

Kubernetes:	Up	and	Running
Dive	into	the	Future	of	Infrastructure

Kelsey	Hightower,	Brendan	Burns,	and	Joe	Beda

Kubernetes:	Up	and	Running
by	Kelsey	Hightower,	Brendan	Burns,	and	Joe	Beda

Copyright	©	2017	Kelsey	Hightower,	Brendan	Burns,	and	Joe	Beda.	All	rights
reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com/safari).
For	more	information,	contact	our	corporate/institutional	sales	department:	800-
998-9938	or	corporate@oreilly.com.

Editor:	Angela	Rufino

Production	Editor:	Melanie	Yarbrough

Copyeditor:	Christina	Edwards

Proofreader:	Rachel	Head

Indexer:	Kevin	Broccoli

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

September	2017:	First	Edition

http://oreilly.com/safari

Revision	History	for	the	First	Edition
2017-09-05:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491935675	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Kubernetes:
Up	and	Running,	the	cover	image,	and	related	trade	dress	are	trademarks	of
O’Reilly	Media,	Inc.

While	the	publisher	and	the	authors	have	used	good	faith	efforts	to	ensure	that
the	information	and	instructions	contained	in	this	work	are	accurate,	the
publisher	and	the	authors	disclaim	all	responsibility	for	errors	or	omissions,
including	without	limitation	responsibility	for	damages	resulting	from	the	use	of
or	reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in
this	work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work
contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual
property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-491-93567-5

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491935675

For	Klarissa	and	Kelis,	who	keep	me	sane.	And	for	my	Mom,	who	taught	me	a
strong	work	ethic	and	how	to	rise	above	all	odds.	—	Kelsey	Hightower

For	my	Dad,	who	helped	me	fall	in	love	with	computers	by	bringing	home
punch	cards	and	dot	matrix	banners.	—	Joe	Beda

For	Robin,	Julia,	Ethan,	and	everyone	who	bought	cookies	to	pay	for	that
Commodore	64	in	my	third-grade	class.	—	Brendan	Burns

Preface

Kubernetes:	A	Dedication
Kubernetes	would	like	to	thank	every	sysadmin	who	has	woken	up	at	3	a.m.	to
restart	a	process.	Every	developer	who	pushed	code	to	production	only	to	find
that	it	didn’t	run	like	it	did	on	their	laptop.	Every	systems	architect	who
mistakenly	pointed	a	load	test	at	the	production	service	because	of	a	leftover
hostname	that	they	hadn’t	updated.	It	was	the	pain,	the	weird	hours,	and	the
weird	errors	that	inspired	the	development	of	Kubernetes.	In	a	single	sentence:
Kubernetes	intends	to	radically	simplify	the	task	of	building,	deploying,	and
maintaining	distributed	systems.	It	has	been	inspired	by	decades	of	real-world
experience	building	reliable	systems	and	it	has	been	designed	from	the	ground
up	to	make	that	experience,	if	not	euphoric,	at	least	pleasant.	We	hope	you	enjoy
the	book!

Who	Should	Read	This	Book
Whether	you	are	new	to	distributed	systems	or	have	been	deploying	cloud-native
systems	for	years,	containers	and	Kubernetes	can	help	you	achieve	new	levels	of
velocity,	agility,	reliability,	and	efficiency.	This	book	describes	the	Kubernetes
cluster	orchestrator	and	how	its	tools	and	APIs	can	be	used	to	improve	the
development,	delivery,	and	maintenance	of	distributed	applications.	Though	no
previous	experience	with	Kubernetes	is	assumed,	to	make	maximal	use	of	the
book	you	should	be	comfortable	building	and	deploying	server-based
applications.	Familiarity	with	concepts	like	load	balancers	and	network	storage
will	be	useful,	though	not	required.	Likewise,	experience	with	Linux,	Linux
containers,	and	Docker,	though	not	essential,	will	help	you	make	the	most	of	this
book.

Why	We	Wrote	This	Book
We	have	been	involved	with	Kubernetes	since	its	very	beginnings.	It	has	been
truly	remarkable	to	watch	it	transform	from	a	curiosity	largely	used	in
experiments	to	a	crucial	production-grade	infrastructure	that	powers	large-scale
production	applications	in	varied	fields,	from	machine	learning	to	online
services.	As	this	transition	occurred,	it	became	increasingly	clear	that	a	book	that
captured	both	how	to	use	the	core	concepts	in	Kubernetes	and	the	motivations
behind	the	development	of	those	concepts	would	be	an	important	contribution	to
the	state	of	cloud-native	application	development.	We	hope	that	in	reading	this
book,	you	not	only	learn	how	to	build	reliable,	scalable	applications	on	top	of
Kubernetes,	but	also	that	you	receive	insight	into	the	core	challenges	of
distributed	systems	that	led	to	its	development.

A	Word	on	Cloud-Native	Applications	Today
From	the	first	programming	languages,	to	object-oriented	programming,	to	the
development	of	virtualization	and	cloud	infrastructure,	the	history	of	computer
science	is	a	history	of	the	development	of	abstractions	that	hide	complexity	and
empower	you	to	build	ever	more	sophisticated	applications.	Despite	this,	the
development	of	reliable,	scalable	applications	is	still	dramatically	more
challenging	than	it	ought	to	be.	In	recent	years,	containers	and	container
orchestration	APIs	like	Kubernetes	have	become	an	important	abstraction	that
radically	simplifies	the	development	of	reliable,	scalable	distributed	systems.
Though	containers	and	orchestrators	are	still	in	the	process	of	entering	the
mainstream,	they	are	already	enabling	developers	to	build	and	deploy
applications	with	a	speed,	agility,	and	reliability	that	would	have	seemed	like
science	fiction	only	a	few	years	ago.

Navigating	This	Book
This	book	is	organized	as	follows.	The	first	chapter	outlines	the	high-level
benefits	of	Kubernetes	without	diving	too	deeply	into	the	details.	If	you	are	new
to	Kubernetes,	this	is	a	great	place	to	start	to	understand	why	you	should	read	the
rest	of	the	book.

The	following	chapter	provides	a	detailed	introduction	to	containers	and
containerized	application	development.	If	you’ve	never	really	played	around
with	Docker	before,	this	chapter	will	be	a	useful	introduction.	If	you	are	already
a	Docker	expert,	it	will	likely	be	mostly	review.

Chapter	3	covers	how	to	deploy	Kubernetes.	While	most	of	this	book	focuses	on
how	to	use	Kubernetes,	you	need	to	get	a	cluster	up	and	running	before	you	start
using	it.	While	running	a	cluster	for	production	is	out	of	the	scope	of	this	book,
this	chapter	presents	a	couple	of	easy	ways	to	create	a	cluster	so	that	you	can
understand	how	to	use	Kubernetes.

Starting	with	Chapter	5,	we	dive	into	the	details	of	deploying	an	application
using	Kubernetes.	We	cover	Pods	(Chapter	5),	labels	and	annotations
(Chapter	6),	services	(Chapter	7),	and	ReplicaSets	(Chapter	8).	These	form	the
core	basics	of	what	you	need	to	deploy	your	service	in	Kubernetes.

After	those	chapters,	we	cover	some	more	specialized	objects	in	Kubernetes:
DaemonSets	(Chapter	9),	jobs	(Chapter	10),	and	ConfigMaps	and	secrets
(Chapter	11).	While	these	chapters	are	essential	for	many	production
applications,	if	you	are	just	learning	Kubernetes	they	can	be	skipped	and
returned	to	later,	after	you	gain	more	experience	and	expertise.

We	then	cover	deployments	(Chapter	12),	which	tie	together	the	lifecycle	of	a
complete	application,	and	integrating	storage	into	Kubernetes	(Chapter	13).
Finally,	we	conclude	with	some	examples	of	how	to	develop	and	deploy	real-
world	applications	in	Kubernetes.

Online	Resources
You	will	want	to	install	Docker.	You	likely	will	also	want	to	familiarize	yourself
with	the	Docker	documentation	if	you	have	not	already	done	so.

Likewise,	you	will	want	to	install	the	kubectl	command-line	tool.	You	may	also
want	to	join	the	Kubernetes	slack	channel,	where	you	will	find	a	large
community	of	users	who	are	willing	to	talk	and	answer	questions	at	nearly	any
hour	of	the	day.

Finally,	as	you	grow	more	advanced,	you	may	want	to	engage	with	the	open
source	Kubernetes	repository	on	GitHub.

https://docker.com
https://kubernetes.io
http://slack.kubernetes.io
https://github.com/kubernetes/kubernetes

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

NOTE
This	icon	signifies	a	tip,	suggestion,	or	general	note.

WARNING
This	icon	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download
at	https://github.com/kubernetes-up-and-running/examples.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-
ROM	of	examples	from	O’Reilly	books	does	require	permission.	Answering	a
question	by	citing	this	book	and	quoting	example	code	does	not	require
permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Kubernetes:	Up	and	Running
by	Kelsey	Hightower,	Brendan	Burns,	and	Joe	Beda	(O’Reilly).	Copyright	2017
Kelsey	Hightower,	Brendan	Burns,	and	Joe	Beda,	978-1-491-93567-5.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/kubernetes-up-and-running/examples
mailto:permissions@oreilly.com

O’Reilly	Safari
NOTE

Safari	(formerly	Safari	Books	Online)	is	a	membership-based	training	and
reference	platform	for	enterprise,	government,	educators,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,
interactive	tutorials,	and	curated	playlists	from	over	250	publishers,	including
O’Reilly	Media,	Harvard	Business	Review,	Prentice	Hall	Professional,	Addison-
Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,	Adobe,	Focal
Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM
Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	and	Course	Technology,	among	others.

For	more	information,	please	visit	http://oreilly.com/safari.

http://oreilly.com/safari
http://oreilly.com/safari

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	http://bit.ly/kubernetes-up-
and-running.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/kubernetes-up-and-running
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	Introduction

Kubernetes	is	an	open	source	orchestrator	for	deploying	containerized
applications.	Kubernetes	was	originally	developed	by	Google,	inspired	by	a
decade	of	experience	deploying	scalable,	reliable	systems	in	containers	via
application-oriented	APIs.1

But	Kubernetes	is	much	more	than	simply	exporting	technology	developed	at
Google.	Kubernetes	has	grown	to	be	the	product	of	a	rich	and	growing	open
source	community.	This	means	that	Kubernetes	is	a	product	that	is	suited	not	just
to	the	needs	of	internet-scale	companies	but	to	cloud-native	developers	of	all
scales,	from	a	cluster	of	Raspberry	Pi	computers	to	a	warehouse	full	of	the	latest
machines.	Kubernetes	provides	the	software	necessary	to	successfully	build	and
deploy	reliable,	scalable	distributed	systems.

You	may	be	wondering	what	we	mean	when	we	say	“reliable,	scalable
distributed	systems.”	More	and	more	services	are	delivered	over	the	network	via
APIs.	These	APIs	are	often	delivered	by	a	distributed	system,	the	various	pieces
that	implement	the	API	running	on	different	machines,	connected	via	the
network	and	coordinating	their	actions	via	network	communication.	Because	we
rely	on	these	APIs	increasingly	for	all	aspects	of	our	daily	lives	(e.g.,	finding
directions	to	the	nearest	hospital),	these	systems	must	be	highly	reliable.	They
cannot	fail,	even	if	a	part	of	the	system	crashes	or	otherwise	fails.	Likewise,	they
must	maintain	availability	even	during	software	rollouts	or	other	maintenance
events.	Finally,	because	more	and	more	of	the	world	is	coming	online	and	using
such	services,	they	must	be	highly	scalable	so	that	they	can	grow	their	capacity
to	keep	up	with	ever-increasing	usage	without	radical	redesign	of	the	distributed
system	that	implements	the	services.

Depending	on	when	and	why	you	have	come	to	hold	this	book	in	your	hands,
you	may	have	varying	degrees	of	experience	with	containers,	distributed
systems,	and	Kubernetes.	Regardless	of	what	your	experience	is,	we	believe	this
book	will	enable	you	to	make	the	most	of	your	use	of	Kubernetes.

There	are	many	reasons	why	people	come	to	use	containers	and	container	APIs
like	Kubernetes,	but	we	believe	they	effectively	all	can	be	traced	back	to	one	of

these	benefits:
Velocity

Scaling	(of	both	software	and	teams)

Abstracting	your	infrastructure

Efficiency

In	the	following	sections	we	describe	how	Kubernetes	can	help	provide	each	of
these	benefits.

Velocity
Velocity	is	the	key	component	in	nearly	all	software	development	today.	The
changing	nature	of	software	from	boxed	software	shipped	on	CDs	to	web-based
services	that	change	every	few	hours	means	that	the	difference	between	you	and
your	competitors	is	often	the	speed	with	which	you	can	develop	and	deploy	new
components	and	features.

It	is	important	to	note,	however,	that	this	velocity	is	not	defined	in	terms	of
simply	raw	speed.	While	your	users	are	always	looking	for	iterative
improvement,	they	are	more	interested	in	a	highly	reliable	service.	Once	upon	a
time,	it	was	OK	for	a	service	to	be	down	for	maintenance	at	midnight	every
night.	But	today,	our	users	expect	constant	uptime,	even	if	the	software	they	are
running	is	changing	constantly.

Consequently,	velocity	is	measured	not	in	terms	of	the	raw	number	of	features
you	can	ship	per	hour	or	day,	but	rather	in	terms	of	the	number	of	things	you	can
ship	while	maintaining	a	highly	available	service.

In	this	way,	containers	and	Kubernetes	can	provide	the	tools	that	you	need	to
move	quickly,	while	staying	available.	The	core	concepts	that	enable	this	are
immutability,	declarative	configuration,	and	online	self-healing	systems.	These
ideas	all	interrelate	to	radically	improve	the	speed	with	which	you	can	reliably
deploy	software.

The	Value	of	Immutability
Containers	and	Kubernetes	encourage	developers	to	build	distributed	systems
that	adhere	to	the	principles	of	immutable	infrastructure.	With	immutable
infrastructure,	once	an	artifact	is	created	in	the	system	it	does	not	change	via
user	modifications.

Traditionally,	computers	and	software	systems	have	been	treated	as	mutable
infrastructure.	With	mutable	infrastructure,	changes	are	applied	as	incremental
updates	to	an	existing	system.	A	system	upgrade	via	the	apt-get	update	tool	is
a	good	example	of	an	update	to	a	mutable	system.	Running	apt	sequentially
downloads	any	updated	binaries,	copies	them	on	top	of	older	binaries,	and	makes
incremental	updates	to	configuration	files.	With	a	mutable	system,	the	current
state	of	the	infrastructure	is	not	represented	as	a	single	artifact,	but	rather	an
accumulation	of	incremental	updates	and	changes.	On	many	systems	these
incremental	updates	come	from	not	just	system	upgrades	but	operator
modifications	as	well.

In	contrast,	in	an	immutable	system,	rather	than	a	series	of	incremental	updates
and	changes,	an	entirely	new,	complete	image	is	built,	where	the	update	simply
replaces	the	entire	image	with	the	newer	image	in	a	single	operation.	There	are
no	incremental	changes.	As	you	can	imagine,	this	is	a	significant	shift	from	the
more	traditional	world	of	configuration	management.

To	make	this	more	concrete	in	the	world	of	containers,	consider	two	different
ways	to	upgrade	your	software:

1.	 You	can	log	into	a	container,	run	a	command	to	download	your	new
software,	kill	the	old	server,	and	start	the	new	one.

2.	 You	can	build	a	new	container	image,	push	it	to	a	container	registry,	kill
the	existing	container,	and	start	a	new	one.

At	first	blush,	these	two	approaches	might	seem	largely	indistinguishable.	So
what	is	it	about	the	act	of	building	a	new	container	that	improves	reliability?

The	key	differentiation	is	the	artifact	that	you	create,	and	the	record	of	how	you
created	it.	These	records	make	it	easy	to	understand	exactly	the	differences	in
some	new	version	and,	if	something	goes	wrong,	determine	what	has	changed

and	how	to	fix	it.

Additionally,	building	a	new	image	rather	than	modifying	an	existing	one	means
the	old	image	is	still	around,	and	can	quickly	be	used	for	a	rollback	if	an	error
occurs.	In	contrast,	once	you	copy	your	new	binary	over	an	existing	binary,	such
rollback	is	nearly	impossible.

Immutable	container	images	are	at	the	core	of	everything	that	you	will	build	in
Kubernetes.	It	is	possible	to	imperatively	change	running	containers,	but	this	is
an	antipattern	to	be	used	only	in	extreme	cases	where	there	are	no	other	options
(e.g.,	if	it	is	the	only	way	to	temporarily	repair	a	mission-critical	production
system).	And	even	then,	the	changes	must	also	be	recorded	through	a	declarative
configuration	update	at	some	later	time,	after	the	fire	is	out.

Declarative	Configuration
Immutability	extends	beyond	containers	running	in	your	cluster	to	the	way	you
describe	your	application	to	Kubernetes.	Everything	in	Kubernetes	is	a
declarative	configuration	object	that	represents	the	desired	state	of	the	system.	It
is	Kubernetes’s	job	to	ensure	that	the	actual	state	of	the	world	matches	this
desired	state.

Much	like	mutable	versus	immutable	infrastructure,	declarative	configuration	is
an	alternative	to	imperative	configuration,	where	the	state	of	the	world	is	defined
by	the	execution	of	a	series	of	instructions	rather	than	a	declaration	of	the
desired	state	of	the	world.	While	imperative	commands	define	actions,
declarative	configurations	define	state.

To	understand	these	two	approaches,	consider	the	task	of	producing	three
replicas	of	a	piece	of	software.	With	an	imperative	approach,	the	configuration
would	say:	“run	A,	run	B,	and	run	C.”	The	corresponding	declarative
configuration	would	be	“replicas	equals	three.”

Because	it	describes	the	state	of	the	world,	declarative	configuration	does	not
have	to	be	executed	to	be	understood.	Its	impact	is	concretely	declared.	Since	the
effects	of	declarative	configuration	can	be	understood	before	they	are	executed,
declarative	configuration	is	far	less	error-prone.	Further,	the	traditional	tools	of
software	development,	such	as	source	control,	code	review,	and	unit	testing,	can
be	used	in	declarative	configuration	in	ways	that	are	impossible	for	imperative
instructions.

The	combination	of	declarative	state	stored	in	a	version	control	system	and
Kubernetes’s	ability	to	make	reality	match	this	declarative	state	makes	rollback
of	a	change	trivially	easy.	It	is	simply	restating	the	previous	declarative	state	of
the	system.	With	imperative	systems	this	is	usually	impossible,	since	while	the
imperative	instructions	describe	how	to	get	you	from	point	A	to	point	B,	they
rarely	include	the	reverse	instructions	that	can	get	you	back.

Self-Healing	Systems
Kubernetes	is	an	online,	self-healing	system.	When	it	receives	a	desired	state
configuration,	it	does	not	simply	take	actions	to	make	the	current	state	match	the
desired	state	a	single	time.	It	continuously	takes	actions	to	ensure	that	the	current
state	matches	the	desired	state.	This	means	that	not	only	will	Kubernetes
initialize	your	system,	but	it	will	guard	it	against	any	failures	or	perturbations
that	might	destabilize	your	system	and	affect	reliability.

A	more	traditional	operator	repair	involves	a	manual	series	of	mitigation	steps,
or	human	intervention	performed	in	response	to	some	sort	of	alert.	Imperative
repair	like	this	is	more	expensive	(since	it	generally	requires	an	on-call	operator
to	be	available	to	enact	the	repair).	It	is	also	generally	slower,	since	a	human
must	often	wake	up	and	log	in	to	respond.	Furthermore,	it	is	less	reliable	since
the	imperative	series	of	repair	operations	suffer	from	all	of	the	problems	of
imperative	management	described	in	the	previous	section.	Self-healing	systems
like	Kubernetes	both	reduce	the	burden	on	operators	and	improve	the	overall
reliability	of	the	system	by	performing	reliable	repairs	more	quickly.

As	a	concrete	example	of	this	self-healing	behavior,	if	you	assert	a	desired	state
of	three	replicas	to	Kubernetes,	it	does	not	just	create	three	replicas	—	it
continuously	ensures	that	there	are	exactly	three	replicas.	If	you	manually	create
a	fourth	replica	Kubernetes	will	destroy	one	to	bring	the	number	back	to	three.	If
you	manually	destroy	a	replica,	Kubernetes	will	create	one	to	again	return	you	to
the	desired	state.

Online	self-healing	systems	improve	developer	velocity	because	the	time	and
energy	you	might	otherwise	have	spent	on	operations	and	maintenance	can
instead	be	spent	on	developing	and	testing	new	features.

Scaling	Your	Service	and	Your	Teams
As	your	product	grows,	its	inevitable	that	you	will	need	to	scale	both	your
software	and	the	teams	that	develop	it.	Fortunately,	Kubernetes	can	help	with
both	of	these	goals.	Kubernetes	achieves	scalability	by	favoring	decoupled
architectures.

Decoupling
In	a	decoupled	architecture	each	component	is	separated	from	other	components
by	defined	APIs	and	service	load	balancers.	APIs	and	load	balancers	isolate	each
piece	of	the	system	from	the	others.	APIs	provide	a	buffer	between	implementer
and	consumer,	and	load	balancers	provide	a	buffer	between	running	instances	of
each	service.

Decoupling	components	via	load	balancers	makes	it	easy	to	scale	the	programs
that	make	up	your	service,	because	increasing	the	size	(and	therefore	the
capacity)	of	the	program	can	be	done	without	adjusting	or	reconfiguring	any	of
the	other	layers	of	your	service.

Decoupling	servers	via	APIs	makes	it	easier	to	scale	the	development	teams
because	each	team	can	focus	on	a	single,	smaller	microservice	with	a
comprehensible	surface	area.	Crisp	APIs	between	microservices	limit	the
amount	of	cross-team	communication	overhead	required	to	build	and	deploy
software.	This	communication	overhead	is	often	the	major	restricting	factor
when	scaling	teams.

Easy	Scaling	for	Applications	and	Clusters
Concretely,	when	you	need	to	scale	your	service,	the	immutable,	declarative
nature	of	Kubernetes	makes	this	scaling	trivial	to	implement.	Because	your
containers	are	immutable,	and	the	number	of	replicas	is	simply	a	number	in	a
declarative	config,	scaling	your	service	upward	is	simply	a	matter	of	changing	a
number	in	a	configuration	file,	asserting	this	new	declarative	state	to	Kubernetes,
and	letting	it	take	care	of	the	rest.	Alternately,	you	can	set	up	autoscaling	and
simply	let	Kubernetes	take	care	of	it	for	you.

Of	course,	that	sort	of	scaling	assumes	that	there	are	resources	available	in	your
cluster	to	consume.	Sometimes	you	actually	need	to	scale	up	the	cluster	itself.
Here	again,	Kubernetes	makes	this	task	easier.	Because	each	machine	in	a	cluster
is	entirely	identical	to	every	other	machine,	and	the	applications	themselves	are
decoupled	from	the	details	of	the	machine	by	containers,	adding	additional
resources	to	the	cluster	is	simply	a	matter	of	imaging	a	new	machine	and	joining
it	into	the	cluster.	This	can	be	accomplished	via	a	few	simple	commands	or	via	a
prebaked	machine	image.

One	of	the	challenges	of	scaling	machine	resources	is	predicting	their	use.	If	you
are	running	on	physical	infrastructure,	the	time	to	obtain	a	new	machine	is
measured	in	days	or	weeks.	On	both	physical	and	cloud	infrastructure,	predicting
future	costs	is	difficult	because	it	is	hard	to	predict	the	growth	and	scaling	needs
of	specific	applications.

Kubernetes	can	simplify	forecasting	future	compute	costs.	To	understand	why
this	is	true,	consider	scaling	up	three	teams,	A,	B,	and	C.	Historically	you	have
seen	that	each	team’s	growth	is	highly	variable	and	thus	hard	to	predict.	If	you
are	provisioning	individual	machines	for	each	service,	you	have	no	choice	but	to
forecast	based	on	the	maximum	expected	growth	for	each	service,	since
machines	dedicated	to	one	team	cannot	be	used	for	another	team.	If	instead	you
use	Kubernetes	to	decouple	the	teams	from	the	specific	machines	they	are	using,
you	can	forecast	growth	based	on	the	aggregate	growth	of	all	three	services.
Combining	three	variable	growth	rates	into	a	single	growth	rate	reduces
statistical	noise	and	produces	a	more	reliable	forecast	of	expected	growth.
Furthermore,	decoupling	the	teams	from	specific	machines	means	that	teams	can
share	fractional	parts	of	each	other’s	machines,	reducing	even	further	the

overheads	associated	with	forecasting	growth	of	computing	resources.

Scaling	Development	Teams	with	Microservices
As	noted	in	a	variety	of	research,	the	ideal	team	size	is	the	“two-pizza	team,”	or
roughly	six	to	eight	people,	because	this	group	size	often	results	in	good
knowledge	sharing,	fast	decision	making,	and	a	common	sense	of	purpose.
Larger	teams	tend	to	suffer	from	hierarchy,	poor	visibility,	and	infighting,	which
hinder	agility	and	success.

