31 , we see that the representative for 
a3 is node 4, which represents al . The representative for a5 is node 8, which 
represents list(a2 ) .  The resulting substitution 8 is as in Example 6 .18 .  

6.5 .6 Exercises for Section 6.5 

Exercise 6 .5 .1 : Assuming that function widen in Fig. 6.26 can handle any 
of the types in the hierarchy of Fig. 6 .25 (a) , translate the expressions below. 
Assume that c and d are characters, s and t are short integers ,  i and j are 
integers, and x is a float . 

a) x = 8 + C .  

b) i 8 + C .  

c) x = ( 8  + c )  * (t + d) . 
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Exercise 6 .5 .2 : As in Ada, suppose that each expression must have a unique 
type, but that from a subexpression, by itself, all we can deduce is a set of pos
sible types. That is, the application of function El to argument E2 , represented 
by E ---+ El ( E2 ) , has the associated rule 

E. type = { t  I for some s in E2 . type, s ---+ t is in E1 · type } 

Describe an SDD that determines a unique type for each subexpression by 
using an attribute type to synthesize a set of possible types bottom-up, and, 
once the unique type of the overall expression is determined, proceeds top-down 
to determine attribute unique for the type of each subexpression. 

6 . 6  Control Flow 

The translation of statements such as if-else-statements and while-statements 
is tied to the translation of boolean expressions. In programming languages ,  
boolean expressions are often used to 

1 .  Alter the flow of control. Boolean expressions are used as conditional 
expressions in statements that alter the flow of control. The value of such 
boolean expressions is implicit in a position reached in a program. For 
example, in if (E) S , the expression E must be true if statement S is 
reached. 

2. Compute logical values. A boolean expression can represent true or false 
as values . Such boolean expressions can be evaluated in analogy to arith
metic expressions using three-address instructions with logical operators . 

The intended use of boolean expressions is determined by its syntactic con
text . For example, an expression following the keyword if is used to alter the 
flow of control, while an expression on the right side of an assignment is used 
to denote a logical value. Such syntactic contexts can be specified in a number 
of ways: we may use two different nonterminals, use inherited attributes , or 
set a flag during parsing. Alternatively we may build a syntax tree and invoke 
different procedures for the two different uses of boolean expressions. 

This section concentrates on the use of boolean expressions to alter the flow 
of control. For clarity, we introduce a new nonterminal B for this purpose. 
In Section 6 .6 .6 ,  we consider how a compiler can allow boolean expressions to 
represent logical values . 

6 .6 . 1  Boolean Expressions 

Boolean expressions are composed of the boolean operators (which we denote 
&&, I I ,  and !, using the C convention for the operators AND, OR, and NOT, 
respectively) applied to elements that are boolean variables or relational ex
pressions. Relational expressions are of the form El reI E2 , where El and 
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E2 are arithmetic expressions. In this section, we consider boolean expressions 
generated by the following grammar: 

B -+ B I I B I B  && B I ! B I ( B )  I E reI E I true I false 

We use the attribute reI. op to indicate which of the six comparison operators 
< ,  <=, =, ! =, >, or > =  is represented by reI. As is customary, we assume 
that I I  and && are left-associative, and that I I  has lowest precedence, then 
&&, then ! .  

Given the expression B1 I I B2 , i f  we determine that B1 i s  true, then we 
can conclude that the entire expression is true without having to evaluate B2 • 
Similarly, given B1&&B2 ,  if B1 is false, then the entire expression is false. 

The semantic definition of the programming language determines whether 
all parts of a boolean expression must be evaluated. If the language definition 
permits (or requires) portions of a boolean expression to go unevaluated, then 
the compiler can optimize the evaluation of boolean expressions by computing 
only enough of an expression to determine its value. Thus, in an expression 
such as B1 I I B2 , neither B1 nor B2 is necessarily evaluated fully. If either B1 
or B2 is an expression with side effects (e.g., it contains a function that changes 
a global variable), then an unexpected answer may be o�tained. 

6.6 .2 Short-Circuit Code 

In short-circuit (or jumping) code, the boolean operators &&, I I , and ! trans
late into jumps. The operators themselves do not appear in the code; instead, 
the value of a boolean expression is represented by a position in the code se
quence. 

Example 6.21 : The statement 

if ( x < 100 I I x > 200 && x ! =  y ) x = 0 ;  

might be translated into the code of Fig. 6.34. In this translation, the boolean 
expression is true if control reaches label L2 • If the expression is false, control 
goes immediately to L1 , skipping L2 and the assignment x = o .  0 

if x < 100 goto L2 
if False x > 200 goto L1 
if False x ! =  y goto L1 

L2 : x = 0 
L1 :  

Figure 6 .34: Jumping code 
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6 .6 .3 Flow-of-Control Statements 

We now consider the translation of boolean expressions into three-address code 
in the context of statements such as those generated by the following grammar: 

5 -+ 
8 -+ 
8 -+ 

if ( B ) 51 
if ( B ) 81 else 82 
while ( B ) 81 

In these productions, nonterminal B represents a boolean expression and non
terminal 8 represents a statement . 

This grammar generalizes the running example of while expressions that we 
introduced ih Example 5 . 19. As in that example, both B and 8 have a synthe
sized attribute code, which gives the translation into three-address instructions. 
For simplicity, we build up the translations B. code and 8. code as strings, us
ing syntax-directed definitions. The semantic rules defining the . code attributes 
could be implemented instead by building up syntax trees and then emitting 
code during a tree traversal, or by any of the approaches outlined in Section 5 .5 .  

The translation of if  (B)  81  consists of B. code followed by 51 . code, as illus
trated in Fig. 6.35 (a) . Within B. code are jumps based on the value of B. If B 
is true, control flows to the first instruction of 81 . code, and if B is false, control 
flows to the instruction immediately following 81 . code. 

to B. true 
B. code to B./alse 

0 -r-------.-
B. code to -r-------.-

t B. true 

B.false 

B. true : 
81 · code 

B. true : 
Sl . code 

B.false : goto S.next 

(a) if B./alse : 
S2 . code 

S.next : . . .  

begin : 
to B. true 

B. code to B./alse 
(b) if-else 

B. true : 
Sl . code 

goto begin 
B./alse (c) while 

Figure 6.35: Code for if- , if-else-, and while-statements 

The labels for the jumps in B. code and S. code are managed using inherited 
attributes . With a boolean expression B, we associate two labels: B. true, the 
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label to which control flows if B is true, and B.false, the label to which control 
flows if B is false. With a statement 8, we associate an inherited attribute 
8. next denoting a label for the instruction immediately after the code for 8.  
In some cases, the instruction immediately following 8.  code i s  a jump to some 
label L. A jump to a jump to L from within S. code is avoided using 8. next. 

The syntax-directed definition in Fig. 6.36-6.37 produces three-address code 
for boolean expressions in the context of if- , if-else- , and while-statements . 

