
CHAPTER 10

Batch Processing

A system cannot be successful if it is too strongly influenced by a single person. Once the
initial design is complete and fairly robust, the real test begins as people with many different
viewpoints undertake their own experiments.

—Donald Knuth

In the first two parts of this book we talked a lot about requests and queries, and the
corresponding responses or results. This style of data processing is assumed in many
modern data systems: you ask for something, or you send an instruction, and some
time later the system (hopefully) gives you an answer. Databases, caches, search
indexes, web servers, and many other systems work this way.

In such online systems, whether it’s a web browser requesting a page or a service call‐
ing a remote API, we generally assume that the request is triggered by a human user,
and that the user is waiting for the response. They shouldn’t have to wait too long, so
we pay a lot of attention to the response time of these systems (see “Describing Perfor‐
mance” on page 13).

The web, and increasing numbers of HTTP/REST-based APIs, has made the request/
response style of interaction so common that it’s easy to take it for granted. But we
should remember that it’s not the only way of building systems, and that other
approaches have their merits too. Let’s distinguish three different types of systems:

Services (online systems)
A service waits for a request or instruction from a client to arrive. When one is
received, the service tries to handle it as quickly as possible and sends a response
back. Response time is usually the primary measure of performance of a service,
and availability is often very important (if the client can’t reach the service, the
user will probably get an error message).

389

Batch processing systems (offline systems)
A batch processing system takes a large amount of input data, runs a job to pro‐
cess it, and produces some output data. Jobs often take a while (from a few
minutes to several days), so there normally isn’t a user waiting for the job to fin‐
ish. Instead, batch jobs are often scheduled to run periodically (for example, once
a day). The primary performance measure of a batch job is usually throughput
(the time it takes to crunch through an input dataset of a certain size). We dis‐
cuss batch processing in this chapter.

Stream processing systems (near-real-time systems)
Stream processing is somewhere between online and offline/batch processing (so
it is sometimes called near-real-time or nearline processing). Like a batch pro‐
cessing system, a stream processor consumes inputs and produces outputs
(rather than responding to requests). However, a stream job operates on events
shortly after they happen, whereas a batch job operates on a fixed set of input
data. This difference allows stream processing systems to have lower latency than
the equivalent batch systems. As stream processing builds upon batch process‐
ing, we discuss it in Chapter 11.

As we shall see in this chapter, batch processing is an important building block in our
quest to build reliable, scalable, and maintainable applications. For example, Map‐
Reduce, a batch processing algorithm published in 2004 [1], was (perhaps over-
enthusiastically) called “the algorithm that makes Google so massively scalable” [2]. It
was subsequently implemented in various open source data systems, including
Hadoop, CouchDB, and MongoDB.

MapReduce is a fairly low-level programming model compared to the parallel pro‐
cessing systems that were developed for data warehouses many years previously [3,
4], but it was a major step forward in terms of the scale of processing that could be
achieved on commodity hardware. Although the importance of MapReduce is now
declining [5], it is still worth understanding, because it provides a clear picture of
why and how batch processing is useful.

In fact, batch processing is a very old form of computing. Long before programmable
digital computers were invented, punch card tabulating machines—such as the Hol‐
lerith machines used in the 1890 US Census [6]—implemented a semi-mechanized
form of batch processing to compute aggregate statistics from large inputs. And Map‐
Reduce bears an uncanny resemblance to the electromechanical IBM card-sorting
machines that were widely used for business data processing in the 1940s and 1950s
[7]. As usual, history has a tendency of repeating itself.

In this chapter, we will look at MapReduce and several other batch processing algo‐
rithms and frameworks, and explore how they are used in modern data systems. But
first, to get started, we will look at data processing using standard Unix tools. Even if
you are already familiar with them, a reminder about the Unix philosophy is worth‐

390 | Chapter 10: Batch Processing

i. Some people love to point out that cat is unnecessary here, as the input file could be given directly as an
argument to awk. However, the linear pipeline is more apparent when written like this.

while because the ideas and lessons from Unix carry over to large-scale, heterogene‐
ous distributed data systems.

Batch Processing with Unix Tools
Let’s start with a simple example. Say you have a web server that appends a line to a
log file every time it serves a request. For example, using the nginx default access log
format, one line of the log might look like this:

216.58.210.78 - - [27/Feb/2015:17:55:11 +0000] "GET /css/typography.css HTTP/1.1"
200 3377 "http://martin.kleppmann.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X
10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.115
Safari/537.36"

(That is actually one line; it’s only broken onto multiple lines here for readability.)
There’s a lot of information in that line. In order to interpret it, you need to look at
the definition of the log format, which is as follows:

$remote_addr - $remote_user [$time_local] "$request"
$status $body_bytes_sent "$http_referer" "$http_user_agent"

So, this one line of the log indicates that on February 27, 2015, at 17:55:11 UTC, the
server received a request for the file /css/typography.css from the client IP address
216.58.210.78. The user was not authenticated, so $remote_user is set to a hyphen
(-). The response status was 200 (i.e., the request was successful), and the response
was 3,377 bytes in size. The web browser was Chrome 40, and it loaded the file
because it was referenced in the page at the URL http://martin.kleppmann.com/.

Simple Log Analysis
Various tools can take these log files and produce pretty reports about your website
traffic, but for the sake of exercise, let’s build our own, using basic Unix tools. For
example, say you want to find the five most popular pages on your website. You can
do this in a Unix shell as follows:i

cat /var/log/nginx/access.log |
 awk '{print $7}' |
 sort |
 uniq -c |
 sort -r -n |
 head -n 5

Read the log file.

Batch Processing with Unix Tools | 391

http://martin.kleppmann.com/

Split each line into fields by whitespace, and output only the seventh such field
from each line, which happens to be the requested URL. In our example line, this
request URL is /css/typography.css.

Alphabetically sort the list of requested URLs. If some URL has been requested
n times, then after sorting, the file contains the same URL repeated n times in a
row.

The uniq command filters out repeated lines in its input by checking whether
two adjacent lines are the same. The -c option tells it to also output a counter: for
every distinct URL, it reports how many times that URL appeared in the input.

The second sort sorts by the number (-n) at the start of each line, which is the
number of times the URL was requested. It then returns the results in reverse
(-r) order, i.e. with the largest number first.

Finally, head outputs just the first five lines (-n 5) of input, and discards the rest.

The output of that series of commands looks something like this:

4189 /favicon.ico
3631 /2013/05/24/improving-security-of-ssh-private-keys.html
2124 /2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
1369 /
 915 /css/typography.css

Although the preceding command line likely looks a bit obscure if you’re unfamiliar
with Unix tools, it is incredibly powerful. It will process gigabytes of log files in a
matter of seconds, and you can easily modify the analysis to suit your needs. For
example, if you want to omit CSS files from the report, change the awk argument to
'$7 !~ /\.css$/ {print $7}'. If you want to count top client IP addresses instead
of top pages, change the awk argument to '{print $1}'. And so on.

We don’t have space in this book to explore Unix tools in detail, but they are very
much worth learning about. Surprisingly many data analyses can be done in a few
minutes using some combination of awk, sed, grep, sort, uniq, and xargs, and they
perform surprisingly well [8].

Chain of commands versus custom program
Instead of the chain of Unix commands, you could write a simple program to do the
same thing. For example, in Ruby, it might look something like this:

392 | Chapter 10: Batch Processing

counts = Hash.new(0)

File.open('/var/log/nginx/access.log') do |file|
 file.each do |line|
 url = line.split[6]
 counts[url] += 1
 end
end

top5 = counts.map{|url, count| [count, url] }.sort.reverse[0...5]
top5.each{|count, url| puts "#{count} #{url}" }

counts is a hash table that keeps a counter for the number of times we’ve seen
each URL. A counter is zero by default.

From each line of the log, we take the URL to be the seventh whitespace-
separated field (the array index here is 6 because Ruby’s arrays are zero-indexed).

Increment the counter for the URL in the current line of the log.

Sort the hash table contents by counter value (descending), and take the top five
entries.

Print out those top five entries.

This program is not as concise as the chain of Unix pipes, but it’s fairly readable, and
which of the two you prefer is partly a matter of taste. However, besides the superfi‐
cial syntactic differences between the two, there is a big difference in the execution
flow, which becomes apparent if you run this analysis on a large file.

Sorting versus in-memory aggregation
The Ruby script keeps an in-memory hash table of URLs, where each URL is mapped
to the number of times it has been seen. The Unix pipeline example does not have
such a hash table, but instead relies on sorting a list of URLs in which multiple occur‐
rences of the same URL are simply repeated.

Which approach is better? It depends how many different URLs you have. For most
small to mid-sized websites, you can probably fit all distinct URLs, and a counter for
each URL, in (say) 1 GB of memory. In this example, the working set of the job (the
amount of memory to which the job needs random access) depends only on the
number of distinct URLs: if there are a million log entries for a single URL, the space
required in the hash table is still just one URL plus the size of the counter. If this
working set is small enough, an in-memory hash table works fine—even on a laptop.

On the other hand, if the job’s working set is larger than the available memory, the
sorting approach has the advantage that it can make efficient use of disks. It’s the

Batch Processing with Unix Tools | 393

same principle as we discussed in “SSTables and LSM-Trees” on page 76: chunks of
data can be sorted in memory and written out to disk as segment files, and then mul‐
tiple sorted segments can be merged into a larger sorted file. Mergesort has sequential
access patterns that perform well on disks. (Remember that optimizing for sequential
I/O was a recurring theme in Chapter 3. The same pattern reappears here.)

The sort utility in GNU Coreutils (Linux) automatically handles larger-than-
memory datasets by spilling to disk, and automatically parallelizes sorting across
multiple CPU cores [9]. This means that the simple chain of Unix commands we saw
earlier easily scales to large datasets, without running out of memory. The bottleneck
is likely to be the rate at which the input file can be read from disk.

The Unix Philosophy
It’s no coincidence that we were able to analyze a log file quite easily, using a chain of
commands like in the previous example: this was in fact one of the key design ideas of
Unix, and it remains astonishingly relevant today. Let’s look at it in some more depth
so that we can borrow some ideas from Unix [10].

Doug McIlroy, the inventor of Unix pipes, first described them like this in 1964 [11]:
“We should have some ways of connecting programs like [a] garden hose—screw in
another segment when it becomes necessary to massage data in another way. This is
the way of I/O also.” The plumbing analogy stuck, and the idea of connecting pro‐
grams with pipes became part of what is now known as the Unix philosophy—a set of
design principles that became popular among the developers and users of Unix. The
philosophy was described in 1978 as follows [12, 13]:

1. Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding new “features”.

2. Expect the output of every program to become the input to another, as yet
unknown, program. Don’t clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don’t insist on interactive input.

3. Design and build software, even operating systems, to be tried early, ideally within
weeks. Don’t hesitate to throw away the clumsy parts and rebuild them.

4. Use tools in preference to unskilled help to lighten a programming task, even if
you have to detour to build the tools and expect to throw some of them out after
you’ve finished using them.

This approach—automation, rapid prototyping, incremental iteration, being friendly
to experimentation, and breaking down large projects into manageable chunks—
sounds remarkably like the Agile and DevOps movements of today. Surprisingly little
has changed in four decades.

394 | Chapter 10: Batch Processing

ii. Another example of a uniform interface is URLs and HTTP, the foundations of the web. A URL identifies
a particular thing (resource) on a website, and you can link to any URL from any other website. A user with a
web browser can thus seamlessly jump between websites by following links, even though the servers may be
operated by entirely unrelated organizations. This principle seems obvious today, but it was a key insight in
making the web the success that it is today. Prior systems were not so uniform: for example, in the era of
bulletin board systems (BBSs), each system had its own phone number and baud rate configuration. A refer‐
ence from one BBS to another would have to be in the form of a phone number and modem settings; the user
would have to hang up, dial the other BBS, and then manually find the information they were looking for. It
wasn’t possible to link directly to some piece of content inside another BBS.

The sort tool is a great example of a program that does one thing well. It is arguably
a better sorting implementation than most programming languages have in their
standard libraries (which do not spill to disk and do not use multiple threads, even
when that would be beneficial). And yet, sort is barely useful in isolation. It only
becomes powerful in combination with the other Unix tools, such as uniq.

A Unix shell like bash lets us easily compose these small programs into surprisingly
powerful data processing jobs. Even though many of these programs are written by
different groups of people, they can be joined together in flexible ways. What does
Unix do to enable this composability?

A uniform interface
If you expect the output of one program to become the input to another program,
that means those programs must use the same data format—in other words, a com‐
patible interface. If you want to be able to connect any program’s output to any pro‐
gram’s input, that means that all programs must use the same input/output interface.

In Unix, that interface is a file (or, more precisely, a file descriptor). A file is just an
ordered sequence of bytes. Because that is such a simple interface, many different
things can be represented using the same interface: an actual file on the filesystem, a
communication channel to another process (Unix socket, stdin, stdout), a device
driver (say /dev/audio or /dev/lp0), a socket representing a TCP connection, and so
on. It’s easy to take this for granted, but it’s actually quite remarkable that these very
different things can share a uniform interface, so they can easily be plugged together.ii

By convention, many (but not all) Unix programs treat this sequence of bytes as
ASCII text. Our log analysis example used this fact: awk, sort, uniq, and head all treat
their input file as a list of records separated by the \n (newline, ASCII 0x0A) charac‐
ter. The choice of \n is arbitrary—arguably, the ASCII record separator 0x1E would
have been a better choice, since it’s intended for this purpose [14]—but in any case,
the fact that all these programs have standardized on using the same record separator
allows them to interoperate.

Batch Processing with Unix Tools | 395

The parsing of each record (i.e., a line of input) is more vague. Unix tools commonly
split a line into fields by whitespace or tab characters, but CSV (comma-separated),
pipe-separated, and other encodings are also used. Even a fairly simple tool like
xargs has half a dozen command-line options for specifying how its input should be
parsed.