However,	many	projects	require	significantly	more	resources	to	be	successful
and	achieve	their	goals.	Consequently,	there	is	a	tension	between	the	ideal	team
size	for	agility	and	the	necessary	team	size	for	the	product’s	end	goals.

The	common	solution	to	this	tension	has	been	the	development	of	decoupled,
service-oriented	teams	that	each	build	a	single	microservice.	Each	small	team	is
responsible	for	the	design	and	delivery	of	a	service	that	is	consumed	by	other
small	teams.	The	aggregation	of	all	of	these	services	ultimately	provides	the
implementation	of	the	overall	product’s	surface	area.

Kubernetes	provides	numerous	abstractions	and	APIs	that	make	it	easier	to	build
these	decoupled	microservice	architectures.

Pods,	or	groups	of	containers,	can	group	together	container	images
developed	by	different	teams	into	a	single	deployable	unit.

Kubernetes	services	provide	load	balancing,	naming,	and	discovery	to
isolate	one	microservice	from	another.

Namespaces	provide	isolation	and	access	control,	so	that	each	microservice
can	control	the	degree	to	which	other	services	interact	with	it.

Ingress	objects	provide	an	easy-to-use	frontend	that	can	combine	multiple
microservices	into	a	single	externalized	API	surface	area.

Finally,	decoupling	the	application	container	image	and	machine	means	that
different	microservices	can	colocate	on	the	same	machine	without	interfering
with	each	other,	reducing	the	overhead	and	cost	of	microservice	architectures.
The	health-checking	and	rollout	features	of	Kubernetes	guarantee	a	consistent
approach	to	application	rollout	and	reliability	that	ensures	that	a	proliferation	of
microservice	teams	does	not	also	result	in	a	proliferation	of	different	approaches

to	service	production	lifecycle	and	operations.

Separation	of	Concerns	for	Consistency	and	Scaling
In	addition	to	the	consistency	that	Kubernetes	brings	to	operations,	the
decoupling	and	separation	of	concerns	produced	by	the	Kubernetes	stack	lead	to
significantly	greater	consistency	for	the	lower	levels	of	your	infrastructure.	This
enables	your	operations	function	to	scale	to	managing	many	machines	with	a
single	small,	focused	team.	We	have	talked	at	length	about	the	decoupling	of
application	container	and	machine/operating	system	(OS),	but	an	important
aspect	of	this	decoupling	is	that	the	container	orchestration	API	becomes	a	crisp
contract	that	separates	the	responsibilities	of	the	application	operator	from	the
cluster	orchestration	operator.	We	call	this	the	“not	my	monkey,	not	my	circus”
line.	The	application	developer	relies	on	the	service-level	agreement	(SLA)
delivered	by	the	container	orchestration	API,	without	worrying	about	the	details
of	how	this	SLA	is	achieved.	Likewise,	the	container	orchestration	API
reliability	engineer	focuses	on	delivering	the	orchestration	API’s	SLA	without
worrying	about	the	applications	that	are	running	on	top	of	it.

This	decoupling	of	concerns	means	that	a	small	team	running	a	Kubernetes
cluster	can	be	responsible	for	supporting	hundreds	or	even	thousands	of	teams
running	applications	within	that	cluster	(Figure	1-1).	Likewise,	a	small	team	can
be	responsible	for	tens	(or	more)	of	clusters	running	around	the	world.	It’s
important	to	note	that	the	same	decoupling	of	containers	and	OS	enables	the	OS
reliability	engineers	to	focus	on	the	SLA	of	the	individual	machine’s	OS.	This
becomes	another	line	of	separate	responsibility,	with	the	Kubernetes	operators
relying	on	the	OS	SLA,	and	the	OS	operators	worrying	solely	about	delivering
that	SLA.	Again,	this	enables	you	to	scale	a	small	team	of	OS	experts	to	a	fleet
of	thousands	of	machines.

Figure	1-1.	An	illustration	of	how	different	operations	teams	are	decoupled	using	APIs

Of	course,	devoting	even	a	small	team	to	managing	an	OS	is	beyond	the	scale	of
many	organizations.	In	these	environments,	a	managed	Kubernetes-as-a-Service
(KaaS)	provided	by	a	public	cloud	provider	is	a	great	option.

NOTE

At	the	time	of	writing,	you	can	use	managed	KaaS	on	Microsoft	Azure,	with	Azure	Container
Service,	as	well	as	on	the	Google	Cloud	Platform	via	the	Google	Container	Engine	(GCE).
There	is	no	equivalent	service	available	on	Amazon	Web	Services	(AWS),	though	the	kops
project	provides	tools	for	easy	installation	and	management	of	Kubernetes	on	AWS	(see
“Installing	Kubernetes	on	Amazon	Web	Services”).

The	decision	of	whether	to	use	KaaS	or	manage	it	yourself	is	one	each	user
needs	to	make	based	on	the	skills	and	demands	of	their	situation.	Often	for	small
organizations,	KaaS	provides	an	easy-to-use	solution	that	enables	them	to	focus
their	time	and	energy	on	building	the	software	to	support	their	work	rather	than
managing	a	cluster.	For	a	larger	organization	that	can	afford	a	dedicated	team	for
managing	its	Kubernetes	cluster,	it	may	make	sense	to	manage	it	yourself	since	it
enables	greater	flexibility	in	terms	of	cluster	capabilities	and	operations.

Abstracting	Your	Infrastructure
The	goal	of	the	public	cloud	is	to	provide	easy-to-use,	self-service	infrastructure
for	developers	to	consume.	However,	too	often	cloud	APIs	are	oriented	around
mirroring	the	infrastructure	that	IT	expects,	not	the	concepts	(e.g.,	“virtual
machines”	instead	of	“applications”)	that	developers	want	to	consume.
Additionally,	in	many	cases	the	cloud	comes	with	particular	details	in
implementation	or	services	that	are	specific	to	the	cloud	provider.	Consuming
these	APIs	directly	makes	it	difficult	to	run	your	application	in	multiple
environments,	or	spread	between	cloud	and	physical	environments.

The	move	to	application-oriented	container	APIs	like	Kubernetes	has	two
concrete	benefits.	First,	as	we	described	previously,	it	separates	developers	from
specific	machines.	This	not	only	makes	the	machine-oriented	IT	role	easier,
since	machines	can	simply	be	added	in	aggregate	to	scale	the	cluster,	but	in	the
context	of	the	cloud	it	also	enables	a	high	degree	of	portability	since	developers
are	consuming	a	higher-level	API	that	is	implemented	in	terms	of	the	specific
cloud	infrastructure	APIs.

When	your	developers	build	their	applications	in	terms	of	container	images	and
deploy	them	in	terms	of	portable	Kubernetes	APIs,	transferring	your	application
between	environments,	or	even	running	in	hybrid	environments,	is	simply	a
matter	of	sending	the	declarative	config	to	a	new	cluster.	Kubernetes	has	a
number	of	plug-ins	that	can	abstract	you	from	a	particular	cloud.	For	example,
Kubernetes	services	know	how	to	create	load	balancers	on	all	major	public
clouds	as	well	as	several	different	private	and	physical	infrastructures.	Likewise,
Kubernetes	PersistentVolumes	and	PersistentVolumeClaims	can	be	used	to
abstract	your	applications	away	from	specific	storage	implementations.	Of
course,	to	achieve	this	portability	you	need	to	avoid	cloud-managed	services
(e.g.,	Amazon’s	DynamoDB	or	Google’s	Cloud	Spanner),	which	means	that	you
will	be	forced	to	deploy	and	manage	open	source	storage	solutions	like
Cassandra,	MySQL,	or	MongoDB.

Putting	it	all	together,	building	on	top	of	Kubernetes’s	application-oriented
abstractions	ensures	that	the	effort	that	you	put	into	building,	deploying,	and
managing	your	application	is	truly	portable	across	a	wide	variety	of

environments.

Efficiency
In	addition	to	the	developer	and	IT	management	benefits	that	containers	and
Kubernetes	provide,	there	is	also	a	concrete	economic	benefit	to	the	abstraction.
Because	developers	no	longer	think	in	terms	of	machines,	their	applications	can
be	colocated	on	the	same	machines	without	impacting	the	applications
themselves.	This	means	that	tasks	from	multiple	users	can	be	packed	tightly	onto
fewer	machines.

Efficiency	can	be	measured	by	the	ratio	of	the	useful	work	performed	by	a
machine	or	process	to	the	total	amount	of	energy	spent	doing	so.	When	it	comes
to	deploying	and	managing	applications,	many	of	the	available	tools	and
processes	(e.g.,	bash	scripts,	apt	updates,	or	imperative	configuration
management)	are	somewhat	inefficient.	When	discussing	efficiency	it’s	often
helpful	to	think	of	both	the	cost	of	running	a	server	and	the	human	cost	required
to	manage	it.

Running	a	server	incurs	a	cost	based	on	power	usage,	cooling	requirements,	data
center	space,	and	raw	compute	power.	Once	a	server	is	racked	and	powered	on
(or	clicked	and	spun	up),	the	meter	literally	starts	running.	Any	idle	CPU	time	is
money	wasted.	Thus,	it	becomes	part	of	the	system	administrator’s
responsibilities	to	keep	utilization	at	acceptable	levels,	which	requires	ongoing
management.	This	is	where	containers	and	the	Kubernetes	workflow	come	in.
Kubernetes	provides	tools	that	automate	the	distribution	of	applications	across	a
cluster	of	machines,	ensuring	higher	levels	of	utilization	than	are	possible	with
traditional	tooling.

A	further	increase	in	efficiency	comes	from	the	fact	that	a	developer’s	test
environment	can	be	quickly	and	cheaply	created	as	a	set	of	containers	running	in
a	personal	view	of	a	shared	Kubernetes	cluster	(using	a	feature	called
namespaces).	In	the	past,	turning	up	a	test	cluster	for	a	developer	might	have
meant	turning	up	three	machines.	With	Kubernetes	it	is	simple	to	have	all
developers	share	a	single	test	cluster,	aggregating	their	usage	onto	a	much
smaller	set	of	machines.	Reducing	the	overall	number	of	machines	used	in	turn
drives	up	the	efficiency	of	each	system:	since	more	of	the	resources	(CPU,
RAM,	etc.)	on	each	individual	machine	are	used,	the	overall	cost	of	each

container	becomes	much	lower.

Reducing	the	cost	of	development	instances	in	your	stack	enables	development
practices	that	might	previously	have	been	cost-prohibitive.	For	example,	with
your	application	deployed	via	Kubernetes	it	becomes	conceivable	to	deploy	and
test	every	single	commit	contributed	by	every	developer	throughout	your	entire
stack.

When	the	cost	of	each	deployment	is	measured	in	terms	of	a	small	number	of
containers,	rather	than	multiple	complete	virtual	machines	(VMs),	the	cost	you
incur	for	such	testing	is	dramatically	lower.	Returning	to	the	original	value	of
Kubernetes,	this	increased	testing	also	increases	velocity,	since	you	have	both
strong	signals	as	to	the	reliability	of	your	code	as	well	as	the	granularity	of	detail
required	to	quickly	identify	where	a	problem	may	have	been	introduced.

Summary
Kubernetes	was	built	to	radically	change	the	way	that	applications	are	built	and
deployed	in	the	cloud.	Fundamentally,	it	was	designed	to	give	developers	more
velocity,	efficiency,	and	agility.	We	hope	the	preceding	sections	have	given	you
an	idea	of	why	you	should	deploy	your	applications	using	Kubernetes.	Now	that
you	are	convinced	of	that,	the	following	chapters	will	teach	you	how	to	deploy
your	application.

Brendan	Burns	et	al.,	“Borg,	Omega,	and	Kubernetes:	Lessons	Learned	from	Three	Container-
Management	Systems	over	a	Decade,”	ACM	Queue	14	(2016):	70–93,	available	at	http://bit.ly/2vIrL4S.

1

Chapter	2.	Creating	and	Running
Containers

Kubernetes	is	a	platform	for	creating,	deploying,	and	managing	distributed
applications.	These	applications	come	in	many	different	shapes	and	sizes,	but
ultimately,	they	are	all	comprised	of	one	or	more	applications	that	run	on
individual	machines.	These	applications	accept	input,	manipulate	data,	and	then
return	the	results.	Before	we	can	even	consider	building	a	distributed	system,	we
must	first	consider	how	to	build	the	application	container	images	that	make	up
the	pieces	of	our	distributed	system.

Applications	are	typically	comprised	of	a	language	runtime,	libraries,	and	your
source	code.	In	many	cases	your	application	relies	on	external	libraries	such	as
libc	and	libssl.	These	external	libraries	are	generally	shipped	as	shared
components	in	the	OS	that	you	have	installed	on	a	particular	machine.

Problems	occur	when	an	application	developed	on	a	programmer’s	laptop	has	a
dependency	on	a	shared	library	that	isn’t	available	when	the	program	is	rolled
out	to	the	production	OS.	Even	when	the	development	and	production
environments	share	the	exact	same	version	of	the	OS,	problems	can	occur	when
developers	forget	to	include	dependent	asset	files	inside	a	package	that	they
deploy	to	production.

A	program	can	only	execute	successfully	if	it	can	be	reliably	deployed	onto	the
machine	where	it	should	run.	Too	often	the	state	of	the	art	for	deployment
involves	running	imperative	scripts,	which	inevitably	have	twisty	and	Byzantine
failure	cases.

Finally,	traditional	methods	of	running	multiple	applications	on	a	single	machine
require	that	all	of	these	programs	share	the	same	versions	of	shared	libraries	on
the	system.	If	the	different	applications	are	developed	by	different	teams	or
organizations,	these	shared	dependencies	add	needless	complexity	and	coupling
between	these	teams.

In	Chapter	1,	we	argued	strongly	for	the	value	of	immutable	images	and
infrastructure.	It	turns	out	that	this	is	exactly	the	value	provided	by	the	container

image.	As	we	will	see,	it	easily	solves	all	the	problems	of	dependency
management	and	encapsulation	just	described.

When	working	with	applications	it’s	often	helpful	to	package	them	in	a	way	that
makes	it	easy	to	share	them	with	others.	Docker,	the	default	container	runtime
engine,	makes	it	easy	to	package	an	application	and	push	it	to	a	remote	registry
where	it	can	later	be	pulled	by	others.

In	this	chapter	we	are	going	to	work	with	a	simple	example	application	that	we
built	for	this	book	to	help	show	this	workflow	in	action.	You	can	find	the
application	on	GitHub.

Container	images	bundle	an	application	and	its	dependencies,	under	a	root
filesystem,	into	a	single	artifact.	The	most	popular	container	image	format	is	the
Docker	image	format,	the	primary	image	format	supported	by	Kubernetes.
Docker	images	also	include	additional	metadata	used	by	a	container	runtime	to
start	a	running	application	instance	based	on	the	contents	of	the	container	image.

This	chapter	covers	the	following	topics:
How	to	package	an	application	using	the	Docker	image	format

How	to	start	an	application	using	the	Docker	container	runtime

https://github.com/kubernetes-up-and-running/kuard

Container	Images
For	nearly	everyone,	their	first	interaction	with	any	container	technology	is	with
a	container	image.	A	container	image	is	a	binary	package	that	encapsulates	all	of
the	files	necessary	to	run	an	application	inside	of	an	OS	container.	Depending	on
how	you	first	experiment	with	containers,	you	will	either	build	a	container	image
from	your	local	filesystem	or	download	a	preexisting	image	from	a	container
registry.	In	either	case,	once	the	container	image	is	present	on	your	computer,
you	can	run	that	image	to	produce	a	running	application	inside	an	OS	container.

The	Docker	Image	Format
The	most	popular	and	widespread	container	image	format	is	the	Docker	image
format,	which	was	developed	by	the	Docker	open	source	project	for	packaging,
distributing,	and	running	containers	using	the	docker	command.	Subsequently
work	has	begun	by	Docker,	Inc.,	and	others	to	standardize	the	container	image
format	via	the	Open	Container	Image	(OCI)	project.	While	the	OCI	set	of
standards	have	recently	(as	of	mid-2017)	been	released	as	a	1.0	standard,
adoption	of	these	standards	is	still	very	early.	The	Docker	image	format
continues	to	be	the	de	facto	standard,	and	is	made	up	of	a	series	of	filesystem
layers.	Each	layer	adds,	removes,	or	modifies	files	from	the	preceding	layer	in
the	filesystem.	This	is	an	example	of	an	overlay	filesystem.	There	are	a	variety
of	different	concrete	implementations	of	such	filesystems,	including	aufs,
overlay,	and	overlay2.

CONTAINER	LAYERING

Container	images	are	constructed	of	a	series	of	filesystem	layers,	where	each	layer	inherits	and
modifies	the	layers	that	came	before	it.	To	help	explain	this	in	detail,	let’s	build	some	containers.	Note
that	for	correctness	the	ordering	of	the	layers	should	be	bottom	up,	but	for	ease	of	understanding	we
take	the	opposite	approach:

.

└──	container	A:	a	base	operating	system	only,	such	as	Debian

				└──	container	B:	build	upon	#A,	by	adding	Ruby	v2.1.10

				└──	container	C:	build	upon	#A,	by	adding	Golang	v1.6

At	this	point	we	have	three	containers:	A,	B,	and	C.	B	and	C	are	forked	from	A	and	share	nothing
besides	the	base	container’s	files.	Taking	it	further,	we	can	build	on	top	of	B	by	adding	Rails	(version
4.2.6).	We	may	also	want	to	support	a	legacy	application	that	requires	an	older	version	of	Rails	(e.g.,
version	3.2.x).	We	can	build	a	container	image	to	support	that	application	based	on	B	also,	planning	to
someday	migrate	the	app	to	v4:

.	(continuing	from	above)

└──	container	B:	build	upon	#A,	by	adding	Ruby	v2.1.10

				└──	container	D:	build	upon	#B,	by	adding	Rails	v4.2.6

				└──	container	E:	build	upon	#B,	by	adding	Rails	v3.2.x

Conceptually,	each	container	image	layer	builds	upon	a	previous	one.	Each	parent	reference	is	a
pointer.	While	the	example	here	is	a	simple	set	of	containers,	other	real-world	containers	can	be	part	of
a	larger	and	extensive	directed	acyclic	graph.

Container	images	are	typically	combined	with	a	container	configuration	file,
which	provides	instructions	on	how	to	set	up	the	container	environment	and
execute	an	application	entrypoint.	The	container	configuration	often	includes
information	on	how	to	set	up	networking,	namespace	isolation,	resource
constraints	(cgroups),	and	what	syscall	restrictions	should	be	placed	on	a
running	container	instance.	The	container	root	filesystem	and	configuration	file
are	typically	bundled	using	the	Docker	image	format.

Containers	fall	into	two	main	categories:
System	containers

Application	containers

System	containers	seek	to	mimic	virtual	machines	and	often	run	a	full	boot
process.	They	often	include	a	set	of	system	services	typically	found	in	a	VM,
such	as	ssh,	cron,	and	syslog.

Application	containers	differ	from	system	containers	in	that	they	commonly	run
a	single	application.	While	running	a	single	application	per	container	might	seem
like	an	unnecessary	constraint,	it	provides	the	perfect	level	of	granularity	for
composing	scalable	applications,	and	is	a	design	philosophy	that	is	leveraged
heavily	by	pods.

Building	Application	Images	with	Docker
In	general,	container	orchestration	systems	like	Kubernetes	are	focused	on
building	and	deploying	distributed	systems	made	up	of	application	containers.
Consequently,	we	will	focus	on	application	containers	for	the	remainder	of	this
chapter.

Dockerfiles
A	Dockerfile	can	be	used	to	automate	the	creation	of	a	Docker	container	image.
The	following	example	describes	the	steps	required	to	build	the	kuard
(Kubernetes	up	and	running)	image,	which	is	both	secure	and	lightweight	in
terms	of	size:

FROM	alpine

MAINTAINER	Kelsey	Hightower	<kelsey.hightower@kuar.io>

COPY	bin/kuard	/kuard

ENTRYPOINT	["/kuard"]

This	text	can	be	stored	in	a	text	file,	typically	named	Dockerfile,	and	used	to
create	a	Docker	image.

Run	the	following	command	to	create	the	kuard	Docker	image:

$	docker	build	-t	kuard-amd64:1	.

We	have	chosen	to	build	on	top	of	Alpine,	an	extremely	minimal	Linux
distribution.	Consequently,	the	final	image	should	check	in	at	around	6	MB,
which	is	drastically	smaller	than	many	publicly	available	images	that	tend	to	be
built	on	top	of	more	complete	OS	versions	such	as	Debian.

At	this	point	our	kuard	image	lives	in	the	local	Docker	registry	where	the	image
was	built	and	is	only	accessible	to	a	single	machine.	The	true	power	of	Docker
comes	from	the	ability	to	share	images	across	thousands	of	machines	and	the
broader	Docker	community.

Image	Security
When	it	comes	to	security	there	are	no	shortcuts.	When	building	images	that	will
ultimately	run	in	a	production	Kubernetes	cluster,	be	sure	to	follow	best
practices	for	packaging	and	distributing	applications.	For	example,	don’t	build
containers	with	passwords	baked	in	—	and	this	includes	not	just	in	the	final
layer,	but	any	layers	in	the	image.	One	of	the	counterintuitive	problems
introduced	by	container	layers	is	that	deleting	a	file	in	one	layer	doesn’t	delete
that	file	from	preceding	layers.	It	still	takes	up	space	and	it	can	be	accessed	by
anyone	with	the	right	tools	—	an	enterprising	attacker	can	simply	create	an
image	that	only	consists	of	the	layers	that	contain	the	password.

Secrets	and	images	should	never	be	mixed.	If	you	do	so,	you	will	be	hacked,	and
you	will	bring	shame	to	your	entire	company	or	department.	We	all	want	to	be
on	TV	someday,	but	there	are	better	ways	to	go	about	that.

Optimizing	Image	Sizes
There	are	several	gotchas	that	come	when	people	begin	to	experiment	with
container	images	that	lead	to	overly	large	images.	The	first	thing	to	remember	is
that	files	that	are	removed	by	subsequent	layers	in	the	system	are	actually	still
present	in	the	images;	they’re	just	inaccessible.	Consider	the	following	situation:

.

└──	layer	A:	contains	a	large	file	named	'BigFile'

				└──	layer	B:	removes	'BigFile'

								└──	layer	C:	builds	on	B,	by	adding	a	static	binary

You	might	think	that	BigFile	is	no	longer	present	in	this	image.	After	all,	when
you	run	the	image,	it	is	no	longer	accessible.	But	in	fact	it	is	still	present	in	layer
A,	which	means	that	whenever	you	push	or	pull	the	image,	BigFile	is	still
transmitted	through	the	network,	even	if	you	can	no	longer	access	it.

Another	pitfall	that	people	fall	into	revolves	around	image	caching	and	building.
Remember	that	each	layer	is	an	independent	delta	from	the	layer	below	it.	Every
time	you	change	a	layer,	it	changes	every	layer	that	comes	after	it.	Changing	the
preceding	layers	means	that	they	need	to	be	rebuilt,	repushed,	and	repulled	to
deploy	your	image	to	development.

To	understand	this	more	fully,	consider	two	images:

.

└──	layer	A:	contains	a	base	OS

				└──	layer	B:	adds	source	code	server.js

								└──	layer	C:	installs	the	'node'	package

versus:

.

└──	layer	A:	contains	a	base	OS

				└──	layer	B:	installs	the	'node'	package

								└──	layer	C:	adds	source	code	server.js

It	seems	obvious	that	both	of	these	images	will	behave	identically,	and	indeed
the	first	time	they	are	pulled	they	do.	However,	consider	what	happens	when
server.js	changes.	In	one	case,	it	is	only	the	change	that	needs	to	be	pulled	or
pushed,	but	in	the	other	case,	both	server.js	and	the	layer	providing	the	node

package	need	to	be	pulled	and	pushed,	since	the	node	layer	is	dependent	on	the
server.js	layer.	In	general,	you	want	to	order	your	layers	from	least	likely	to
change	to	most	likely	to	change	in	order	to	optimize	the	image	size	for	pushing
and	pulling.

Storing	Images	in	a	Remote	Registry
What	good	is	a	container	image	if	it’s	only	available	on	a	single	machine?

Kubernetes	relies	on	the	fact	that	images	described	in	a	pod	manifest	are
available	across	every	machine	in	the	cluster.	One	option	for	getting	this	image
to	all	machines	in	the	cluster	would	be	to	export	the	kuard	image	and	import	it
on	every	other	machine	in	the	Kubernetes	cluster.	We	can’t	think	of	anything
more	tedious	than	managing	Docker	images	this	way.	The	process	of	manually
importing	and	exporting	Docker	images	has	human	error	written	all	over	it.	Just
say	no!

The	standard	within	the	Docker	community	is	to	store	Docker	images	in	a
remote	registry.	There	are	tons	of	options	when	it	comes	to	Docker	registries,
and	what	you	choose	will	be	largely	based	on	your	needs	in	terms	of	security
requirements	and	collaboration	features.

Generally	speaking	the	first	choice	you	need	to	make	regarding	a	registry	is
whether	to	use	a	private	or	a	public	registry.	Public	registries	allow	anyone	to
download	images	stored	in	the	registry,	while	private	registries	require
authentication	to	download	images.	In	choosing	public	versus	private,	it’s
helpful	to	consider	your	use	case.