PRODUCTION 

P -+ 8 

8 -+ assign 

SEMANTIC RULES 

8. next newlabelO 
p. code 8. code I I  label( 8. next) 

8. code assign. code 

8 -+ if ( B ) 81 B .  true = newlabelO 
B .false = Sl .next = 8.next 
S. code = B. code " label(B. true) 1 /  81 . code 

8 -+ if ( B ) Sl else 82 B.  true = newlabelO 
B .false = newlabelO 
81 , next = 82 . next = 8. next 
8. code = B. code 

" label(B . true) " Sl . code 
I I  gen(' goto' 8. next) 
" label(B.false) " 82 . code 

S -+ while ( B ) 81 begin = newlabelO 
B. true = newlabelO 
B .false = S. next 
Sl . next = begin 
S. code = label( begin) " B . code 

" label(B. true) " 81 . code 
" gen(' goto' begin) 

8 -+ 81 82 81 . next = newlabelO 
32 , next = S. next 
S. code = 81 . code I l label(Sl . next) " 82 · code 

Figure 6.36: Syntax-directed definition for flow-of-control statements. 

We assume that newlabelO creates a new label each time it is called, and that 
label(L) attaches label L to the next three-address instruction to be generated.8 

8If implemented literally, the semantic rules will generate lots of labels and may attach 
more than one label to a three-address instruction. The backpatching approach of Section 6.7 
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A program consists of a statement generated by P -+ 8. The semantic rules 
associated with this production initialize 8. next to a new label. P. code consists 
of 8. code followed by the new label 8. next. Token assign in the production 
8 -+ assign is a placeholder for assignment statements. The translation of 
assignments is as discussed in Section 6.4; for this discussion of control flow, 
S. code is simply assign. code. 

In translating 8 -+ if (B) 81 , the semantic rules in Fig. 6 .36 create a new 
label B. true and attach it to the first three-address instruction generated for 
the statement 81 , as illustrated in Fig . 6 .35(a) . Thus, jumps to B. true within 
the code for B will go to the code for Sl . Further, by setting B.false to S.next, 
we ensure that control will skip the code for Sl if B evaluates to false. 

In translating the if-else-statement S -+ if (B) 81 else 82 , the code for the 
boolean expression B has jumps out of it to the first instruction of the code for 
81 if B is true, and to the first instruction of the code for S2 if B is false, as 
illustrated in Fig. 6.35 (b) . Further, control flows from both 81 and 82 to the 
three-address instruction immediately following the code for S - its label is 
given by the inherited attribute 8. next. An explicit goto S.next appears after 
the code for Sl to skip over the code for S2 . No goto is needed after 82 , since 
S2 . next is the same as S. next. 

The code for 8 -+ while (B) 81 is formed from B. code and 81 . code as shown 
in Fig. 6 .35 (c) . We use a local variable begin to hold a new label attached to 
the first instruction for this while-statement, which is also the first instruction 
for B. We use a variable rather than an attribute, because begin is local to 
the semantic rules for this production. The inherited label 8. next marks the 
instruction that control must flow to if B is false; hence, B .false is set to be 
S. next. A new label B. true is attached to the first instruction for Sl ; the code 
for B generates a jump to this label if B is true. After the code for 81 we place 
the instruction goto begin, which causes a jump back to the beginning of the 
code for the boolean expression. Note that Sl . next is set to this label begin, so 
jumps from within 81 . code can go directly to begin. 

The code for S -+ 81 S2 consists of the code for 81 followed by the code for 
82 • The semantic rules manage the labels; the first instruction after the code 
for 81 is the beginning of the code for 82 ; and the instruction after the code for 
82 is also the instruction after the code for S. 

We discuss the translation of flow-of-control statements further in Section 
6 .7. There we shall see an alternative method, called "backpatching," which 
emits code for statements in one pass. 

6.6 .4 Control-Flow Translation of Boolean Expressions 

The semantic rules for boolean expressions in Fig. 6.37 complement the semantic 
rules for statements in Fig. 6.36. As in the code layout of Fig. 6.35, a boolean 
expression B is translated into three-address instructions that evaluate B using 

creates labels only when they are needed. Alternatively, unnecessary labels can be eliminated 
during a subsequent optimization phase. 
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conditional and unconditional jumps to one of two labels : B.  true if B is true, 
and B .false if B is false. 

PRODUCTION SEMANTIC RULES 

B -+ B1 I I  B2 B1 . true = B.true 
B1 .false = newlabelO 
B2 . true = B. true 
B2 .false = B .false 
B . code = B1 . code " label(B1 .false) " B2 . code 

B -+ B1 && B2 B1 . true = newlabelO 
B1 .false = B·false 
B2 . true = B. true 
B2 .false = B .false 
B . code = B1 . code I I label(B1 . true) I I  B2 . code 

B -+ ! B1 B1 . true = B .false 
B1 .false = B.true 
B . code = B1 . code 

B -+ E1 reI E2 B . code = E1 . code I I  E2 . code 
I I  gen(' if' E1 . addr reI. op E2 . addr 'goto' B. true) 
I I  gen(' goto' B ·false) 

B -+ true B. code = gen('goto' B . true) 

B -+ false B. code = gen(' goto' B ·false) 

Figure 6.37: Generating three-address code for booleans 

The fourth production in Fig. 6.37, B -+ E1 reI E2 , is translated directly 
into a comparison three-address instruction with jumps to the appropriate 
places. For instance, B of the form a < b translates into: 

if a < b goto B . true 
goto B .false 

The remaining productions for B are translated as follows: 

1. Suppose B is of the form B1 I I  B2 . If B1 is true, then we immediately 
know that B itself is true, so B1 . true is the same as B. true. If B1 is false, 
then B2 must be evaluated, so we make B1 .false be the label of the first 
instruction in the code for B2 . The true and false exits of B2 are the same 
as the true and false exits of B, respectively. 
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2. The translation of B1 && B2 is similar. 

3. No code is needed for an expression B of the form ! B1 : just interchange 
the true and false exits of B to get the true and false exits of B1 . 

4. The constants true and false translate into jumps to B. true and B ·false, 
respectively. 

Example 6.22 : Consider again the following statement from Example 6 .21 :  

if ( x < 100 I I x > 200 && x ! =  y ) x = O J  (6. 13) 

Using the syntax-directed definitions in Figs . 6.36 and 6.37 we would obtain 
the code in Fig. 6.38. 

if x < 100 goto L2 
goto L3 

L3 : if x > 200 goto L4 
goto L1 

L4 : if x ! =  y goto L2 
goto L1 

L2 : x = 0 
L1 : 

Figure 6.38: Control-flow translation of a simple if-statement 

The statement (6. 13) constitutes a program generated by P -t 8 from 
Fig. 6.36. The semantic rules for the production generate a new label L1 for 
the instruction after the code for 8. Statement 8 has the form if (B) 81 , where 
81 is x = 0 ; ,  so the rules in Fig. 6.36 generate a new label L2 and attach it to 
the first (and only, in this case) instruction in 81 , code, which is x = O .  