The uniform interface of ASCII text mostly works, but it’s not exactly beautiful: our
log analysis example used {print $7} to extract the URL, which is not very readable.
In an ideal world this could have perhaps been {print $request_url} or something
of that sort. We will return to this idea later.

Although it’s not perfect, even decades later, the uniform interface of Unix is still
something remarkable. Not many pieces of software interoperate and compose as
well as Unix tools do: you can’t easily pipe the contents of your email account and
your online shopping history through a custom analysis tool into a spreadsheet and
post the results to a social network or a wiki. Today it’s an exception, not the norm,
to have programs that work together as smoothly as Unix tools do.

Even databases with the same data model often don’t make it easy to get data out of
one and into the other. This lack of integration leads to Balkanization of data.

Separation of logic and wiring

Another characteristic feature of Unix tools is their use of standard input (stdin) and
standard output (stdout). If you run a program and don’t specify anything else,
stdin comes from the keyboard and stdout goes to the screen. However, you can
also take input from a file and/or redirect output to a file. Pipes let you attach the
stdout of one process to the stdin of another process (with a small in-memory
buffer, and without writing the entire intermediate data stream to disk).

A program can still read and write files directly if it needs to, but the Unix approach
works best if a program doesn’t worry about particular file paths and simply uses
stdin and stdout. This allows a shell user to wire up the input and output in what‐
ever way they want; the program doesn’t know or care where the input is coming
from and where the output is going to. (One could say this is a form of loose coupling,
late binding [15], or inversion of control [16].) Separating the input/output wiring
from the program logic makes it easier to compose small tools into bigger systems.

You can even write your own programs and combine them with the tools provided
by the operating system. Your program just needs to read input from stdin and write
output to stdout, and it can participate in data processing pipelines. In the log analy‐
sis example, you could write a tool that translates user-agent strings into more sensi‐
ble browser identifiers, or a tool that translates IP addresses into country codes, and
simply plug it into the pipeline. The sort program doesn’t care whether it’s commu‐
nicating with another part of the operating system or with a program written by you.

396 | Chapter 10: Batch Processing

iii. Except by using a separate tool, such as netcat or curl. Unix started out trying to represent everything as
files, but the BSD sockets API deviated from that convention [17]. The research operating systems Plan 9 and
Inferno are more consistent in their use of files: they represent a TCP connection as a file in /net/tcp [18].

However, there are limits to what you can do with stdin and stdout. Programs that
need multiple inputs or outputs are possible but tricky. You can’t pipe a program’s
output into a network connection [17, 18].iii If a program directly opens files for read‐
ing and writing, or starts another program as a subprocess, or opens a network con‐
nection, then that I/O is wired up by the program itself. It can still be configurable
(through command-line options, for example), but the flexibility of wiring up inputs
and outputs in a shell is reduced.

Transparency and experimentation
Part of what makes Unix tools so successful is that they make it quite easy to see what
is going on:

• The input files to Unix commands are normally treated as immutable. This
means you can run the commands as often as you want, trying various
command-line options, without damaging the input files.

• You can end the pipeline at any point, pipe the output into less, and look at it to
see if it has the expected form. This ability to inspect is great for debugging.

• You can write the output of one pipeline stage to a file and use that file as input
to the next stage. This allows you to restart the later stage without rerunning the
entire pipeline.

Thus, even though Unix tools are quite blunt, simple tools compared to a query opti‐
mizer of a relational database, they remain amazingly useful, especially for experi‐
mentation.

However, the biggest limitation of Unix tools is that they run only on a single
machine—and that’s where tools like Hadoop come in.

MapReduce and Distributed Filesystems
MapReduce is a bit like Unix tools, but distributed across potentially thousands of
machines. Like Unix tools, it is a fairly blunt, brute-force, but surprisingly effective
tool. A single MapReduce job is comparable to a single Unix process: it takes one or
more inputs and produces one or more outputs.

As with most Unix tools, running a MapReduce job normally does not modify the
input and does not have any side effects other than producing the output. The output

MapReduce and Distributed Filesystems | 397

iv. One difference is that with HDFS, computing tasks can be scheduled to run on the machine that stores a
copy of a particular file, whereas object stores usually keep storage and computation separate. Reading from a
local disk has a performance advantage if network bandwidth is a bottleneck. Note however that if erasure
coding is used, the locality advantage is lost, because the data from several machines must be combined in
order to reconstitute the original file [20].

files are written once, in a sequential fashion (not modifying any existing part of a file
once it has been written).

While Unix tools use stdin and stdout as input and output, MapReduce jobs read
and write files on a distributed filesystem. In Hadoop’s implementation of Map‐
Reduce, that filesystem is called HDFS (Hadoop Distributed File System), an open
source reimplementation of the Google File System (GFS) [19].

Various other distributed filesystems besides HDFS exist, such as GlusterFS and the
Quantcast File System (QFS) [20]. Object storage services such as Amazon S3, Azure
Blob Storage, and OpenStack Swift [21] are similar in many ways.iv In this chapter we
will mostly use HDFS as a running example, but the principles apply to any dis‐
tributed filesystem.

HDFS is based on the shared-nothing principle (see the introduction to Part II), in
contrast to the shared-disk approach of Network Attached Storage (NAS) and Storage
Area Network (SAN) architectures. Shared-disk storage is implemented by a central‐
ized storage appliance, often using custom hardware and special network infrastruc‐
ture such as Fibre Channel. On the other hand, the shared-nothing approach requires
no special hardware, only computers connected by a conventional datacenter net‐
work.

HDFS consists of a daemon process running on each machine, exposing a network
service that allows other nodes to access files stored on that machine (assuming that
every general-purpose machine in a datacenter has some disks attached to it). A cen‐
tral server called the NameNode keeps track of which file blocks are stored on which
machine. Thus, HDFS conceptually creates one big filesystem that can use the space
on the disks of all machines running the daemon.

In order to tolerate machine and disk failures, file blocks are replicated on multiple
machines. Replication may mean simply several copies of the same data on multiple
machines, as in Chapter 5, or an erasure coding scheme such as Reed–Solomon codes,
which allows lost data to be recovered with lower storage overhead than full replica‐
tion [20, 22]. The techniques are similar to RAID, which provides redundancy across
several disks attached to the same machine; the difference is that in a distributed file‐
system, file access and replication are done over a conventional datacenter network
without special hardware.

398 | Chapter 10: Batch Processing

HDFS has scaled well: at the time of writing, the biggest HDFS deployments run on
tens of thousands of machines, with combined storage capacity of hundreds of peta‐
bytes [23]. Such large scale has become viable because the cost of data storage and
access on HDFS, using commodity hardware and open source software, is much
lower than that of the equivalent capacity on a dedicated storage appliance [24].

MapReduce Job Execution
MapReduce is a programming framework with which you can write code to process
large datasets in a distributed filesystem like HDFS. The easiest way of understanding
it is by referring back to the web server log analysis example in “Simple Log Analysis”
on page 391. The pattern of data processing in MapReduce is very similar to this
example:

1. Read a set of input files, and break it up into records. In the web server log exam‐
ple, each record is one line in the log (that is, \n is the record separator).

2. Call the mapper function to extract a key and value from each input record. In
the preceding example, the mapper function is awk '{print $7}': it extracts the
URL ($7) as the key, and leaves the value empty.

3. Sort all of the key-value pairs by key. In the log example, this is done by the first
sort command.

4. Call the reducer function to iterate over the sorted key-value pairs. If there are
multiple occurrences of the same key, the sorting has made them adjacent in the
list, so it is easy to combine those values without having to keep a lot of state in
memory. In the preceding example, the reducer is implemented by the command
uniq -c, which counts the number of adjacent records with the same key.

Those four steps can be performed by one MapReduce job. Steps 2 (map) and 4
(reduce) are where you write your custom data processing code. Step 1 (breaking files
into records) is handled by the input format parser. Step 3, the sort step, is implicit
in MapReduce—you don’t have to write it, because the output from the mapper is
always sorted before it is given to the reducer.

To create a MapReduce job, you need to implement two callback functions, the map‐
per and reducer, which behave as follows (see also “MapReduce Querying” on page
46):

Mapper
The mapper is called once for every input record, and its job is to extract the key
and value from the input record. For each input, it may generate any number of
key-value pairs (including none). It does not keep any state from one input
record to the next, so each record is handled independently.

MapReduce and Distributed Filesystems | 399

Reducer
The MapReduce framework takes the key-value pairs produced by the mappers,
collects all the values belonging to the same key, and calls the reducer with an
iterator over that collection of values. The reducer can produce output records
(such as the number of occurrences of the same URL).

In the web server log example, we had a second sort command in step 5, which
ranked URLs by number of requests. In MapReduce, if you need a second sorting
stage, you can implement it by writing a second MapReduce job and using the output
of the first job as input to the second job. Viewed like this, the role of the mapper is to
prepare the data by putting it into a form that is suitable for sorting, and the role of
the reducer is to process the data that has been sorted.

Distributed execution of MapReduce
The main difference from pipelines of Unix commands is that MapReduce can paral‐
lelize a computation across many machines, without you having to write code to
explicitly handle the parallelism. The mapper and reducer only operate on one record
at a time; they don’t need to know where their input is coming from or their output is
going to, so the framework can handle the complexities of moving data between
machines.

It is possible to use standard Unix tools as mappers and reducers in a distributed
computation [25], but more commonly they are implemented as functions in a con‐
ventional programming language. In Hadoop MapReduce, the mapper and reducer
are each a Java class that implements a particular interface. In MongoDB and
CouchDB, mappers and reducers are JavaScript functions (see “MapReduce Query‐
ing” on page 46).

Figure 10-1 shows the dataflow in a Hadoop MapReduce job. Its parallelization is
based on partitioning (see Chapter 6): the input to a job is typically a directory in
HDFS, and each file or file block within the input directory is considered to be a sepa‐
rate partition that can be processed by a separate map task (marked by m 1, m 2, and
m 3 in Figure 10-1).

Each input file is typically hundreds of megabytes in size. The MapReduce scheduler
(not shown in the diagram) tries to run each mapper on one of the machines that
stores a replica of the input file, provided that machine has enough spare RAM and
CPU resources to run the map task [26]. This principle is known as putting the com‐
putation near the data [27]: it saves copying the input file over the network, reducing
network load and increasing locality.

400 | Chapter 10: Batch Processing

Figure 10-1. A MapReduce job with three mappers and three reducers.

In most cases, the application code that should run in the map task is not yet present
on the machine that is assigned the task of running it, so the MapReduce framework
first copies the code (e.g., JAR files in the case of a Java program) to the appropriate
machines. It then starts the map task and begins reading the input file, passing one
record at a time to the mapper callback. The output of the mapper consists of key-
value pairs.

The reduce side of the computation is also partitioned. While the number of map
tasks is determined by the number of input file blocks, the number of reduce tasks is
configured by the job author (it can be different from the number of map tasks). To
ensure that all key-value pairs with the same key end up at the same reducer, the
framework uses a hash of the key to determine which reduce task should receive a
particular key-value pair (see “Partitioning by Hash of Key” on page 203).

The key-value pairs must be sorted, but the dataset is likely too large to be sorted with
a conventional sorting algorithm on a single machine. Instead, the sorting is per‐
formed in stages. First, each map task partitions its output by reducer, based on the
hash of the key. Each of these partitions is written to a sorted file on the mapper’s
local disk, using a technique similar to what we discussed in “SSTables and LSM-
Trees” on page 76.

MapReduce and Distributed Filesystems | 401

Whenever a mapper finishes reading its input file and writing its sorted output files,
the MapReduce scheduler notifies the reducers that they can start fetching the output
files from that mapper. The reducers connect to each of the mappers and download
the files of sorted key-value pairs for their partition. The process of partitioning by
reducer, sorting, and copying data partitions from mappers to reducers is known as
the shuffle [26] (a confusing term—unlike shuffling a deck of cards, there is no ran‐
domness in MapReduce).

The reduce task takes the files from the mappers and merges them together, preserv‐
ing the sort order. Thus, if different mappers produced records with the same key,
they will be adjacent in the merged reducer input.

The reducer is called with a key and an iterator that incrementally scans over all
records with the same key (which may in some cases not all fit in memory). The
reducer can use arbitrary logic to process these records, and can generate any number
of output records. These output records are written to a file on the distributed filesys‐
tem (usually, one copy on the local disk of the machine running the reducer, with
replicas on other machines).

MapReduce workflows
The range of problems you can solve with a single MapReduce job is limited. Refer‐
ring back to the log analysis example, a single MapReduce job could determine the
number of page views per URL, but not the most popular URLs, since that requires a
second round of sorting.

Thus, it is very common for MapReduce jobs to be chained together into workflows,
such that the output of one job becomes the input to the next job. The Hadoop Map‐
Reduce framework does not have any particular support for workflows, so this chain‐
ing is done implicitly by directory name: the first job must be configured to write its
output to a designated directory in HDFS, and the second job must be configured to
read that same directory name as its input. From the MapReduce framework’s point
of view, they are two independent jobs.

Chained MapReduce jobs are therefore less like pipelines of Unix commands (which
pass the output of one process as input to another process directly, using only a small
in-memory buffer) and more like a sequence of commands where each command’s
output is written to a temporary file, and the next command reads from the tempo‐
rary file. This design has advantages and disadvantages, which we will discuss in
“Materialization of Intermediate State” on page 419.