Public	registries	are	great	for	sharing	images	with	the	world,	because	they	allow
for	easy,	unauthenticated	use	of	the	container	images.	You	can	easily	distribute
your	software	as	a	container	image	and	have	confidence	that	users	everywhere
will	have	the	exact	same	experience.

In	contrast,	a	private	repository	is	best	for	storing	your	applications	that	are
private	to	your	service	and	that	you	don’t	want	the	world	to	use.

Regardless,	to	push	an	image,	you	need	to	authenticate	to	the	registry.	You	can
generally	do	this	with	the	docker	login	command,	though	there	are	some
differences	for	certain	registries.	In	the	examples	here	we	are	pushing	to	the
Google	Cloud	Platform	registry,	called	the	Google	Container	Registry	(GCR).
For	new	users	hosting	publicly	readable	images,	the	Docker	Hub	is	a	great	place
to	start.

Once	you	are	logged	in,	you	can	tag	the	kuard	image	by	prepending	the	target

https://hub.docker.com

Docker	registry:

$	docker	tag	kuard-amd64:1	gcr.io/kuar-demo/kuard-amd64:1

Then	you	can	push	the	kuard	image:

$	docker	push	gcr.io/kuar-demo/kuard-amd64:1

Now	that	the	kuard	image	is	available	on	a	remote	registry,	it’s	time	to	deploy	it
using	Docker.	Because	we	pushed	it	to	the	public	Docker	registry,	it	will	be
available	everywhere	without	authentication.

The	Docker	Container	Runtime
Kubernetes	provides	an	API	for	describing	an	application	deployment,	but	relies
on	a	container	runtime	to	set	up	an	application	container	using	the	container-
specific	APIs	native	to	the	target	OS.	On	a	Linux	system	that	means	configuring
cgroups	and	namespaces.

The	default	container	runtime	used	by	Kubernetes	is	Docker.	Docker	provides	an
API	for	creating	application	containers	on	Linux	and	Windows	systems.

Running	Containers	with	Docker
The	Docker	CLI	tool	can	be	used	to	deploy	containers.	To	deploy	a	container
from	the	gcr.io/kuar-demo/kuard-amd64:1	image,	run	the	following
command:

$	docker	run	-d	--name	kuard	\

		--publish	8080:8080	\

		gcr.io/kuar-demo/kuard-amd64:1

This	command	starts	the	kuard	database	and	maps	ports	8080	on	your	local
machine	to	8080	in	the	container.	This	is	because	each	container	gets	its	own	IP
address,	so	listening	on	localhost	inside	the	container	doesn’t	cause	you	to	listen
on	your	machine.	Without	the	port	forwarding,	connections	will	be	inaccessible
to	your	machine.

Exploring	the	kuard	Application
kuard	exposes	a	simple	web	interface,	which	can	be	loaded	by	pointing	your
browser	at	http://localhost:8080	or	via	the	command	line:

$	curl	http://localhost:8080

kuard	also	exposes	a	number	of	interesting	functions	that	we	will	explore	later
on	in	this	book.

http://localhost:8080

Limiting	Resource	Usage
Docker	provides	the	ability	to	limit	the	amount	of	resources	used	by	applications
by	exposing	the	underlying	cgroup	technology	provided	by	the	Linux	kernel.

Limiting	memory	resources
One	of	the	key	benefits	to	running	applications	within	a	container	is	the	ability	to
restrict	resource	utilization.	This	allows	multiple	applications	to	coexist	on	the
same	hardware	and	ensures	fair	usage.

To	limit	kuard	to	200	MB	of	memory	and	1	GB	of	swap	space,	use	the	--memory
and	--memory-swap	flags	with	the	docker	run	command.

Stop	and	remove	the	current	kuard	container:

$	docker	stop	kuard

$	docker	rm	kuard

Then	start	another	kuard	container	using	the	appropriate	flags	to	limit	memory
usage:

$	docker	run	-d	--name	kuard	\

		--publish	8080:8080	\

		--memory	200m	\

		--memory-swap	1G	\

		gcr.io/kuar-demo/kuard-amd64:1

Limiting	CPU	resources
Another	critical	resource	on	a	machine	is	the	CPU.	Restrict	CPU	utilization
using	the	--cpu-shares	flag	with	the	docker	run	command:

$	docker	run	-d	--name	kuard	\

		--publish	8080:8080	\

		--memory	200m	\

		--memory-swap	1G	\

		--cpu-shares	1024	\

		gcr.io/kuar-demo/kuard-amd64:1

Cleanup
Once	you	are	done	building	an	image,	you	can	delete	it	with	the	docker	rmi
command:

docker	rmi	<tag-name>

or

docker	rmi	<image-id>

Images	can	either	be	deleted	via	their	tag	name	(e.g.,	gcr.io/kuar-demo/kuard-
amd64:1)	or	via	their	image	ID.	As	with	all	ID	values	in	the	docker	tool,	the
image	ID	can	be	shortened	as	long	as	it	remains	unique.	Generally	only	three	or
four	characters	of	the	ID	are	necessary.

It’s	important	to	note	that	unless	you	explicitly	delete	an	image	it	will	live	on
your	system	forever,	even	if	you	build	a	new	image	with	an	identical	name.
Building	this	new	image	simply	moves	the	tag	to	the	new	image;	it	doesn’t
delete	or	replace	the	old	image.

Consequently,	as	you	iterate	while	you	are	creating	a	new	image,	you	will	often
create	many,	many	different	images	that	end	up	taking	up	unnecessary	space	on
your	computer.

To	see	the	images	currently	on	your	machine,	you	can	use	the	docker	images
command.	You	can	then	delete	tags	you	are	no	longer	using.

A	slightly	more	sophisticated	approach	is	to	set	up	a	cron	job	to	run	an	image
garbage	collector.	For	example,	the	docker-gc	tool	is	a	commonly	used	image
garbage	collector	that	can	easily	run	as	a	recurring	cron	job,	once	per	day	or
once	per	hour,	depending	on	how	many	images	you	are	creating.

https://github.com/spotify/docker-gc

Summary
Application	containers	provide	a	clean	abstraction	for	applications,	and	when
packaged	in	the	Docker	image	format,	applications	become	easy	to	build,
deploy,	and	distribute.	Containers	also	provide	isolation	between	applications
running	on	the	same	machine,	which	helps	avoid	dependency	conflicts.	The
ability	to	mount	external	directories	means	we	can	run	not	only	stateless
applications	in	a	container,	but	also	applications	like	influxdb	that	generate	lots
of	data.

Chapter	3.	Deploying	a	Kubernetes
Cluster

Now	that	you	have	successfully	built	an	application	container,	you	are	motivated
to	learn	how	to	deploy	it	into	a	complete	reliable,	scalable	distributed	system.	Of
course,	to	do	that,	you	need	a	working	Kubernetes	cluster.	At	this	point,	there	are
several	cloud-based	Kubernetes	services	that	make	it	easy	to	create	a	cluster	with
a	few	command-line	instructions.	We	highly	recommend	this	approach	if	you	are
just	getting	started	with	Kubernetes.	Even	if	you	are	ultimately	planning	on
running	Kubernetes	on	bare	metal,	it	makes	sense	to	quickly	get	started	with
Kubernetes,	learn	about	Kubernetes	itself,	and	then	learn	how	to	install	it	on
physical	machines.

Of	course,	using	a	cloud-based	solution	requires	paying	for	those	cloud-based
resources	as	well	as	having	an	active	network	connection	to	the	cloud.	For	these
reasons,	local	development	can	be	more	attractive,	and	in	that	case	the	minikube
tool	provides	an	easy-to-use	way	to	get	a	local	Kubernetes	cluster	up	running	in
a	VM	on	your	local	laptop	or	desktop.	Though	this	is	attractive,	minikube	only
creates	a	single-node	cluster,	which	doesn’t	quite	demonstrate	all	of	the	aspects
of	a	complete	Kubernetes	cluster.	For	that	reason,	we	recommend	people	start
with	a	cloud-based	solution,	unless	it	really	doesn’t	work	for	their	situation.	If
you	truly	insist	on	starting	on	bare	metal,	Appendix	A	at	the	end	of	this	book
gives	instructions	for	building	a	cluster	from	a	collection	of	Raspberry	Pi	single-
board	computers.	These	instructions	use	the	kubeadm	tool	and	can	be	adapted	to
other	machines	beyond	Raspberry	Pis.

Installing	Kubernetes	on	a	Public	Cloud	Provider
This	chapter	covers	installing	Kubernetes	on	the	three	major	cloud	providers,
Amazon	Web	Services	(AWS),	Microsoft	Azure,	and	the	Google	Cloud
Platform.

Google	Container	Service
The	Google	Cloud	Platform	offers	a	hosted	Kubernetes-as-a-Service	called
Google	Container	Engine	(GKE).	To	get	started	with	GKE,	you	need	a	Google
Cloud	Platform	account	with	billing	enabled	and	the	gcloud	tool	installed.

Once	you	have	gcloud	installed,	first	set	a	default	zone:

$	gcloud	config	set	compute/zone	us-west1-a

Then	you	can	create	a	cluster:

$	gcloud	container	clusters	create	kuar-cluster

This	will	take	a	few	minutes.	When	the	cluster	is	ready	you	can	get	credentials
for	the	cluster	using:

$	gcloud	auth	application-default	login

At	this	point,	you	should	have	a	cluster	configured	and	ready	to	go.	Unless	you
would	prefer	to	install	Kubernetes	elsewhere,	you	can	skip	to	“The	Kubernetes
Client”.

If	you	run	into	trouble,	the	complete	instructions	for	creating	a	GKE	cluster	can
be	found	in	the	Google	Cloud	Platform	documentation.

https://cloud.google.com/sdk/downloads
http://bit.ly/2ver7Po

Installing	Kubernetes	with	Azure	Container	Service
Microsoft	Azure	offers	a	hosted	Kubernetes-as-a-Service	as	part	of	the	Azure
Container	Service.	The	easiest	way	to	get	started	with	Azure	Container	Service
is	to	use	the	built-in	Azure	Cloud	Shell	in	the	Azure	portal.	You	can	activate	the
shell	by	clicking	the	shell	icon:

in	the	upper-right	toolbar.	The	shell	has	the	az	tool	automatically	installed	and
configured	to	work	with	your	Azure	environment.

Alternatively,	you	can	install	the	az	command-line	interface	(CLI)	on	your	local
machine.

Once	you	have	the	shell	up	and	working,	you	can	run:

$	az	group	create	--name=kuar	--location=westus

Once	the	resource	group	is	created,	you	can	create	a	cluster	using:

$	az	acs	create	--orchestrator-type=kubernetes	\

		--resource-group=kuar	--name=kuar-cluster

This	will	take	a	few	minutes.	Once	the	cluster	is	created,	you	can	get	credentials
for	the	cluster	with:

$	az	acs	kubernetes	get-credentials	--resource-group=kuar	--name=kuar-cluster

If	you	don’t	already	have	the	kubectl	tool	installed,	you	can	install	it	using:

$	az	acs	kubernetes	install-cli

Complete	instructions	for	installing	Kubernetes	on	Azure	can	be	found	in	the
Azure	documentation.

https://github.com/Azure/azure-cli
http://bit.ly/2veqXYl

Installing	Kubernetes	on	Amazon	Web	Services
AWS	does	not	currently	offer	hosted	Kubernetes	service.	The	landscape	for
managing	Kubernetes	on	AWS	is	a	fast-evolving	area	with	new	and	improved
tools	being	introduced	often.	Here	are	a	couple	of	options	that	make	it	easy	to
get	started:

The	easiest	way	to	launch	a	small	cluster	appropriate	for	exploring
Kubernetes	with	this	book	is	using	the	Quick	Start	for	Kubernetes	by
Heptio.	This	is	a	simple	CloudFormation	template	that	can	launch	a	cluster
using	the	AWS	Console.

For	a	more	fully	featured	management	solution,	consider	using	a	project
called	kops.	You	can	find	a	complete	tutorial	for	installing	Kubernetes	on
AWS	using	kops	on	GitHub.

http://amzn.to/2veAy1q
http://bit.ly/2q86l2n

Installing	Kubernetes	Locally	Using	minikube
If	you	need	a	local	development	experience,	or	you	don’t	want	to	pay	for	cloud
resources,	you	can	install	a	simple	single-node	cluster	using	minikube.	While
minikube	is	a	good	simulation	of	a	Kubernetes	cluster,	it	is	really	intended	for
local	development,	learning,	and	experimentation.	Because	it	only	runs	in	a	VM
on	a	single	node,	it	doesn’t	provide	the	reliability	of	a	distributed	Kubernetes
cluster.

In	addition,	certain	features	described	in	this	book	require	integration	with	a
cloud	provider.	These	features	are	either	not	available	or	work	in	a	limited	way
with	minikube.

NOTE
You	need	to	have	a	hypervisor	installed	on	your	machine	to	use	minikube.	For	Linux	and
macOS,	this	is	generally	virtualbox.	On	Windows,	the	Hyper-V	hypervisor	is	the	default
option.	Make	sure	you	install	the	hypervisor	before	using	minikube.

You	can	find	the	minikube	tool	on	GitHub.	There	are	binaries	for	Linux,	macOS,
and	Windows	that	you	can	download.	Once	you	have	the	minikube	tool	installed
you	can	create	a	local	cluster	using:

$	minikube	start

This	will	create	a	local	VM,	provision	Kubernetes,	and	create	a	local	kubectl
configuration	that	points	to	that	cluster.

When	you	are	done	with	your	cluster,	you	can	stop	the	VM	with:

$	minikube	stop

If	you	want	to	remove	the	cluster,	you	can	run:

$	minikube	delete

https://virtualbox.org
https://github.com/kubernetes/minikube

Running	Kubernetes	on	Raspberry	Pi
If	you	want	to	experiment	with	a	realistic	Kubernetes	cluster	but	don’t	want	to
pay	a	lot,	a	very	nice	Kubernetes	cluster	can	be	built	on	top	of	Raspberry	Pi
computers	for	a	relatively	small	cost.	The	details	of	building	such	a	cluster	are
out	of	scope	for	this	chapter,	but	they	are	given	in	Appendix	A	at	the	end	of	this
book.

The	Kubernetes	Client
The	official	Kubernetes	client	is	kubectl:	a	command-line	tool	for	interacting
with	the	Kubernetes	API.	kubectl	can	be	used	to	manage	most	Kubernetes
objects	such	as	pods,	ReplicaSets,	and	services.	kubectl	can	also	be	used	to
explore	and	verify	the	overall	health	of	the	cluster.

We’ll	use	the	kubectl	tool	to	explore	the	cluster	you	just	created.

Checking	Cluster	Status
The	first	thing	you	can	do	is	check	the	version	of	the	cluster	that	you	are
running:

$	kubectl	version

This	will	display	two	different	versions:	the	version	of	the	local	kubectl	tool,	as
well	as	the	version	of	the	Kubernetes	API	server.

NOTE
Don’t	worry	if	these	versions	are	different.	The	Kubernetes	tools	are	backward-	and	forward-
compatible	with	different	versions	of	the	Kubernetes	API,	so	long	as	you	stay	within	two
minor	versions	of	the	tools	and	the	cluster	and	don’t	try	to	use	newer	features	on	an	older
cluster.	Kubernetes	follows	the	semantic	versioning	specification,	and	this	minor	version	is	the
middle	number	(e.g.,	the	5	in	1.5.2).

Now	that	we’ve	established	that	you	can	communicate	with	your	Kubernetes
cluster,	we’ll	explore	the	cluster	in	more	depth.

First,	we	can	get	a	simple	diagnostic	for	the	cluster.	This	is	a	good	way	to	verify
that	your	cluster	is	generally	healthy:

$	kubectl	get	componentstatuses

The	output	should	look	like	this:

NAME																	STATUS				MESSAGE														ERROR

scheduler												Healthy			ok

controller-manager			Healthy			ok

etcd-0															Healthy			{"health":	"true"}

You	can	see	here	the	components	that	make	up	the	Kubernetes	cluster.	The
controller-manager	is	responsible	for	running	various	controllers	that	regulate
behavior	in	the	cluster:	for	example,	ensuring	that	all	of	the	replicas	of	a	service
are	available	and	healthy.	The	scheduler	is	responsible	for	placing	different
pods	onto	different	nodes	in	the	cluster.	Finally,	the	etcd	server	is	the	storage	for

the	cluster	where	all	of	the	API	objects	are	stored.

Listing	Kubernetes	Worker	Nodes
Next,	we	can	list	out	all	of	the	nodes	in	our	cluster:

$	kubectl	get	nodes

NAME									STATUS									AGE

kubernetes			Ready,master			45d

node-1							Ready										45d

node-2							Ready										45d

node-3							Ready										45d

You	can	see	this	is	a	four-node	cluster	that’s	been	up	for	45	days.	In	Kubernetes
nodes	are	separated	into	master	nodes	that	contain	containers	like	the	API
server,	scheduler,	etc.,	which	manage	the	cluster,	and	worker	nodes	where	your
containers	will	run.	Kubernetes	won’t	generally	schedule	work	onto	master
nodes	to	ensure	that	user	workloads	don’t	harm	the	overall	operation	of	the
cluster.

You	can	use	the	kubectl	describe	command	to	get	more	information	about	a
specific	node	such	as	node-1:

$	kubectl	describe	nodes	node-1

First,	you	see	basic	information	about	the	node:

Name:																			node-1

Role:

Labels:																	beta.kubernetes.io/arch=arm

																								beta.kubernetes.io/os=linux

																								kubernetes.io/hostname=node-1

You	can	see	that	this	node	is	running	the	Linux	OS	and	is	running	on	an	ARM
processor.

Next,	you	see	information	about	the	operation	of	node-1	itself:

Conditions:

		Type											Status	LastHeartbeatTime		Reason																					Message

		----											------	-----------------		------																					-------

		OutOfDisk						False		Sun,	05	Feb	2017…		KubeletHasSufficientDisk			kubelet…

		MemoryPressure	False		Sun,	05	Feb	2017…		KubeletHasSufficientMemory	kubelet…

		DiskPressure			False		Sun,	05	Feb	2017…		KubeletHasNoDiskPressure			kubelet…

		Ready										True			Sun,	05	Feb	2017…		KubeletReady															kubelet…

These	statuses	show	that	the	node	has	sufficient	disk	and	memory	space,	and	it	is
reporting	that	it	is	healthy	to	the	Kubernetes	master.	Next,	there	is	information
about	the	capacity	of	the	machine:

Capacity:

	alpha.kubernetes.io/nvidia-gpu:								0

	cpu:																																			4

	memory:																																882636Ki

	pods:																																		110

Allocatable:

	alpha.kubernetes.io/nvidia-gpu:								0

	cpu:																																			4

	memory:																																882636Ki

	pods:																																		110

Then,	there	is	information	about	the	software	on	the	node,	including	the	version
of	Docker	running,	the	versions	of	Kubernetes	and	the	Linux	kernel,	and	more:

System	Info:

	Machine	ID:																				9989a26f06984d6dbadc01770f018e3b

	System	UUID:																			9989a26f06984d6dbadc01770f018e3b

	Boot	ID:																							98339c67-7924-446c-92aa-c1bfe5d213e6

	Kernel	Version:																4.4.39-hypriotos-v7+

	OS	Image:																						Raspbian	GNU/Linux	8	(jessie)

	Operating	System:														linux

	Architecture:																		arm

	Container	Runtime	Version:					docker://1.12.6

	Kubelet	Version:															v1.5.2

	Kube-Proxy	Version:												v1.5.2

PodCIDR:																								10.244.2.0/24

ExternalID:																					node-1

Finally,	there	is	information	about	the	pods	that	are	currently	running	on	this
node:

Non-terminated	Pods:												(3	in	total)

		Namespace			Name						CPU	Requests	CPU	Limits	Memory	Requests	Memory	Limits

		---------			----						------------	----------	---------------	-------------

		kube-system	kube-dns…		260m	(6%)				0	(0%)					140Mi	(16%)					220Mi	(25%)

		kube-system	kube-fla…		0	(0%)							0	(0%)					0	(0%)										0	(0%)

		kube-system	kube-pro…		0	(0%)							0	(0%)					0	(0%)										0	(0%)

Allocated	resources:

		(Total	limits	may	be	over	100	percent,	i.e.,	overcommitted.

		CPU	Requests		CPU	Limits						Memory	Requests	Memory	Limits

		------------		----------						---------------	-------------

		260m	(6%)					0	(0%)										140Mi	(16%)					220Mi	(25%)

No	events.

From	this	output	you	can	see	the	pods	on	the	node	(e.g.,	the	kube-dns	pod	that
supplies	DNS	services	for	the	cluster),	the	CPU	and	memory	that	each	pod	is
requesting	from	the	node,	as	well	as	the	total	resources	requested.	It’s	worth

noting	here	that	Kubernetes	tracks	both	the	request	and	upper	limit	for	resources
for	each	pod	that	runs	on	a	machine.	The	difference	between	requests	and	limits
is	described	in	detail	in	Chapter	5,	but	in	a	nutshell,	resources	requested	by	a	pod
are	guaranteed	to	be	present	on	the	node,	while	a	pod’s	limit	is	the	maximum
amount	of	a	given	resource	that	a	pod	can	consume.	A	pod’s	limit	can	be	higher
than	its	request,	in	which	case	the	extra	resources	are	supplied	on	a	best-effort
basis.	They	are	not	guaranteed	to	be	present	on	the	node.

Cluster	Components
One	of	the	interesting	aspects	of	Kubernetes	is	that	many	of	the	components	that
make	up	the	Kubernetes	cluster	are	actually	deployed	using	Kubernetes	itself.
We’ll	take	a	look	at	a	few	of	these.	These	components	use	a	number	of	the
concepts	that	we’ll	introduce	in	later	chapters.	All	of	these	components	run	in
the	kube-system	namespace.1

Kubernetes	Proxy
The	Kubernetes	proxy	is	responsible	for	routing	network	traffic	to	load-balanced
services	in	the	Kubernetes	cluster.	To	do	its	job,	the	proxy	must	be	present	on
every	node	in	the	cluster.	Kubernetes	has	an	API	object	named	DaemonSet,
which	you	will	learn	about	later	in	the	book,	that	is	used	in	many	clusters	to
accomplish	this.	If	your	cluster	runs	the	Kubernetes	proxy	with	a	DaemonSet,
you	can	see	the	proxies	by	running:

$	kubectl	get	daemonSets	--namespace=kube-system	kube-proxy

NAME									DESIRED			CURRENT			READY					NODE-SELECTOR			AGE

kube-proxy			4									4									4									<none>										45d

Kubernetes	DNS
Kubernetes	also	runs	a	DNS	server,	which	provides	naming	and	discovery	for
the	services	that	are	defined	in	the	cluster.	This	DNS	server	also	runs	as	a
replicated	service	on	the	cluster.	Depending	on	the	size	of	your	cluster,	you	may
see	one	or	more	DNS	servers	running	in	your	cluster.	The	DNS	service	is	run	as
a	Kubernetes	deployment,	which	manages	these	replicas:

$	kubectl	get	deployments	--namespace=kube-system	kube-dns

NAME							DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

kube-dns			1									1									1												1											45d

There	is	also	a	Kubernetes	service	that	performs	load-balancing	for	the	DNS
server:

$	kubectl	get	services	--namespace=kube-system	kube-dns

NAME							CLUSTER-IP			EXTERNAL-IP			PORT(S)									AGE

kube-dns			10.96.0.10			<none>								53/UDP,53/TCP			45d

This	shows	that	the	DNS	service	for	the	cluster	has	the	address	10.96.0.10.	If
you	log	into	a	container	in	the	cluster,	you’ll	see	that	this	has	been	populated	into
the	/etc/resolv.conf	file	for	the	container.

Kubernetes	UI
The	final	Kubernetes	component	is	a	GUI.	The	UI	is	run	as	a	single	replica,	but
it	is	still	managed	by	a	Kubernetes	deployment	for	reliability	and	upgrades.	You
can	see	this	UI	server	using:

$	kubectl	get	deployments	--namespace=kube-system	kubernetes-dashboard

NAME																			DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

kubernetes-dashboard			1									1									1												1											45d

The	dashboard	also	has	a	service	that	performs	load	balancing	for	the	dashboard:

$	kubectl	get	services	--namespace=kube-system	kubernetes-dashboard

NAME																			CLUSTER-IP						EXTERNAL-IP			PORT(S)								AGE

kubernetes-dashboard			10.99.104.174			<nodes>							80:32551/TCP			45d

We	can	use	the	kubectl	proxy	to	access	this	UI.	Launch	the	Kubernetes	proxy
using:

$	kubectl	proxy

This	starts	up	a	server	running	on	localhost:8001.	If	you	visit
http://localhost:8001/ui	in	your	web	browser,	you	should	see	the	Kubernetes
web	UI.	You	can	use	this	interface	to	explore	your	cluster,	as	well	as	create	new
containers.	The	full	details	of	this	interface	are	outside	of	the	scope	of	this	book,
and	it	is	changing	rapidly	as	the	dashboard	is	improved.

http://localhost:8001/ui

Summary
Hopefully	at	this	point	you	have	a	Kubernetes	cluster	(or	three)	up	and	running
and	you’ve	used	a	few	commands	to	explore	the	cluster	you	have	created.	Next,
we’ll	spend	some	more	time	exploring	the	command-line	interface	to	that
Kubernetes	cluster	and	teach	you	how	to	master	the	kubectl	tool.	Throughout
the	rest	of	the	book,	you’ll	be	using	kubectl	and	your	test	cluster	to	explore	the
various	objects	in	the	Kubernetes	API.