Since I I  has lower precedence than &&, the boolean expression in (6 . 13) 
has the form B1 I I  B2 , where B1 is x < 100. Following the rules in Fig. 6.37, 
B1 . true is L2 , the label of the assignment x = 0 ; .  B1 .false is a new label L3 , 
attached to the first instruction in the code for B2 • 

Note that the code generated is not optimal, in that the translation has 
three more instructions (goto's) than the code in Example 6.21 .  The instruction 
goto L3 is redundant, since L3 is the label of the very next instruction. The 
two goto L1 instructions can be eliminated by using if False instead of if 
instructions, as in Example 6.21 .  0 

6.6 .5  Avoiding Redundant Gotos 

In Example 6.22, the comparison x > 200 translates into the code fragment: 
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if x > 200 goto L4 
goto L1 

Instead, consider the instruction: 

if False x > 200 goto L1 
L4 : 

This if False instruction takes advantage of the natural flow from one instruc
tion to the next in sequence, so control simply "falls through" to label L4 if 
x > 200 is false, thereby avoiding a jump. 

In the code layouts for if- and while-statements in Fig. 6 .35, the code for 
statement 81 immediately follows the code for the boolean expression B.  By 
using a special label fall (i .e . ,  "don't generate any jump" ) ,  we can adapt the 
semantic rules in Fig. 6 .36 and 6.37 to allow control to fall through from the 
code for B to the code for 81 . The new rules for 8 -+ if (B) 81 in Fig. 6.36 set 
B. true to fall: 

B .  true = fall 
B·false = 81 .next = 8.next 
8. code = B. code I I  81 . code 

Similarly, the rules for if-else- and while-statements also set B. true to fall. 
We now adapt the semantic rules for boolean expressions to allow control to 

fall through whenever possible. The new rules for B -+ E1 rei E2 in Fig. 6 .39 
generate two instructions, as in Fig. 6 .37, if both B. true and B.false are explicit 
labels; that is , neither equals fall. Otherwise, if B. true is an explicit label, then 
B .false must be fall, so they generate an if instruction that lets control fall 
through if the condition is false. Conversely, if B .false is an explicit label, then 
they generate an if False instruction. In the remaining case, both B. true and 
B .false are fall, so no jump in generated.9 

In the new rules for B -+ B1 I I  B2 in Fig. 6 .40 , note that the meaning of 
label fall for B is different from its meaning for B1 . Suppose B. true is fall; i .e , 
control falls through B, if B evaluates to true. Although B evaluates to true if 
B1 does , B1 . true must ensure that control jumps over the code for B2 to get to 
the next instruction after B.  

On the other hand, if B1 evaluates to  false, the truth-value of B i s  de
termined by the value of B2 , so the rules in Fig. 6 .40 ensure that B1 .false 
corresponds to control falling through from B1 to the code for B2 . 

The semantic rules are for B -+ B1 && B2 are similar to those in Fig. 6 .40 .  
We leave them as an exercise. 

Example 6.23 : With the new rules using the special label fall, the program 
(6. 13) from Example 6.21 

g In C and Java, expressions may contain assignments within them, so code must be gen
erated for the subexpressions El and E2 , even if both B.true and B.false are fall. If desired, 
dead code can be eliminated during an optimization phase. 
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test = E1 . addr reI. op E2 . addr 

s = if B. true -:I fall and B .false -:I fall then 
gen(/ if' test 'goto' B . true) I I  gen(/goto' B .false) 

else if B. true -:I fall then gen(/ if' test 'goto' B. true) 
else if B .false -:I fall then gen(' ifFalse' test I goto' B ·false) 
else I I  

B. code = E1 · code I I  E2 · code I I  s 

Figure 6.39: Semantic rules for B ---+ E1 reI E2 

B1 . true = if B. true -:I fall then B.true else newlabelO 
B1 .false = fall 
B2 . true = B.true 
B2 .false = B·false 

B. code = if B.  true -:I fall then B1 · code I I  B2 · code 
else B1 . code I I  B2 . code I l label(B1 . true) 

Figure 6 .40: Semantic rules for B ---+ B1 I I  B2 

if ( x < 100 I I x > 200 && x ! =  y ) x O J  

translates into the code of Fig . 6 .41 . 

if x < 100 goto L2 
if False x > 200 goto L1 
if False x ! =  y goto L1 

L2 : x = 0 
L1 : 

Figure 6.41 : If-statement translated using the fall-through technique 

407 

As in Example 6.22 , the rules for P ---+ S create label L1 . The difference from 
Example 6.22 is that the inherited attribute B.  true is fall when the semantic 
rules for B ---+ B1 I I  B2 are applied (B.false is Ld . The rules in Fig. 6.40 
create a new label L2 to allow a jump over the code for B2 if B1 evaluates to 
true. Thus, B1 . true is L2 and B1 .false is fall, since B2 must be evaluated if Bl 
is false. 

The production B ---+ El reI E2 that generates x < 100 is therefore reached 
with B. true = L2 and B.false = fall. With these inherited labels, the rules in 
Fig. 6.39 therefore generate a single instruction if x < 100 goto L2 . D 
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6.6 .6 Boolean Values and Jumping Code 

The focus in this section has been on the use of boolean expressions to alter 
the flow of control in statements. A boolean expression may also be evaluated 
for its value, as in assignment statements such as x = true ; or x = a <b ; . 

A clean way of handling both roles of boolean expressions is to first build a 
syntax tree for expressions, using either of the following approaches : 

1 .  Use two passes. Construct a complete syntax tree for the input , and then 
walk the tree in depth-first order, computing the translations specified by 
the semantic rules. 

2. Use one pass for statements, but two passes for expressions. With this 
approach, we would translate E in while (E) 81 before 81 is examined. 
The translation of E, however, would be done by building its syntax tree 
and then walking the tree. 

The following grammar has a single nonterminal E for expressions: 

8 -+ id = E ;  I if ( E ) 8 I while ( E ) 8 I 8 8 

E -+ E I I E I E && E I E reI E I E + E I (E) I id I true I false 

Nonterminal E governs the flow of control in 8 -+ while (E) 81 . The same 
nonterminal E denotes a value in 8 -+ id = E ;  and E -+ E + E.  

We can handle these two roles of expressions by using separate code-genera
tion functions. Suppose that, attribute E.n denotes the syntax-tree node for an 
expression E and that nodes are objects. Let method jump generate jumping 
code at an expression node, and let method rvalue generate code to compute 
the value of the node into a temporary. 

When E appears in 8 -+ while (E) 81 , method jump is called at node 
E.n. The implementation of jump is based on the rules for boolean expressions 
in Fig. 6.37. Specifically, jumping code is generated by calling E.n .jump(t , f ) ,  
where t i s  a new label for the first instruction of 81 . code and f i s  the label 
8. next. 

When E appears in 8 -+ id = E ; , method rvalue is called at node E.n. If E 
has the form E1 + E2 , the method call E.n. rvalueO generates code as discussed 
in Section 6.4. If E has the form E1 && E2 , we first generate jumping code for 
E and then assign true or false to a new temporary t at the true and false exits, 
respectively, from the jumping code. 