A batch job’s output is only considered valid when the job has completed successfully
(MapReduce discards the partial output of a failed job). Therefore, one job in a work‐
flow can only start when the prior jobs—that is, the jobs that produce its input direc‐
tories—have completed successfully. To handle these dependencies between job

402 | Chapter 10: Batch Processing

v. The joins we talk about in this book are generally equi-joins, the most common type of join, in which a
record is associated with other records that have an identical value in a particular field (such as an ID). Some
databases support more general types of joins, for example using a less-than operator instead of an equality
operator, but we do not have space to cover them here.

executions, various workflow schedulers for Hadoop have been developed, including
Oozie, Azkaban, Luigi, Airflow, and Pinball [28].

These schedulers also have management features that are useful when maintaining a
large collection of batch jobs. Workflows consisting of 50 to 100 MapReduce jobs are
common when building recommendation systems [29], and in a large organization,
many different teams may be running different jobs that read each other’s output.
Tool support is important for managing such complex dataflows.

Various higher-level tools for Hadoop, such as Pig [30], Hive [31], Cascading [32],
Crunch [33], and FlumeJava [34], also set up workflows of multiple MapReduce
stages that are automatically wired together appropriately.

Reduce-Side Joins and Grouping
We discussed joins in Chapter 2 in the context of data models and query languages,
but we have not delved into how joins are actually implemented. It is time that we
pick up that thread again.

In many datasets it is common for one record to have an association with another
record: a foreign key in a relational model, a document reference in a document
model, or an edge in a graph model. A join is necessary whenever you have some
code that needs to access records on both sides of that association (both the record
that holds the reference and the record being referenced). As discussed in Chapter 2,
denormalization can reduce the need for joins but generally not remove it entirely.v

In a database, if you execute a query that involves only a small number of records, the
database will typically use an index to quickly locate the records of interest (see Chap‐
ter 3). If the query involves joins, it may require multiple index lookups. However,
MapReduce has no concept of indexes—at least not in the usual sense.

When a MapReduce job is given a set of files as input, it reads the entire content of all
of those files; a database would call this operation a full table scan. If you only want to
read a small number of records, a full table scan is outrageously expensive compared
to an index lookup. However, in analytic queries (see “Transaction Processing or
Analytics?” on page 90) it is common to want to calculate aggregates over a large
number of records. In this case, scanning the entire input might be quite a reasonable
thing to do, especially if you can parallelize the processing across multiple machines.

MapReduce and Distributed Filesystems | 403

When we talk about joins in the context of batch processing, we mean resolving all
occurrences of some association within a dataset. For example, we assume that a job
is processing the data for all users simultaneously, not merely looking up the data for
one particular user (which would be done far more efficiently with an index).

Example: analysis of user activity events
A typical example of a join in a batch job is illustrated in Figure 10-2. On the left is a
log of events describing the things that logged-in users did on a website (known as
activity events or clickstream data), and on the right is a database of users. You can
think of this example as being part of a star schema (see “Stars and Snowflakes: Sche‐
mas for Analytics” on page 93): the log of events is the fact table, and the user data‐
base is one of the dimensions.

Figure 10-2. A join between a log of user activity events and a database of user profiles.

An analytics task may need to correlate user activity with user profile information:
for example, if the profile contains the user’s age or date of birth, the system could
determine which pages are most popular with which age groups. However, the activ‐
ity events contain only the user ID, not the full user profile information. Embedding
that profile information in every single activity event would most likely be too waste‐
ful. Therefore, the activity events need to be joined with the user profile database.

The simplest implementation of this join would go over the activity events one by
one and query the user database (on a remote server) for every user ID it encounters.
This is possible, but it would most likely suffer from very poor performance: the pro‐
cessing throughput would be limited by the round-trip time to the database server,
the effectiveness of a local cache would depend very much on the distribution of data,
and running a large number of queries in parallel could easily overwhelm the data‐
base [35].

404 | Chapter 10: Batch Processing

In order to achieve good throughput in a batch process, the computation must be (as
much as possible) local to one machine. Making random-access requests over the
network for every record you want to process is too slow. Moreover, querying a
remote database would mean that the batch job becomes nondeterministic, because
the data in the remote database might change.

Thus, a better approach would be to take a copy of the user database (for example,
extracted from a database backup using an ETL process—see “Data Warehousing” on
page 91) and to put it in the same distributed filesystem as the log of user activity
events. You would then have the user database in one set of files in HDFS and the
user activity records in another set of files, and could use MapReduce to bring
together all of the relevant records in the same place and process them efficiently.

Sort-merge joins
Recall that the purpose of the mapper is to extract a key and value from each input
record. In the case of Figure 10-2, this key would be the user ID: one set of mappers
would go over the activity events (extracting the user ID as the key and the activity
event as the value), while another set of mappers would go over the user database
(extracting the user ID as the key and the user’s date of birth as the value). This pro‐
cess is illustrated in Figure 10-3.

Figure 10-3. A reduce-side sort-merge join on user ID. If the input datasets are parti‐
tioned into multiple files, each could be processed with multiple mappers in parallel.

When the MapReduce framework partitions the mapper output by key and then sorts
the key-value pairs, the effect is that all the activity events and the user record with
the same user ID become adjacent to each other in the reducer input. The Map‐
Reduce job can even arrange the records to be sorted such that the reducer always

MapReduce and Distributed Filesystems | 405

sees the record from the user database first, followed by the activity events in time‐
stamp order—this technique is known as a secondary sort [26].

The reducer can then perform the actual join logic easily: the reducer function is
called once for every user ID, and thanks to the secondary sort, the first value is
expected to be the date-of-birth record from the user database. The reducer stores the
date of birth in a local variable and then iterates over the activity events with the same
user ID, outputting pairs of viewed-url and viewer-age-in-years. Subsequent Map‐
Reduce jobs could then calculate the distribution of viewer ages for each URL, and
cluster by age group.

Since the reducer processes all of the records for a particular user ID in one go, it only
needs to keep one user record in memory at any one time, and it never needs to make
any requests over the network. This algorithm is known as a sort-merge join, since
mapper output is sorted by key, and the reducers then merge together the sorted lists
of records from both sides of the join.

Bringing related data together in the same place
In a sort-merge join, the mappers and the sorting process make sure that all the nec‐
essary data to perform the join operation for a particular user ID is brought together
in the same place: a single call to the reducer. Having lined up all the required data in
advance, the reducer can be a fairly simple, single-threaded piece of code that can
churn through records with high throughput and low memory overhead.

One way of looking at this architecture is that mappers “send messages” to the reduc‐
ers. When a mapper emits a key-value pair, the key acts like the destination address
to which the value should be delivered. Even though the key is just an arbitrary string
(not an actual network address like an IP address and port number), it behaves like
an address: all key-value pairs with the same key will be delivered to the same desti‐
nation (a call to the reducer).

Using the MapReduce programming model has separated the physical network com‐
munication aspects of the computation (getting the data to the right machine) from
the application logic (processing the data once you have it). This separation contrasts
with the typical use of databases, where a request to fetch data from a database often
occurs somewhere deep inside a piece of application code [36]. Since MapReduce
handles all network communication, it also shields the application code from having
to worry about partial failures, such as the crash of another node: MapReduce trans‐
parently retries failed tasks without affecting the application logic.

GROUP BY
Besides joins, another common use of the “bringing related data to the same place”
pattern is grouping records by some key (as in the GROUP BY clause in SQL). All

406 | Chapter 10: Batch Processing

records with the same key form a group, and the next step is often to perform some
kind of aggregation within each group—for example:

• Counting the number of records in each group (like in our example of counting
page views, which you would express as a COUNT(*) aggregation in SQL)

• Adding up the values in one particular field (SUM(fieldname)) in SQL
• Picking the top k records according to some ranking function

The simplest way of implementing such a grouping operation with MapReduce is to
set up the mappers so that the key-value pairs they produce use the desired grouping
key. The partitioning and sorting process then brings together all the records with the
same key in the same reducer. Thus, grouping and joining look quite similar when
implemented on top of MapReduce.

Another common use for grouping is collating all the activity events for a particular
user session, in order to find out the sequence of actions that the user took—a pro‐
cess called sessionization [37]. For example, such analysis could be used to work out
whether users who were shown a new version of your website are more likely to make
a purchase than those who were shown the old version (A/B testing), or to calculate
whether some marketing activity is worthwhile.

If you have multiple web servers handling user requests, the activity events for a par‐
ticular user are most likely scattered across various different servers’ log files. You can
implement sessionization by using a session cookie, user ID, or similar identifier as
the grouping key and bringing all the activity events for a particular user together in
one place, while distributing different users’ events across different partitions.

Handling skew
The pattern of “bringing all records with the same key to the same place” breaks
down if there is a very large amount of data related to a single key. For example, in a
social network, most users might be connected to a few hundred people, but a small
number of celebrities may have many millions of followers. Such disproportionately
active database records are known as linchpin objects [38] or hot keys.

Collecting all activity related to a celebrity (e.g., replies to something they posted) in a
single reducer can lead to significant skew (also known as hot spots)—that is, one
reducer that must process significantly more records than the others (see “Skewed
Workloads and Relieving Hot Spots” on page 205). Since a MapReduce job is only
complete when all of its mappers and reducers have completed, any subsequent jobs
must wait for the slowest reducer to complete before they can start.

If a join input has hot keys, there are a few algorithms you can use to compensate.
For example, the skewed join method in Pig first runs a sampling job to determine
which keys are hot [39]. When performing the actual join, the mappers send any

MapReduce and Distributed Filesystems | 407

records relating to a hot key to one of several reducers, chosen at random (in contrast
to conventional MapReduce, which chooses a reducer deterministically based on a
hash of the key). For the other input to the join, records relating to the hot key need
to be replicated to all reducers handling that key [40].

This technique spreads the work of handling the hot key over several reducers, which
allows it to be parallelized better, at the cost of having to replicate the other join input
to multiple reducers. The sharded join method in Crunch is similar, but requires the
hot keys to be specified explicitly rather than using a sampling job. This technique is
also very similar to one we discussed in “Skewed Workloads and Relieving Hot
Spots” on page 205, using randomization to alleviate hot spots in a partitioned data‐
base.

Hive’s skewed join optimization takes an alternative approach. It requires hot keys to
be specified explicitly in the table metadata, and it stores records related to those keys
in separate files from the rest. When performing a join on that table, it uses a map-
side join (see the next section) for the hot keys.

When grouping records by a hot key and aggregating them, you can perform the
grouping in two stages. The first MapReduce stage sends records to a random
reducer, so that each reducer performs the grouping on a subset of records for the
hot key and outputs a more compact aggregated value per key. The second Map‐
Reduce job then combines the values from all of the first-stage reducers into a single
value per key.

Map-Side Joins
The join algorithms described in the last section perform the actual join logic in the
reducers, and are hence known as reduce-side joins. The mappers take the role of pre‐
paring the input data: extracting the key and value from each input record, assigning
the key-value pairs to a reducer partition, and sorting by key.

The reduce-side approach has the advantage that you do not need to make any
assumptions about the input data: whatever its properties and structure, the mappers
can prepare the data to be ready for joining. However, the downside is that all that
sorting, copying to reducers, and merging of reducer inputs can be quite expensive.
Depending on the available memory buffers, data may be written to disk several
times as it passes through the stages of MapReduce [37].

On the other hand, if you can make certain assumptions about your input data, it is
possible to make joins faster by using a so-called map-side join. This approach uses a
cut-down MapReduce job in which there are no reducers and no sorting. Instead,
each mapper simply reads one input file block from the distributed filesystem and
writes one output file to the filesystem—that is all.

408 | Chapter 10: Batch Processing

vi. This example assumes that there is exactly one entry for each key in the hash table, which is probably true
with a user database (a user ID uniquely identifies a user). In general, the hash table may need to contain
several entries with the same key, and the join operator will output all matches for a key.

Broadcast hash joins
The simplest way of performing a map-side join applies in the case where a large
dataset is joined with a small dataset. In particular, the small dataset needs to be small
enough that it can be loaded entirely into memory in each of the mappers.

For example, imagine in the case of Figure 10-2 that the user database is small
enough to fit in memory. In this case, when a mapper starts up, it can first read the
user database from the distributed filesystem into an in-memory hash table. Once
this is done, the mapper can scan over the user activity events and simply look up the
user ID for each event in the hash table.vi

There can still be several map tasks: one for each file block of the large input to the
join (in the example of Figure 10-2, the activity events are the large input). Each of
these mappers loads the small input entirely into memory.

This simple but effective algorithm is called a broadcast hash join: the word broadcast
reflects the fact that each mapper for a partition of the large input reads the entirety
of the small input (so the small input is effectively “broadcast” to all partitions of the
large input), and the word hash reflects its use of a hash table. This join method is
supported by Pig (under the name “replicated join”), Hive (“MapJoin”), Cascading,
and Crunch. It is also used in data warehouse query engines such as Impala [41].

Instead of loading the small join input into an in-memory hash table, an alternative is
to store the small join input in a read-only index on the local disk [42]. The fre‐
quently used parts of this index will remain in the operating system’s page cache, so
this approach can provide random-access lookups almost as fast as an in-memory
hash table, but without actually requiring the dataset to fit in memory.

Partitioned hash joins
If the inputs to the map-side join are partitioned in the same way, then the hash join
approach can be applied to each partition independently. In the case of Figure 10-2,
you might arrange for the activity events and the user database to each be partitioned
based on the last decimal digit of the user ID (so there are 10 partitions on either
side). For example, mapper 3 first loads all users with an ID ending in 3 into a hash
table, and then scans over all the activity events for each user whose ID ends in 3.

If the partitioning is done correctly, you can be sure that all the records you might
want to join are located in the same numbered partition, and so it is sufficient for
each mapper to only read one partition from each of the input datasets. This has the
advantage that each mapper can load a smaller amount of data into its hash table.

MapReduce and Distributed Filesystems | 409

This approach only works if both of the join’s inputs have the same number of parti‐
tions, with records assigned to partitions based on the same key and the same hash
function. If the inputs are generated by prior MapReduce jobs that already perform
this grouping, then this can be a reasonable assumption to make.