As	you’ll	learn	in	the	next	chapter,	a	namespace	in	Kubernetes	is	an	entity	for	organizing	Kubernetes
resources.	You	can	think	of	it	like	a	folder	in	a	filesystem.

1

Chapter	4.	Common	kubectl
Commands

The	kubectl	command-line	utility	is	a	powerful	tool,	and	in	the	following
chapters	you	will	use	it	to	create	objects	and	interact	with	the	Kubernetes	API.
Before	that,	however,	it	makes	sense	to	go	over	the	basic	kubectl	commands
that	apply	to	all	Kubernetes	objects.

Namespaces
Kubernetes	uses	namespaces	to	organize	objects	in	the	cluster.	You	can	think	of
each	namespace	as	a	folder	that	holds	a	set	of	objects.	By	default,	the	kubectl
command-line	tool	interacts	with	the	default	namespace.	If	you	want	to	use	a
different	namespace,	you	can	pass	kubectl	the	--namespace	flag.	For	example,
kubectl	--namespace=mystuff	references	objects	in	the	mystuff	namespace.

Contexts
If	you	want	to	change	the	default	namespace	more	permanently,	you	can	use	a
context.	This	gets	recorded	in	a	kubectl	configuration	file,	usually	located	at
$HOME/.kube/config.	This	configuration	file	also	stores	how	to	both	find	and
authenticate	to	your	cluster.	For	example,	you	can	create	a	context	with	a
different	default	namespace	for	your	kubectl	commands	using:

$	kubectl	config	set-context	my-context	--namespace=mystuff

This	creates	a	new	context,	but	it	doesn’t	actually	start	using	it	yet.	To	use	this
newly	created	context,	you	can	run:

$	kubectl	config	use-context	my-context

Contexts	can	also	be	used	to	manage	different	clusters	or	different	users	for
authenticating	to	those	clusters	using	the	--users	or	--clusters	flags	with	the
set-context	command.

Viewing	Kubernetes	API	Objects
Everything	contained	in	Kubernetes	is	represented	by	a	RESTful	resource.
Throughout	this	book,	we	refer	to	these	resources	as	Kubernetes	objects.	Each
Kubernetes	object	exists	at	a	unique	HTTP	path;	for	example,	https://your-
k8s.com/api/v1/namespaces/default/pods/my-pod	leads	to	the	representation	of	a
pod	in	the	default	namespace	named	my-pod.	The	kubectl	command	makes
HTTP	requests	to	these	URLs	to	access	the	Kubernetes	objects	that	reside	at
these	paths.

The	most	basic	command	for	viewing	Kubernetes	objects	via	kubectl	is	get.	If
you	run	kubectl	get	<resource-name>	you	will	get	a	listing	of	all	resources	in
the	current	namespace.	If	you	want	to	get	a	specific	resource,	you	can	use
kubectl	get	<resource-name>	<object-name>.

By	default,	kubectl	uses	a	human-readable	printer	for	viewing	the	responses
from	the	API	server,	but	this	human-readable	printer	removes	many	of	the
details	of	the	objects	to	fit	each	object	on	one	terminal	line.	One	way	to	get
slightly	more	information	is	to	add	the	-o	wide	flag,	which	gives	more	details,
on	a	longer	line.	If	you	want	to	view	the	complete	object,	you	can	also	view	the
objects	as	raw	JSON	or	YAML	using	the	-o	json	or	-o	yaml	flags,	respectively.

A	common	option	for	manipulating	the	output	of	kubectl	is	to	remove	the
headers,	which	is	often	useful	when	combining	kubectl	with	Unix	pipes	(e.g.,
kubectl	…	|	awk	…).	If	you	specify	the	--no-headers	flag,	kubectl	will	skip
the	headers	at	the	top	of	the	human-readable	table.

Another	common	task	is	extracting	specific	fields	from	the	object.	kubectl	uses
the	JSONPath	query	language	to	select	fields	in	the	returned	object.	The
complete	details	of	JSONPath	are	beyond	the	scope	of	this	chapter,	but	as	an
example,	this	command	will	extract	and	print	the	IP	address	of	the	pod:

$	kubectl	get	pods	my-pod	-o	jsonpath	--template={.status.podIP}

If	you	are	interested	in	more	detailed	information	about	a	particular	object,	use
the	describe	command:

https://your-k8s.com/api/v1/namespaces/default/pods/my-pod

$	kubectl	describe	<resource-name>	<obj-name>

This	will	provide	a	rich	multiline	human-readable	description	of	the	object	as
well	as	any	other	relevant,	related	objects	and	events	in	the	Kubernetes	cluster.

Creating,	Updating,	and	Destroying	Kubernetes
Objects
Objects	in	the	Kubernetes	API	are	represented	as	JSON	or	YAML	files.	These
files	are	either	returned	by	the	server	in	response	to	a	query	or	posted	to	the
server	as	part	of	an	API	request.	You	can	use	these	YAML	or	JSON	files	to
create,	update,	or	delete	objects	on	the	Kubernetes	server.

Let’s	assume	that	you	have	a	simple	object	stored	in	obj.yaml.	You	can	use
kubectl	to	create	this	object	in	Kubernetes	by	running:

$	kubectl	apply	-f	obj.yaml

Notice	that	you	don’t	need	to	specify	the	resource	type	of	the	object;	it’s
obtained	from	the	object	file	itself.

Similarly,	after	you	make	changes	to	the	object,	you	can	use	the	apply	command
again	to	update	the	object:

$	kubectl	apply	-f	obj.yaml

NOTE
If	you	feel	like	making	interactive	edits,	instead	of	editing	a	local	file,	you	can	instead	use	the
edit	command,	which	will	download	the	latest	object	state,	and	then	launch	an	editor	that
contains	the	definition:

$	kubectl	edit	<resource-name>	<obj-name>

After	you	save	the	file,	it	will	be	automatically	uploaded	back	to	the	Kubernetes	cluster.

When	you	want	to	delete	an	object,	you	can	simply	run:

$	kubectl	delete	-f	obj.yaml

But	it	is	important	to	note	that	kubectl	will	not	prompt	you	to	confirm	the
delete.	Once	you	issue	the	command,	the	object	will	be	deleted.

Likewise,	you	can	delete	an	object	using	the	resource	type	and	name:

$	kubectl	delete	<resource-name>	<obj-name>

Labeling	and	Annotating	Objects
Labels	and	annotations	are	tags	for	your	objects.	We’ll	discuss	the	differences	in
Chapter	6,	but	for	now,	you	can	update	the	labels	and	annotations	on	any
Kubernetes	object	using	the	annotate	and	label	commands.	For	example,	to
add	the	color=red	label	to	a	pod	named	bar,	you	can	run:

$	kubectl	label	pods	bar	color=red

The	syntax	for	annotations	is	identical.

By	default,	label	and	annotate	will	not	let	you	overwrite	an	existing	label.	To
do	this,	you	need	to	add	the	--overwrite	flag.

If	you	want	to	remove	a	label,	you	can	use	the	-<label-name>	syntax:

$	kubectl	label	pods	bar	-color

This	will	remove	the	color	label	from	the	pod	named	bar.

Debugging	Commands
kubectl	also	makes	a	number	of	commands	available	for	debugging	your
containers.	You	can	use	the	following	to	see	the	logs	for	a	running	container:

$	kubectl	logs	<pod-name>

If	you	have	multiple	containers	in	your	pod	you	can	choose	the	container	to	view
using	the	-c	flag.

By	default,	kubectl	logs	lists	the	current	logs	and	exits.	If	you	instead	want	to
continuously	stream	the	logs	back	to	the	terminal	without	exiting,	you	can	add
the	-f	(follow)	command-line	flag.

You	can	also	use	the	exec	command	to	execute	a	command	in	a	running
container:

$	kubectl	exec	-it	<pod-name>	--	bash

This	will	provide	you	with	an	interactive	shell	inside	the	running	container	so
that	you	can	perform	more	debugging.

Finally,	you	can	copy	files	to	and	from	a	container	using	the	cp	command:

$	kubectl	cp	<pod-name>:/path/to/remote/file	/path/to/local/file

This	will	copy	a	file	from	a	running	container	to	your	local	machine.	You	can
also	specify	directories,	or	reverse	the	syntax	to	copy	a	file	from	your	local
machine	back	out	into	the	container.

Summary
kubectl	is	a	powerful	tool	for	managing	your	applications	in	your	Kubernetes
cluster.	This	chapter	has	illustrated	many	of	the	common	uses	for	the	tool,	but
kubectl	has	a	great	deal	of	built-in	help	available.	You	can	start	viewing	this
help	with:

kubectl	help

or:

kubectl	help	command-name

Chapter	5.	Pods

In	earlier	chapters	we	discussed	how	you	might	go	about	containerizing	your
application,	but	in	real-world	deployments	of	containerized	applications	you	will
often	want	to	colocate	multiple	applications	into	a	single	atomic	unit,	scheduled
onto	a	single	machine.

A	canonical	example	of	such	a	deployment	is	illustrated	in	Figure	5-1,	which
consists	of	a	container	serving	web	requests	and	a	container	synchronizing	the
filesystem	with	a	remote	Git	repository.

Figure	5-1.	An	example	Pod	with	two	containers	and	a	shared	filesystem

At	first,	it	might	seem	tempting	to	wrap	up	both	the	web	server	and	the	Git
synchronizer	into	a	single	container.	After	closer	inspection,	however,	the
reasons	for	the	separation	become	clear.	First,	the	two	different	containers	have

significantly	different	requirements	in	terms	of	resource	usage.	Take,	for
example,	memory.	Because	the	web	server	is	serving	user	requests,	we	want	to
ensure	that	it	is	always	available	and	responsive.	On	the	other	hand,	the	Git
synchronizer	isn’t	really	user-facing	and	has	a	“best	effort”	quality	of	service.

Suppose	that	our	Git	synchronizer	has	a	memory	leak.	We	need	to	ensure	that	the
Git	synchronizer	cannot	use	up	memory	that	we	want	to	use	for	our	web	server,
since	this	can	affect	web	server	performance	or	even	crash	the	server.

This	sort	of	resource	isolation	is	exactly	the	sort	of	thing	that	containers	are
designed	to	accomplish.	By	separating	the	two	applications	into	two	separate
containers	we	can	ensure	reliable	web	server	operation.

Of	course,	the	two	containers	are	quite	symbiotic;	it	makes	no	sense	to	schedule
the	web	server	on	one	machine	and	the	Git	synchronizer	on	another.
Consequently,	Kubernetes	groups	multiple	containers	into	a	single,	atomic	unit
called	a	Pod.	(The	name	goes	with	the	whale	theme	of	Docker	containers,	since
a	Pod	is	also	a	group	of	whales.)

Pods	in	Kubernetes
A	Pod	represents	a	collection	of	application	containers	and	volumes	running	in
the	same	execution	environment.	Pods,	not	containers,	are	the	smallest
deployable	artifact	in	a	Kubernetes	cluster.	This	means	all	of	the	containers	in	a
Pod	always	land	on	the	same	machine.

Each	container	within	a	Pod	runs	in	its	own	cgroup,	but	they	share	a	number	of
Linux	namespaces.

Applications	running	in	the	same	Pod	share	the	same	IP	address	and	port	space
(network	namespace),	have	the	same	hostname	(UTS	namespace),	and	can
communicate	using	native	interprocess	communication	channels	over	System	V
IPC	or	POSIX	message	queues	(IPC	namespace).	However,	applications	in
different	Pods	are	isolated	from	each	other;	they	have	different	IP	addresses,
different	hostnames,	and	more.	Containers	in	different	Pods	running	on	the	same
node	might	as	well	be	on	different	servers.

Thinking	with	Pods
One	of	the	most	common	questions	that	occurs	in	the	adoption	of	Kubernetes	is
“What	should	I	put	in	a	Pod?”

Sometimes	people	see	Pods	and	think,	“Aha!	A	WordPress	container	and	a
MySQL	database	container	should	be	in	the	same	Pod.”	However,	this	kind	of
Pod	is	actually	an	example	of	an	antipattern	for	Pod	construction.	There	are	two
reasons	for	this.	First,	Wordpress	and	its	database	are	not	truly	symbiotic.	If	the
WordPress	container	and	the	database	container	land	on	different	machines,	they
still	can	work	together	quite	effectively,	since	they	communicate	over	a	network
connection.	Secondly,	you	don’t	necessarily	want	to	scale	WordPress	and	the
database	as	a	unit.	WordPress	itself	is	mostly	stateless,	and	thus	you	may	want	to
scale	your	WordPress	frontends	in	response	to	frontend	load	by	creating	more
WordPress	Pods.	Scaling	a	MySQL	database	is	much	trickier,	and	you	would	be
much	more	likely	to	increase	the	resources	dedicated	to	a	single	MySQL	Pod.	If
you	group	the	WordPress	and	MySQL	containers	together	in	a	single	Pod,	you
are	forced	to	use	the	same	scaling	strategy	for	both	containers,	which	doesn’t	fit
well.

In	general,	the	right	question	to	ask	yourself	when	designing	Pods	is,	“Will	these
containers	work	correctly	if	they	land	on	different	machines?”	If	the	answer	is
“no,”	a	Pod	is	the	correct	grouping	for	the	containers.	If	the	answer	is	“yes,”
multiple	Pods	is	probably	the	correct	solution.	In	the	example	at	the	beginning	of
this	chapter,	the	two	containers	interact	via	a	local	filesystem.	It	would	be
impossible	for	them	to	operate	correctly	if	the	containers	were	scheduled	on
different	machines.

In	the	remaining	sections	of	this	chapter,	we	will	describe	how	to	create,
introspect,	manage,	and	delete	Pods	in	Kubernetes.

The	Pod	Manifest
Pods	are	described	in	a	Pod	manifest.	The	Pod	manifest	is	just	a	text-file
representation	of	the	Kubernetes	API	object.	Kubernetes	strongly	believes	in
declarative	configuration.	Declarative	configuration	means	that	you	write	down
the	desired	state	of	the	world	in	a	configuration	and	then	submit	that
configuration	to	a	service	that	takes	actions	to	ensure	the	desired	state	becomes
the	actual	state.

NOTE
Declarative	configuration	is	different	from	imperative	configuration,	where	you	simply	take	a
series	of	actions	(e.g.,	apt-get	install	foo)	to	modify	the	world.	Years	of	production
experience	have	taught	us	that	maintaining	a	written	record	of	the	system’s	desired	state	leads
to	a	more	manageable,	reliable	system.	Declarative	configuration	enables	numerous
advantages,	including	code	review	for	configurations	as	well	as	documenting	the	current	state
of	the	world	for	distributed	teams.	Additionally,	it	is	the	basis	for	all	of	the	self-healing
behaviors	in	Kubernetes	that	keep	applications	running	without	user	action.

The	Kubernetes	API	server	accepts	and	processes	Pod	manifests	before	storing
them	in	persistent	storage	(etcd).	The	scheduler	also	uses	the	Kubernetes	API	to
find	Pods	that	haven’t	been	scheduled	to	a	node.	The	scheduler	then	places	the
Pods	onto	nodes	depending	on	the	resources	and	other	constraints	expressed	in
the	Pod	manifests.	Multiple	Pods	can	be	placed	on	the	same	machine	as	long	as
there	are	sufficient	resources.	However,	scheduling	multiple	replicas	of	the	same
application	onto	the	same	machine	is	worse	for	reliability,	since	the	machine	is	a
single	failure	domain.	Consequently,	the	Kubernetes	scheduler	tries	to	ensure
that	Pods	from	the	same	application	are	distributed	onto	different	machines	for
reliability	in	the	presence	of	such	failures.	Once	scheduled	to	a	node,	Pods	don’t
move	and	must	be	explicitly	destroyed	and	rescheduled.

Multiple	instances	of	a	Pod	can	be	deployed	by	repeating	the	workflow
described	here.	However,	ReplicaSets	(Chapter	8)	are	better	suited	for	running
multiple	instances	of	a	Pod.	(It	turns	out	they’re	also	better	at	running	a	single
Pod,	but	we’ll	get	into	that	later.)

Creating	a	Pod
The	simplest	way	to	create	a	Pod	is	via	the	imperative	kubectl	run	command.
For	example,	to	run	our	same	kuard	server,	use:

$	kubectl	run	kuard	--image=gcr.io/kuar-demo/kuard-amd64:1

You	can	see	the	status	of	this	Pod	by	running:

$	kubectl	get	pods

You	may	initially	see	the	container	as	Pending,	but	eventually	you	will	see	it
transition	to	Running,	which	means	that	the	Pod	and	its	containers	have	been
successfully	created.

Don’t	worry	too	much	about	the	random	strings	attached	to	the	end	of	the	Pod
name.	This	manner	of	creating	a	Pod	actually	creates	it	via	Deployment	and
ReplicaSet	objects,	which	we	will	cover	in	later	chapters.

For	now,	you	can	delete	this	Pod	by	running:

$	kubectl	delete	deployments/kuard

We	will	now	move	on	to	writing	a	complete	Pod	manifest	by	hand.

Creating	a	Pod	Manifest
Pod	manifests	can	be	written	using	YAML	or	JSON,	but	YAML	is	generally
preferred	because	it	is	slightly	more	human-editable	and	has	the	ability	to	add
comments.	Pod	manifests	(and	other	Kubernetes	API	objects)	should	really	be
treated	in	the	same	way	as	source	code,	and	things	like	comments	help	explain
the	Pod	to	new	team	members	who	are	looking	at	them	for	the	first	time.

Pod	manifests	include	a	couple	of	key	fields	and	attributes:	mainly	a	metadata
section	for	describing	the	Pod	and	its	labels,	a	spec	section	for	describing
volumes,	and	a	list	of	containers	that	will	run	in	the	Pod.

In	Chapter	2	we	deployed	kuard	using	the	following	Docker	command:

$	docker	run	-d	--name	kuard	\

		--publish	8080:8080	\

		gcr.io/kuar-demo/kuard-amd64:1

A	similar	result	can	be	achieved	by	instead	writing	Example	5-1	to	a	file	named
kuard-pod.yaml	and	then	using	kubectl	commands	to	load	that	manifest	to
Kubernetes.

Example	5-1.	kuard-pod.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard

spec:

		containers:

				-	image:	gcr.io/kuar-demo/kuard-amd64:1

						name:	kuard

						ports:

								-	containerPort:	8080

										name:	http

										protocol:	TCP

Running	Pods
In	the	previous	section	we	created	a	Pod	manifest	that	can	be	used	to	start	a	Pod
running	kuard.	Use	the	kubectl	apply	command	to	launch	a	single	instance	of
kuard:

$	kubectl	apply	-f	kuard-pod.yaml

The	Pod	manifest	will	be	submitted	to	the	Kubernetes	API	server.	The
Kubernetes	system	will	then	schedule	that	Pod	to	run	on	a	healthy	node	in	the
cluster,	where	it	will	be	monitored	by	the	kubelet	daemon	process.	Don’t	worry
if	you	don’t	understand	all	the	moving	parts	of	Kubernetes	right	now;	we’ll	get
into	more	details	throughout	the	book.

Listing	Pods
Now	that	we	have	a	Pod	running,	let’s	go	find	out	some	more	about	it.	Using	the
kubectl	command-line	tool,	we	can	list	all	Pods	running	in	the	cluster.	For	now,
this	should	only	be	the	single	Pod	that	we	created	in	the	previous	step:

$	kubectl	get	pods

NAME							READY					STATUS				RESTARTS			AGE

kuard						1/1							Running			0										44s

You	can	see	the	name	of	the	Pod	(kuard)	that	we	gave	it	in	the	previous	YAML
file.	In	addition	to	the	number	of	ready	containers	(1/1),	the	output	also	shows
the	status,	the	number	of	times	the	Pod	was	restarted,	as	well	as	the	age	of	the
Pod.

If	you	ran	this	command	immediately	after	the	Pod	was	created,	you	might	see:

NAME							READY					STATUS				RESTARTS			AGE

kuard						0/1							Pending			0										1s

The	Pending	state	indicates	that	the	Pod	has	been	submitted	but	hasn’t	been
scheduled	yet.

If	a	more	significant	error	occurs	(e.g.,	an	attempt	to	create	a	Pod	with	a
container	image	that	doesn’t	exist),	it	will	also	be	listed	in	the	status	field.

NOTE
By	default,	the	kubectl	command-line	tool	tries	to	be	concise	in	the	information	it	reports,	but
you	can	get	more	information	via	command-line	flags.	Adding	-o	wide	to	any	kubectl
command	will	print	out	slightly	more	information	(while	still	trying	to	keep	the	information	to
a	single	line).	Adding	-o	json	or	-o	yaml	will	print	out	the	complete	objects	in	JSON	or
YAML,	respectively.

Pod	Details
Sometimes,	the	single-line	view	is	insufficient	because	it	is	too	terse.
Additionally,	Kubernetes	maintains	numerous	events	about	Pods	that	are	present
in	the	event	stream,	not	attached	to	the	Pod	object.

To	find	out	more	information	about	a	Pod	(or	any	Kubernetes	object)	you	can
use	the	kubectl	describe	command.	For	example,	to	describe	the	Pod	we
previously	created,	you	can	run:

$	kubectl	describe	pods	kuard

This	outputs	a	bunch	of	information	about	the	Pod	in	different	sections.	At	the
top	is	basic	information	about	the	Pod:

Name:											kuard

Namespace:						default

Node:											node1/10.0.15.185

Start	Time:					Sun,	02	Jul	2017	15:00:38	-0700

Labels:									<none>

Annotations:				<none>

Status:									Running

IP:													192.168.199.238

Controllers:				<none>

Then	there	is	information	about	the	containers	running	in	the	Pod:

Containers:

		kuard:

				Container	ID:		docker://055095…

				Image:									gcr.io/kuar-demo/kuard-amd64:1

				Image	ID:						docker-pullable://gcr.io/kuar-demo/kuard-amd64@sha256:a580…

				Port:										8080/TCP

				State:									Running

						Started:					Sun,	02	Jul	2017	15:00:41	-0700

				Ready:									True

				Restart	Count:	0

				Environment:			<none>

				Mounts:

						/var/run/secrets/kubernetes.io/serviceaccount	from	default-token-cg5f5	(ro)

Finally,	there	are	events	related	to	the	Pod,	such	as	when	it	was	scheduled,	when
its	image	was	pulled,	and	if/when	it	had	to	be	restarted	because	of	failing	health
checks:

Events:

		Seen	From														SubObjectPath											Type						Reason				Message

		----	----														-------------											--------		------				-------

		50s		default-scheduler																									Normal				Scheduled	Success…

		49s		kubelet,	node1				spec.containers{kuard}		Normal				Pulling			pulling…

		47s		kubelet,	node1				spec.containers{kuard}		Normal				Pulled				Success…

		47s		kubelet,	node1				spec.containers{kuard}		Normal				Created			Created…

		47s		kubelet,	node1				spec.containers{kuard}		Normal				Started			Started…

Deleting	a	Pod
When	it	is	time	to	delete	a	Pod,	you	can	delete	it	either	by	name:

$	kubectl	delete	pods/kuard

or	using	the	same	file	that	you	used	to	create	it:

$	kubectl	delete	-f	kuard-pod.yaml

When	a	Pod	is	deleted,	it	is	not	immediately	killed.	Instead,	if	you	run	kubectl
get	pods	you	will	see	that	the	Pod	is	in	the	Terminating	state.	All	Pods	have	a
termination	grace	period.	By	default,	this	is	30	seconds.	When	a	Pod	is
transitioned	to	Terminating	it	no	longer	receives	new	requests.	In	a	serving
scenario,	the	grace	period	is	important	for	reliability	because	it	allows	the	Pod	to
finish	any	active	requests	that	it	may	be	in	the	middle	of	processing	before	it	is
terminated.

It’s	important	to	note	that	when	you	delete	a	Pod,	any	data	stored	in	the
containers	associated	with	that	Pod	will	be	deleted	as	well.	If	you	want	to	persist
data	across	multiple	instances	of	a	Pod,	you	need	to	use	PersistentVolumes,
described	at	the	end	of	this	chapter.

Accessing	Your	Pod
Now	that	your	Pod	is	running,	you’re	going	to	want	to	access	it	for	a	variety	of
reasons.	You	may	want	to	load	the	web	service	that	is	running	in	the	Pod.	You
may	want	to	view	its	logs	to	debug	a	problem	that	you	are	seeing,	or	even
execute	other	commands	in	the	context	of	the	Pod	to	help	debug.	The	following
sections	detail	various	ways	that	you	can	interact	with	the	code	and	data	running
inside	your	Pod.