For example, the assignment x = a < b && c < d can be implemented by the 
code in Fig. 6.42. 

6.6 .7 Exercises for Section 6 .6 

Exercise 6 .6 .1 : Add rules to the syntax-directed definition of Fig. 6.36 for 
the following control-flow constructs: 

a) A repeat-statment repeat 8 while B. 
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if False a < b goto L1 
if False c > d goto L1 
t = true 
goto L2 

L1 : t false 
L2 : x = t 

Figure 6 .42 : Translating a boolean assignment by computing the value of a 
temporary 

Exercise 6 .6 .2 : Modern machines try to execute many instructions at the 
same time, including branching instructions. Thus, there is a severe cost if the 
machine speculatively follows one branch, when control actually goes another 
way (all the speculative work is thrown away) . It is therefore desirable to min
imize the number of branches . Notice that the implementation of a while-loop 
in Fig. 6 .35 (c) has two branches per interation: one to enter the body from 
the condition B and the other to jump back to the code for B. As a result, 
it is usually preferable to implement while (B) S as if it were if (B) { re
peat S until ! (B) }. Show what the code layout looks like for this translation, 
and revise the rule for while-loops in Fig. 6.36. 

! Exercise 6 .6 .3 : Suppose that there were an "exclusive-or" operator (true if 
and only if exactly one of its two arguments is true) in C. Write the rule for 
this operator in the style of Fig. 6.37. 

Exercise 6.6.4 : Translate the following expressions using the goto-avoiding 
translation scheme of Section 6.6 .5 :  

a) if Ca==b && c==d " e==f ) x -- 1 ;  
b) if Ca==b I I  c==d " e==f ) x -- l '  , 

c) if Ca==b && c==d && e==f ) x -- l '  , 

Exercise 6 .6 .5 : Give a translation scheme based on the syntax-directed defi
nition in Figs. 6 .36 and 6.37. 

Exercise 6.6 .6 : Adapt the semantic rules in Figs. 6.36 and 6.37 to allow 
control to fall through, using rules like the ones in Figs. 6.39 and 6.40 .  

! Exercise 6.6 .7 : The semantic rules for statements in Exercise 6.6 .6 generate 
unnecessary labels . Modify the rules for statements in Fig. 6 .36 to create labels 
as needed, using a special label deferred to mean that a label has not yet been 
created. Your rules must generate code similar to that in Example 6 .21 .  
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! J  Exercise 6.6.8 : Section 6 .6 .5 talks about using fall-through code to minimize 
the number of jumps in the generated intermediate code. However, it does not 
take advantage of the option to replace a condition by its complement, e.g . ,  re
place if a < b goto L1 ; goto L2 by if b >= a goto L2 ; goto L1 . Develop 
a SDD that does take advantage of this option when needed. 

6 . 7  Backpatching 

A key problem when generating code for boolean expressions and flow-of-control 
statements is that of matching a jump instruction with the target of the jump. 
For example, the translation of the boolean expression B in if ( B )  S contains 
a jump, for when B is false, to the instruction following the code for S. In a 
one-pass translation, B must be translated before S is examined. What then 
is the target of the goto that jumps over the code for S? In Section 6.6 we 
addressed this problem by passing labels as inherited attributes to where the 
relevant jump instructions were generated. But a separate pass is then needed 
to bind labels to addresses. 

This section takes a complementary approach, called backpatching, in which 
lists of jumps are passed as synthesized attributes. Specifically, when a jump 
is generated, the target of the jump is temporarily left unspecified. Each such 
jump is put on a list of jumps whose labels are to be filled in when the proper 
label can be determined. All of the jumps on a list have the same target label. 

6.7 .1  One-Pass Code Generation Using Backpatching 

Backpatching can be used to generate code for boolean expressions and flow
of-control statements in one pass. The translations we generate will be of the 
same form as those in Section 6.6, except for how we manage labels. 

In this section, synthesized attributes truelist and falselist of nonterminal B 
are used to manage labels in jumping code for boolean expressions. In particu
lar, B. truelist will be a list of jump or conditional jump instructions into which 
we must insert the label to which control goes if B is true. B .falselist likewise is 
the list of instructions that eventually get the label to which control goes when 
B is false. As code is generated for B, jumps to the true and false exits are left 
incomplete, with the label field unfilled. These incomplete jumps are placed 
on lists pointed to by B. truelist and B .falselist, as appropriate. Similarly, a 
statement S has a synthesized attribute S. nextlist, denoting a list of jumps to 
the instruction immediately following the code for S.  

For specificity, we generate instructions into an instruction array, and labels 
will be indices into this array. To manipulate lists of jumps, we use three 
functions: 

1. makelist(i) creates a new list containing only i, an index into the array of 
instructions; makelist returns a pointer to the newly created list . 



6. 7. BACKPATCHING 411 

2 .  merge(PI , P2 )  concatenates the lists pointed to by PI and P2 , and returns 
a pointer to the concatenated list . 

3 .  backpatch(p, i) inserts i as the target label for each of the instructions on 
the list pointed to by p. 

6.7.2 Backpatching for Boolean Expressions 

We now construct a translation scheme suitable for generating code for boolean 
expressions during bottom-up parsing. A marker nonterminal M in the gram
mar causes a semantic action to pick up, at appropriate times , the index of the 
next instruction to be generated. The grammar is as follows: 

B -+ BI I I M B2 I BI && M B2 I ! BI I ( BI )  I EI reI E2 I true I false 
M -+ E 

The translation scheme is in Fig. 6.43 . 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

B -+ Bl I I  M B2 { 

B -+ Bl && M B2 { 

B -+  ! BI { 

B -+ ( BI ) { 

B -+ EI reI E2 { 

B -+ true { 

B -+ false { 

M -+ E { 

backpatch( BI .falselist, M. instr) ; 
B .  truelist = merge( BI . truelist, B2 . truelist) ; 
B .falselist = B2 .falselist; } 

backpatch( BI . truelist, M. instr) ; 
B .  truelist = B2 . truelist; 
B .falselist = merge( BI .falselist, B2 .falselist) ; } 
B .  truelist = BI .falselist; 
B .falselist = BI . truelist; } 

B .  truelist = BI . truelist; 
B .falselist = BI .falselist; } 

B .  truelist = makelist( nextinstr) ; 
B .falselist = makelist( nextinstr + 1 ) ;  
emit(' if' EI . addr rel.op E2 . addr ' goto 
emit('goto _' ) ;  } 

B . truelist = makelist( nextinstr) ; 
emit(' goto _' ) ;  } 

B .falselist = makelist( nextinstr) ; 
emit( 'goto _' ) ;  } 

M. instr = nextinstr; } 

' ) 
. - , 

Figure 6.43: Translation scheme for boolean expressions 

Consider semantic action ( 1 )  for the production B -+ BI I I  M B2 . If BI is 
true, then B is also true, so the jumps on B1 . truelist become part of B. truelist. 
If BI is false, however, we must next test B2 , so the target for the jumps 
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B1 .falselist must be the beginning of the code generated for B2 . This target is 
obtained using the marker nonterminal M. That nonterminal produces, as a 
synthesized attribute M. instr, the index of the next instruction, just before B2 
code starts being generated. 