Partitioned hash joins are known as bucketed map joins in Hive [37].

Map-side merge joins
Another variant of a map-side join applies if the input datasets are not only parti‐
tioned in the same way, but also sorted based on the same key. In this case, it does not
matter whether the inputs are small enough to fit in memory, because a mapper can
perform the same merging operation that would normally be done by a reducer:
reading both input files incrementally, in order of ascending key, and matching
records with the same key.

If a map-side merge join is possible, it probably means that prior MapReduce jobs
brought the input datasets into this partitioned and sorted form in the first place. In
principle, this join could have been performed in the reduce stage of the prior job.
However, it may still be appropriate to perform the merge join in a separate map-
only job, for example if the partitioned and sorted datasets are also needed for other
purposes besides this particular join.

MapReduce workflows with map-side joins
When the output of a MapReduce join is consumed by downstream jobs, the choice
of map-side or reduce-side join affects the structure of the output. The output of a
reduce-side join is partitioned and sorted by the join key, whereas the output of a
map-side join is partitioned and sorted in the same way as the large input (since one
map task is started for each file block of the join’s large input, regardless of whether a
partitioned or broadcast join is used).

As discussed, map-side joins also make more assumptions about the size, sorting, and
partitioning of their input datasets. Knowing about the physical layout of datasets in
the distributed filesystem becomes important when optimizing join strategies: it is
not sufficient to just know the encoding format and the name of the directory in
which the data is stored; you must also know the number of partitions and the keys
by which the data is partitioned and sorted.

In the Hadoop ecosystem, this kind of metadata about the partitioning of datasets is
often maintained in HCatalog and the Hive metastore [37].

410 | Chapter 10: Batch Processing

The Output of Batch Workflows
We have talked a lot about the various algorithms for implementing workflows of
MapReduce jobs, but we neglected an important question: what is the result of all of
that processing, once it is done? Why are we running all these jobs in the first place?

In the case of database queries, we distinguished transaction processing (OLTP) pur‐
poses from analytic purposes (see “Transaction Processing or Analytics?” on page
90). We saw that OLTP queries generally look up a small number of records by key,
using indexes, in order to present them to a user (for example, on a web page). On
the other hand, analytic queries often scan over a large number of records, perform‐
ing groupings and aggregations, and the output often has the form of a report: a
graph showing the change in a metric over time, or the top 10 items according to
some ranking, or a breakdown of some quantity into subcategories. The consumer of
such a report is often an analyst or a manager who needs to make business decisions.

Where does batch processing fit in? It is not transaction processing, nor is it analyt‐
ics. It is closer to analytics, in that a batch process typically scans over large portions
of an input dataset. However, a workflow of MapReduce jobs is not the same as a
SQL query used for analytic purposes (see “Comparing Hadoop to Distributed Data‐
bases” on page 414). The output of a batch process is often not a report, but some
other kind of structure.

Building search indexes
Google’s original use of MapReduce was to build indexes for its search engine, which
was implemented as a workflow of 5 to 10 MapReduce jobs [1]. Although Google
later moved away from using MapReduce for this purpose [43], it helps to under‐
stand MapReduce if you look at it through the lens of building a search index. (Even
today, Hadoop MapReduce remains a good way of building indexes for Lucene/Solr
[44].)

We saw briefly in “Full-text search and fuzzy indexes” on page 88 how a full-text
search index such as Lucene works: it is a file (the term dictionary) in which you can
efficiently look up a particular keyword and find the list of all the document IDs con‐
taining that keyword (the postings list). This is a very simplified view of a search
index—in reality it requires various additional data, in order to rank search results by
relevance, correct misspellings, resolve synonyms, and so on—but the principle
holds.

If you need to perform a full-text search over a fixed set of documents, then a batch
process is a very effective way of building the indexes: the mappers partition the set of
documents as needed, each reducer builds the index for its partition, and the index
files are written to the distributed filesystem. Building such document-partitioned
indexes (see “Partitioning and Secondary Indexes” on page 206) parallelizes very well.

MapReduce and Distributed Filesystems | 411

Since querying a search index by keyword is a read-only operation, these index files
are immutable once they have been created.

If the indexed set of documents changes, one option is to periodically rerun the entire
indexing workflow for the entire set of documents, and replace the previous index
files wholesale with the new index files when it is done. This approach can be compu‐
tationally expensive if only a small number of documents have changed, but it has the
advantage that the indexing process is very easy to reason about: documents in,
indexes out.

Alternatively, it is possible to build indexes incrementally. As discussed in Chapter 3,
if you want to add, remove, or update documents in an index, Lucene writes out new
segment files and asynchronously merges and compacts segment files in the back‐
ground. We will see more on such incremental processing in Chapter 11.

Key-value stores as batch process output
Search indexes are just one example of the possible outputs of a batch processing
workflow. Another common use for batch processing is to build machine learning
systems such as classifiers (e.g., spam filters, anomaly detection, image recognition)
and recommendation systems (e.g., people you may know, products you may be
interested in, or related searches [29]).

The output of those batch jobs is often some kind of database: for example, a data‐
base that can be queried by user ID to obtain suggested friends for that user, or a
database that can be queried by product ID to get a list of related products [45].

These databases need to be queried from the web application that handles user
requests, which is usually separate from the Hadoop infrastructure. So how does the
output from the batch process get back into a database where the web application can
query it?

The most obvious choice might be to use the client library for your favorite database
directly within a mapper or reducer, and to write from the batch job directly to the
database server, one record at a time. This will work (assuming your firewall rules
allow direct access from your Hadoop environment to your production databases),
but it is a bad idea for several reasons:

• As discussed previously in the context of joins, making a network request for
every single record is orders of magnitude slower than the normal throughput of
a batch task. Even if the client library supports batching, performance is likely to
be poor.

• MapReduce jobs often run many tasks in parallel. If all the mappers or reducers
concurrently write to the same output database, with a rate expected of a batch
process, that database can easily be overwhelmed, and its performance for quer‐

412 | Chapter 10: Batch Processing

ies is likely to suffer. This can in turn cause operational problems in other parts
of the system [35].

• Normally, MapReduce provides a clean all-or-nothing guarantee for job output:
if a job succeeds, the result is the output of running every task exactly once, even
if some tasks failed and had to be retried along the way; if the entire job fails, no
output is produced. However, writing to an external system from inside a job
produces externally visible side effects that cannot be hidden in this way. Thus,
you have to worry about the results from partially completed jobs being visible to
other systems, and the complexities of Hadoop task attempts and speculative
execution.

A much better solution is to build a brand-new database inside the batch job and
write it as files to the job’s output directory in the distributed filesystem, just like the
search indexes in the last section. Those data files are then immutable once written,
and can be loaded in bulk into servers that handle read-only queries. Various key-
value stores support building database files in MapReduce jobs, including Voldemort
[46], Terrapin [47], ElephantDB [48], and HBase bulk loading [49].

Building these database files is a good use of MapReduce: using a mapper to extract a
key and then sorting by that key is already a lot of the work required to build an
index. Since most of these key-value stores are read-only (the files can only be written
once by a batch job and are then immutable), the data structures are quite simple. For
example, they do not require a WAL (see “Making B-trees reliable” on page 82).

When loading data into Voldemort, the server continues serving requests to the old
data files while the new data files are copied from the distributed filesystem to the
server’s local disk. Once the copying is complete, the server atomically switches over
to querying the new files. If anything goes wrong in this process, it can easily switch
back to the old files again, since they are still there and immutable [46].

Philosophy of batch process outputs
The Unix philosophy that we discussed earlier in this chapter (“The Unix Philoso‐
phy” on page 394) encourages experimentation by being very explicit about dataflow:
a program reads its input and writes its output. In the process, the input is left
unchanged, any previous output is completely replaced with the new output, and
there are no other side effects. This means that you can rerun a command as often as
you like, tweaking or debugging it, without messing up the state of your system.

The handling of output from MapReduce jobs follows the same philosophy. By treat‐
ing inputs as immutable and avoiding side effects (such as writing to external data‐
bases), batch jobs not only achieve good performance but also become much easier to
maintain:

MapReduce and Distributed Filesystems | 413

• If you introduce a bug into the code and the output is wrong or corrupted, you
can simply roll back to a previous version of the code and rerun the job, and the
output will be correct again. Or, even simpler, you can keep the old output in a
different directory and simply switch back to it. Databases with read-write trans‐
actions do not have this property: if you deploy buggy code that writes bad data
to the database, then rolling back the code will do nothing to fix the data in the
database. (The idea of being able to recover from buggy code has been called
human fault tolerance [50].)

• As a consequence of this ease of rolling back, feature development can proceed
more quickly than in an environment where mistakes could mean irreversible
damage. This principle of minimizing irreversibility is beneficial for Agile soft‐
ware development [51].

• If a map or reduce task fails, the MapReduce framework automatically re-
schedules it and runs it again on the same input. If the failure is due to a bug in
the code, it will keep crashing and eventually cause the job to fail after a few
attempts; but if the failure is due to a transient issue, the fault is tolerated. This
automatic retry is only safe because inputs are immutable and outputs from
failed tasks are discarded by the MapReduce framework.

• The same set of files can be used as input for various different jobs, including
monitoring jobs that calculate metrics and evaluate whether a job’s output has
the expected characteristics (for example, by comparing it to the output from the
previous run and measuring discrepancies).

• Like Unix tools, MapReduce jobs separate logic from wiring (configuring the
input and output directories), which provides a separation of concerns and ena‐
bles potential reuse of code: one team can focus on implementing a job that does
one thing well, while other teams can decide where and when to run that job.

In these areas, the design principles that worked well for Unix also seem to be work‐
ing well for Hadoop—but Unix and Hadoop also differ in some ways. For example,
because most Unix tools assume untyped text files, they have to do a lot of input
parsing (our log analysis example at the beginning of the chapter used {print $7} to
extract the URL). On Hadoop, some of those low-value syntactic conversions are
eliminated by using more structured file formats: Avro (see “Avro” on page 122) and
Parquet (see “Column-Oriented Storage” on page 95) are often used, as they provide
efficient schema-based encoding and allow evolution of their schemas over time (see
Chapter 4).

Comparing Hadoop to Distributed Databases
As we have seen, Hadoop is somewhat like a distributed version of Unix, where
HDFS is the filesystem and MapReduce is a quirky implementation of a Unix process

414 | Chapter 10: Batch Processing

(which happens to always run the sort utility between the map phase and the reduce
phase). We saw how you can implement various join and grouping operations on top
of these primitives.

When the MapReduce paper [1] was published, it was—in some sense—not at all
new. All of the processing and parallel join algorithms that we discussed in the last
few sections had already been implemented in so-called massively parallel processing
(MPP) databases more than a decade previously [3, 40]. For example, the Gamma
database machine, Teradata, and Tandem NonStop SQL were pioneers in this area
[52].

The biggest difference is that MPP databases focus on parallel execution of analytic
SQL queries on a cluster of machines, while the combination of MapReduce and a
distributed filesystem [19] provides something much more like a general-purpose
operating system that can run arbitrary programs.

Diversity of storage
Databases require you to structure data according to a particular model (e.g., rela‐
tional or documents), whereas files in a distributed filesystem are just byte sequences,
which can be written using any data model and encoding. They might be collections
of database records, but they can equally well be text, images, videos, sensor readings,
sparse matrices, feature vectors, genome sequences, or any other kind of data.

To put it bluntly, Hadoop opened up the possibility of indiscriminately dumping data
into HDFS, and only later figuring out how to process it further [53]. By contrast,
MPP databases typically require careful up-front modeling of the data and query pat‐
terns before importing the data into the database’s proprietary storage format.

From a purist’s point of view, it may seem that this careful modeling and import is
desirable, because it means users of the database have better-quality data to work
with. However, in practice, it appears that simply making data available quickly—
even if it is in a quirky, difficult-to-use, raw format—is often more valuable than try‐
ing to decide on the ideal data model up front [54].

The idea is similar to a data warehouse (see “Data Warehousing” on page 91): simply
bringing data from various parts of a large organization together in one place is val‐
uable, because it enables joins across datasets that were previously disparate. The
careful schema design required by an MPP database slows down that centralized data
collection; collecting data in its raw form, and worrying about schema design later,
allows the data collection to be speeded up (a concept sometimes known as a “data
lake” or “enterprise data hub” [55]).

Indiscriminate data dumping shifts the burden of interpreting the data: instead of
forcing the producer of a dataset to bring it into a standardized format, the interpre‐
tation of the data becomes the consumer’s problem (the schema-on-read approach

MapReduce and Distributed Filesystems | 415

[56]; see “Schema flexibility in the document model” on page 39). This can be an
advantage if the producer and consumers are different teams with different priorities.
There may not even be one ideal data model, but rather different views onto the data
that are suitable for different purposes. Simply dumping data in its raw form allows
for several such transformations. This approach has been dubbed the sushi principle:
“raw data is better” [57].

Thus, Hadoop has often been used for implementing ETL processes (see “Data Ware‐
housing” on page 91): data from transaction processing systems is dumped into the
distributed filesystem in some raw form, and then MapReduce jobs are written to
clean up that data, transform it into a relational form, and import it into an MPP data
warehouse for analytic purposes. Data modeling still happens, but it is in a separate
step, decoupled from the data collection. This decoupling is possible because a dis‐
tributed filesystem supports data encoded in any format.

Diversity of processing models
MPP databases are monolithic, tightly integrated pieces of software that take care of
storage layout on disk, query planning, scheduling, and execution. Since these com‐
ponents can all be tuned and optimized for the specific needs of the database, the sys‐
tem as a whole can achieve very good performance on the types of queries for which
it is designed. Moreover, the SQL query language allows expressive queries and ele‐
gant semantics without the need to write code, making it accessible to graphical tools
used by business analysts (such as Tableau).