Using	Port	Forwarding
Later	in	the	book,	we’ll	show	how	to	expose	a	service	to	the	world	or	other
containers	using	load	balancers,	but	oftentimes	you	simply	want	to	access	a
specific	Pod,	even	if	it’s	not	serving	traffic	on	the	internet.

To	achieve	this,	you	can	use	the	port-forwarding	support	built	into	the
Kubernetes	API	and	command-line	tools.

When	you	run:

$	kubectl	port-forward	kuard	8080:8080

a	secure	tunnel	is	created	from	your	local	machine,	through	the	Kubernetes
master,	to	the	instance	of	the	Pod	running	on	one	of	the	worker	nodes.

As	long	as	the	port-forward	command	is	still	running,	you	can	access	the	Pod	(in
this	case	the	kuard	web	interface)	on	http://localhost:8080.

http://localhost:8080

Getting	More	Info	with	Logs
When	your	application	needs	debugging,	it’s	helpful	to	be	able	to	dig	deeper
than	describe	to	understand	what	the	application	is	doing.	Kubernetes	provides
two	commands	for	debugging	running	containers.	The	kubectl	logs	command
downloads	the	current	logs	from	the	running	instance:

$	kubectl	logs	kuard

Adding	the	-f	flag	will	cause	you	to	continuously	stream	logs.

The	kubectl	logs	command	always	tries	to	get	logs	from	the	currently	running
container.	Adding	the	--previous	flag	will	get	logs	from	a	previous	instance	of
the	container.	This	is	useful,	for	example,	if	your	containers	are	continuously
restarting	due	to	a	problem	at	container	startup.

NOTE
While	using	kubectl	logs	is	useful	for	one-off	debugging	of	containers	in	production
environments,	it’s	generally	useful	to	use	a	log	aggregation	service.	There	are	several	open
source	log	aggregation	tools,	like	fluentd	and	elasticsearch,	as	well	as	numerous	cloud
logging	providers.	Log	aggregation	services	provide	greater	capacity	for	storing	a	longer
duration	of	logs,	as	well	as	rich	log	searching	and	filtering	capabilities.	Finally,	they	often
provide	the	ability	to	aggregate	logs	from	multiple	Pods	into	a	single	view.

Running	Commands	in	Your	Container	with	exec
Sometimes	logs	are	insufficient,	and	to	truly	determine	what’s	going	on	you	need
to	execute	commands	in	the	context	of	the	container	itself.	To	do	this	you	can
use:

$	kubectl	exec	kuard	date

You	can	also	get	an	interactive	session	by	adding	the	-it	flags:

$	kubectl	exec	-it	kuard	ash

Copying	Files	to	and	from	Containers
At	times	you	may	need	to	copy	files	from	a	remote	container	to	a	local	machine
for	more	in-depth	exploration.	For	example,	you	can	use	a	tool	like	Wireshark	to
visualize	tcpdump	packet	captures.	Suppose	you	had	a	file	called
/captures/capture3.txt	inside	a	container	in	your	Pod.	You	could	securely	copy
that	file	to	your	local	machine	by	running:

$	kubectl	cp	<pod-name>:/captures/capture3.txt	./capture3.txt

Other	times	you	may	need	to	copy	files	from	your	local	machine	into	a
container.	Let’s	say	you	want	to	copy	$HOME/config.txt	to	a	remote	container.
In	this	case,	you	can	run:

$	kubectl	cp	$HOME/config.txt	<pod-name>:/config.txt

Generally	speaking,	copying	files	into	a	container	is	an	antipattern.	You	really
should	treat	the	contents	of	a	container	as	immutable.	But	occasionally	it’s	the
most	immediate	way	to	stop	the	bleeding	and	restore	your	service	to	health,
since	it	is	quicker	than	building,	pushing,	and	rolling	out	a	new	image.	Once	the
bleeding	is	stopped,	however,	it	is	critically	important	that	you	immediately	go
and	do	the	image	build	and	rollout,	or	you	are	guaranteed	to	forget	the	local
change	that	you	made	to	your	container	and	overwrite	it	in	the	subsequent
regularly	scheduled	rollout.

Health	Checks
When	you	run	your	application	as	a	container	in	Kubernetes,	it	is	automatically
kept	alive	for	you	using	a	process	health	check.	This	health	check	simply	ensures
that	the	main	process	of	your	application	is	always	running.	If	it	isn’t,
Kubernetes	restarts	it.

However,	in	most	cases,	a	simple	process	check	is	insufficient.	For	example,	if
your	process	has	deadlocked	and	is	unable	to	serve	requests,	a	process	health
check	will	still	believe	that	your	application	is	healthy	since	its	process	is	still
running.

To	address	this,	Kubernetes	introduced	health	checks	for	application	liveness.
Liveness	health	checks	run	application-specific	logic	(e.g.,	loading	a	web	page)
to	verify	that	the	application	is	not	just	still	running,	but	is	functioning	properly.
Since	these	liveness	health	checks	are	application-specific,	you	have	to	define
them	in	your	Pod	manifest.

Liveness	Probe
Once	the	kuard	process	is	up	and	running,	we	need	a	way	to	confirm	that	it	is
actually	healthy	and	shouldn’t	be	restarted.	Liveness	probes	are	defined	per
container,	which	means	each	container	inside	a	Pod	is	health-checked	separately.
In	Example	5-2,	we	add	a	liveness	probe	to	our	kuard	container,	which	runs	an
HTTP	request	against	the	/healthy	path	on	our	container.

Example	5-2.	kuard-pod-health.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard

spec:

		containers:

				-	image:	gcr.io/kuar-demo/kuard-amd64:1

						name:	kuard

						livenessProbe:

								httpGet:

										path:	/healthy

										port:	8080

								initialDelaySeconds:	5

								timeoutSeconds:	1

								periodSeconds:	10

								failureThreshold:	3

						ports:

								-	containerPort:	8080

										name:	http

										protocol:	TCP

The	preceding	Pod	manifest	uses	an	httpGet	probe	to	perform	an	HTTP	GET
request	against	the	/healthy	endpoint	on	port	8080	of	the	kuard	container.	The
probe	sets	an	initialDelaySeconds	of	5,	and	thus	will	not	be	called	until	five
seconds	after	all	the	containers	in	the	Pod	are	created.	The	probe	must	respond
within	the	one-second	timeout,	and	the	HTTP	status	code	must	be	equal	to	or
greater	than	200	and	less	than	400	to	be	considered	successful.	Kubernetes	will
call	the	probe	every	10	seconds.	If	more	than	three	probes	fail,	the	container	will
fail	and	restart.

You	can	see	this	in	action	by	looking	at	the	kuard	status	page.	Create	a	Pod
using	this	manifest	and	then	port-forward	to	that	Pod:

$	kubectl	apply	-f	kuard-pod-health.yaml

$	kubectl	port-forward	kuard	8080:8080

Point	your	browser	to	http://localhost:8080.	Click	the	“Liveness	Probe”	tab.	You
should	see	a	table	that	lists	all	of	the	probes	that	this	instance	of	kuard	has
received.	If	you	click	the	“fail”	link	on	that	page,	kuard	will	start	to	fail	health
checks.	Wait	long	enough	and	Kubernetes	will	restart	the	container.	At	that	point
the	display	will	reset	and	start	over	again.	Details	of	the	restart	can	be	found	with
kubectl	describe	kuard.	The	“Events”	section	will	have	text	similar	to	the
following:

Killing	container	with	id	docker://2ac946...:pod	"kuard_default(9ee84...)"

container	"kuard"	is	unhealthy,	it	will	be	killed	and	re-created.

http://localhost:8080

Readiness	Probe
Of	course,	liveness	isn’t	the	only	kind	of	health	check	we	want	to	perform.
Kubernetes	makes	a	distinction	between	liveness	and	readiness.	Liveness
determines	if	an	application	is	running	properly.	Containers	that	fail	liveness
checks	are	restarted.	Readiness	describes	when	a	container	is	ready	to	serve	user
requests.	Containers	that	fail	readiness	checks	are	removed	from	service	load
balancers.	Readiness	probes	are	configured	similarly	to	liveness	probes.	We
explore	Kubernetes	services	in	detail	in	Chapter	7.

Combining	the	readiness	and	liveness	probes	helps	ensure	only	healthy
containers	are	running	within	the	cluster.

Types	of	Health	Checks
In	addition	to	HTTP	checks,	Kubernetes	also	supports	tcpSocket	health	checks
that	open	a	TCP	socket;	if	the	connection	is	successful,	the	probe	succeeds.	This
style	of	probe	is	useful	for	non-HTTP	applications;	for	example,	databases	or
other	non–HTTP-based	APIs.

Finally,	Kubernetes	allows	exec	probes.	These	execute	a	script	or	program	in	the
context	of	the	container.	Following	typical	convention,	if	this	script	returns	a
zero	exit	code,	the	probe	succeeds;	otherwise,	it	fails.	exec	scripts	are	often
useful	for	custom	application	validation	logic	that	doesn’t	fit	neatly	into	an
HTTP	call.

Resource	Management
Most	people	move	into	containers	and	orchestrators	like	Kubernetes	because	of
the	radical	improvements	in	image	packaging	and	reliable	deployment	they
provide.	In	addition	to	application-oriented	primitives	that	simplify	distributed
system	development,	equally	important	is	the	ability	to	increase	the	overall
utilization	of	the	compute	nodes	that	make	up	the	cluster.	The	basic	cost	of
operating	a	machine,	either	virtual	or	physical,	is	basically	constant	regardless	of
whether	it	is	idle	or	fully	loaded.	Consequently,	ensuring	that	these	machines	are
maximally	active	increases	the	efficiency	of	every	dollar	spent	on	infrastructure.

Generally	speaking,	we	measure	this	efficiency	with	the	utilization	metric.
Utilization	is	defined	as	the	amount	of	a	resource	actively	being	used	divided	by
the	amount	of	a	resource	that	has	been	purchased.	For	example,	if	you	purchase
a	one-core	machine,	and	your	application	uses	one-tenth	of	a	core,	then	your
utilization	is	10%.

With	scheduling	systems	like	Kubernetes	managing	resource	packing,	you	can
drive	your	utilization	to	greater	than	50%.

To	achieve	this,	you	have	to	tell	Kubernetes	about	the	resources	your	application
requires,	so	that	Kubernetes	can	find	the	optimal	packing	of	containers	onto
purchased	machines.

Kubernetes	allows	users	to	specify	two	different	resource	metrics.	Resource
requests	specify	the	minimum	amount	of	a	resource	required	to	run	the
application.	Resource	limits	specify	the	maximum	amount	of	a	resource	that	an
application	can	consume.	Both	of	these	resource	definitions	are	described	in
greater	detail	in	the	following	sections.

Resource	Requests:	Minimum	Required	Resources
With	Kubernetes,	a	Pod	requests	the	resources	required	to	run	its	containers.
Kubernetes	guarantees	that	these	resources	are	available	to	the	Pod.	The	most
commonly	requested	resources	are	CPU	and	memory,	but	Kubernetes	has
support	for	other	resource	types	as	well,	such	as	GPUs	and	more.

For	example,	to	request	that	the	kuard	container	lands	on	a	machine	with	half	a
CPU	free	and	gets	128	MB	of	memory	allocated	to	it,	we	define	the	Pod	as
shown	in	Example	5-3.

Example	5-3.	kuard-pod-resreq.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard

spec:

		containers:

				-	image:	gcr.io/kuar-demo/kuard-amd64:1

						name:	kuard

						resources:

								requests:

										cpu:	"500m"

										memory:	"128Mi"

						ports:

								-	containerPort:	8080

										name:	http

										protocol:	TCP

NOTE
Resources	are	requested	per	container,	not	per	Pod.	The	total	resources	requested	by	the	Pod	is
the	sum	of	all	resources	requested	by	all	containers	in	the	Pod.	The	reason	for	this	is	that	in
many	cases	the	different	containers	have	very	different	CPU	requirements.	For	example,	in	the
web	server	and	data	synchronizer	Pod,	the	web	server	is	user-facing	and	likely	needs	a	great
deal	of	CPU,	while	the	data	synchronizer	can	make	do	with	very	little.

Request	limit	details
Requests	are	used	when	scheduling	Pods	to	nodes.	The	Kubernetes	scheduler
will	ensure	that	the	sum	of	all	requests	of	all	Pods	on	a	node	does	not	exceed	the
capacity	of	the	node.	Therefore,	a	Pod	is	guaranteed	to	have	at	least	the
requested	resources	when	running	on	the	node.	Importantly,	“request”	specifies	a
minimum.	It	does	not	specify	a	maximum	cap	on	the	resources	a	Pod	may	use.

To	explore	what	this	means,	let’s	look	at	an	example.

Imagine	that	we	have	container	whose	code	attempts	to	use	all	available	CPU
cores.	Suppose	that	we	create	a	Pod	with	this	container	that	requests	0.5	CPU.
Kubernetes	schedules	this	Pod	onto	a	machine	with	a	total	of	2	CPU	cores.

As	long	as	it	is	the	only	Pod	on	the	machine,	it	will	consume	all	2.0	of	the
available	cores,	despite	only	requesting	0.5	CPU.

If	a	second	Pod	with	the	same	container	and	the	same	request	of	0.5	CPU	lands
on	the	machine,	then	each	Pod	will	receive	1.0	cores.

If	a	third	identical	Pod	is	scheduled,	each	Pod	will	receive	0.66	cores.	Finally,	if
a	fourth	identical	Pod	is	scheduled,	each	Pod	will	receive	the	0.5	core	it
requested,	and	the	node	will	be	at	capacity.

CPU	requests	are	implemented	using	the	cpu-shares	functionality	in	the	Linux
kernel.

NOTE
Memory	requests	are	handled	similarly	to	CPU,	but	there	is	an	important	difference.	If	a
container	is	over	its	memory	request,	the	OS	can’t	just	remove	memory	from	the	process,
because	it’s	been	allocated.	Consequently,	when	the	system	runs	out	of	memory,	the	kubelet
terminates	containers	whose	memory	usage	is	greater	than	their	requested	memory.	These
containers	are	automatically	restarted,	but	with	less	available	memory	on	the	machine	for	the
container	to	consume.

Since	resource	requests	guarantee	resource	availability	to	a	Pod,	they	are	critical
to	ensuring	that	containers	have	sufficient	resources	in	high-load	situations.

Capping	Resource	Usage	with	Limits
In	addition	to	setting	the	resources	required	by	a	Pod,	which	establishes	the
minimum	resources	available	to	the	Pod,	you	can	also	set	a	maximum	on	a	Pod’s
resource	usage	via	resource	limits.

In	our	previous	example	we	created	a	kuard	Pod	that	requested	a	minimum	of
0.5	of	a	core	and	128	MB	of	memory.	In	the	Pod	manifest	in	Example	5-4,	we
extend	this	configuration	to	add	a	limit	of	1.0	CPU	and	256	MB	of	memory.

Example	5-4.	kuard-pod-reslim.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard

spec:

		containers:

				-	image:	gcr.io/kuar-demo/kuard-amd64:1

						name:	kuard

						resources:

								requests:

										cpu:	"500m"

										memory:	"128Mi"

								limits:

										cpu:	"1000m"

										memory:	"256Mi"

						ports:

								-	containerPort:	8080

										name:	http

										protocol:	TCP

When	you	establish	limits	on	a	container,	the	kernel	is	configured	to	ensure	that
consumption	cannot	exceed	these	limits.	A	container	with	a	CPU	limit	of	0.5
cores	will	only	ever	get	0.5	cores,	even	if	the	CPU	is	otherwise	idle.	A	container
with	a	memory	limit	of	256	MB	will	not	be	allowed	additional	memory	(e.g.,
malloc	will	fail)	if	its	memory	usage	exceeds	256	MB.

Persisting	Data	with	Volumes
When	a	Pod	is	deleted	or	a	container	restarts,	any	and	all	data	in	the	container’s
filesystem	is	also	deleted.	This	is	often	a	good	thing,	since	you	don’t	want	to
leave	around	cruft	that	happened	to	be	written	by	your	stateless	web	application.
In	other	cases,	having	access	to	persistent	disk	is	an	important	part	of	a	healthy
application.	Kubernetes	models	such	persistent	storage.

Using	Volumes	with	Pods
To	add	a	volume	to	a	Pod	manifest,	there	are	two	new	stanzas	to	add	to	our
configuration.	The	first	is	a	new	spec.volumes	section.	This	array	defines	all	of
the	volumes	that	may	be	accessed	by	containers	in	the	Pod	manifest.	It’s
important	to	note	that	not	all	containers	are	required	to	mount	all	volumes
defined	in	the	Pod.	The	second	addition	is	the	volumeMounts	array	in	the
container	definition.	This	array	defines	the	volumes	that	are	mounted	into	a
particular	container,	and	the	path	where	each	volume	should	be	mounted.	Note
that	two	different	containers	in	a	Pod	can	mount	the	same	volume	at	different
mount	paths.

The	manifest	in	Example	5-5	defines	a	single	new	volume	named	kuard-data,
which	the	kuard	container	mounts	to	the	/data	path.

Example	5-5.	kuard-pod-vol.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard

spec:

		volumes:

				-	name:	"kuard-data"

						hostPath:

								path:	"/var/lib/kuard"

		containers:

				-	image:	gcr.io/kuar-demo/kuard-amd64:1

						name:	kuard

						volumeMounts:

								-	mountPath:	"/data"

										name:	"kuard-data"

						ports:

								-	containerPort:	8080

										name:	http

										protocol:	TCP

Different	Ways	of	Using	Volumes	with	Pods
There	are	a	variety	of	ways	you	can	use	data	in	your	application.	The	following
are	a	few,	and	the	recommended	patterns	for	Kubernetes.

Communication/synchronization
In	the	first	example	of	a	Pod,	we	saw	how	two	containers	used	a	shared	volume
to	serve	a	site	while	keeping	it	synchronized	to	a	remote	Git	location.	To	achieve
this,	the	Pod	uses	an	emptyDir	volume.	Such	a	volume	is	scoped	to	the	Pod’s
lifespan,	but	it	can	be	shared	between	two	containers,	forming	the	basis	for
communication	between	our	Git	sync	and	web	serving	containers.

Cache
An	application	may	use	a	volume	that	is	valuable	for	performance,	but	not
required	for	correct	operation	of	the	application.	For	example,	perhaps	the
application	keeps	prerendered	thumbnails	of	larger	images.	Of	course,	they	can
be	reconstructed	from	the	original	images,	but	that	makes	serving	the	thumbnails
more	expensive.	You	want	such	a	cache	to	survive	a	container	restart	due	to	a
health	check	failure,	and	thus	emptyDir	works	well	for	the	cache	use	case	as
well.

Persistent	data
Sometimes	you	will	use	a	volume	for	truly	persistent	data	—	data	that	is
independent	of	the	lifespan	of	a	particular	Pod,	and	should	move	between	nodes
in	the	cluster	if	a	node	fails	or	a	Pod	moves	to	a	different	machine	for	some
reason.	To	achieve	this,	Kubernetes	supports	a	wide	variety	of	remote	network
storage	volumes,	including	widely	supported	protocols	like	NFS	or	iSCSI	as
well	as	cloud	provider	network	storage	like	Amazon’s	Elastic	Block	Store,
Azure’s	Files	and	Disk	Storage,	as	well	as	Google’s	Persistent	Disk.

Mounting	the	host	filesystem
Other	applications	don’t	actually	need	a	persistent	volume,	but	they	do	need
some	access	to	the	underlying	host	filesystem.	For	example,	they	may	need
access	to	the	/dev	filesystem	in	order	to	perform	raw	block-level	access	to	a

device	on	the	system.	For	these	cases,	Kubernetes	supports	the	hostDir	volume,
which	can	mount	arbitrary	locations	on	the	worker	node	into	the	container.

The	previous	example	uses	the	hostDir	volume	type.	The	volume	created	is
/var/lib/kuard	on	the	host.

Persisting	Data	Using	Remote	Disks
Oftentimes,	you	want	the	data	a	Pod	is	using	to	stay	with	the	Pod,	even	if	it	is
restarted	on	a	different	host	machine.

To	achieve	this,	you	can	mount	a	remote	network	storage	volume	into	your	Pod.
When	using	network-based	storage,	Kubernetes	automatically	mounts	and
unmounts	the	appropriate	storage	whenever	a	Pod	using	that	volume	is
scheduled	onto	a	particular	machine.

There	are	numerous	methods	for	mounting	volumes	over	the	network.
Kubernetes	includes	support	for	standard	protocols	such	as	NFS	and	iSCSI	as
well	as	cloud	provider–based	storage	APIs	for	the	major	cloud	providers	(both
public	and	private).	In	many	cases,	the	cloud	providers	will	also	create	the	disk
for	you	if	it	doesn’t	already	exist.

Here	is	an	example	of	using	an	NFS	server:

...

#	Rest	of	pod	definition	above	here

volumes:

				-	name:	"kuard-data"

						nfs:

								server:	my.nfs.server.local

								path:	"/exports"

Putting	It	All	Together
Many	applications	are	stateful,	and	as	such	we	must	preserve	any	data	and
ensure	access	to	the	underlying	storage	volume	regardless	of	what	machine	the
application	runs	on.	As	we	saw	earlier,	this	can	be	achieved	using	a	persistent
volume	backed	by	network-attached	storage.	We	also	want	to	ensure	a	healthy
instance	of	the	application	is	running	at	all	times,	which	means	we	want	to	make
sure	the	container	running	kuard	is	ready	before	we	expose	it	to	clients.

Through	a	combination	of	persistent	volumes,	readiness	and	liveness	probes,	and
resource	restrictions	Kubernetes	provides	everything	needed	to	run	stateful
applications	reliably.	Example	5-6	pulls	this	all	together	into	one	manifest.

Example	5-6.	kuard-pod-full.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard

spec:

		volumes:

				-	name:	"kuard-data"

						nfs:

								server:	my.nfs.server.local

								path:	"/exports"

		containers:

				-	image:	gcr.io/kuar-demo/kuard-amd64:1

						name:	kuard

						ports:

								-	containerPort:	8080

										name:	http

										protocol:	TCP

						resources:

								requests:

										cpu:	"500m"

										memory:	"128Mi"

								limits:

										cpu:	"1000m"

										memory:	"256Mi"

						volumeMounts:

								-	mountPath:	"/data"

										name:	"kuard-data"

						livenessProbe:

								httpGet:

										path:	/healthy

										port:	8080

								initialDelaySeconds:	5

								timeoutSeconds:	1

								periodSeconds:	10

								failureThreshold:	3

						readinessProbe:

								httpGet:

										path:	/ready

										port:	8080

								initialDelaySeconds:	30

								timeoutSeconds:	1

								periodSeconds:	10

								failureThreshold:	3

Persistent	volumes	are	a	deep	topic	that	has	many	different	details:	in	particular,
the	manner	in	which	persistent	volumes,	persistent	volume	claims,	and	dynamic
volume	provisioning	work	together.	There	is	a	more	in-depth	examination	of	the
subject	in	Chapter	13.

Summary
Pods	represent	the	atomic	unit	of	work	in	a	Kubernetes	cluster.	Pods	are
comprised	of	one	or	more	containers	working	together	symbiotically.	To	create	a
Pod,	you	write	a	Pod	manifest	and	submit	it	to	the	Kubernetes	API	server	by
using	the	command-line	tool	or	(less	frequently)	by	making	HTTP	and	JSON
calls	to	the	server	directly.

Once	you’ve	submitted	the	manifest	to	the	API	server,	the	Kubernetes	scheduler
finds	a	machine	where	the	Pod	can	fit	and	schedules	the	Pod	to	that	machine.
Once	scheduled,	the	kubelet	daemon	on	that	machine	is	responsible	for	creating
the	containers	that	correspond	to	the	Pod,	as	well	as	performing	any	health
checks	defined	in	the	Pod	manifested.

Once	a	Pod	is	scheduled	to	a	node,	no	rescheduling	occurs	if	that	node	fails.
Additionally,	to	create	multiple	replicas	of	the	same	Pod	you	have	to	create	and
name	them	manually.	In	a	later	chapter	we	introduce	the	ReplicaSet	object	and
show	how	you	can	automate	the	creation	of	multiple	identical	Pods	and	ensure
that	they	are	recreated	in	the	event	of	a	node	machine	failure.

Chapter	6.	Labels	and	Annotations

Kubernetes	was	made	to	grow	with	you	as	your	application	scales	both	in	size
and	complexity.	With	this	in	mind,	labels	and	annotations	were	added	as
foundational	concepts.	Labels	and	annotations	let	you	work	in	sets	of	things	that
map	to	how	you	think	about	your	application.	You	can	organize,	mark,	and
cross-index	all	of	your	resources	to	represent	the	groups	that	make	the	most
sense	for	your	application.

Labels	are	key/value	pairs	that	can	be	attached	to	Kubernetes	objects	such	as
Pods	and	ReplicaSets.	They	can	be	arbitrary,	and	are	useful	for	attaching
identifying	information	to	Kubernetes	objects.	Labels	provide	the	foundation	for
grouping	objects.

Annotations,	on	the	other	hand,	provide	a	storage	mechanism	that	resembles
labels:	annotations	are	key/value	pairs	designed	to	hold	nonidentifying
information	that	can	be	leveraged	by	tools	and	libraries.