To obtain that instruction index, we associate with the production M ---+ E 
the semantic action 

{ M. instr = nextinstr; } 

The variable nextinstr holds the index of the next instruction to follow. This 
value will be backpatched onto the B1 .falselist (Le . ,  each instruction on the 
list B1 .falselist will receive M. instr as its target label) when we have seen the 
remainder of the production B ---+ Bl I I  M B2 . 

Semantic action (2) for B ---+ Bl && M B2 is similar to ( 1 ) . Action (3) for 
B ---+ ! B swaps the true and false lists. Action (4) ignores parentheses. 

For simplicity, semantic action (5) generates two instructions, a conditional 
goto and an unconditional one. Neither has its target filled in. These instruc
tions are put on new lists, pointed to by B. truelist and B .falselist, respectively. 

B.t = {lOO, l04} 
B.! = {l03, l05} �/M\� 

B.t = {lOa} I B.t = {l04} 
B.! = {lOl}  E B.! = {l03, l05} 

/ � �oo /.1 M\� 
B.t = {l02} I B.t = {l04} 

B.! = {l03} E B.! = {l05} 

/ I \ / I \ 
x > 200 x ! =  Y 

Figure 6.44: Annotated parse tree for x < 100 I I  x > 200 && x ! = y 

Example 6.24 : Consider again the expression 

x < 100 I I  x >  200 && x ! = Y 

An annotated parse tree is shown in Fig. 6.44; for readability, attributes tru
elist, falselist, and instr are represented by their initial letters. The actions are 
performed during a depth-first traversal of the tree. Since all actions appear at 
the ends of right sides, they can be performed in conjunction with reductions 
during a bottom-up parse. In response to the reduction of x < 100 to B by 
production (5) , the two instructions 
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100: if x < 100 goto _ 

101 :  goto _ 

are generated. (We arbitrarily start instruction numbers at 100.) The marker 
nonterminal M in the production 

records the value of nextinstr, which at this time is 102. The reduction of 
x > 200 to B by production (5) generates the instructions 

102: if x > 200 goto _ 
103: goto _ 

The sub expression x > 200 corresponds to Bl in the production 

The marker nonterminal M records the current value of nextinstr, which is now 
104. Reducing x ! = y into B by production (5) generates 

104: if x ! =  Y goto _ 
105: goto _ 

We now reduce by B -+ Bl && M B2 • The corresponding semantic ac
tion calls backpatch(B1 . truelist, M. instr) to bind the true exit of Bl to the first 
instruction of B2 . Since Bl . truelist is { 102} and M.instr is 104, this call to 
backpatch fills in 104 in instruction 102. The six instructions generated so far 
are thus as shown in Fig. 6.45 (a) . 

The semantic action associated with the final reduction by B -+ Bl I I  M B2 
calls backpatch( { 101 } , 102) which leaves the instructions as in Fig. 6.45(b) . 

The entire expression is true if and only if the gotos of instructions 100 
or 104 are reached, and is false if and only if the gotos of instructions 103 or 
105 are reached. These instructions will have their targets filled in later in 
the compilation, when it is seen what must be done depending on the truth or 
falsehood of the expression. 0 

6.7.3 Flow-of-Control Statements 

We now use backpatching to translate flow-of-control statements in one pass. 
Consider statements generated by the following grammar: 

S -+ if ( B ) S I if ( B ) S else S I while ( B ) S I { L }  I A ; 
L -+ L S  I S  

Here S denotes a statement, L a statement list , A an assignment-statement, 
and B a boolean expression. Note that there must be other productions, such as 
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100 : if x < 100 goto 
101 :  goto _ 
102: if x > 200 goto 104 
103: goto _ 
104 :  if x ! =  Y goto _ 
105: goto _ 

(a) After backpatching 104 into instruction 102. 

100: if x < 100 goto _ 
101 :  goto 102 
102: if y > 200 goto 104 
103 :  goto _ 
104: if x ! =  Y goto _ 
105 : goto _ 

(b) After backpatching 102 into instruction 101 .  

Figure 6 .45 : Steps in the backpatch process 

those for assignment-statements. The productions given, however, are sufficient 
to illustrate the techniques used to translate flow-of-control statements. 

The code layout for if- , if-else- , and while-statements is the same as in 
Section 6.6. We make the tacit assumption that the code sequence in the 
instruction array reflects the natural flow of control from one instruction to the 
next . If not , then explicit jumps must be inserted to implement the natural 
sequential flow of control. 

The translation scheme in Fig. 6.46 maintains lists of jumps that are filled in 
when their targets are found. As in Fig. 6.43, boolean expressions generated by 
nonterminal B have two lists of jumps, B. truelist and B .falselist, corresponding 
to the true and false exits from the code for B, respectively. Statements gener
ated by nonterminals S and L have a list of unfilled jumps, given by attribute 
nextlist, that must eventually be completed by backpatching. S. nextlist is a list 
of all conditional and unconditional jumps to the instruction following the code 
for statement S in execution order. L. nextlist is defined similarly. 

Consider the semantic action (3) in Fig. 6 .46. The code layout for production 
S -+ while ( B )  81 is as in Fig. 6.35 (c) . The two occurrences of the marker 
nonterminal M in the production 

record the instruction numbers of the beginning of the code for B and the 
beginning of the code for 81 . The corresponding labels in Fig. 6.35(c) are begin 
and B. true, respectively. 
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1) 8 --+ if C B )  M 81 { backpatch(B. truelist, M. instr) ; 
8� nextlist = merge(B .falselist, 81 , nextlist) ; } 

2) 8 --+  if C B ) Ml 81 N else M2 82 . 
{ backpatch( B.  truelist, MI ' instr) ; 

backpatch( B .falselist, M2 . instr) ; 
temp = merge(81 .nextlist, N.nextlist) ; 
8. nextlist = merge( temp, 82 . nextlist) ; } 

3) 8 --+  while Ml C B )  M2 81 

4) 8 --+ { L } 

5) 8 --+ A ; 

6) M --+ E 

7) N --+ E 

8) L --+ Ll M 8 

9) L --+ 8 

{ backpatch(81 . nextlist, MI ' instr) ; 
backpatch(B. truelist, M2 • instr) ; 
8. nex#ist = B .falselist; 
emit(' goto' MI . instr) ; } 

{ 8. nextlist = L. nextlist; } 

{ 8. nextlist = null; } 

{ M. instr = nextinstr; } 

{ N. nextlist = makelist( nextinstr) ; 
emit(' goto _' ) ; } 

{ backpatch(L1 . nextlist, M. instr) ; 
L. nextlist 8. nextlist; } 

{ L. nextlist 8. nextlist; } 

Figure 6 .46: Translation of statements 

415 

Again, the only production for M is M --+ E. Action (6) in Fig. 6 .46 sets 
attribute M.instr to the number of the next instruction. After the body 81 
of the while-statement is executed, control flows to the beginning. Therefore, 
when we requce while Ml C B ) M2 81 to 8, we backpatch 81 . nextlist to make 
all targets on that list be MI ' instr. An explicit jump to the beginning of the 
code for B is appended after the code for 81 because control may also "fall out 
the bottom." B. truelist is backpatched to go to the beginning of 81 by making 
jumps on B.  truelist go to M2 . instr. 