On the other hand, not all kinds of processing can be sensibly expressed as SQL quer‐
ies. For example, if you are building machine learning and recommendation systems,
or full-text search indexes with relevance ranking models, or performing image anal‐
ysis, you most likely need a more general model of data processing. These kinds of
processing are often very specific to a particular application (e.g., feature engineering
for machine learning, natural language models for machine translation, risk estima‐
tion functions for fraud prediction), so they inevitably require writing code, not just
queries.

MapReduce gave engineers the ability to easily run their own code over large data‐
sets. If you have HDFS and MapReduce, you can build a SQL query execution engine
on top of it, and indeed this is what the Hive project did [31]. However, you can also
write many other forms of batch processes that do not lend themselves to being
expressed as a SQL query.

Subsequently, people found that MapReduce was too limiting and performed too
badly for some types of processing, so various other processing models were devel‐
oped on top of Hadoop (we will see some of them in “Beyond MapReduce” on page
419). Having two processing models, SQL and MapReduce, was not enough: even
more different models were needed! And due to the openness of the Hadoop plat‐

416 | Chapter 10: Batch Processing

form, it was feasible to implement a whole range of approaches, which would not
have been possible within the confines of a monolithic MPP database [58].

Crucially, those various processing models can all be run on a single shared-use clus‐
ter of machines, all accessing the same files on the distributed filesystem. In the
Hadoop approach, there is no need to import the data into several different special‐
ized systems for different kinds of processing: the system is flexible enough to sup‐
port a diverse set of workloads within the same cluster. Not having to move data
around makes it a lot easier to derive value from the data, and a lot easier to experi‐
ment with new processing models.

The Hadoop ecosystem includes both random-access OLTP databases such as HBase
(see “SSTables and LSM-Trees” on page 76) and MPP-style analytic databases such as
Impala [41]. Neither HBase nor Impala uses MapReduce, but both use HDFS for
storage. They are very different approaches to accessing and processing data, but they
can nevertheless coexist and be integrated in the same system.

Designing for frequent faults
When comparing MapReduce to MPP databases, two more differences in design
approach stand out: the handling of faults and the use of memory and disk. Batch
processes are less sensitive to faults than online systems, because they do not immedi‐
ately affect users if they fail and they can always be run again.

If a node crashes while a query is executing, most MPP databases abort the entire
query, and either let the user resubmit the query or automatically run it again [3]. As
queries normally run for a few seconds or a few minutes at most, this way of handling
errors is acceptable, since the cost of retrying is not too great. MPP databases also
prefer to keep as much data as possible in memory (e.g., using hash joins) to avoid
the cost of reading from disk.

On the other hand, MapReduce can tolerate the failure of a map or reduce task
without it affecting the job as a whole by retrying work at the granularity of an indi‐
vidual task. It is also very eager to write data to disk, partly for fault tolerance, and
partly on the assumption that the dataset will be too big to fit in memory anyway.

The MapReduce approach is more appropriate for larger jobs: jobs that process so
much data and run for such a long time that they are likely to experience at least one
task failure along the way. In that case, rerunning the entire job due to a single task
failure would be wasteful. Even if recovery at the granularity of an individual task
introduces overheads that make fault-free processing slower, it can still be a reason‐
able trade-off if the rate of task failures is high enough.

But how realistic are these assumptions? In most clusters, machine failures do occur,
but they are not very frequent—probably rare enough that most jobs will not experi‐

MapReduce and Distributed Filesystems | 417

ence a machine failure. Is it really worth incurring significant overheads for the sake
of fault tolerance?

To understand the reasons for MapReduce’s sparing use of memory and task-level
recovery, it is helpful to look at the environment for which MapReduce was originally
designed. Google has mixed-use datacenters, in which online production services and
offline batch jobs run on the same machines. Every task has a resource allocation
(CPU cores, RAM, disk space, etc.) that is enforced using containers. Every task also
has a priority, and if a higher-priority task needs more resources, lower-priority tasks
on the same machine can be terminated (preempted) in order to free up resources.
Priority also determines pricing of the computing resources: teams must pay for the
resources they use, and higher-priority processes cost more [59].

This architecture allows non-production (low-priority) computing resources to be
overcommitted, because the system knows that it can reclaim the resources if neces‐
sary. Overcommitting resources in turn allows better utilization of machines and
greater efficiency compared to systems that segregate production and non-
production tasks. However, as MapReduce jobs run at low priority, they run the risk
of being preempted at any time because a higher-priority process requires their
resources. Batch jobs effectively “pick up the scraps under the table,” using any com‐
puting resources that remain after the high-priority processes have taken what they
need.

At Google, a MapReduce task that runs for an hour has an approximately 5% risk of
being terminated to make space for a higher-priority process. This rate is more than
an order of magnitude higher than the rate of failures due to hardware issues,
machine reboot, or other reasons [59]. At this rate of preemptions, if a job has 100
tasks that each run for 10 minutes, there is a risk greater than 50% that at least one
task will be terminated before it is finished.

And this is why MapReduce is designed to tolerate frequent unexpected task termina‐
tion: it’s not because the hardware is particularly unreliable, it’s because the freedom
to arbitrarily terminate processes enables better resource utilization in a computing
cluster.

Among open source cluster schedulers, preemption is less widely used. YARN’s
CapacityScheduler supports preemption for balancing the resource allocation of dif‐
ferent queues [58], but general priority preemption is not supported in YARN,
Mesos, or Kubernetes at the time of writing [60]. In an environment where tasks are
not so often terminated, the design decisions of MapReduce make less sense. In the
next section, we will look at some alternatives to MapReduce that make different
design decisions.

418 | Chapter 10: Batch Processing

Beyond MapReduce
Although MapReduce became very popular and received a lot of hype in the late
2000s, it is just one among many possible programming models for distributed sys‐
tems. Depending on the volume of data, the structure of the data, and the type of pro‐
cessing being done with it, other tools may be more appropriate for expressing a
computation.

We nevertheless spent a lot of time in this chapter discussing MapReduce because it
is a useful learning tool, as it is a fairly clear and simple abstraction on top of a dis‐
tributed filesystem. That is, simple in the sense of being able to understand what it is
doing, not in the sense of being easy to use. Quite the opposite: implementing a com‐
plex processing job using the raw MapReduce APIs is actually quite hard and labori‐
ous—for instance, you would need to implement any join algorithms from scratch
[37].

In response to the difficulty of using MapReduce directly, various higher-level pro‐
gramming models (Pig, Hive, Cascading, Crunch) were created as abstractions on top
of MapReduce. If you understand how MapReduce works, they are fairly easy to
learn, and their higher-level constructs make many common batch processing tasks
significantly easier to implement.

However, there are also problems with the MapReduce execution model itself, which
are not fixed by adding another level of abstraction and which manifest themselves as
poor performance for some kinds of processing. On the one hand, MapReduce is
very robust: you can use it to process almost arbitrarily large quantities of data on an
unreliable multi-tenant system with frequent task terminations, and it will still get the
job done (albeit slowly). On the other hand, other tools are sometimes orders of mag‐
nitude faster for some kinds of processing.

In the rest of this chapter, we will look at some of those alternatives for batch process‐
ing. In Chapter 11 we will move to stream processing, which can be regarded as
another way of speeding up batch processing.

Materialization of Intermediate State
As discussed previously, every MapReduce job is independent from every other job.
The main contact points of a job with the rest of the world are its input and output
directories on the distributed filesystem. If you want the output of one job to become
the input to a second job, you need to configure the second job’s input directory to be
the same as the first job’s output directory, and an external workflow scheduler must
start the second job only once the first job has completed.

This setup is reasonable if the output from the first job is a dataset that you want to
publish widely within your organization. In that case, you need to be able to refer to it

Beyond MapReduce | 419

by name and reuse it as input to several different jobs (including jobs developed by
other teams). Publishing data to a well-known location in the distributed filesystem
allows loose coupling so that jobs don’t need to know who is producing their input or
consuming their output (see “Separation of logic and wiring” on page 396).

However, in many cases, you know that the output of one job is only ever used as
input to one other job, which is maintained by the same team. In this case, the files
on the distributed filesystem are simply intermediate state: a means of passing data
from one job to the next. In the complex workflows used to build recommendation
systems consisting of 50 or 100 MapReduce jobs [29], there is a lot of such intermedi‐
ate state.

The process of writing out this intermediate state to files is called materialization.
(We came across the term previously in the context of materialized views, in “Aggre‐
gation: Data Cubes and Materialized Views” on page 101. It means to eagerly com‐
pute the result of some operation and write it out, rather than computing it on
demand when requested.)

By contrast, the log analysis example at the beginning of the chapter used Unix pipes
to connect the output of one command with the input of another. Pipes do not fully
materialize the intermediate state, but instead stream the output to the input incre‐
mentally, using only a small in-memory buffer.

MapReduce’s approach of fully materializing intermediate state has downsides com‐
pared to Unix pipes:

• A MapReduce job can only start when all tasks in the preceding jobs (that gener‐
ate its inputs) have completed, whereas processes connected by a Unix pipe are
started at the same time, with output being consumed as soon as it is produced.
Skew or varying load on different machines means that a job often has a few
straggler tasks that take much longer to complete than the others. Having to wait
until all of the preceding job’s tasks have completed slows down the execution of
the workflow as a whole.

• Mappers are often redundant: they just read back the same file that was just writ‐
ten by a reducer, and prepare it for the next stage of partitioning and sorting. In
many cases, the mapper code could be part of the previous reducer: if the reducer
output was partitioned and sorted in the same way as mapper output, then
reducers could be chained together directly, without interleaving with mapper
stages.

• Storing intermediate state in a distributed filesystem means those files are repli‐
cated across several nodes, which is often overkill for such temporary data.

420 | Chapter 10: Batch Processing

Dataflow engines
In order to fix these problems with MapReduce, several new execution engines for
distributed batch computations were developed, the most well known of which are
Spark [61, 62], Tez [63, 64], and Flink [65, 66]. There are various differences in the
way they are designed, but they have one thing in common: they handle an entire
workflow as one job, rather than breaking it up into independent subjobs.

Since they explicitly model the flow of data through several processing stages, these
systems are known as dataflow engines. Like MapReduce, they work by repeatedly
calling a user-defined function to process one record at a time on a single thread.
They parallelize work by partitioning inputs, and they copy the output of one func‐
tion over the network to become the input to another function.

Unlike in MapReduce, these functions need not take the strict roles of alternating
map and reduce, but instead can be assembled in more flexible ways. We call these
functions operators, and the dataflow engine provides several different options for
connecting one operator’s output to another’s input:

• One option is to repartition and sort records by key, like in the shuffle stage of
MapReduce (see “Distributed execution of MapReduce” on page 400). This fea‐
ture enables sort-merge joins and grouping in the same way as in MapReduce.

• Another possibility is to take several inputs and to partition them in the same
way, but skip the sorting. This saves effort on partitioned hash joins, where the
partitioning of records is important but the order is irrelevant because building
the hash table randomizes the order anyway.

• For broadcast hash joins, the same output from one operator can be sent to all
partitions of the join operator.

This style of processing engine is based on research systems like Dryad [67] and
Nephele [68], and it offers several advantages compared to the MapReduce model:

• Expensive work such as sorting need only be performed in places where it is
actually required, rather than always happening by default between every map
and reduce stage.

• There are no unnecessary map tasks, since the work done by a mapper can often
be incorporated into the preceding reduce operator (because a mapper does not
change the partitioning of a dataset).

• Because all joins and data dependencies in a workflow are explicitly declared, the
scheduler has an overview of what data is required where, so it can make locality
optimizations. For example, it can try to place the task that consumes some data
on the same machine as the task that produces it, so that the data can be

Beyond MapReduce | 421

exchanged through a shared memory buffer rather than having to copy it over
the network.

• It is usually sufficient for intermediate state between operators to be kept in
memory or written to local disk, which requires less I/O than writing it to HDFS
(where it must be replicated to several machines and written to disk on each rep‐
lica). MapReduce already uses this optimization for mapper output, but dataflow
engines generalize the idea to all intermediate state.

• Operators can start executing as soon as their input is ready; there is no need to
wait for the entire preceding stage to finish before the next one starts.

• Existing Java Virtual Machine (JVM) processes can be reused to run new opera‐
tors, reducing startup overheads compared to MapReduce (which launches a
new JVM for each task).

You can use dataflow engines to implement the same computations as MapReduce
workflows, and they usually execute significantly faster due to the optimizations
described here. Since operators are a generalization of map and reduce, the same pro‐
cessing code can run on either execution engine: workflows implemented in Pig,
Hive, or Cascading can be switched from MapReduce to Tez or Spark with a simple
configuration change, without modifying code [64].

Tez is a fairly thin library that relies on the YARN shuffle service for the actual copy‐
ing of data between nodes [58], whereas Spark and Flink are big frameworks that
include their own network communication layer, scheduler, and user-facing APIs.
We will discuss those high-level APIs shortly.

Fault tolerance
An advantage of fully materializing intermediate state to a distributed filesystem is
that it is durable, which makes fault tolerance fairly easy in MapReduce: if a task fails,
it can just be restarted on another machine and read the same input again from the
filesystem.

Spark, Flink, and Tez avoid writing intermediate state to HDFS, so they take a differ‐
ent approach to tolerating faults: if a machine fails and the intermediate state on that
machine is lost, it is recomputed from other data that is still available (a prior inter‐
mediary stage if possible, or otherwise the original input data, which is normally on
HDFS).

To enable this recomputation, the framework must keep track of how a given piece of
data was computed—which input partitions it used, and which operators were
applied to it. Spark uses the resilient distributed dataset (RDD) abstraction for track‐
ing the ancestry of data [61], while Flink checkpoints operator state, allowing it to
resume running an operator that ran into a fault during its execution [66].