Labels
Labels	provide	identifying	metadata	for	objects.	These	are	fundamental	qualities
of	the	object	that	will	be	used	for	grouping,	viewing,	and	operating.

NOTE
The	motivations	for	labels	grew	out	of	Google’s	experience	in	running	large	and	complex
applications.	There	were	a	couple	of	lessons	that	emerged	from	this	experience.	See	the	great
Site	Reliability	Engineering	by	Betsy	Beyer	et	al.	(O’Reilly)	for	some	deeper	background	on
how	Google	approaches	production	systems.

The	first	lesson	is	that	production	abhors	a	singleton.	When	deploying	software,	users	will
often	start	with	a	single	instance.	However,	as	the	application	matures,	these	singletons	often
multiply	and	become	sets	of	objects.	With	this	in	mind,	Kubernetes	uses	labels	to	deal	with
sets	of	objects	instead	of	single	instances.

The	second	lesson	is	that	any	hierarchy	imposed	by	the	system	will	fall	short	for	many	users.
In	addition,	user	grouping	and	hierarchy	are	subject	to	change	over	time.	For	instance,	a	user
may	start	out	with	the	idea	that	all	apps	are	made	up	of	many	services.	However,	over	time,	a
service	may	be	shared	across	multiple	apps.	Kubernetes	labels	are	flexible	enough	to	adapt	to
these	situations	and	more.

Labels	have	simple	syntax.	They	are	key/value	pairs	where	both	the	key	and
value	are	represented	by	strings.	Label	keys	can	be	broken	down	into	two	parts:
an	optional	prefix	and	a	name,	separated	by	a	slash.	The	prefix,	if	specified,	must
be	a	DNS	subdomain	with	a	253-character	limit.	The	key	name	is	required	and
must	be	shorter	than	63	characters.	Names	must	also	start	and	end	with	an
alphanumeric	character	and	permit	the	use	of	dashes	(-),	underscores	(_),	and
dots	(.)	between	characters.

Label	values	are	strings	with	a	maximum	length	of	63	characters.	The	contents
of	the	label	values	follow	the	same	rules	as	for	label	keys.

Table	6-1	shows	valid	label	keys	and	values.

Table	6-1.	Label	examples

Key Value

acme.com/app-version 1.0.0

http://shop.oreilly.com/product/0636920041528.do

appVersion 1.0.0

app.version 1.0.0

kubernetes.io/cluster-service true

Applying	Labels
Here	we	create	a	few	deployments	(a	way	to	create	an	array	of	Pods)	with	some
interesting	labels.	We’ll	take	two	apps	(called	alpaca	and	bandicoot)	and	have
two	environments	for	each.	We	will	also	have	two	different	versions.

1.	 First,	create	the	alpaca-prod	deployment	and	set	the	ver,	app,	and	env
labels:

$	kubectl	run	alpaca-prod	\

		--image=gcr.io/kuar-demo/kuard-amd64:1	\

		--replicas=2	\

		--labels="ver=1,app=alpaca,env=prod"

2.	 Next,	create	the	alpaca-test	deployment	and	set	the	ver,	app,	and	env
labels	with	the	appropriate	values:

$	kubectl	run	alpaca-test	\

		--image=gcr.io/kuar-demo/kuard-amd64:2	\

		--replicas=1	\

		--labels="ver=2,app=alpaca,env=test"

3.	 Finally,	create	two	deployments	for	bandicoot.	Here	we	name	the
environments	prod	and	staging:

$	kubectl	run	bandicoot-prod	\

		--image=gcr.io/kuar-demo/kuard-amd64:2	\

		--replicas=2	\

		--labels="ver=2,app=bandicoot,env=prod"

$	kubectl	run	bandicoot-staging	\

		--image=gcr.io/kuar-demo/kuard-amd64:2	\

		--replicas=1	\

		--labels="ver=2,app=bandicoot,env=staging"

At	this	point	you	should	have	four	deployments	—	alpaca-prod,	alpaca-
staging,	bandicoot-prod,	and	bandicoot-staging:

$	kubectl	get	deployments	--show-labels

NAME																...	LABELS

alpaca-prod									...	app=alpaca,env=prod,ver=1

alpaca-test									...	app=alpaca,env=test,ver=2

bandicoot-prod						...	app=bandicoot,env=prod,ver=2

bandicoot-staging			...	app=bandicoot,env=staging,ver=2

We	can	visualize	this	as	a	Venn	diagram	based	on	the	labels	(Figure	6-1).

Figure	6-1.	Visualization	of	labels	applied	to	our	deployments

Modifying	Labels
Labels	can	also	be	applied	(or	updated)	on	objects	after	they	are	created.

$	kubectl	label	deployments	alpaca-test	"canary=true"

WARNING
There	is	a	caveat	to	be	aware	of	here.	In	this	example,	the	kubectl	label	command	will	only
change	the	label	on	the	deployment	itself;	it	won’t	affect	the	objects	(ReplicaSets	and	Pods)	the
deployment	creates.	To	change	those,	you’ll	need	to	change	the	template	embedded	in	the
deployment	(see	Chapter	12).

You	can	also	use	the	-L	option	to	kubectl	get	to	show	a	label	value	as	a
column:

$	kubectl	get	deployments	-L	canary

NAME																DESIRED			CURRENT			...	CANARY

alpaca-prod									2									2									...	<none>

alpaca-test									1									1									...	true

bandicoot-prod						2									2									...	<none>

bandicoot-staging			1									1									...	<none>

You	can	remove	a	label	by	applying	a	dash	suffix:

$	kubectl	label	deployments	alpaca-test	"canary-"

Label	Selectors
Label	selectors	are	used	to	filter	Kubernetes	objects	based	on	a	set	of	labels.
Selectors	use	a	simple	Boolean	language.	They	are	used	both	by	end	users	(via
tools	like	kubectl)	and	by	different	types	of	objects	(such	as	how	ReplicaSet
relates	to	its	Pods).

Each	deployment	(via	a	ReplicaSet)	creates	a	set	of	Pods	using	the	labels
specified	in	the	template	embedded	in	the	deployment.	This	is	configured	by	the
kubectl	run	command.

Running	the	kubectl	get	pods	command	should	return	all	the	Pods	currently
running	in	the	cluster.	We	should	have	a	total	of	six	kuard	Pods	across	our	three
environments:

$	kubectl	get	pods	--show-labels

NAME																														...	LABELS

alpaca-prod-3408831585-4nzfb						...	app=alpaca,env=prod,ver=1,...

alpaca-prod-3408831585-kga0a						...	app=alpaca,env=prod,ver=1,...

alpaca-test-1004512375-3r1m5						...	app=alpaca,env=test,ver=2,...

bandicoot-prod-373860099-0t1gp				...	app=bandicoot,env=prod,ver=2,...

bandicoot-prod-373860099-k2wcf				...	app=bandicoot,env=prod,ver=2,...

bandicoot-staging-1839769971-3ndv	...	app=bandicoot,env=staging,ver=2,...

NOTE
You	may	see	a	new	label	that	we	haven’t	seen	yet:	pod-template-hash.	This	label	is	applied
by	the	deployment	so	it	can	keep	track	of	which	pods	were	generated	from	which	template
versions.	This	allows	the	deployment	to	manage	updates	in	a	clean	way,	as	will	be	covered	in
depth	in	Chapter	12.

If	we	only	wanted	to	list	pods	that	had	the	ver	label	set	to	2	we	could	use	the	--
selector	flag:

$	kubectl	get	pods	--selector="ver=2"

NAME																																	READY					STATUS				RESTARTS			AGE

alpaca-test-1004512375-3r1m5									1/1							Running			0										3m

bandicoot-prod-373860099-0t1gp							1/1							Running			0										3m

bandicoot-prod-373860099-k2wcf							1/1							Running			0										3m

bandicoot-staging-1839769971-3ndv5			1/1							Running			0										3m

If	we	specify	two	selectors	separated	by	a	comma,	only	the	objects	that	satisfy
both	will	be	returned.	This	is	a	logical	AND	operation:

$	kubectl	get	pods	--selector="app=bandicoot,ver=2"

NAME																																	READY					STATUS				RESTARTS			AGE

bandicoot-prod-373860099-0t1gp							1/1							Running			0										4m

bandicoot-prod-373860099-k2wcf							1/1							Running			0										4m

bandicoot-staging-1839769971-3ndv5			1/1							Running			0										4m

We	can	also	ask	if	a	label	is	one	of	a	set	of	values.	Here	we	ask	for	all	pods
where	the	app	label	is	set	to	alpaca	or	bandicoot	(which	will	be	all	six	pods):

$	kubectl	get	pods	--selector="app	in	(alpaca,bandicoot)"

NAME																																	READY					STATUS				RESTARTS			AGE

alpaca-prod-3408831585-4nzfb									1/1							Running			0										6m

alpaca-prod-3408831585-kga0a									1/1							Running			0										6m

alpaca-test-1004512375-3r1m5									1/1							Running			0										6m

bandicoot-prod-373860099-0t1gp							1/1							Running			0										6m

bandicoot-prod-373860099-k2wcf							1/1							Running			0										6m

bandicoot-staging-1839769971-3ndv5			1/1							Running			0										6m

Finally,	we	can	ask	if	a	label	is	set	at	all.	Here	we	are	asking	for	all	of	the
deployments	with	the	canary	label	set	to	anything:

$	kubectl	get	deployments	--selector="canary"

NAME										DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

alpaca-test			1									1									1												1											7m

There	are	also	“negative”	versions	of	each	of	these,	as	shown	in	Table	6-2.

Table	6-2.	Selector	operators

Operator Description

key=value key	is	set	to	value

key!=value key	is	not	set	to	value

key	in	(value1,	value2) key	is	one	of	value1	or	value2

key	notin	(value1,	value2) key	is	not	one	of	value1	or	value2

key key	is	set

!key key	is	not	set

Label	Selectors	in	API	Objects
When	a	Kubernetes	object	refers	to	a	set	of	other	Kubernetes	objects,	a	label
selector	is	used.	Instead	of	a	simple	string	as	described	in	the	previous	section,	a
parsed	structure	is	used.

For	historical	reasons	(Kubernetes	doesn’t	break	API	compatibility!),	there	are
two	forms.	Most	objects	support	a	newer,	more	powerful	set	of	selector
operators.

A	selector	of	app=alpaca,ver	in	(1,	2)	would	be	converted	to	this:

selector:

		matchLabels:

				app:	alpaca

		matchExpressions:

				-	{key:	ver,	operator:	In,	values:	[1,	2]}	

Compact	YAML	syntax.	This	is	an	item	in	a	list	(matchExpressions)	that	is
a	map	with	three	entries.	The	last	entry	(values)	has	a	value	that	is	a	list
with	two	items.

All	of	the	terms	are	evaluated	as	a	logical	AND.	The	only	way	to	represent	the
!=	operator	is	to	convert	it	to	a	NotIn	expression	with	a	single	value.

The	older	form	of	specifying	selectors	(used	in	ReplicationControllers	and
services)	only	supports	the	=	operator.	This	is	a	simple	set	of	key/value	pairs	that
must	all	match	a	target	object	to	be	selected.

The	selector	app=alpaca,ver=1	would	be	represented	like	this:

selector:

		app:	alpaca

		ver:	1

Annotations
Annotations	provide	a	place	to	store	additional	metadata	for	Kubernetes	objects
with	the	sole	purpose	of	assisting	tools	and	libraries.	They	are	a	way	for	other
programs	driving	Kubernetes	via	an	API	to	store	some	opaque	data	with	an
object.	Annotations	can	be	used	for	the	tool	itself	or	to	pass	configuration
information	between	external	systems.

While	labels	are	used	to	identify	and	group	objects,	annotations	are	used	to
provide	extra	information	about	where	an	object	came	from,	how	to	use	it,	or
policy	around	that	object.	There	is	overlap,	and	it	is	a	matter	of	taste	as	to	when
to	use	an	annotation	or	a	label.	When	in	doubt,	add	information	to	an	object	as
an	annotation	and	promote	it	to	a	label	if	you	find	yourself	wanting	to	use	it	in	a
selector.

Annotations	are	used	to:
Keep	track	of	a	“reason”	for	the	latest	update	to	an	object.

Communicate	a	specialized	scheduling	policy	to	a	specialized	scheduler.

Extend	data	about	the	last	tool	to	update	the	resource	and	how	it	was
updated	(used	for	detecting	changes	by	other	tools	and	doing	a	smart
merge).

Build,	release,	or	image	information	that	isn’t	appropriate	for	labels	(may
include	a	Git	hash,	timestamp,	PR	number,	etc.).

Enable	the	Deployment	object	(Chapter	12)	to	keep	track	of	ReplicaSets
that	it	is	managing	for	rollouts.

Provide	extra	data	to	enhance	the	visual	quality	or	usability	of	a	UI.	For
example,	objects	could	include	a	link	to	an	icon	(or	a	base64-encoded
version	of	an	icon).

Prototype	alpha	functionality	in	Kubernetes	(instead	of	creating	a	first-class
API	field,	the	parameters	for	that	functionality	are	instead	encoded	in	an
annotation).

Annotations	are	used	in	various	places	in	Kubernetes,	with	the	primary	use	case
being	rolling	deployments.	During	rolling	deployments,	annotations	are	used	to
track	rollout	status	and	provide	the	necessary	information	required	to	roll	back	a
deployment	to	a	previous	state.

Users	should	avoid	using	the	Kubernetes	API	server	as	a	general-purpose
database.	Annotations	are	good	for	small	bits	of	data	that	are	highly	associated
with	a	specific	resource.	If	you	want	to	store	data	in	Kubernetes	but	you	don’t
have	an	obvious	object	to	associate	it	with,	consider	storing	that	data	in	some
other,	more	appropriate	database.

Defining	Annotations
Annotation	keys	use	the	same	format	as	label	keys.	However,	because	they	are
often	used	to	communicate	information	between	tools,	the	“namespace”	part	of
the	key	is	more	important.	Example	keys	include
deployment.kubernetes.io/revision	or	kubernetes.io/change-cause.

The	value	component	of	an	annotation	is	a	free-form	string	field.	While	this
allows	maximum	flexibility	as	users	can	store	arbitrary	data,	because	this	is
arbitrary	text,	there	is	no	validation	of	any	format.	For	example,	it	is	not
uncommon	for	a	JSON	document	to	be	encoded	as	a	string	and	stored	in	an
annotation.	It	is	important	to	note	that	the	Kubernetes	server	has	no	knowledge
of	the	required	format	of	annotation	values.	If	annotations	are	used	to	pass	or
store	data,	there	is	no	guarantee	the	data	is	valid.	This	can	make	tracking	down
errors	more	difficult.

Annotations	are	defined	in	the	common	metadata	section	in	every	Kubernetes
object:

...

metadata:

		annotations:

				example.com/icon-url:	"https://example.com/icon.png"

...

Annotations	are	very	convenient	and	provide	powerful	loose	coupling.	However,
they	should	be	used	judiciously	to	avoid	an	untyped	mess	of	data.

Cleanup
It	is	easy	to	clean	up	all	of	the	deployments	that	we	started	in	this	chapter:

$	kubectl	delete	deployments	--all

If	you	want	to	be	more	selective	you	can	use	the	--selector	flag	to	choose
which	deployments	to	delete.

Summary
Labels	are	used	to	identify	and	optionally	group	objects	in	a	Kubernetes	cluster.
Labels	are	also	used	in	selector	queries	to	provide	flexible	runtime	grouping	of
objects	such	as	pods.

Annotations	provide	object-scoped	key/value	storage	of	metadata	that	can	be
used	by	automation	tooling	and	client	libraries.	Annotations	can	also	be	used	to
hold	configuration	data	for	external	tools	such	as	third-party	schedulers	and
monitoring	tools.

Labels	and	annotations	are	key	to	understanding	how	key	components	in	a
Kubernetes	cluster	work	together	to	ensure	the	desired	cluster	state.	Using	labels
and	annotations	properly	unlocks	the	true	power	of	Kubernetes’s	flexibility	and
provides	the	starting	point	for	building	automation	tools	and	deployment
workflows.

Chapter	7.	Service	Discovery

Kubernetes	is	a	very	dynamic	system.	The	system	is	involved	in	placing	Pods	on
nodes,	making	sure	they	are	up	and	running,	and	rescheduling	them	as	needed.
There	are	ways	to	automatically	change	the	number	of	pods	based	on	load	(such
as	horizontal	pod	autoscaling	[see	“Autoscaling	a	ReplicaSet”]).	The	API-driven
nature	of	the	system	encourages	others	to	create	higher	and	higher	levels	of
automation.

While	the	dynamic	nature	of	Kubernetes	makes	it	easy	to	run	a	lot	of	things,	it
creates	problems	when	it	comes	to	finding	those	things.	Most	of	the	traditional
network	infrastructure	wasn’t	built	for	the	level	of	dynamism	that	Kubernetes
presents.

What	Is	Service	Discovery?
The	general	name	for	this	class	of	problems	and	solutions	is	service	discovery.
Service	discovery	tools	help	solve	the	problem	of	finding	which	processes	are
listening	at	which	addresses	for	which	services.	A	good	service	discovery	system
will	enable	users	to	resolve	this	information	quickly	and	reliably.	A	good	system
is	also	low-latency;	clients	are	updated	soon	after	the	information	associated
with	a	service	changes.	Finally,	a	good	service	discovery	system	can	store	a
richer	definition	of	what	that	service	is.	For	example,	perhaps	there	are	multiple
ports	associated	with	the	service.

The	Domain	Name	System	(DNS)	is	the	traditional	system	of	service	discovery
on	the	internet.	DNS	is	designed	for	relatively	stable	name	resolution	with	wide
and	efficient	caching.	It	is	a	great	system	for	the	internet	but	falls	short	in	the
dynamic	world	of	Kubernetes.

Unfortunately,	many	systems	(for	example,	Java,	by	default)	look	up	a	name	in
DNS	directly	and	never	re-resolve.	This	can	lead	to	clients	caching	stale
mappings	and	talking	to	the	wrong	IP.	Even	with	short	TTLs	and	well-behaved
clients,	there	is	a	natural	delay	between	when	a	name	resolution	changes	and	the
client	notices.	There	are	natural	limits	to	the	amount	and	type	of	information	that
can	be	returned	in	a	typical	DNS	query,	too.	Things	start	to	break	past	20–30	A
records	for	a	single	name.	SRV	records	solve	some	problems	but	are	often	very
hard	to	use.	Finally,	the	way	that	clients	handle	multiple	IPs	in	a	DNS	record	is
usually	to	take	the	first	IP	address	and	rely	on	the	DNS	server	to	randomize	or
round-robin	the	order	of	records.	This	is	no	substitute	for	more	purpose-built
load	balancing.

The	Service	Object
Real	service	discovery	in	Kubernetes	starts	with	a	Service	object.

A	Service	object	is	a	way	to	create	a	named	label	selector.	As	we	will	see,	the
Service	object	does	some	other	nice	things	for	us	too.

Just	as	the	kubectl	run	command	is	an	easy	way	to	create	a	Kubernetes
deployment,	we	can	use	kubectl	expose	to	create	a	service.	Let’s	create	some
deployments	and	services	so	we	can	see	how	they	work:

$	kubectl	run	alpaca-prod	\

		--image=gcr.io/kuar-demo/kuard-amd64:1	\

		--replicas=3	\

		--port=8080	\

		--labels="ver=1,app=alpaca,env=prod"

$	kubectl	expose	deployment	alpaca-prod

$	kubectl	run	bandicoot-prod	\

		--image=gcr.io/kuar-demo/kuard-amd64:2	\

		--replicas=2	\

		--port=8080	\

		--labels="ver=2,app=bandicoot,env=prod"

$	kubectl	expose	deployment	bandicoot-prod

$	kubectl	get	services	-o	wide

NAME													CLUSTER-IP				...	PORT(S)		...	SELECTOR

alpaca-prod						10.115.245.13	...	8080/TCP	...	app=alpaca,env=prod,ver=1

bandicoot-prod			10.115.242.3		...	8080/TCP	...	app=bandicoot,env=prod,ver=2

kubernetes							10.115.240.1		...	443/TCP		...	<none>

After	running	these	commands,	we	have	three	services.	The	ones	we	just	created
are	alpaca-prod	and	bandicoot-prod.	The	kubernetes	service	is	automatically
created	for	you	so	that	you	can	find	and	talk	to	the	Kubernetes	API	from	within
the	app.

If	we	look	at	the	SELECTOR	column,	we	see	that	the	alpaca-prod	service	simply
gives	a	name	to	a	selector	and	specifies	which	ports	to	talk	to	for	that	service.
The	kubectl	expose	command	will	conveniently	pull	both	the	label	selector	and
the	relevant	ports	(8080,	in	this	case)	from	the	deployment	definition.

Furthermore,	that	service	is	assigned	a	new	type	of	virtual	IP	called	a	cluster	IP.
This	is	a	special	IP	address	the	system	will	load-balance	across	all	of	the	pods
that	are	identified	by	the	selector.

To	interact	with	services,	we	are	going	to	port-forward	to	one	of	the	alpaca

pods.	Start	and	leave	this	command	running	in	a	terminal	window.	You	can	see
the	port	forward	working	by	accessing	the	alpaca	pod	at	http://localhost:48858:

$	ALPACA_POD=$(kubectl	get	pods	-l	app=alpaca	\

				-o	jsonpath='{.items[0].metadata.name}')

$	kubectl	port-forward	$ALPACA_POD	48858:8080

http://localhost:48858

Service	DNS
Because	the	cluster	IP	is	virtual	it	is	stable	and	it	is	appropriate	to	give	it	a	DNS
address.	All	of	the	issues	around	clients	caching	DNS	results	no	longer	apply.
Within	a	namespace,	it	is	as	easy	as	just	using	the	service	name	to	connect	to	one
of	the	pods	identified	by	a	service.

Kubernetes	provides	a	DNS	service	exposed	to	Pods	running	in	the	cluster.	This
Kubernetes	DNS	service	was	installed	as	a	system	component	when	the	cluster
was	first	created.	The	DNS	service	is,	itself,	managed	by	Kubernetes	and	is	a
great	example	of	Kubernetes	building	on	Kubernetes.	The	Kubernetes	DNS
service	provides	DNS	names	for	cluster	IPs.

You	can	try	this	out	by	expanding	the	“DNS	Resolver”	section	on	the	kuard
server	status	page.	Query	the	A	record	for	alpaca-prod.	The	output	should	look
something	like	this:

;;	opcode:	QUERY,	status:	NOERROR,	id:	12071

;;	flags:	qr	aa	rd	ra;	QUERY:	1,	ANSWER:	1,	AUTHORITY:	0,	ADDITIONAL:	0

;;	QUESTION	SECTION:

;alpaca-prod.default.svc.cluster.local.	IN	 	A

;;	ANSWER	SECTION:

alpaca-prod.default.svc.cluster.local.	 30	 IN	 A	 10.115.245.13

The	full	DNS	name	here	is	alpaca-prod.default.svc.cluster.local..	Let’s
break	this	down:

alpaca-prod

The	name	of	the	service	in	question.

default

The	namespace	that	this	service	is	in.

svc::	Recognizing	that	this	is	a	service.	This	allows	Kubernetes	to	expose	other
types	of	things	as	DNS	in	the	future.	cluster.local.

The	base	domain	name	for	the	cluster.	This	is	the	default	and	what	you	will
see	for	most	clusters.	Administrators	may	change	this	to	allow	unique	DNS
names	across	multiple	clusters.

When	referring	to	a	service	in	your	own	namespace	you	can	just	use	the	service

name	(alpaca-prod).	You	can	also	refer	to	a	service	in	another	namespace	with
alpaca-prod.default.	And,	of	course,	you	can	use	the	fully	qualified	service
name	(alpaca-prod.default.svc.cluster.local.).	Try	each	of	these	out	in
the	“DNS	Resolver”	section	of	kuard.

Readiness	Checks
Oftentimes	when	an	application	first	starts	up	it	isn’t	ready	to	handle	requests.
There	is	usually	some	amount	of	initialization	that	can	take	anywhere	from
under	a	second	to	several	minutes.	One	nice	thing	the	Service	object	does	is
track	which	of	your	pods	are	ready	via	a	readiness	check.	Let’s	modify	our
deployment	to	add	a	readiness	check:

$	kubectl	edit	deployment/alpaca-prod

This	command	will	fetch	the	current	version	of	the	alpaca-prod	deployment
and	bring	it	up	in	an	editor.	After	you	save	and	quit	your	editor,	it’ll	then	write
the	object	back	to	Kubernetes.	This	is	a	quick	way	to	edit	an	object	without
saving	it	to	a	YAML	file.

Add	the	following	section:

spec:

		...

		template:

				...

				spec:

						containers:

								...

								name:	alpaca-prod

								readinessProbe:

										httpGet:

												path:	/ready

												port:	8080

										periodSeconds:	2

										initialDelaySeconds:	0

										failureThreshold:	3

										successThreshold:	1

This	sets	up	the	pods	this	deployment	will	create	so	that	they	will	be	checked	for
readiness	via	an	HTTP	GET	to	/ready	on	port	8080.	This	check	is	done	every	2
seconds	starting	as	soon	as	the	pod	comes	up.	If	three	successive	checks	fail,
then	the	pod	will	be	considered	not	ready.	However,	if	only	one	check	succeeds,
then	the	pod	will	again	be	considered	ready.