A more compelling argument for using 8.nextlist and L.nextlist comes when 
code is generated for the conditional statement if ( B ) 81 else 82 . If control 
"falls out the bottom" of 81 , as when 81 is an assignment, we must include 
at the end of the code for 81 a jump over the code for 82 . We use another 
marker nonterminal to generate this jump after 81 . Let nonterminal N be this 
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marker with production N -+ E. N has attribute N. nextlist, which will be a list 
consisting of the instruction number of the jump goto _ that is generated by 
the semantic action (7) for N. 

Semantic action (2) in Fig. 6.46 deals with if-else-statements with the syntax 

8 -+ if ( B ) Ml 81 N else M2 82 

We backpatch the jumps when B is true to the instruction MI . instr; the latter 
is the beginning of the code for 81 . Similarly, we backpatch jumps when B is 
false to go to the beginning of the code for 82 . The list 8. nextlist includes all 
jumps out of 81 and 82 , as well as the jump generated by N. (Variable temp is 
a temporary that is used only for merging lists.) 

Semantic actions (8) and (9) handle sequences of statements. In 

L -+ Ll M 8 
the instruction following the code for L1 in order of execution is the beginning 
of 8. Thus the Ll . nextlist list is backpatched to the beginning of the code for 
8, which is given by M.instr. In L -+ 8, L .nextlist is the same as 8.nextlist. 

Note that no new instructions are generated anywhere in these semantic 
rules, except for rules (3) and (7) .  All other code is generated by the semantic 
actions associated with assignment-statements and expressions. The flow of 
control causes the proper backpatching so that the assignments and boolean 
expression evaluations will connect properly. 

6 .7.4 Break- , Continue- , and Goto-Statements 

The most elementary programming language construct for changing the flow of 
control in a program IS the goto-statement. In C ,  a statement like goto L sends 
control to the statement labeled L - there must be precisely one statement with 
label L in this scope. Goto-statements can be implemented by maintaining a 
list of unfilled jumps for each label and then backpatching the target when it 
is known. 

Java does away with goto-statements. However, Java does permit disci
plined jumps called break-statements, which send control out of an enclosing 
construct , and continue-statements, which trigger the next iteration of an en
closing loop. The following excerpt from a lexical analyzer illustrates simple 
break- arid continue-statements: 

1 )  for ( ; ; readch ( )  ) { 
2) if ( peek == , , I I peek == ' \t '  ) continue ; 
3) else if ( peek == ' \n '  ) l ine = line + 1 ;  
4) else break ; 
5) } 

Control jumps from the break-statement on line 4 to the next statement after 
the enclosing for loop. Control jumps from the continue-statement on line 2 to 
code to evaluate readchO and then to the if-statement on line 2 .  
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If S is the enclosing construct, then a break-statement is a jump to the first 
instruction after the code for S. We can generate code for the break by (1) 
keeping track of the enclosing statement S, (2) generating an unfilled jump for 
the break-statement , and (3) putting this unfilled jump on S. nextlist, where 
nextlist is as discussed in Section 6 .7.3 . 

In a two-pass front end that builds syntax trees , S.nextlist can be imple
mented as a field in the node for S. We can keep track of S by using the 
symbol table to map a special identifier break to the node for the enclosing 
statement S. This approach will also handle labeled break-statements in Java, 
since the symbol table can be used to map the label to the syntax-tree node for 
the enclosing construct . 

Alternatively, instead of using the symbol table to access the node for S, 
we can put a pointer to S.nextlist in the symbol table. Now, when a break
statement is reached, we generate an unfilled jump, look up nextlist through 
the symbol table, and add the jump to the list , where it will be backpatched as 
discussed in SectiQn 6 .7.3 . 

Continue-statements can be handled in a manner analogous to the break
statement . The main difference between the two is that the target of the gen
erated jump is different . 

6.7 .5 Exercises for Section 6 .7  

Exercise 6 .7 .1 : Using the translation of Fig. 6 .43 , translate each of the fol
lowing expressions. Show the true and false lists for each subexpression. You 
may assume the address of the first instruction generated is 100. 

a) a==b && ( c==d I I  e==f ) 

b) ( a==b I I  c==d) I I  e==f 

c) (a==b &8r, c==d) && e==f 

Exercise 6.7.2 : In Fig. 6 .47(a) is the outline of a program, and Fig. 6 .47(b) 
sketches the structure of the generated three-address code, using the backpatch
ing translation of Fig. 6 .46. Here, i 1 through i8 are the labels of the generated 
instructions that begin each of the "Code" sections. When we implement this 
translation, we maintain, for each boolean expression E, two lists of places in 
the code for E, which we denote by E. true and E./alse. The places on list 
E. true are those places where we eventually put the label of the statement to 
which control must flow whenever E is true; E./alse similarly lists the places 
where we put the label that control flows to when E is found to be false. Also , 
we maintain for each statement S, a list of places where we must put the label 
to which control flows when S is finished. Give the value (one of i 1 through i8) 
that eventually replaces each place on each of the following lists : 

(a) E3 .false (b) S2 .next (c) E4 .false (d) Sl .next (e) E2 . true 
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while (El ) { 
if (E2 )  

else { 

} 
} 

(a) 

while (E3 )  
SI ; 

if (E4 )  
S2 ; 

i l : Code for El 
i 2 :  Code for E2 
i3 : Code for E3 
i4 :  Code for SI 
i5 : Code for E4 
i6 : Code for S2 
i7 :  Code for S3 
i8 : . .  , 

(b) 

Figure 6.47: Control-flow structure of program for Exercise 6.7 .2 

Exercise 6 .  if. 3 : When performing the translation of Fig. 6 .47 using the scheme 
of Fig. 6 .46, we create lists S.next for each statement, starting with the assign
ment-statements SI , S2 , and S3 , and proceeding to progressively larger if
statements, if-else-statements, while-statements, and statement blocks. There 
are five constructed statements of this type in Fig. 6 .47: 

S4 : while (E3 ) SI . 

S5 : if (E4 )  S2 . 

S6 :  The block consisting of S5 and S3 ' 

S7 : The statement if S4 else S6 ' 

S8 : The entire program. 