422 | Chapter 10: Batch Processing

When recomputing data, it is important to know whether the computation is deter‐
ministic: that is, given the same input data, do the operators always produce the same
output? This question matters if some of the lost data has already been sent to down‐
stream operators. If the operator is restarted and the recomputed data is not the same
as the original lost data, it becomes very hard for downstream operators to resolve the
contradictions between the old and new data. The solution in the case of nondeter‐
ministic operators is normally to kill the downstream operators as well, and run them
again on the new data.

In order to avoid such cascading faults, it is better to make operators deterministic.
Note however that it is easy for nondeterministic behavior to accidentally creep in:
for example, many programming languages do not guarantee any particular order
when iterating over elements of a hash table, many probabilistic and statistical
algorithms explicitly rely on using random numbers, and any use of the system clock
or external data sources is nondeterministic. Such causes of nondeterminism need to
be removed in order to reliably recover from faults, for example by generating
pseudorandom numbers using a fixed seed.

Recovering from faults by recomputing data is not always the right answer: if the
intermediate data is much smaller than the source data, or if the computation is very
CPU-intensive, it is probably cheaper to materialize the intermediate data to files
than to recompute it.

Discussion of materialization
Returning to the Unix analogy, we saw that MapReduce is like writing the output of
each command to a temporary file, whereas dataflow engines look much more like
Unix pipes. Flink especially is built around the idea of pipelined execution: that is,
incrementally passing the output of an operator to other operators, and not waiting
for the input to be complete before starting to process it.

A sorting operation inevitably needs to consume its entire input before it can pro‐
duce any output, because it’s possible that the very last input record is the one with
the lowest key and thus needs to be the very first output record. Any operator that
requires sorting will thus need to accumulate state, at least temporarily. But many
other parts of a workflow can be executed in a pipelined manner.

When the job completes, its output needs to go somewhere durable so that users can
find it and use it—most likely, it is written to the distributed filesystem again. Thus,
when using a dataflow engine, materialized datasets on HDFS are still usually the
inputs and the final outputs of a job. Like with MapReduce, the inputs are immutable
and the output is completely replaced. The improvement over MapReduce is that you
save yourself writing all the intermediate state to the filesystem as well.

Beyond MapReduce | 423

Graphs and Iterative Processing
In “Graph-Like Data Models” on page 49 we discussed using graphs for modeling
data, and using graph query languages to traverse the edges and vertices in a graph.
The discussion in Chapter 2 was focused around OLTP-style use: quickly executing
queries to find a small number of vertices matching certain criteria.

It is also interesting to look at graphs in a batch processing context, where the goal is
to perform some kind of offline processing or analysis on an entire graph. This need
often arises in machine learning applications such as recommendation engines, or in
ranking systems. For example, one of the most famous graph analysis algorithms is
PageRank [69], which tries to estimate the popularity of a web page based on what
other web pages link to it. It is used as part of the formula that determines the order
in which web search engines present their results.

Dataflow engines like Spark, Flink, and Tez (see “Materialization of
Intermediate State” on page 419) typically arrange the operators in
a job as a directed acyclic graph (DAG). This is not the same as
graph processing: in dataflow engines, the flow of data from one
operator to another is structured as a graph, while the data itself
typically consists of relational-style tuples. In graph processing, the
data itself has the form of a graph. Another unfortunate naming
confusion!

Many graph algorithms are expressed by traversing one edge at a time, joining one
vertex with an adjacent vertex in order to propagate some information, and repeating
until some condition is met—for example, until there are no more edges to follow, or
until some metric converges. We saw an example in Figure 2-6, which made a list of
all the locations in North America contained in a database by repeatedly following
edges indicating which location is within which other location (this kind of algorithm
is called a transitive closure).

It is possible to store a graph in a distributed filesystem (in files containing lists of
vertices and edges), but this idea of “repeating until done” cannot be expressed in
plain MapReduce, since it only performs a single pass over the data. This kind of
algorithm is thus often implemented in an iterative style:

1. An external scheduler runs a batch process to calculate one step of the algorithm.
2. When the batch process completes, the scheduler checks whether it has finished

(based on the completion condition—e.g., there are no more edges to follow, or
the change compared to the last iteration is below some threshold).

3. If it has not yet finished, the scheduler goes back to step 1 and runs another
round of the batch process.

424 | Chapter 10: Batch Processing

This approach works, but implementing it with MapReduce is often very inefficient,
because MapReduce does not account for the iterative nature of the algorithm: it will
always read the entire input dataset and produce a completely new output dataset,
even if only a small part of the graph has changed compared to the last iteration.

The Pregel processing model
As an optimization for batch processing graphs, the bulk synchronous parallel (BSP)
model of computation [70] has become popular. Among others, it is implemented by
Apache Giraph [37], Spark’s GraphX API, and Flink’s Gelly API [71]. It is also
known as the Pregel model, as Google’s Pregel paper popularized this approach for
processing graphs [72].

Recall that in MapReduce, mappers conceptually “send a message” to a particular call
of the reducer because the framework collects together all the mapper outputs with
the same key. A similar idea is behind Pregel: one vertex can “send a message” to
another vertex, and typically those messages are sent along the edges in a graph.

In each iteration, a function is called for each vertex, passing it all the messages that
were sent to it—much like a call to the reducer. The difference from MapReduce is
that in the Pregel model, a vertex remembers its state in memory from one iteration
to the next, so the function only needs to process new incoming messages. If no mes‐
sages are being sent in some part of the graph, no work needs to be done.

It’s a bit similar to the actor model (see “Distributed actor frameworks” on page 138),
if you think of each vertex as an actor, except that vertex state and messages between
vertices are fault-tolerant and durable, and communication proceeds in fixed rounds:
at every iteration, the framework delivers all messages sent in the previous iteration.
Actors normally have no such timing guarantee.

Fault tolerance
The fact that vertices can only communicate by message passing (not by querying
each other directly) helps improve the performance of Pregel jobs, since messages can
be batched and there is less waiting for communication. The only waiting is between
iterations: since the Pregel model guarantees that all messages sent in one iteration
are delivered in the next iteration, the prior iteration must completely finish, and all
of its messages must be copied over the network, before the next one can start.

Even though the underlying network may drop, duplicate, or arbitrarily delay mes‐
sages (see “Unreliable Networks” on page 277), Pregel implementations guarantee
that messages are processed exactly once at their destination vertex in the following
iteration. Like MapReduce, the framework transparently recovers from faults in
order to simplify the programming model for algorithms on top of Pregel.

Beyond MapReduce | 425

This fault tolerance is achieved by periodically checkpointing the state of all vertices
at the end of an iteration—i.e., writing their full state to durable storage. If a node
fails and its in-memory state is lost, the simplest solution is to roll back the entire
graph computation to the last checkpoint and restart the computation. If the algo‐
rithm is deterministic and messages are logged, it is also possible to selectively
recover only the partition that was lost (like we previously discussed for dataflow
engines) [72].

Parallel execution
A vertex does not need to know on which physical machine it is executing; when it
sends messages to other vertices, it simply sends them to a vertex ID. It is up to the
framework to partition the graph—i.e., to decide which vertex runs on which
machine, and how to route messages over the network so that they end up in the
right place.

Because the programming model deals with just one vertex at a time (sometimes
called “thinking like a vertex”), the framework may partition the graph in arbitrary
ways. Ideally it would be partitioned such that vertices are colocated on the same
machine if they need to communicate a lot. However, finding such an optimized par‐
titioning is hard—in practice, the graph is often simply partitioned by an arbitrarily
assigned vertex ID, making no attempt to group related vertices together.

As a result, graph algorithms often have a lot of cross-machine communication over‐
head, and the intermediate state (messages sent between nodes) is often bigger than
the original graph. The overhead of sending messages over the network can signifi‐
cantly slow down distributed graph algorithms.

For this reason, if your graph can fit in memory on a single computer, it’s quite likely
that a single-machine (maybe even single-threaded) algorithm will outperform a dis‐
tributed batch process [73, 74]. Even if the graph is bigger than memory, it can fit on
the disks of a single computer, single-machine processing using a framework such as
GraphChi is a viable option [75]. If the graph is too big to fit on a single machine, a
distributed approach such as Pregel is unavoidable; efficiently parallelizing graph
algorithms is an area of ongoing research [76].

High-Level APIs and Languages
Over the years since MapReduce first became popular, the execution engines for dis‐
tributed batch processing have matured. By now, the infrastructure has become
robust enough to store and process many petabytes of data on clusters of over 10,000
machines. As the problem of physically operating batch processes at such scale has
been considered more or less solved, attention has turned to other areas: improving
the programming model, improving the efficiency of processing, and broadening the
set of problems that these technologies can solve.

426 | Chapter 10: Batch Processing

As discussed previously, higher-level languages and APIs such as Hive, Pig, Cascad‐
ing, and Crunch became popular because programming MapReduce jobs by hand is
quite laborious. As Tez emerged, these high-level languages had the additional bene‐
fit of being able to move to the new dataflow execution engine without the need to
rewrite job code. Spark and Flink also include their own high-level dataflow APIs,
often taking inspiration from FlumeJava [34].

These dataflow APIs generally use relational-style building blocks to express a com‐
putation: joining datasets on the value of some field; grouping tuples by key; filtering
by some condition; and aggregating tuples by counting, summing, or other functions.
Internally, these operations are implemented using the various join and grouping
algorithms that we discussed earlier in this chapter.

Besides the obvious advantage of requiring less code, these high-level interfaces also
allow interactive use, in which you write analysis code incrementally in a shell and
run it frequently to observe what it is doing. This style of development is very helpful
when exploring a dataset and experimenting with approaches for processing it. It is
also reminiscent of the Unix philosophy, which we discussed in “The Unix Philoso‐
phy” on page 394.

Moreover, these high-level interfaces not only make the humans using the system
more productive, but they also improve the job execution efficiency at a machine
level.

The move toward declarative query languages
An advantage of specifying joins as relational operators, compared to spelling out the
code that performs the join, is that the framework can analyze the properties of the
join inputs and automatically decide which of the aforementioned join algorithms
would be most suitable for the task at hand. Hive, Spark, and Flink have cost-based
query optimizers that can do this, and even change the order of joins so that the
amount of intermediate state is minimized [66, 77, 78, 79].

The choice of join algorithm can make a big difference to the performance of a batch
job, and it is nice not to have to understand and remember all the various join algo‐
rithms we discussed in this chapter. This is possible if joins are specified in a declara‐
tive way: the application simply states which joins are required, and the query
optimizer decides how they can best be executed. We previously came across this idea
in “Query Languages for Data” on page 42.

However, in other ways, MapReduce and its dataflow successors are very different
from the fully declarative query model of SQL. MapReduce was built around the idea
of function callbacks: for each record or group of records, a user-defined function
(the mapper or reducer) is called, and that function is free to call arbitrary code in
order to decide what to output. This approach has the advantage that you can draw

Beyond MapReduce | 427

upon a large ecosystem of existing libraries to do things like parsing, natural language
analysis, image analysis, and running numerical or statistical algorithms.

The freedom to easily run arbitrary code is what has long distinguished batch pro‐
cessing systems of MapReduce heritage from MPP databases (see “Comparing
Hadoop to Distributed Databases” on page 414); although databases have facilities
for writing user-defined functions, they are often cumbersome to use and not well
integrated with the package managers and dependency management systems that are
widely used in most programming languages (such as Maven for Java, npm for Java‐
Script, and Rubygems for Ruby).

However, dataflow engines have found that there are also advantages to incorporat‐
ing more declarative features in areas besides joins. For example, if a callback func‐
tion contains only a simple filtering condition, or it just selects some fields from a
record, then there is significant CPU overhead in calling the function on every
record. If such simple filtering and mapping operations are expressed in a declarative
way, the query optimizer can take advantage of column-oriented storage layouts (see
“Column-Oriented Storage” on page 95) and read only the required columns from
disk. Hive, Spark DataFrames, and Impala also use vectorized execution (see “Mem‐
ory bandwidth and vectorized processing” on page 99): iterating over data in a tight
inner loop that is friendly to CPU caches, and avoiding function calls. Spark gener‐
ates JVM bytecode [79] and Impala uses LLVM to generate native code for these
inner loops [41].

By incorporating declarative aspects in their high-level APIs, and having query opti‐
mizers that can take advantage of them during execution, batch processing frame‐
works begin to look more like MPP databases (and can achieve comparable
performance). At the same time, by having the extensibility of being able to run arbi‐
trary code and read data in arbitrary formats, they retain their flexibility advantage.

Specialization for different domains
While the extensibility of being able to run arbitrary code is useful, there are also
many common cases where standard processing patterns keep reoccurring, and so it
is worth having reusable implementations of the common building blocks. Tradition‐
ally, MPP databases have served the needs of business intelligence analysts and busi‐
ness reporting, but that is just one among many domains in which batch processing
is used.

Another domain of increasing importance is statistical and numerical algorithms,
which are needed for machine learning applications such as classification and recom‐
mendation systems. Reusable implementations are emerging: for example, Mahout
implements various algorithms for machine learning on top of MapReduce, Spark,
and Flink, while MADlib implements similar functionality inside a relational MPP
database (Apache HAWQ) [54].

428 | Chapter 10: Batch Processing

Also useful are spatial algorithms such as k-nearest neighbors [80], which searches for
items that are close to a given item in some multi-dimensional space—a kind of simi‐
larity search. Approximate search is also important for genome analysis algorithms,
which need to find strings that are similar but not identical [81].

Batch processing engines are being used for distributed execution of algorithms from
an increasingly wide range of domains. As batch processing systems gain built-in
functionality and high-level declarative operators, and as MPP databases become
more programmable and flexible, the two are beginning to look more alike: in the
end, they are all just systems for storing and processing data.