Only	ready	pods	are	sent	traffic.

Updating	the	deployment	definition	like	this	will	delete	and	recreate	the	alpaca
pods.	As	such,	we	need	to	restart	our	port-forward	command	from	earlier:

$	ALPACA_POD=$(kubectl	get	pods	-l	app=alpaca	\

				-o	jsonpath='{.items[0].metadata.name}')

$	kubectl	port-forward	$ALPACA_POD	48858:8080

Open	your	browser	to	http://localhost:48858	and	you	should	see	the	debug	page
for	that	instance	of	kuard.	Expand	the	“Readiness	Check”	section.	You	should
see	this	page	update	every	time	there	is	a	new	readiness	check	from	the	system,
which	should	happen	every	2	seconds.

In	another	terminal	window,	start	a	watch	command	on	the	endpoints	for	the
alpaca-prod	service.	Endpoints	are	a	lower-level	way	of	finding	what	a	service
is	sending	traffic	to	and	are	covered	later	in	this	chapter.	The	--watch	option
here	causes	the	kubectl	command	to	hang	around	and	output	any	updates.	This
is	an	easy	way	to	see	how	a	Kubernetes	object	changes	over	time:

$	kubectl	get	endpoints	alpaca-prod	--watch

Now	go	back	to	your	browser	and	hit	the	“Fail”	link	for	the	readiness	check.	You
should	see	that	the	server	is	not	returning	500s.	After	three	of	these	this	server	is
removed	from	the	list	of	endpoints	for	the	service.	Hit	the	“Succeed”	link	and
notice	that	after	a	single	readiness	check	the	endpoint	is	added	back.

This	readiness	check	is	a	way	for	an	overloaded	or	sick	server	to	signal	to	the
system	that	it	doesn’t	want	to	receive	traffic	anymore.	This	is	a	great	way	to
implement	graceful	shutdown.	The	server	can	signal	that	it	no	longer	wants
traffic,	wait	until	existing	connections	are	closed,	and	then	cleanly	exit.

Press	Control-C	to	exit	out	of	both	the	port-forward	and	watch	commands	in
your	terminals.

http://localhost:48858

Looking	Beyond	the	Cluster
So	far,	everything	we’ve	covered	in	this	chapter	has	been	about	exposing
services	inside	of	a	cluster.	Oftentimes	the	IPs	for	pods	are	only	reachable	from
within	the	cluster.	At	some	point,	we	have	to	allow	new	traffic	in!

The	most	portable	way	to	do	this	is	to	use	a	feature	called	NodePorts,	which
enhance	a	service	even	further.	In	addition	to	a	cluster	IP,	the	system	picks	a	port
(or	the	user	can	specify	one),	and	every	node	in	the	cluster	then	forwards	traffic
to	that	port	to	the	service.

With	this	feature,	if	you	can	reach	any	node	in	the	cluster	you	can	contact	a
service.	You	use	the	NodePort	without	knowing	where	any	of	the	Pods	for	that
service	are	running.	This	can	be	integrated	with	hardware	or	software	load
balancers	to	expose	the	service	further.

Try	this	out	by	modifying	the	alpaca-prod	service:

$	kubectl	edit	service	alpaca-prod

Change	the	spec.type	field	to	NodePort.	You	can	also	do	this	when	creating	the
service	via	kubectl	expose	by	specifying	--type=NodePort.	The	system	will
assign	a	new	NodePort:

$	kubectl	describe	service	alpaca-prod

Name:																			alpaca-prod

Namespace:														default

Labels:																	app=alpaca

																								env=prod

																								ver=1

Annotations:												<none>

Selector:															app=alpaca,env=prod,ver=1

Type:																			NodePort

IP:																					10.115.245.13

Port:																			<unset>	8080/TCP

NodePort:															<unset>	32711/TCP

Endpoints:														10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080

Session	Affinity:							None

No	events.

Here	we	see	that	the	system	assigned	port	32711	to	this	service.	Now	we	can	hit
any	of	our	cluster	nodes	on	that	port	to	access	the	service.	If	you	are	sitting	on

the	same	network,	you	can	access	it	directly.	If	your	cluster	is	in	the	cloud
someplace,	you	can	use	SSH	tunneling	with	something	like	this:

$	ssh	<node>	-L	8080:localhost:32711

Now	if	you	open	your	browser	to	http://localhost:8080	you	will	be	connected	to
that	service.	Each	request	that	you	send	to	the	service	will	be	randomly	directed
to	one	of	the	Pods	that	implement	the	service.	Reload	the	page	a	few	times	and
you	will	see	that	you	are	randomly	assigned	to	different	pods.

When	you	are	done,	exit	out	of	the	SSH	session.

http://localhost:8080

Cloud	Integration
Finally,	if	you	have	support	from	the	cloud	that	you	are	running	on	(and	your
cluster	is	configured	to	take	advantage	of	it)	you	can	use	the	LoadBalancer	type.
This	builds	on	NodePorts	by	additionally	configuring	the	cloud	to	create	a	new
load	balancer	and	direct	it	at	nodes	in	your	cluster.

Edit	the	alpaca-prod	service	again	(kubectl	edit	service	alpaca-prod)	and
change	spec.type	to	LoadBalancer.

If	you	do	a	kubectl	get	services	right	away	you’ll	see	that	the	EXTERNAL-IP
column	for	alpaca-prod	now	says	<pending>.	Wait	a	bit	and	you	should	see	a
public	address	assigned	by	your	cloud.	You	can	look	in	the	console	for	your
cloud	account	and	see	the	configuration	work	that	Kubernetes	did	for	you:

$	kubectl	describe	service	alpaca-prod

Name:																			alpaca-prod

Namespace:														default

Labels:																	app=alpaca

																								env=prod

																								ver=1

Selector:															app=alpaca,env=prod,ver=1

Type:																			LoadBalancer

IP:																					10.115.245.13

LoadBalancer	Ingress:			104.196.248.204

Port:																			<unset>	8080/TCP

NodePort:															<unset>	32711/TCP

Endpoints:														10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080

Session	Affinity:							None

Events:

		FirstSeen	...	Reason																Message

		---------	...	------																-------

		3m								...	Type																		NodePort	->	LoadBalancer

		3m								...	CreatingLoadBalancer		Creating	load	balancer

		2m								...	CreatedLoadBalancer			Created	load	balancer

Here	we	see	that	we	have	an	address	of	104.196.248.204	now	assigned	to	the
alpaca-prod	service.	Open	up	your	browser	and	try!

This	example	is	from	a	cluster	launched	and	managed	on	the	Google	Cloud
Platform	via	GKE.	However,	the	way	a	LoadBalancer	is	configured	is	specific
to	a	cloud.	In	addition,	some	clouds	have	DNS-based	load	balancers	(e.g.,	AWS
ELB).	In	this	case	you’ll	see	a	hostname	here	instead	of	an	IP.	Also,	depending
on	the	cloud	provider,	it	may	still	take	a	little	while	for	the	load	balancer	to	be

fully	operational.

Advanced	Details
Kubernetes	is	built	to	be	an	extensible	system.	As	such,	there	are	layers	that
allow	for	more	advanced	integrations.	Understanding	the	details	of	how	a
sophisticated	concept	like	services	is	implemented	may	help	you	troubleshoot	or
create	more	advanced	integrations.	This	section	goes	a	bit	below	the	surface.

Endpoints
Some	applications	(and	the	system	itself)	want	to	be	able	to	use	services	without
using	a	cluster	IP.	This	is	done	with	another	type	of	object	called	Endpoints.	For
every	Service	object,	Kubernetes	creates	a	buddy	Endpoints	object	that
contains	the	IP	addresses	for	that	service:

$	kubectl	describe	endpoints	alpaca-prod

Name:											alpaca-prod

Namespace:						default

Labels:									app=alpaca

																env=prod

																ver=1

Subsets:

		Addresses:												10.112.1.54,10.112.2.84,10.112.2.85

		NotReadyAddresses:				<none>

		Ports:

				Name								Port				Protocol

				----								----				--------

				<unset>					8080				TCP

No	events.

To	use	a	service,	an	advanced	application	can	talk	to	the	Kubernetes	API	directly
to	look	up	endpoints	and	call	them.	The	Kubernetes	API	even	has	the	capability
to	“watch”	objects	and	be	notified	as	soon	as	they	change.	In	this	way	a	client
can	react	immediately	as	soon	as	the	IPs	associated	with	a	service	change.

Let’s	demonstrate	this.	In	a	terminal	window,	start	the	following	command	and
leave	it	running:

$	kubectl	get	endpoints	alpaca-prod	--watch

It	will	output	the	current	state	of	the	endpoint	and	then	“hang”:

NAME										ENDPOINTS																																												AGE

alpaca-prod			10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080			1m

Now	open	up	another	terminal	window	and	delete	and	recreate	the	deployment
backing	alpaca-prod:

$	kubectl	delete	deployment	alpaca-prod

$	kubectl	run	alpaca-prod	\

		--image=gcr.io/kuar-demo/kuard-amd64:1	\

		--replicas=3	\

		--port=8080	\

		--labels="ver=1,app=alpaca,env=prod"

If	you	look	back	at	the	output	from	the	watched	endpoint,	you	will	see	that	as
you	deleted	and	re-created	these	pods,	the	output	of	the	command	reflected	the
most	up-to-date	set	of	IP	addresses	associated	with	the	service.	Your	output	will
look	something	like	this:

NAME										ENDPOINTS																																												AGE

alpaca-prod			10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080			1m

alpaca-prod			10.112.1.54:8080,10.112.2.84:8080			1m

alpaca-prod			<none>				1m

alpaca-prod			10.112.2.90:8080			1m

alpaca-prod			10.112.1.57:8080,10.112.2.90:8080			1m

alpaca-prod			10.112.0.28:8080,10.112.1.57:8080,10.112.2.90:8080			1m

The	Endpoints	object	is	great	if	you	are	writing	new	code	that	is	built	to	run	on
Kubernetes	from	the	start.	But	most	projects	aren’t	in	this	position!	Most
existing	systems	are	built	to	work	with	regular	old	IP	addresses	that	don’t	change
that	often.

Manual	Service	Discovery
Kubernetes	services	are	built	on	top	of	label	selectors	over	pods.	That	means	that
you	can	use	the	Kubernetes	API	to	do	rudimentary	service	discovery	without
using	a	Service	object	at	all!	Let’s	demonstrate.

With	kubectl	(and	via	the	API)	we	can	easily	see	what	IPs	are	assigned	to	each
pod	in	our	example	deployments:

$	kubectl	get	pods	-o	wide	--show-labels

NAME																												...	IP										...	LABELS

alpaca-prod-12334-87f8h				...	10.112.1.54	...	app=alpaca,env=prod,ver=1

alpaca-prod-12334-jssmh				...	10.112.2.84	...	app=alpaca,env=prod,ver=1

alpaca-prod-12334-tjp56				...	10.112.2.85	...	app=alpaca,env=prod,ver=1

bandicoot-prod-5678-sbxzl		...	10.112.1.55	...	app=bandicoot,env=prod,ver=2

bandicoot-prod-5678-x0dh8		...	10.112.2.86	...	app=bandicoot,env=prod,ver=2

This	is	great,	but	what	if	you	have	a	ton	of	pods?	You’ll	probably	want	to	filter
this	based	on	the	labels	applied	as	part	of	the	deployment.	Let’s	do	that	for	just
the	alpaca	app:

$	kubectl	get	pods	-o	wide	--selector=app=alpaca,env=prod

NAME																									...	IP										...

alpaca-prod-3408831585-bpzdz	...	10.112.1.54	...

alpaca-prod-3408831585-kncwt	...	10.112.2.84	...

alpaca-prod-3408831585-l9fsq	...	10.112.2.85	...

At	this	point	we	have	the	basics	of	service	discovery!	We	can	always	use	labels
to	identify	the	set	of	pods	we	are	interested	in,	get	all	of	the	pods	for	those
labels,	and	dig	out	the	IP	address.	But	keeping	the	correct	set	of	labels	to	use	in
sync	can	be	tricky.	This	is	why	the	Service	object	was	created.

kube-proxy	and	Cluster	IPs
Cluster	IPs	are	stable	virtual	IPs	that	load-balance	traffic	across	all	of	the
endpoints	in	a	service.	This	magic	is	performed	by	a	component	running	on
every	node	in	the	cluster	called	the	kube-proxy	(Figure	7-1).

Figure	7-1.	Configuring	and	using	a	cluster	IP

In	Figure	7-1,	the	kube-proxy	watches	for	new	services	in	the	cluster	via	the
API	server.	It	then	programs	a	set	of	iptables	rules	in	the	kernel	of	that	host	to
rewrite	the	destination	of	packets	so	they	are	directed	at	one	of	the	endpoints	for
that	service.	If	the	set	of	endpoints	for	a	service	changes	(due	to	pods	coming
and	going	or	due	to	a	failed	readiness	check)	the	set	of	iptables	rules	is
rewritten.

The	cluster	IP	itself	is	usually	assigned	by	the	API	server	as	the	service	is
created.	However,	when	creating	the	service,	the	user	can	specify	a	specific
cluster	IP.	Once	set,	the	cluster	IP	cannot	be	modified	without	deleting	and

recreating	the	Service	object.

NOTE
The	Kubernetes	service	address	range	is	configured	using	the	--service-cluster-ip-range
flag	on	the	kube-apiserver	binary.	The	service	address	range	should	not	overlap	with	the	IP
subnets	and	ranges	assigned	to	each	Docker	bridge	or	Kubernetes	node.

In	addition,	any	explicit	cluster	IP	requested	must	come	from	that	range	and	not	already	be	in
use.

Cluster	IP	Environment	Variables
While	most	users	should	be	using	the	DNS	services	to	find	cluster	IPs,	there	are
some	older	mechanisms	that	may	still	be	in	use.	One	of	these	is	injecting	a	set	of
environment	variables	into	pods	as	they	start	up.

To	see	this	in	action,	let’s	look	at	the	console	for	the	bandicoot	instance	of	kuard.
Enter	the	following	commands	in	your	terminal:

$	BANDICOOT_POD=$(kubectl	get	pods	-l	app=bandicoot	\

				-o	jsonpath='{.items[0].metadata.name}')

$	kubectl	port-forward	$BANDICOOT_POD	48858:8080

Now	open	your	browser	to	http://localhost:48858	to	see	the	status	page	for	this
server.	Expand	the	“Environment”	section	and	note	the	set	of	environment
variables	for	the	alpaca	service.	The	status	page	should	show	a	table	similar	to
Table	7-1.

Table	7-1.	Service	environment	variables

Name Value

ALPACA_PROD_PORT tcp://10.115.245.13:8080

ALPACA_PROD_PORT_8080_TCP tcp://10.115.245.13:8080

ALPACA_PROD_PORT_8080_TCP_ADDR 10.115.245.13

ALPACA_PROD_PORT_8080_TCP_PORT 8080

ALPACA_PROD_PORT_8080_TCP_PROTO tcp

ALPACA_PROD_SERVICE_HOST 10.115.245.13

ALPACA_PROD_SERVICE_PORT 8080

The	two	main	environment	variables	to	use	are	ALPACA_PROD_SERVICE_HOST	and
ALPACA_PROD_SERVICE_PORT.	The	other	environment	variables	are	created	to	be
compatible	with	(now	deprecated)	Docker	link	variables.

A	problem	with	the	environment	variable	approach	is	that	it	requires	resources	to
be	created	in	a	specific	order.	The	services	must	be	created	before	the	pods	that

http://localhost:48858

reference	them.	This	can	introduce	quite	a	bit	of	complexity	when	deploying	a
set	of	services	that	make	up	a	larger	application.	In	addition,	using	just
environment	variables	seems	strange	to	many	users.	For	this	reason,	DNS	is
probably	a	better	option.

Cleanup
Run	the	following	commands	to	clean	up	all	of	the	objects	created	in	this
chapter:

$	kubectl	delete	services,deployments	-l	app

Summary
Kubernetes	is	a	dynamic	system	that	challenges	traditional	methods	of	naming
and	connecting	services	over	the	network.	The	Service	object	provides	a
flexible	and	powerful	way	to	expose	services	both	within	the	cluster	and	beyond.
With	the	techniques	covered	here	you	can	connect	services	to	each	other	and
expose	them	outside	the	cluster.

While	using	the	dynamic	service	discovery	mechanisms	in	Kubernetes
introduces	some	new	concepts	and	may,	at	first,	seem	complex,	understanding
and	adapting	these	techniques	is	key	to	unlocking	the	power	of	Kubernetes.
Once	your	application	can	dynamically	find	services	and	react	to	the	dynamic
placement	of	those	applications,	you	are	free	to	stop	worrying	about	where
things	are	running	and	when	they	move.	It	is	a	critical	piece	of	the	puzzle	to	start
to	think	about	services	in	a	logical	way	and	let	Kubernetes	take	care	of	the
details	of	container	placement.

Chapter	8.	ReplicaSets

Previously,	we	covered	how	to	run	individual	containers	as	Pods.	But	these	pods
are	essentially	one-off	singletons.	More	often	than	not,	you	want	multiple
replicas	of	a	container	running	at	a	particular	time.	There	are	a	variety	of	reasons
for	this	type	of	replication:

Redundancy
Multiple	running	instances	mean	failure	can	be	tolerated.

Scale
Multiple	running	instances	mean	that	more	requests	can	be	handled.

Sharding
Different	replicas	can	handle	different	parts	of	a	computation	in	parallel.

Of	course,	you	could	manually	create	multiple	copies	of	a	Pod	using	multiple
different	(though	largely	similar)	Pod	manifests,	but	doing	so	is	both	tedious	and
error-prone.	Logically,	a	user	managing	a	replicated	set	of	Pods	considers	them
as	a	single	entity	to	be	defined	and	managed.	This	is	precisely	what	a	ReplicaSet
is.	A	ReplicaSet	acts	as	a	cluster-wide	Pod	manager,	ensuring	that	the	right	types
and	number	of	Pods	are	running	at	all	times.

Because	ReplicaSets	make	it	easy	to	create	and	manage	replicated	sets	of	Pods,
they	are	the	building	blocks	used	to	describe	common	application	deployment
patterns	and	provide	the	underpinnings	of	self-healing	for	our	applications	at	the
infrastructure	level.	Pods	managed	by	ReplicaSets	are	automatically	rescheduled
under	certain	failure	conditions	such	as	node	failures	and	network	partitions.

The	easiest	way	to	think	of	a	ReplicaSet	is	that	it	combines	a	cookie	cutter	and	a
desired	of	number	of	cookies	into	a	single	API	object.	When	we	define	a
ReplicaSet,	we	define	a	specification	for	the	Pods	we	want	to	create	(the	“cookie
cutter”),	and	a	desired	number	of	replicas.	Additionally,	we	need	to	define	a	way
of	finding	Pods	that	the	ReplicaSet	should	control.	The	actual	act	of	managing
the	replicated	Pods	is	an	example	of	a	reconciliation	loop.	Such	loops	are
fundamental	to	most	of	the	design	and	implementation	of	Kubernetes.

Reconciliation	Loops
The	central	concept	behind	a	reconciliation	loop	is	the	notion	of	desired	state
and	observed	or	current	state.	Desired	state	is	the	state	you	want.	With	a
ReplicaSet	it	is	the	desired	number	of	replicas	and	the	definition	of	the	Pod	to
replicate.	For	example,	the	desired	state	is	that	there	are	three	replicas	of	a	Pod
running	the	kuard	server.

In	contrast,	current	state	is	the	currently	observed	state	of	the	system.	For
example,	there	are	only	two	kuard	Pods	currently	running.

The	reconciliation	loop	is	constantly	running,	observing	the	current	state	of	the
world	and	taking	action	to	try	to	make	the	observed	state	match	the	desired	state.
For	example,	given	the	previous	example,	the	reconciliation	loop	creates	a	new
kuard	Pod	in	an	effort	to	make	the	observed	state	match	the	desired	state	of	three
replicas.

There	are	many	benefits	to	the	reconciliation	loop	approach	to	managing	state.	It
is	an	inherently	goal-driven,	self-healing	system,	yet	it	can	often	be	easily
expressed	in	a	few	lines	of	code.

As	a	concrete	example	of	this,	note	that	the	reconciliation	loop	for	ReplicaSets	is
a	single	loop,	and	yet	it	handles	both	user	actions	to	scale	up	or	scale	down	the
ReplicaSet,	as	well	as	node	failures	or	nodes	rejoining	the	cluster	after	being
absent.

Throughout	the	rest	of	the	book	we’ll	see	numerous	examples	of	reconciliation
loops	in	action.

Relating	Pods	and	ReplicaSets
One	of	the	key	themes	that	runs	through	Kubernetes	is	decoupling.	In	particular,
it’s	important	that	all	of	the	core	concepts	of	Kubernetes	are	modular	with
respect	to	each	other	and	that	they	are	swappable	and	replaceable	with	other
components.	In	this	spirit,	the	relationship	between	ReplicaSets	and	Pods	is
loosely	coupled.	Though	ReplicaSets	create	and	manage	Pods,	they	do	not	own
the	Pods	they	create.	ReplicaSets	use	label	queries	to	identify	the	set	of	Pods
they	should	be	managing.	They	then	use	the	exact	same	Pod	API	that	you	used
directly	in	Chapter	5	to	create	the	Pods	that	they	are	managing.	This	notion	of
“coming	in	the	front	door”	is	another	central	design	concept	in	Kubernetes.	In	a
similar	decoupling,	ReplicaSets	that	create	multiple	Pods	and	the	services	that
load-balance	to	those	Pods	are	also	totally	separate,	decoupled	API	objects.	In
addition	to	supporting	modularity,	the	decoupling	of	Pods	and	ReplicaSets
enables	several	important	behaviors,	discussed	in	the	following	sections.

Adopting	Existing	Containers
Despite	the	value	placed	on	declarative	configuration	of	software,	there	are	times
when	it	is	easier	to	build	something	up	imperatively.	In	particular,	early	on	you
may	be	simply	deploying	a	single	Pod	with	a	container	image	without	a
ReplicaSet	managing	it.	But	at	some	point	you	may	want	to	expand	your
singleton	container	into	a	replicated	service	and	create	and	manage	an	array	of
similar	containers.	You	may	have	even	defined	a	load	balancer	that	is	serving
traffic	to	that	single	Pod.	If	ReplicaSets	owned	the	Pods	they	created,	then	the
only	way	to	start	replicating	your	Pod	would	be	to	delete	it	and	then	relaunch	it
via	a	ReplicaSet.	This	might	be	disruptive,	as	there	would	be	a	moment	in	time
when	there	would	be	no	copies	of	your	container	running.	However,	because
ReplicaSets	are	decoupled	from	the	Pods	they	manage,	you	can	simply	create	a
ReplicaSet	that	will	“adopt”	the	existing	Pod,	and	scale	out	additional	copies	of
those	containers.	In	this	way	you	can	seamlessly	move	from	a	single	imperative
Pod	to	a	replicated	set	of	Pods	managed	by	a	ReplicaSet.

Quarantining	Containers
Oftentimes,	when	a	server	misbehaves,	Pod-level	health	checks	will
automatically	restart	that	Pod.	But	if	your	health	checks	are	incomplete,	a	Pod
can	be	misbehaving	but	still	be	part	of	the	replicated	set.	In	these	situations,
while	it	would	work	to	simply	kill	the	Pod,	that	would	leave	your	developers
with	only	logs	to	debug	the	problem.	Instead,	you	can	modify	the	set	of	labels	on
the	sick	Pod.	Doing	so	will	disassociate	it	from	the	ReplicaSet	(and	service)	so
that	you	can	debug	the	Pod.	The	ReplicaSet	controller	will	notice	that	a	Pod	is
missing	and	create	a	new	copy,	but	because	the	Pod	is	still	running,	it	is	available
to	developers	for	interactive	debugging,	which	is	significantly	more	valuable
than	debugging	from	logs.

Designing	with	ReplicaSets
ReplicaSets	are	designed	to	represent	a	single,	scalable	microservice	inside	your
architecture.	The	key	characteristic	of	ReplicaSets	is	that	every	Pod	that	is
created	by	the	ReplicaSet	controller	is	entirely	homogeneous.	Typically,	these
Pods	are	then	fronted	by	a	Kubernetes	service	load	balancer,	which	spreads
traffic	across	the	Pods	that	make	up	the	service.	Generally	speaking,	ReplicaSets
are	designed	for	stateles	(or	nearly	stateless)	services.	The	elements	created	by
the	ReplicaSet	are	interchangeable;	when	a	ReplicaSet	is	scaled	down,	an
arbitrary	Pod	is	selected	for	deletion.	Your	application’s	behavior	shouldn’t
change	because	of	such	a	scale-down	operation.