For each of these constructed statements, there is a rule that allows us 
to construCt Si .next in terms of other Sj .next lists, and the lists Ek . true and 
Ek .false for the expressions in the program. Give the rules for 

(a) S4 .next (b) S5 . next (c) S6 .next (d) S7 .next (e) S8 ·next 

6 . 8  Switch-Statements 

The "switch" or  "case" statement i s  available in  a variety of  languages. Our 
switch-statemerit syntax is shown in Fig. 6.48. There is a selector expression 
E, which is to be evaluated, followed by n constant values VI , V2 , . . .  , Vn that 
the expression might take, perhaps including a default "value," which always 
matches the expression if no other value does .  
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switch ( E ) { 
case VI : SI 
case V2 : S2 

} 

case Vn-1 : Sn-l  
default : Sn 

Figure 6 .48: Switch-statement syntax 

6 . 8 . 1  Translation of Switch-Statements 

The intended translation of a switch is code to: 

1. Evaluate the expression E. 
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2 .  Find the value Vj in the list of cases that is the same as the value of the 
expression. Recall that the default value matches the expression if none 
of the values explicitly mentioned in cases does . 

3. Execute the statement Sj associated with the value found. 

Step (2) is an n-way branch, which can be implemented in one of several 
ways . If the number of cases is small, say 10 at most , then it is reasonable to 
use a sequence of conditional jumps, each of which tests for an individual value 
and transfers to the code for the corresponding statement . 

A compact way to implement this sequence of conditional jumps is to create 
a table of pairs, each pair consisting of a value and a label for the corresponding 
statement's code. The value of the expression itself, paired with the label for the 
default statement is placed at the end of the table at run time. A simple loop 
generated by the compiler compares the value of the expression with each value 
in the table, being assured that if no other match is found, the last (default) 
entry is sure to match. 

If the number of values exceeds 10 or so, it is more efficient to construct a 
hash table for the values, with the labels of the various statements as entries. 
If no entry for the value possessed by the switch expression is found, a jump to 
the default statement is generated. 

There is a common special case that can be implemented even more effi
ciently than by an n-way branch. If the values all lie in some small range, 
say min to max, and the number of different values is a reasonable fraction of 
max - min, then we can construct an array of max - min "buckets ," where 
bucket j - min contains the label of the statement with value j; any bucket 
that would otherwise remain unfilled contains the default label. 

To perform the switch, evaluate the expression to obtain the value j; check 
that it is in the range min to max and transfer indirectly to the table entry at 
offset j - min. For example, if the expression is of type character , a table of, 
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say, 1 28 entries (depending on the character set) may be created and transferred 
through with no range testing. 

6.8.2  Syntax-Directed Translation of Switch-Statements 

The intermediate code in Fig. 6.49 is  a convenient translation of the switch
statement in Fig. 6 .48 . The tests all appear at the end so that a simple code 
generator can recognize the multiway branch and generate efficient code for it , 
using the most appropriate implementation suggested at the beginning of this 
section. 

code to evaluate E into t 
got o test 

Ll : code for 81 
goto next 

L2 : code for 82 
goto next 

code for 
got o next 

Ln: code for 8n 
goto next 

test : if t VI gote Ll 
if t = V2 got e L2 

next : 

if t = Vn-1 gete 
goto Ln 

Figure 6.49: Translation of a switch-statement 

The more straightforward sequence shown in Fig. 6 .50 would require the 
compiler to do extensive analysis to find the most efficient implementation. Note 
that it is inconvenient in a one-pass compiler to place the branching statements 
at the beginning, because the compiler could not then emit code for each of the 
statements 8i as it saw them. 

To translate into the form of Fig. 6 .49 , when we see the keyword switch, we 
generate two new labels test and next , and a new temporary t .  Then, as we 
parse the expression E, we generate code to evaluate E into t. After processing 

we generate the jump gete test. 
Then, as we see each case keyword, we create a new label and enter it into 

the symbol table. We place in a queue, used only to store cases, a value-label 
pair consisting of the value Vi of the case constant and Li (or a pointer to the 
symbol-table entry for Li) . We process each statement case Vi :  8i by emitting 
the label Li attached to the code for Si , followed by the jump goto next. 
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code to evaluate E into t 
if t ! = VI goto Ll 
code for Sl 
goto next 

Ll : if t ! = V2 goto L2 
code for S2 
goto next 

Ln-2 : if t ! = Vn-l  goto Ln-l 
code for Sn-l 
goto next 

Ln-l : code for Sn 
next : 

Figure 6.50 : Another translation of a switch statement 
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When the end of the switch is found, we are ready to generate the code for 
the n-way branch. Reading the queue of value-label pairs, we can generate a 
sequence of three-address statements of the form shown in Fig. 6 .51 .  There, t 
is the temporary holding the value of the selector expression E, and Ln is the 
label for the default statement . 

case t VI Ll 
case t V2 L2 

case t Vn-l  Ln-l  
case t t Ln 
label next 

Figure 6 .51 :  Case three-address-code instructions used to translate a switch
statement 

The case t Vi Li instruction is a synonym for if t = Vi goto Li in Fig. 6 .49, 
but the case instruction is easier for the final code generator to detect as a 
candidate for special treatment. At the code-generation phase, these sequences 
of case statements can be translated into an n-way branch of the most efficient 
type, depending on how many there are and whether the values fall into a small 
range. 

6.8 .3 Exercises for Section 6 .8 

! Exercise 6 .S .1 : In order to  translate a switch-statement into a sequence of 
case-statements as in Fig. 6 .51 ,  the translator needs to create the list of value-
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label pairs, as it processes the source code for the switch. We can do so, using 
an additional translation that accumulates just the pairs. Sketch a syntax
direction definition that produces the list of pairs, while also emitting code for 
the statements Si that are the actions for each case . 

6 . 9  Intermediate Code for Procedures 

Procedures and their implementation will be discussed at length in Chapter 7, 
along with the run-time management of storage for names. We use the term 
function in this section for a procedure that returns a value. We briefly discuss 
function declarations and three-address code for function calls. In three-address 
code, a function call is unraveled into the evaluation of parameters in prepa
ration for a call, followed by the call itself. For simplicity, we assume that 
parameters are passed by value; parameter-passing methods are discussed in 
Section 1 .6.6 . 

Example 6.25 : Suppose that a is an array of integers ,  and that f is a function 
from integers to integers. Then, the assignment 

n = f (a [i] ) ;  

might translate into the following three-address code: 

1) tl = i * 4 
2) t2 = a [ t l  ] 
3) param t2 
4) t3 = call f ,  1 
5) n = t3 

The first two lines compute the value of the expression a [i] into temporary 
t2 , as discussed in Section 6.4. Line 3 makes t2 an actual parameter for the 
call on line 4 of f with one parameter . Line 5 assigns the value returned by the 
function call to t3 . Line 6 assigns the returned value to n. 0 

The productions in Fig. 6 .52 allow function definitions and function calls. 
(The syntax generates unwanted commas after the last parameter, but is good 
enough for illustrating translation.) Nonterminals D and T generate declara
tions and types , respectively, as in Section 6.3 .  A function definition gener
ated by D consists of keyword define, a return type, the function name, for
mal parameters in parentheses and a function body consisting of a statement . 
Nonterminal F generates zero or more formal parameters, where a formal pa
rameter consists of a type followed by an identifier. N onterminals S and E 
generate statements and expressions, respectively. The production for S adds a 
statement that returns the value of an expression. The production for E adds 
function calls, with actual parameters generated by A. An actual parameter is 
an expression. 
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D -+ define T id ( F ) { S } 

F -+ f i T  id , F 

S -+ return E ; 
E -+ id ( A ) 
A -+ f i E , A 

Figure 6.52 : Adding functions to the source language 

Function definitions and function calls can be translated using concepts that 
have already been introduced in this chapter . 