Summary
In this chapter we explored the topic of batch processing. We started by looking at
Unix tools such as awk, grep, and sort, and we saw how the design philosophy of
those tools is carried forward into MapReduce and more recent dataflow engines.
Some of those design principles are that inputs are immutable, outputs are intended
to become the input to another (as yet unknown) program, and complex problems
are solved by composing small tools that “do one thing well.”

In the Unix world, the uniform interface that allows one program to be composed
with another is files and pipes; in MapReduce, that interface is a distributed filesys‐
tem. We saw that dataflow engines add their own pipe-like data transport mecha‐
nisms to avoid materializing intermediate state to the distributed filesystem, but the
initial input and final output of a job is still usually HDFS.

The two main problems that distributed batch processing frameworks need to solve
are:

Partitioning
In MapReduce, mappers are partitioned according to input file blocks. The out‐
put of mappers is repartitioned, sorted, and merged into a configurable number
of reducer partitions. The purpose of this process is to bring all the related data—
e.g., all the records with the same key—together in the same place.

Post-MapReduce dataflow engines try to avoid sorting unless it is required, but
they otherwise take a broadly similar approach to partitioning.

Fault tolerance
MapReduce frequently writes to disk, which makes it easy to recover from an
individual failed task without restarting the entire job but slows down execution
in the failure-free case. Dataflow engines perform less materialization of inter‐
mediate state and keep more in memory, which means that they need to recom‐
pute more data if a node fails. Deterministic operators reduce the amount of data
that needs to be recomputed.

Summary | 429

We discussed several join algorithms for MapReduce, most of which are also inter‐
nally used in MPP databases and dataflow engines. They also provide a good illustra‐
tion of how partitioned algorithms work:

Sort-merge joins
Each of the inputs being joined goes through a mapper that extracts the join key.
By partitioning, sorting, and merging, all the records with the same key end up
going to the same call of the reducer. This function can then output the joined
records.

Broadcast hash joins
One of the two join inputs is small, so it is not partitioned and it can be entirely
loaded into a hash table. Thus, you can start a mapper for each partition of the
large join input, load the hash table for the small input into each mapper, and
then scan over the large input one record at a time, querying the hash table for
each record.

Partitioned hash joins
If the two join inputs are partitioned in the same way (using the same key, same
hash function, and same number of partitions), then the hash table approach can
be used independently for each partition.

Distributed batch processing engines have a deliberately restricted programming
model: callback functions (such as mappers and reducers) are assumed to be stateless
and to have no externally visible side effects besides their designated output. This
restriction allows the framework to hide some of the hard distributed systems prob‐
lems behind its abstraction: in the face of crashes and network issues, tasks can be
retried safely, and the output from any failed tasks is discarded. If several tasks for a
partition succeed, only one of them actually makes its output visible.

Thanks to the framework, your code in a batch processing job does not need to worry
about implementing fault-tolerance mechanisms: the framework can guarantee that
the final output of a job is the same as if no faults had occurred, even though in real‐
ity various tasks perhaps had to be retried. These reliable semantics are much stron‐
ger than what you usually have in online services that handle user requests and that
write to databases as a side effect of processing a request.

The distinguishing feature of a batch processing job is that it reads some input data
and produces some output data, without modifying the input—in other words, the
output is derived from the input. Crucially, the input data is bounded: it has a known,
fixed size (for example, it consists of a set of log files at some point in time, or a snap‐
shot of a database’s contents). Because it is bounded, a job knows when it has finished
reading the entire input, and so a job eventually completes when it is done.

In the next chapter, we will turn to stream processing, in which the input is unboun‐
ded—that is, you still have a job, but its inputs are never-ending streams of data. In

430 | Chapter 10: Batch Processing

this case, a job is never complete, because at any time there may still be more work
coming in. We shall see that stream and batch processing are similar in some
respects, but the assumption of unbounded streams also changes a lot about how we
build systems.

References
[1] Jeffrey Dean and Sanjay Ghemawat: “MapReduce: Simplified Data Processing on
Large Clusters,” at 6th USENIX Symposium on Operating System Design and Imple‐
mentation (OSDI), December 2004.

[2] Joel Spolsky: “The Perils of JavaSchools,” joelonsoftware.com, December 25, 2005.

[3] Shivnath Babu and Herodotos Herodotou: “Massively Parallel Databases and
MapReduce Systems,” Foundations and Trends in Databases, volume 5, number 1,
pages 1–104, November 2013. doi:10.1561/1900000036

[4] David J. DeWitt and Michael Stonebraker: “MapReduce: A Major Step Back‐
wards,” originally published at databasecolumn.vertica.com, January 17, 2008.

[5] Henry Robinson: “The Elephant Was a Trojan Horse: On the Death of Map-
Reduce at Google,” the-paper-trail.org, June 25, 2014.

[6] “The Hollerith Machine,” United States Census Bureau, census.gov.

[7] “IBM 82, 83, and 84 Sorters Reference Manual,” Edition A24-1034-1, Interna‐
tional Business Machines Corporation, July 1962.

[8] Adam Drake: “Command-Line Tools Can Be 235x Faster than Your Hadoop
Cluster,” aadrake.com, January 25, 2014.

[9] “GNU Coreutils 8.23 Documentation,” Free Software Foundation, Inc., 2014.

[10] Martin Kleppmann: “Kafka, Samza, and the Unix Philosophy of Distributed
Data,” martin.kleppmann.com, August 5, 2015.

[11] Doug McIlroy: Internal Bell Labs memo, October 1964. Cited in: Dennis M.
Richie: “Advice from Doug McIlroy,” cm.bell-labs.com.

[12] M. D. McIlroy, E. N. Pinson, and B. A. Tague: “UNIX Time-Sharing System:
Foreword,” The Bell System Technical Journal, volume 57, number 6, pages 1899–
1904, July 1978.

[13] Eric S. Raymond: The Art of UNIX Programming. Addison-Wesley, 2003. ISBN:
978-0-13-142901-7

[14] Ronald Duncan: “Text File Formats – ASCII Delimited Text – Not CSV or TAB
Delimited Text,” ronaldduncan.wordpress.com, October 31, 2009.

[15] Alan Kay: “Is ‘Software Engineering’ an Oxymoron?,” tinlizzie.org.

Summary | 431

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html
http://research.microsoft.com/pubs/206464/db-mr-survey-final.pdf
http://research.microsoft.com/pubs/206464/db-mr-survey-final.pdf
http://dx.doi.org/10.1561/1900000036
https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://the-paper-trail.org/blog/the-elephant-was-a-trojan-horse-on-the-death-of-map-reduce-at-google/
http://the-paper-trail.org/blog/the-elephant-was-a-trojan-horse-on-the-death-of-map-reduce-at-google/
https://www.census.gov/history/www/innovations/technology/the_hollerith_tabulator.html
http://www.textfiles.com/bitsavers/pdf/ibm/punchedCard/Sorter/A24-1034-1_82-83-84_sorters.pdf
http://aadrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html
http://aadrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html
http://www.gnu.org/software/coreutils/manual/html_node/index.html
http://martin.kleppmann.com/2015/08/05/kafka-samza-unix-philosophy-distributed-data.html
http://martin.kleppmann.com/2015/08/05/kafka-samza-unix-philosophy-distributed-data.html
http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.pdf
https://www.bell-labs.com/usr/dmr/www/mdmpipe.html
https://archive.org/details/bstj57-6-1899
https://archive.org/details/bstj57-6-1899
http://www.catb.org/~esr/writings/taoup/html/
https://ronaldduncan.wordpress.com/2009/10/31/text-file-formats-ascii-delimited-text-not-csv-or-tab-delimited-text/
https://ronaldduncan.wordpress.com/2009/10/31/text-file-formats-ascii-delimited-text-not-csv-or-tab-delimited-text/
http://tinlizzie.org/~takashi/IsSoftwareEngineeringAnOxymoron.pdf

[16] Martin Fowler: “InversionOfControl,” martinfowler.com, June 26, 2005.

[17] Daniel J. Bernstein: “Two File Descriptors for Sockets,” cr.yp.to.

[18] Rob Pike and Dennis M. Ritchie: “The Styx Architecture for Distributed Sys‐
tems,” Bell Labs Technical Journal, volume 4, number 2, pages 146–152, April 1999.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: “The Google File Sys‐
tem,” at 19th ACM Symposium on Operating Systems Principles (SOSP), October
2003. doi:10.1145/945445.945450

[20] Michael Ovsiannikov, Silvius Rus, Damian Reeves, et al.: “The Quantcast File
System,” Proceedings of the VLDB Endowment, volume 6, number 11, pages 1092–
1101, August 2013. doi:10.14778/2536222.2536234

[21] “OpenStack Swift 2.6.1 Developer Documentation,” OpenStack Foundation,
docs.openstack.org, March 2016.

[22] Zhe Zhang, Andrew Wang, Kai Zheng, et al.: “Introduction to HDFS Erasure
Coding in Apache Hadoop,” blog.cloudera.com, September 23, 2015.

[23] Peter Cnudde: “Hadoop Turns 10,” yahoohadoop.tumblr.com, February 5, 2016.

[24] Eric Baldeschwieler: “Thinking About the HDFS vs. Other Storage Technolo‐
gies,” hortonworks.com, July 25, 2012.

[25] Brendan Gregg: “Manta: Unix Meets Map Reduce,” dtrace.org, June 25, 2013.

[26] Tom White: Hadoop: The Definitive Guide, 4th edition. O’Reilly Media, 2015.
ISBN: 978-1-491-90163-2

[27] Jim N. Gray: “Distributed Computing Economics,” Microsoft Research Tech
Report MSR-TR-2003-24, March 2003.

[28] Márton Trencséni: “Luigi vs Airflow vs Pinball,” bytepawn.com, February 6,
2016.

[29] Roshan Sumbaly, Jay Kreps, and Sam Shah: “The ‘Big Data’ Ecosystem at
LinkedIn,” at ACM International Conference on Management of Data (SIGMOD),
July 2013. doi:10.1145/2463676.2463707

[30] Alan F. Gates, Olga Natkovich, Shubham Chopra, et al.: “Building a High-Level
Dataflow System on Top of Map-Reduce: The Pig Experience,” at 35th International
Conference on Very Large Data Bases (VLDB), August 2009.

[31] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, et al.: “Hive – A Petabyte Scale
Data Warehouse Using Hadoop,” at 26th IEEE International Conference on Data
Engineering (ICDE), March 2010. doi:10.1109/ICDE.2010.5447738

[32] “Cascading 3.0 User Guide,” Concurrent, Inc., docs.cascading.org, January 2016.

432 | Chapter 10: Batch Processing

http://martinfowler.com/bliki/InversionOfControl.html
http://cr.yp.to/tcpip/twofd.html
http://doc.cat-v.org/inferno/4th_edition/styx
http://doc.cat-v.org/inferno/4th_edition/styx
http://research.google.com/archive/gfs-sosp2003.pdf
http://research.google.com/archive/gfs-sosp2003.pdf
http://dx.doi.org/10.1145/945445.945450
http://db.disi.unitn.eu/pages/VLDBProgram/pdf/industry/p808-ovsiannikov.pdf
http://db.disi.unitn.eu/pages/VLDBProgram/pdf/industry/p808-ovsiannikov.pdf
http://dx.doi.org/10.14778/2536222.2536234
http://docs.openstack.org/developer/swift/
http://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
http://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
http://yahoohadoop.tumblr.com/post/138739227316/hadoop-turns-10
http://hortonworks.com/blog/thinking-about-the-hdfs-vs-other-storage-technologies/
http://hortonworks.com/blog/thinking-about-the-hdfs-vs-other-storage-technologies/
http://dtrace.org/blogs/brendan/2013/06/25/manta-unix-meets-map-reduce/
http://arxiv.org/pdf/cs/0403019.pdf
http://bytepawn.com/luigi-airflow-pinball.html
http://www.slideshare.net/s_shah/the-big-data-ecosystem-at-linkedin-23512853
http://www.slideshare.net/s_shah/the-big-data-ecosystem-at-linkedin-23512853
http://dx.doi.org/10.1145/2463676.2463707
http://www.vldb.org/pvldb/2/vldb09-1074.pdf
http://www.vldb.org/pvldb/2/vldb09-1074.pdf
http://i.stanford.edu/~ragho/hive-icde2010.pdf
http://i.stanford.edu/~ragho/hive-icde2010.pdf
http://dx.doi.org/10.1109/ICDE.2010.5447738
http://docs.cascading.org/cascading/3.0/userguide/

[33] “Apache Crunch User Guide,” Apache Software Foundation, crunch.apache.org.

[34] Craig Chambers, Ashish Raniwala, Frances Perry, et al.: “FlumeJava: Easy, Effi‐
cient Data-Parallel Pipelines,” at 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), June 2010. doi:
10.1145/1806596.1806638

[35] Jay Kreps: “Why Local State is a Fundamental Primitive in Stream Processing,”
oreilly.com, July 31, 2014.

[36] Martin Kleppmann: “Rethinking Caching in Web Apps,” martin.klepp‐
mann.com, October 1, 2012.

[37] Mark Grover, Ted Malaska, Jonathan Seidman, and Gwen Shapira: Hadoop
Application Architectures. O’Reilly Media, 2015. ISBN: 978-1-491-90004-8

[38] Philippe Ajoux, Nathan Bronson, Sanjeev Kumar, et al.: “Challenges to Adopting
Stronger Consistency at Scale,” at 15th USENIX Workshop on Hot Topics in Operat‐
ing Systems (HotOS), May 2015.

[39] Sriranjan Manjunath: “Skewed Join,” wiki.apache.org, 2009.

[40] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri:
“Practical Skew Handling in Parallel Joins,” at 18th International Conference on Very
Large Data Bases (VLDB), August 1992.