• Function types. The type of a function must encode the return type and 
the types of the formal parameters . Let void be a special type that repre
sents no parameter or no return type. The type of a function popO that 
returns an integer is therefore "function from void to integer." Function 
types can be represented by using a constructor fun applied to the return 
type and an ordered list of types for the parameters. 

• Symbol tables. Let s be the top symbol table when the function definition 
is reached. The function name is entered into s for use in the rest of the 
program. The formal parameters of a function can be handled in analogy 
with field names in a record (see Fig . 6. 18. In the production for D,  after 
seeing define and the function name, we push s and set up a new symbol 
table 

Env.push(top) ; top = new Env(top) ; 

Call the new symbol table, t. Note that top is passed as a parameter in 
new Env( top) , so the new symbol table t can be linked to the previous 
one, s .  The new table t is used to translate the function body. We revert 
to the previous symbol table s after the function body is translated. 

• Type checking. Within expressions, a function is treated like any other 
operator. The discussion of type checking in Section 6 .5 .2 therefore carries 
over, including the rules for coercions. For example, if f is a function with 
a parameter of type real, then the integer 2 is coerced to a real in the call 
f (2) . 

• Function calls. When generating three-address instructions for a function 
call id(E, E, . " , E) ,  it is sufficient to generate the three-address instruc
tions for evaluating or reducing the parameters E to addresses, followed 
by a param instruction for each parameter. If we do not want to mix 
the parameter-evaluating instructions with the param instructions, the 
attribute E. addr for each expression E can be saved in a data structure 
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such as a queue. Once all the expressions are translated, the param in
structions can be generated as the queue is emptied. 

The procedure is such an important and frequently used programming con
struct that it is imperative for a compiler to good code for procedure calls and 
returns. The run-time routines that handle procedure parameter passing, calls, 
and returns are part of the run-time support package. Mechanisms for run-time 
support are discussed in Chapter 7. 

6 . 10 Summary of Chapter 6 
The techniques in this chapter can be combined to build a simple compiler front 
end, like the one in Appendix A. The front end can be built incrementally: 

.. Pick an intermediate representation : An intermediate representation is 
typically some combination of a graphical notation and three-address 
code. As in syntax trees , a node in a graphical notation represents a 
construct ; the children of a node represent its subconstructs. Three ad-:
dress code takes its name from instructions of the form x = y op Z, with 
at most one operator per instruction. There are additional instructions 
for control flow . 

.. Translate expressions : Expressions with built-up operations can be un
wound into a sequence of individual operations by attaching actions to 
each production of the form E -+ El op E2 • The action either creates 
a node for E with the nodes for El and E2 as children, or it generates 
a three-address instruction that applies op to the addresses for El and 
E2 and puts the result into a new temporary name, which becomes the 
address for E. 

.. Check types : The type of an expression El op E2 is determined by the 
operator op and the types of El and E2 • A coercion is an implicit type 
conversion, such as from integer to float. Intermediate code contains ex
plicit type conversions to ensure an exact match between operand types 
and the types expected by an operator. 

.. Use a symbol table to implement declarations : A declaration specifies the 
type of a name. The width of a type is the amount of storage needed for 
a name with that type. Using widths, the relative address of a name at 
run time can be computed as an offset from the start of a data area. The 
type and relative address of a name are put into the symbol table due to 
a declaration, so the translator can subsequently get them when the name 
appears in an expression. 

.. Flatten arrays : For quick access, array elements are stored in consecutive 
locations. Arrays of arrays are flattened so they can be treated as a one-



6. 1 1 .  REFERENCES FOR CHAPTER 6 425 

dimensional array of individual elements. The type of an array is used to 
calculate the address of an array element relative to the base of the array. 

.. Generate jumping code for boolean expressions : In short-circuit or jump
ing code, the value of a boolean expression is implicit in the position 
reached in the code. Jumping code is useful because a boolean expression 
B is typically used for control flow, as in if (B) S. Boolean values can be 
computed by jumping to t = true or t = false, as appropriate, where t is 
a temporary name. Using labels for jumps, a boolean expression can be 
translated by inheriting labels corresponding to its true and false exits. 
The constants true and false translate into a jump to the true and false 
exits , respectively . 

.. Implement statements using control flow :  Statements can be translated 
by inheriting a label next, where next marks the first instruction after the 
code for this statement . The conditional 8 -+ if (B) 81 can be translated 
by attaching a new label marking the beginning of the code for 81 and 
passing the new label and 8. next for the true and false exits, respectively, 
of B. 

... Alternatively, use backpatching: Backpatching is  a technique for generat
ing code for boolean expressions and statements in one pass. The idea 
is to maintain lists of incomplete jumps, where all the jump instructions 
on a list have the same target. When the target becomes known, all the 
instructions on its list are completed by filling in the target . 

... Implement records : Field names in a record or class can be treated as a 
sequence of declarations .  A record type encodes the types and relative 
addresses of the fields. A symbol table object can be used for this purpose. 

6 . 1 1  References for Chapter 6 

Most of the techniques in this chapter stem from the flurry of design and im
plementation activity around Algol 60. Syntax-directed translation into inter
mediate code was well established by the time Pascal [11 ]  and C [6 , 9] were 
created. 

UNCOL (for Universal Compiler Oriented Language) is a mythical universal 
intermediate language, sought since the mid 1950's. Given an UNCaL, com
pilers could be constructed by hooking a front end for a given source language 
with a back end for a given target language [10] . The bootstrapping techniques 
given in the report [10] are routinely used to retarget compilers. 

The UNCaL ideal of mixing and matching front ends with back ends has 
been approached in a number of ways . A retargetable compiler consists of one 
front end that can be put together with several back ends to implement a given 
language on several machines .  Neliac was an early example of a language with 
a retarget able compiler [5] written in its own language. Another approach is to 
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retrofit a front end for a new language onto an existing compiler. Feldman [2] 
describes the addition of a Fortran 77 front end to the C compilers (6J and 
(9] . GCC, the GNU Compiler Collection [3) , supports front ends for C ,  
Objective-C ,  Fortran, Java, and Ada. 

Value numbers and their implementatibn by hashing are from Ershov [1] . 
The use of type information to improve the security of Java bytecodes is 

described by Gosling [4J . 
Type inference by using unification to solve sets of equations has been re

discovered several times; its application to ML is described by Milner [7) . See 
Pierce [8] for a comprehensive treatment of types. 
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