[41] Marcel Kornacker, Alexander Behm, Victor Bittorf, et al.: “Impala: A Modern,
Open-Source SQL Engine for Hadoop,” at 7th Biennial Conference on Innovative
Data Systems Research (CIDR), January 2015.

[42] Matthieu Monsch: “Open-Sourcing PalDB, a Lightweight Companion for Stor‐
ing Side Data,” engineering.linkedin.com, October 26, 2015.

[43] Daniel Peng and Frank Dabek: “Large-Scale Incremental Processing Using Dis‐
tributed Transactions and Notifications,” at 9th USENIX conference on Operating Sys‐
tems Design and Implementation (OSDI), October 2010.

[44] ““Cloudera Search User Guide,” Cloudera, Inc., September 2015.

[45] Lili Wu, Sam Shah, Sean Choi, et al.: “The Browsemaps: Collaborative Filtering
at LinkedIn,” at 6th Workshop on Recommender Systems and the Social Web
(RSWeb), October 2014.

[46] Roshan Sumbaly, Jay Kreps, Lei Gao, et al.: “Serving Large-Scale Batch Compu‐
ted Data with Project Voldemort,” at 10th USENIX Conference on File and Storage
Technologies (FAST), February 2012.

[47] Varun Sharma: “Open-Sourcing Terrapin: A Serving System for Batch Gener‐
ated Data,” engineering.pinterest.com, September 14, 2015.

Summary | 433

https://crunch.apache.org/user-guide.html
https://research.google.com/pubs/archive/35650.pdf
https://research.google.com/pubs/archive/35650.pdf
http://dx.doi.org/10.1145/1806596.1806638
http://dx.doi.org/10.1145/1806596.1806638
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing
http://martin.kleppmann.com/2012/10/01/rethinking-caching-in-web-apps.html
http://shop.oreilly.com/product/0636920033196.do
http://shop.oreilly.com/product/0636920033196.do
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-ajoux.pdf
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-ajoux.pdf
https://wiki.apache.org/pig/PigSkewedJoinSpec
http://www.vldb.org/conf/1992/P027.PDF
http://pandis.net/resources/cidr15impala.pdf
http://pandis.net/resources/cidr15impala.pdf
https://engineering.linkedin.com/blog/2015/10/open-sourcing-paldb--a-lightweight-companion-for-storing-side-da
https://engineering.linkedin.com/blog/2015/10/open-sourcing-paldb--a-lightweight-companion-for-storing-side-da
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Peng.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Peng.pdf
http://www.cloudera.com/documentation/cdh/5-1-x/Search/Cloudera-Search-User-Guide/Cloudera-Search-User-Guide.html
http://ls13-www.cs.uni-dortmund.de/homepage/rsweb2014/papers/rsweb2014_submission_3.pdf
http://ls13-www.cs.uni-dortmund.de/homepage/rsweb2014/papers/rsweb2014_submission_3.pdf
http://static.usenix.org/events/fast12/tech/full_papers/Sumbaly.pdf
http://static.usenix.org/events/fast12/tech/full_papers/Sumbaly.pdf
https://engineering.pinterest.com/blog/open-sourcing-terrapin-serving-system-batch-generated-data-0
https://engineering.pinterest.com/blog/open-sourcing-terrapin-serving-system-batch-generated-data-0

[48] Nathan Marz: “ElephantDB,” slideshare.net, May 30, 2011.

[49] Jean-Daniel (JD) Cryans: “How-to: Use HBase Bulk Loading, and Why,”
blog.cloudera.com, September 27, 2013.

[50] Nathan Marz: “How to Beat the CAP Theorem,” nathanmarz.com, October 13,
2011.

[51] Molly Bartlett Dishman and Martin Fowler: “Agile Architecture,” at O’Reilly
Software Architecture Conference, March 2015.

[52] David J. DeWitt and Jim N. Gray: “Parallel Database Systems: The Future of
High Performance Database Systems,” Communications of the ACM, volume 35,
number 6, pages 85–98, June 1992. doi:10.1145/129888.129894

[53] Jay Kreps: “But the multi-tenancy thing is actually really really hard,” tweet‐
storm, twitter.com, October 31, 2014.

[54] Jeffrey Cohen, Brian Dolan, Mark Dunlap, et al.: “MAD Skills: New Analysis
Practices for Big Data,” Proceedings of the VLDB Endowment, volume 2, number 2,
pages 1481–1492, August 2009. doi:10.14778/1687553.1687576

[55] Ignacio Terrizzano, Peter Schwarz, Mary Roth, and John E. Colino: “Data Wran‐
gling: The Challenging Journey from the Wild to the Lake,” at 7th Biennial Confer‐
ence on Innovative Data Systems Research (CIDR), January 2015.

[56] Paige Roberts: “To Schema on Read or to Schema on Write, That Is the Hadoop
Data Lake Question,” adaptivesystemsinc.com, July 2, 2015.

[57] Bobby Johnson and Joseph Adler: “The Sushi Principle: Raw Data Is Better,” at
Strata+Hadoop World, February 2015.

[58] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, et al.: “Apache
Hadoop YARN: Yet Another Resource Negotiator,” at 4th ACM Symposium on
Cloud Computing (SoCC), October 2013. doi:10.1145/2523616.2523633

[59] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, et al.: “Large-Scale Cluster
Management at Google with Borg,” at 10th European Conference on Computer Sys‐
tems (EuroSys), April 2015. doi:10.1145/2741948.2741964

[60] Malte Schwarzkopf: “The Evolution of Cluster Scheduler Architectures,” firma‐
ment.io, March 9, 2016.

[61] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al.: “Resilient Dis‐
tributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,”
at 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI), April 2012.

[62] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia: Learning
Spark. O’Reilly Media, 2015. ISBN: 978-1-449-35904-1

434 | Chapter 10: Batch Processing

http://www.slideshare.net/nathanmarz/elephantdb
http://blog.cloudera.com/blog/2013/09/how-to-use-hbase-bulk-loading-and-why/
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://conferences.oreilly.com/software-architecture/sa2015/public/schedule/detail/40388
http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/dewittgray92.pdf
http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/dewittgray92.pdf
http://dx.doi.org/10.1145/129888.129894
https://twitter.com/jaykreps/status/528235702480142336
http://www.vldb.org/pvldb/2/vldb09-219.pdf
http://www.vldb.org/pvldb/2/vldb09-219.pdf
http://dx.doi.org/10.14778/1687553.1687576
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper2.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper2.pdf
http://adaptivesystemsinc.com/blog/to-schema-on-read-or-to-schema-on-write-that-is-the-hadoop-data-lake-question/
http://adaptivesystemsinc.com/blog/to-schema-on-read-or-to-schema-on-write-that-is-the-hadoop-data-lake-question/
https://vimeo.com/123985284
http://www.socc2013.org/home/program/a5-vavilapalli.pdf
http://www.socc2013.org/home/program/a5-vavilapalli.pdf
http://dx.doi.org/10.1145/2523616.2523633
http://research.google.com/pubs/pub43438.html
http://research.google.com/pubs/pub43438.html
http://dx.doi.org/10.1145/2741948.2741964
http://www.firmament.io/blog/scheduler-architectures.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

[63] Bikas Saha and Hitesh Shah: “Apache Tez: Accelerating Hadoop Query Process‐
ing,” at Hadoop Summit, June 2014.

[64] Bikas Saha, Hitesh Shah, Siddharth Seth, et al.: “Apache Tez: A Unifying Frame‐
work for Modeling and Building Data Processing Applications,” at ACM Interna‐
tional Conference on Management of Data (SIGMOD), June 2015. doi:
10.1145/2723372.2742790

[65] Kostas Tzoumas: “Apache Flink: API, Runtime, and Project Roadmap,” slide‐
share.net, January 14, 2015.

[66] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, et al.: “The Stratosphere
Platform for Big Data Analytics,” The VLDB Journal, volume 23, number 6, pages
939–964, May 2014. doi:10.1007/s00778-014-0357-y

[67] Michael Isard, Mihai Budiu, Yuan Yu, et al.: “Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks,” at European Conference on Computer
Systems (EuroSys), March 2007. doi:10.1145/1272996.1273005

[68] Daniel Warneke and Odej Kao: “Nephele: Efficient Parallel Data Processing in
the Cloud,” at 2nd Workshop on Many-Task Computing on Grids and Supercomputers
(MTAGS), November 2009. doi:10.1145/1646468.1646476

[69] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd: “The
PageRank Citation Ranking: Bringing Order to the Web,” Stanford InfoLab Techni‐
cal Report 422, 1999.

[70] Leslie G. Valiant: “A Bridging Model for Parallel Computation,” Communica‐
tions of the ACM, volume 33, number 8, pages 103–111, August 1990. doi:
10.1145/79173.79181

[71] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl: “Spin‐
ning Fast Iterative Data Flows,” Proceedings of the VLDB Endowment, volume 5,
number 11, pages 1268-1279, July 2012. doi:10.14778/2350229.2350245

[72] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, et al.: “Pregel: A System
for Large-Scale Graph Processing,” at ACM International Conference on Management
of Data (SIGMOD), June 2010. doi:10.1145/1807167.1807184

[73] Frank McSherry, Michael Isard, and Derek G. Murray: “Scalability! But at What
COST?,” at 15th USENIX Workshop on Hot Topics in Operating Systems (HotOS),
May 2015.

[74] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, et al.: “Musketeer: All for One,
One for All in Data Processing Systems,” at 10th European Conference on Computer
Systems (EuroSys), April 2015. doi:10.1145/2741948.2741968

Summary | 435

http://www.slideshare.net/Hadoop_Summit/w-1205phall1saha
http://www.slideshare.net/Hadoop_Summit/w-1205phall1saha
http://home.cse.ust.hk/~weiwa/teaching/Fall15-COMP6611B/reading_list/Tez.pdf
http://home.cse.ust.hk/~weiwa/teaching/Fall15-COMP6611B/reading_list/Tez.pdf
http://dx.doi.org/10.1145/2723372.2742790
http://dx.doi.org/10.1145/2723372.2742790
http://www.slideshare.net/KostasTzoumas/apache-flink-api-runtime-and-project-roadmap
https://ssc.io/pdf/2014-VLDBJ_Stratosphere_Overview.pdf
https://ssc.io/pdf/2014-VLDBJ_Stratosphere_Overview.pdf
http://dx.doi.org/10.1007/s00778-014-0357-y
http://research.microsoft.com/en-us/projects/dryad/eurosys07.pdf
http://research.microsoft.com/en-us/projects/dryad/eurosys07.pdf
http://dx.doi.org/10.1145/1272996.1273005
https://stratosphere2.dima.tu-berlin.de/assets/papers/Nephele_09.pdf
https://stratosphere2.dima.tu-berlin.de/assets/papers/Nephele_09.pdf
http://dx.doi.org/10.1145/1646468.1646476
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://dl.acm.org/citation.cfm?id=79181
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1145/79173.79181
http://vldb.org/pvldb/vol5/p1268_stephanewen_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1268_stephanewen_vldb2012.pdf
http://dx.doi.org/10.14778/2350229.2350245
https://kowshik.github.io/JPregel/pregel_paper.pdf
https://kowshik.github.io/JPregel/pregel_paper.pdf
http://dx.doi.org/10.1145/1807167.1807184
http://www.frankmcsherry.org/assets/COST.pdf
http://www.frankmcsherry.org/assets/COST.pdf
http://www.cl.cam.ac.uk/research/srg/netos/camsas/pubs/eurosys15-musketeer.pdf
http://www.cl.cam.ac.uk/research/srg/netos/camsas/pubs/eurosys15-musketeer.pdf
http://dx.doi.org/10.1145/2741948.2741968

[75] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin: “GraphChi: Large-Scale Graph
Computation on Just a PC,” at 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), October 2012.

[76] Andrew Lenharth, Donald Nguyen, and Keshav Pingali: “Parallel Graph Analyt‐
ics,” Communications of the ACM, volume 59, number 5, pages 78–87, May 2016. doi:
10.1145/2901919

[77] Fabian Hüske: “Peeking into Apache Flink’s Engine Room,” flink.apache.org,
March 13, 2015.

[78] Mostafa Mokhtar: “Hive 0.14 Cost Based Optimizer (CBO) Technical Over‐
view,” hortonworks.com, March 2, 2015.

[79] Michael Armbrust, Reynold S Xin, Cheng Lian, et al.: “Spark SQL: Relational
Data Processing in Spark,” at ACM International Conference on Management of Data
(SIGMOD), June 2015. doi:10.1145/2723372.2742797

[80] Daniel Blazevski: “Planting Quadtrees for Apache Flink,” insightdataengineer‐
ing.com, March 25, 2016.

[81] Tom White: “Genome Analysis Toolkit: Now Using Apache Spark for Data Pro‐
cessing,” blog.cloudera.com, April 6, 2016.

436 | Chapter 10: Batch Processing

https://www.usenix.org/system/files/conference/osdi12/osdi12-final-126.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-126.pdf
http://cacm.acm.org/magazines/2016/5/201591-parallel-graph-analytics/fulltext
http://cacm.acm.org/magazines/2016/5/201591-parallel-graph-analytics/fulltext
http://dx.doi.org/10.1145/2901919
http://dx.doi.org/10.1145/2901919
http://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html
http://hortonworks.com/blog/hive-0-14-cost-based-optimizer-cbo-technical-overview/
http://hortonworks.com/blog/hive-0-14-cost-based-optimizer-cbo-technical-overview/
http://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf
http://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf
http://dx.doi.org/10.1145/2723372.2742797
http://insightdataengineering.com/blog/flink-knn/
http://blog.cloudera.com/blog/2016/04/genome-analysis-toolkit-now-using-apache-spark-for-data-processing/
http://blog.cloudera.com/blog/2016/04/genome-analysis-toolkit-now-using-apache-spark-for-data-processing/