ReplicaSet	Spec
Like	all	concepts	in	Kubernetes,	ReplicaSets	are	defined	using	a	specification.
All	ReplicaSets	must	have	a	unique	name	(defined	using	the	metadata.name
field),	a	spec	section	that	describes	the	number	of	Pods	(replicas)	that	should	be
running	cluster-wide	at	a	given	time,	and	a	Pod	template	that	describes	the	Pod
to	be	created	when	the	defined	number	of	replicas	is	not	met.	Example	8-1
shows	a	minimal	ReplicaSet	definition.

Example	8-1.	kuard-rs.yaml
apiVersion:	extensions/v1beta1

kind:	ReplicaSet

metadata:

		name:	kuard

spec:

		replicas:	1

		template:

				metadata:

						labels:

								app:	kuard

								version:	"2"

				spec:

						containers:

								-	name:	kuard

										image:	"gcr.io/kuar-demo/kuard-amd64:2"

Pod	Templates
As	mentioned	previously,	when	the	number	of	Pods	in	the	current	state	is	less
than	the	number	of	Pods	in	the	desired	state,	the	ReplicaSet	controller	will	create
new	Pods.	The	Pods	are	created	using	a	Pod	template	that	is	contained	in	the
ReplicaSet	specification.	The	Pods	are	created	in	exactly	the	same	manner	as
when	you	created	a	Pod	from	a	YAML	file	in	previous	chapters.	But	instead	of
using	a	file,	the	Kubernetes	ReplicaSet	controller	creates	and	submits	a	Pod
manifest	based	on	the	Pod	template	directly	to	the	API	server.	The	following
shows	an	example	of	a	Pod	template	in	a	ReplicaSet:

template:

		metadata:

				labels:

						app:	helloworld

						version:	v1

		spec:

				containers:

						-	name:	helloworld

								image:	kelseyhightower/helloworld:v1

								ports:

										-	containerPort:	80

Labels
In	any	cluster	of	reasonable	size,	there	are	many	different	Pods	running	at	any
given	time	—	so	how	does	the	ReplicaSet	reconciliation	loop	discover	the	set	of
Pods	for	a	particular	ReplicaSet?	ReplicaSets	monitor	cluster	state	using	a	set	of
Pod	labels.	Labels	are	used	to	filter	Pod	listings	and	track	Pods	running	within	a
cluster.	When	ReplicaSets	are	initially	created,	the	ReplicaSet	fetches	a	Pod
listing	from	the	Kubernetes	API	and	filters	the	results	by	labels.	Based	on	the
number	of	Pods	returned	by	the	query,	the	ReplicaSet	deletes	or	creates	Pods	to
meet	the	desired	number	of	replicas.	The	labels	used	for	filtering	are	defined	in
the	ReplicaSet	spec	section	and	are	the	key	to	understanding	how	ReplicaSets
work.

NOTE
The	selector	in	the	ReplicaSet	spec	should	be	a	proper	subset	of	the	labels	in	the	Pod	template.

Creating	a	ReplicaSet
ReplicaSets	are	created	by	submitting	a	ReplicaSet	object	to	the	Kubernetes	API.
In	this	section	we	will	create	a	ReplicaSet	using	a	configuration	file	and	the
kubectl	apply	command.

The	ReplicaSet	configuration	file	in	Example	8-1	will	ensure	one	copy	of	the
gcr.io/kuar-demo/kuard-amd64:1	container	is	running	at	a	given	time.

Use	the	kubectl	apply	command	to	submit	the	kuard	ReplicaSet	to	the
Kubernetes	API:

$	kubectl	apply	-f	kuard-rs.yaml

replicaset	"kuard"	created

Once	the	kuard	ReplicaSet	has	been	accepted,	the	ReplicaSet	controller	will
detect	there	are	no	kuard	Pods	running	that	match	the	desired	state,	and	a	new
kuard	Pod	will	be	created	based	on	the	contents	of	the	Pod	template:

$	kubectl	get	pods

NAME										READY					STATUS				RESTARTS			AGE

kuard-yvzgd			1/1							Running			0										11s

Inspecting	a	ReplicaSet
As	with	Pods	and	other	Kubernetes	API	objects,	if	you	are	interested	in	further
details	about	a	ReplicaSet,	the	describe	command	will	provide	much	more
information	about	its	state.	Here	is	an	example	of	using	describe	to	obtain	the
details	of	the	ReplicaSet	we	previously	created:

$	kubectl	describe	rs	kuard

Name:									kuard

Namespace:				default

Image(s):					kuard:1.9.15

Selector:					app=kuard,version=2

Labels:							app=kuard,version=2

Replicas:					1	current	/	1	desired

Pods	Status:		1	Running	/	0	Waiting	/	0	Succeeded	/	0	Failed

No	volumes.

You	can	see	the	label	selector	for	the	ReplicaSet,	as	well	as	the	state	of	all	of	the
replicas	managed	by	the	ReplicaSet.

Finding	a	ReplicaSet	from	a	Pod
Sometimes	you	may	wonder	if	a	Pod	is	being	managed	by	a	ReplicaSet,	and,	if	it
is,	which	ReplicaSet.

To	enable	this	kind	of	discovery,	the	ReplicaSet	controller	adds	an	annotation	to
every	Pod	that	it	creates.	The	key	for	the	annotation	is	kubernetes.io/created-
by.	If	you	run	the	following,	look	for	the	kubernetes.io/created-by	entry	in
the	annotations	section:

$	kubectl	get	pods	<pod-name>	-o	yaml

If	applicable,	this	will	list	the	name	of	the	ReplicaSet	that	is	managing	this	Pod.
Note	that	such	annotations	are	best-effort;	they	are	only	created	when	the	Pod	is
created	by	the	ReplicaSet,	and	can	be	removed	by	a	Kubernetes	user	at	any	time.

Finding	a	Set	of	Pods	for	a	ReplicaSet
You	can	also	determine	the	set	of	Pods	managed	by	a	ReplicaSet.	First,	you	can
get	the	set	of	labels	using	the	kubectl	describe	command.	In	the	previous
example,	the	label	selector	was	app=kuard,version=2.	To	find	the	Pods	that
match	this	selector,	use	the	--selector	flag	or	the	shorthand	-l:

$	kubectl	get	pods	-l	app=kuard,version=2

This	is	exactly	the	same	query	that	the	ReplicaSet	executes	to	determine	the
current	number	of	Pods.

Scaling	ReplicaSets
ReplicaSets	are	scaled	up	or	down	by	updating	the	spec.replicas	key	on	the
ReplicaSet	object	stored	in	Kubernetes.	When	a	ReplicaSet	is	scaled	up,	new
Pods	are	submitted	to	the	Kubernetes	API	using	the	Pod	template	defined	on	the
ReplicaSet.

Imperative	Scaling	with	kubectl	Scale
The	easiest	way	to	achieve	this	is	using	the	scale	command	in	kubectl.	For
example,	to	scale	up	to	four	replicas	you	could	run:

$	kubectl	scale	kuard	--replicas=4

While	such	imperative	commands	are	useful	for	demonstrations	and	quick
reactions	to	emergency	situations	(e.g.,	in	response	to	a	sudden	increase	in	load),
it	is	important	to	also	update	any	text-file	configurations	to	match	the	number	of
replicas	that	you	set	via	the	imperative	scale	command.	The	reason	for	this
becomes	obvious	when	you	consider	the	following	scenario:

Alice	is	on	call,	when	suddenly	there	is	a	large	increase	in	load	on	the	service
she	is	managing.	Alice	uses	the	+scale+	command	to	increase	the	number	of
servers	responding	to	requests	to	10,	and	the	situation	is	resolved.	However,
Alice	forgets	to	update	the	ReplicaSet	configurations	checked	into	source
control.	Several	days	later,	Bob	is	preparing	the	weekly	rollouts.	Bob	edits	the
ReplicaSet	configurations	stored	in	version	control	to	use	the	new	container
image,	but	he	doesn’t	notice	that	the	number	of	replicas	in	the	file	is	currently
5,	not	the	10	that	Alice	set	in	response	to	the	increased	load.	Bob	proceeds
with	the	rollout,	which	both	updates	the	container	image	and	reduces	the
number	of	replicas	by	half,	causing	an	immediate	overload	or	outage.

Hopefully,	this	illustrates	the	need	to	ensure	that	any	imperative	changes	are
immediately	followed	by	a	declarative	change	in	source	control.	Indeed,	if	the
need	is	not	acute,	we	generally	recommend	only	making	declarative	changes	as
described	in	the	following	section.

Declaratively	Scaling	with	kubectl	apply
In	a	declarative	world,	we	make	changes	by	editing	the	configuration	file	in
version	control	and	then	applying	those	changes	to	our	cluster.	To	scale	the
kuard	ReplicaSet,	edit	the	kuard-rs.yaml	configuration	file	and	set	the	replicas
count	to	3:

...

spec:

		replicas:	3

...

In	a	multiuser	setting,	you	would	like	to	have	a	documented	code	review	of	this
change	and	eventually	check	the	changes	into	version	control.	Either	way,	you
can	then	use	the	kubectl	apply	command	to	submit	the	updated	kuard
ReplicaSet	to	the	API	server:

$	kubectl	apply	-f	kuard-rs.yaml

replicaset	"kuard"	configured

Now	that	the	updated	kuard	ReplicaSet	is	in	place,	the	ReplicaSet	controller	will
detect	that	the	number	of	desired	Pods	has	changed	and	that	it	needs	to	take
action	to	realize	that	desired	state.	If	you	used	the	imperative	scale	command	in
the	previous	section,	the	ReplicaSet	controller	will	destroy	one	Pod	to	get	the
number	to	three.	Otherwise,	it	will	submit	two	new	Pods	to	the	Kubernetes	API
using	the	Pod	template	defined	on	the	kuard	ReplicaSet.	Regardless,	use	the
kubectl	get	pods	command	to	list	the	running	kuard	Pods.	You	should	see
output	like	the	following:

$	kubectl	get	pods

NAME										READY					STATUS				RESTARTS			AGE

kuard-3a2sb			1/1							Running			0										26s

kuard-wuq9v			1/1							Running			0										26s

kuard-yvzgd			1/1							Running			0										2m

Autoscaling	a	ReplicaSet
While	there	will	be	times	when	you	want	to	have	explicit	control	over	the
number	of	replicas	in	a	ReplicaSet,	often	you	simply	want	to	have	“enough”
replicas.	The	definition	varies	depending	on	the	needs	of	the	containers	in	the
ReplicaSet.	For	example,	with	a	web	server	like	nginx,	you	may	want	to	scale
due	to	CPU	usage.	For	an	in-memory	cache,	you	may	want	to	scale	with
memory	consumption.	In	some	cases	you	may	want	to	scale	in	response	to
custom	application	metrics.	Kubernetes	can	handle	all	of	these	scenarios	via
horizontal	pod	autoscaling	(HPA).

NOTE
HPA	requires	the	presence	of	the	heapster	Pod	on	your	cluster.	heapster	keeps	track	of
metrics	and	provides	an	API	for	consuming	metrics	HPA	uses	when	making	scaling	decisions.
Most	installations	of	Kubernetes	include	heapster	by	default.	You	can	validate	its	presence	by
listing	the	Pods	in	the	kube-system	namespace:

$	kubectl	get	pods	--namespace=kube-system

You	should	see	a	Pod	named	heapster	somewhere	in	that	list.	If	you	do	not	see	it,	autoscaling
will	not	work	correctly.

“Horizontal	pod	autoscaling”	is	kind	of	a	mouthful,	and	you	might	wonder	why
it	is	not	simply	called	“autoscaling.”	Kubernetes	makes	a	distinction	between
horizontal	scaling,	which	involves	creating	additional	replicas	of	a	Pod,	and
vertical	scaling,	which	involves	increasing	the	resources	required	for	a	particular
Pod	(e.g.,	increasing	the	CPU	required	for	the	Pod).	Vertical	scaling	is	not
currently	implemented	in	Kubernetes,	but	it	is	planned.	Additionally,	many
solutions	also	enable	cluster	autoscaling,	where	the	number	of	machines	in	the
cluster	is	scaled	in	response	to	resource	needs,	but	this	solution	is	not	covered
here.

Autoscaling	based	on	CPU
Scaling	based	on	CPU	usage	is	the	most	common	use	case	for	Pod	autoscaling.
Generally	it	is	most	useful	for	request-based	systems	that	consume	CPU

proportionally	to	the	number	of	requests	they	are	receiving,	while	using	a
relatively	static	amount	of	memory.

To	scale	a	ReplicaSet,	you	can	run	a	command	like	the	following:

$	kubectl	autoscale	rs	kuard	--min=2	--max=5	--cpu-percent=80

This	command	creates	an	autoscaler	that	scales	between	two	and	five	replicas
with	a	CPU	threshold	of	80%.	To	view,	modify,	or	delete	this	resource	you	can
use	the	standard	kubectl	commands	and	the	horizontalpodautoscalers
resource.	horizontalpodautoscalers	is	quite	a	bit	to	type,	but	it	can	be
shortened	to	hpa:

$	kubectl	get	hpa

WARNING
Because	of	the	decoupled	nature	of	Kubernetes,	there	is	no	direct	link	between	the	horizontal
pod	autoscaler	and	the	ReplicaSet.	While	this	is	great	for	modularity	and	composition,	it	also
enables	some	antipatterns.	In	particular,	it’s	a	bad	idea	to	combine	both	autoscaling	and
imperative	or	declarative	management	of	the	number	of	replicas.	If	both	you	and	an	autoscaler
are	attempting	to	modify	the	number	of	replicas,	it’s	highly	likely	that	you	will	clash,	resulting
in	unexpected	behavior.

Deleting	ReplicaSets
When	a	ReplicaSet	set	is	no	longer	required	it	can	be	deleted	using	the	kubectl
delete	command.	By	default,	this	also	deletes	the	Pods	that	are	managed	by	the
ReplicaSet:

$	kubectl	delete	rs	kuard

replicaset	"kuard"	deleted

Running	the	kubectl	get	pods	command	shows	that	all	the	kuard	Pods	created
by	the	kuard	ReplicaSet	have	also	been	deleted:

$	kubectl	get	pods

If	you	don’t	want	to	delete	the	Pods	that	are	being	managed	by	the	ReplicaSet
you	can	set	the	--cascade	flag	to	false	to	ensure	only	the	ReplicaSet	object	is
deleted	and	not	the	Pods:

$	kubectl	delete	rs	kuard	--cascade=false

Summary
Composing	Pods	with	ReplicaSets	provides	the	foundation	for	building	robust
applications	with	automatic	failover,	and	makes	deploying	those	applications	a
breeze	by	enabling	scalable	and	sane	deployment	patterns.	ReplicaSets	should	be
used	for	any	Pod	you	care	about,	even	if	it	is	a	single	Pod!	Some	people	even
default	to	using	ReplicaSets	instead	of	Pods.	A	typical	cluster	will	have	many
ReplicaSets,	so	apply	liberally	to	the	affected	area.

Chapter	9.	DaemonSets

ReplicaSets	are	generally	about	creating	a	service	(e.g.,	a	web	server)	with
multiple	replicas	for	redundancy.	But	that	is	not	the	only	reason	you	may	want	to
replicate	a	set	of	Pods	within	a	cluster.	Another	reason	to	replicate	a	set	of	Pods
is	to	schedule	a	single	Pod	on	every	node	within	the	cluster.	Generally,	the
motivation	for	replicating	a	Pod	to	every	node	is	to	land	some	sort	of	agent	or
daemon	on	each	node,	and	the	Kubernetes	object	for	achieving	this	is	the
DaemonSet.

A	DaemonSet	ensures	a	copy	of	a	Pod	is	running	across	a	set	of	nodes	in	a
Kubernetes	cluster.	DaemonSets	are	used	to	deploy	system	daemons	such	as	log
collectors	and	monitoring	agents,	which	typically	must	run	on	every	node.
DaemonSets	share	similar	functionality	with	ReplicaSets;	both	create	Pods	that
are	expected	to	be	long-running	services	and	ensure	that	the	desired	state	and	the
observed	state	of	the	cluster	match.

Given	the	similarities	between	DaemonSets	and	ReplicaSets,	it’s	important	to
understand	when	to	use	one	over	the	other.	ReplicaSets	should	be	used	when
your	application	is	completely	decoupled	from	the	node	and	you	can	run
multiple	copies	on	a	given	node	without	special	consideration.	DaemonSets
should	be	used	when	a	single	copy	of	your	application	must	run	on	all	or	a
subset	of	the	nodes	in	the	cluster.

You	should	generally	not	use	scheduling	restrictions	or	other	parameters	to
ensure	that	Pods	do	not	colocate	on	the	same	node.	If	you	find	yourself	wanting
a	single	Pod	per	node,	then	a	DaemonSet	is	the	correct	Kubernetes	resource	to
use.	Likewise,	if	you	find	yourself	building	a	homogeneous	replicated	service	to
serve	user	traffic,	then	a	ReplicaSet	is	probably	the	right	Kubernetes	resource	to
use.

DaemonSet	Scheduler
By	default	a	DaemonSet	will	create	a	copy	of	a	Pod	on	every	node	unless	a	node
selector	is	used,	which	will	limit	eligible	nodes	to	those	with	a	matching	set	of
labels.	DaemonSets	determine	which	node	a	Pod	will	run	on	at	Pod	creation	time
by	specifying	the	nodeName	field	in	the	Pod	spec.	As	a	result,	Pods	created	by
DaemonSets	are	ignored	by	the	Kubernetes	scheduler.

Like	ReplicaSets,	DaemonSets	are	managed	by	a	reconciliation	control	loop	that
measures	the	desired	state	(a	Pod	is	present	on	all	nodes)	with	the	observed	state
(is	the	Pod	present	on	a	particular	node?).	Given	this	information,	the
DaemonSet	controller	creates	a	Pod	on	each	node	that	doesn’t	currently	have	a
matching	Pod.

If	a	new	node	is	added	to	the	cluster,	then	the	DaemonSet	controller	notices	that
it	is	missing	a	Pod	and	adds	the	Pod	to	the	new	node.

NOTE
DaemonSets	and	ReplicaSets	are	a	great	demonstration	of	the	value	of	Kubernetes’s	decoupled
architecture.	It	might	seem	that	the	right	design	would	be	for	a	ReplicaSet	to	own	the	Pods	it
manages,	and	for	Pods	to	be	subresources	of	a	ReplicaSet.	Likewise,	the	Pods	managed	by	a
DaemonSet	would	be	subresources	of	that	DaemonSet.	However,	this	kind	of	encapsulation
would	require	that	tools	for	dealing	with	Pods	be	written	two	different	times,	one	for
DaemonSets	and	one	for	ReplicaSets.	Instead,	Kubernetes	uses	a	decoupled	approach	where
Pods	are	top-level	objects.	This	means	that	every	tool	you	have	learned	for	introspecting	Pods
in	the	context	of	ReplicaSets	(e.g.,	kubectl	logs	<pod-name>)	is	equally	applicable	to	Pods
created	by	DaemonSets.

Creating	DaemonSets
DaemonSets	are	created	by	submitting	a	DaemonSet	configuration	to	the
Kubernetes	API	server.	The	following	DaemonSet	will	create	a	fluentd	logging
agent	on	every	node	in	the	target	cluster	(Example	9-1).

Example	9-1.	fluentd.yaml
apiVersion:	extensions/v1beta1

kind:	DaemonSet

metadata:

		name:	fluentd

		namespace:	kube-system

		labels:

				app:	fluentd

spec:

		template:

				metadata:

						labels:

								app:	fluentd

				spec:

						containers:

						-	name:	fluentd

								image:	fluent/fluentd:v0.14.10

								resources:

										limits:

												memory:	200Mi

										requests:

												cpu:	100m

												memory:	200Mi

								volumeMounts:

								-	name:	varlog

										mountPath:	/var/log

								-	name:	varlibdockercontainers

										mountPath:	/var/lib/docker/containers

										readOnly:	true

						terminationGracePeriodSeconds:	30

						volumes:

						-	name:	varlog

								hostPath:

										path:	/var/log

						-	name:	varlibdockercontainers

								hostPath:

										path:	/var/lib/docker/containers

DaemonSets	require	a	unique	name	across	all	DaemonSets	in	a	given
Kubernetes	namespace.	Each	DaemonSet	must	include	a	Pod	template	spec,
which	will	be	used	to	create	Pods	as	needed.	This	is	where	the	similarities
between	ReplicaSets	and	DaemonSets	end.	Unlike	ReplicaSets,	DaemonSets
will	create	Pods	on	every	node	in	the	cluster	by	default	unless	a	node	selector	is
used.

Once	you	have	a	valid	DaemonSet	configuration	in	place,	you	can	use	the

kubectl	apply	command	to	submit	the	DaemonSet	to	the	Kubernetes	API.	In
this	section	we	will	create	a	DaemonSet	to	ensure	the	fluentd	HTTP	server	is
running	on	every	node	in	our	cluster:

$	kubectl	apply	-f	fluentd.yaml

daemonset	"fluentd"	created

Once	the	fluentd	DaemonSet	has	been	successfully	submitted	to	the	Kubernetes
API,	you	can	query	its	current	state	using	the	kubectl	describe	command:

$	kubectl	describe	daemonset	fluentd

Name:											fluentd

Image(s):							fluent/fluentd:v0.14.10

Selector:							app=fluentd

Node-Selector:		<none>

Labels:									app=fluentd

Desired	Number	of	Nodes	Scheduled:	3

Current	Number	of	Nodes	Scheduled:	3

Number	of	Nodes	Misscheduled:	0

Pods	Status:				3	Running	/	0	Waiting	/	0	Succeeded	/	0	Failed

This	output	indicates	a	fluentd	Pod	was	successfully	deployed	to	all	three	nodes
in	our	cluster.	We	can	verify	this	using	the	kubectl	get	pods	command	with	the
-o	flag	to	print	the	nodes	where	each	fluentd	Pod	was	assigned:

$	kubectl	get	pods	-o	wide

NAME												AGE				NODE

fluentd-1q6c6			13m				k0-default-pool-35609c18-z7tb

fluentd-mwi7h			13m				k0-default-pool-35609c18-ydae

fluentd-zr6l7			13m				k0-default-pool-35609c18-pol3

With	the	fluentd	DaemonSet	in	place,	adding	a	new	node	to	the	cluster	will
result	in	a	fluentd	Pod	being	deployed	to	that	node	automatically:

$	kubectl	get	pods	-o	wide

NAME												AGE				NODE

fluentd-1q6c6			13m				k0-default-pool-35609c18-z7tb

fluentd-mwi7h			13m				k0-default-pool-35609c18-ydae

fluentd-oipmq			43s				k0-default-pool-35609c18-0xnl

fluentd-zr6l7			13m				k0-default-pool-35609c18-pol3

This	is	exactly	the	behavior	you	want	when	managing	logging	daemons	and
other	cluster-wide	services.	No	action	was	required	from	our	end;	this	is	how	the
Kubernetes	DaemonSet	controller	reconciles	its	observed	state	with	our	desired

state.

Limiting	DaemonSets	to	Specific	Nodes
The	most	common	use	case	for	DaemonSets	is	to	run	a	Pod	across	every	node	in
a	Kubernetes	cluster.	However,	there	are	some	cases	where	you	want	to	deploy	a
Pod	to	only	a	subset	of	nodes.	For	example,	maybe	you	have	a	workload	that
requires	a	GPU	or	access	to	fast	storage	only	available	on	a	subset	of	nodes	in
your	cluster.	In	cases	like	these	node	labels	can	be	used	to	tag	specific	nodes	that
meet	workload	requirements.

Adding	Labels	to	Nodes
The	first	step	in	limiting	DaemonSets	to	specific	nodes	is	to	add	the	desired	set
of	labels	to	a	subset	of	nodes.	This	can	be	achieved	using	the	kubectl	label
command.

The	following	command	adds	the	ssd=true	label	to	a	single	node:

$	kubectl	label	nodes	k0-default-pool-35609c18-z7tb	ssd=true

node	"k0-default-pool-35609c18-z7tb"	labeled

Just	like	with	other	Kubernetes	resources,	listing	nodes	without	a	label	selector
returns	all	nodes	in	the	cluster:

$	kubectl	get	nodes

NAME																												STATUS				AGE

k0-default-pool-35609c18-0xnl			Ready					23m

k0-default-pool-35609c18-pol3			Ready					1d

k0-default-pool-35609c18-ydae			Ready					1d

k0-default-pool-35609c18-z7tb			Ready					1d

Using	a	label	selector	we	can	filter	nodes	based	on	labels.	To	list	only	the	nodes
that	have	the	ssd	label	set	to	true,	use	the	kubectl	get	nodes	command	with
the	--selector	flag:

$	kubectl	get	nodes	--selector	ssd=true

NAME																												STATUS				AGE

k0-default-pool-35609c18-z7tb			Ready					1d

Node	Selectors
Node	selectors	can	be	used	to	limit	what	nodes	a	Pod	can	run	on	in	a	given
Kubernetes	cluster.	Node	selectors	are	defined	as	part	of	the	Pod	spec	when
creating	a	DaemonSet.	The	following	DaemonSet	configuration	limits	nginx	to
running	only	on	nodes	with	the	ssd=true	label	set	(Example	9-2).

Example	9-2.	nginx-fast-storage.yaml
apiVersion:	extensions/v1beta1

kind:	"DaemonSet"

metadata:

		labels:

				app:	nginx

				ssd:	"true"

		name:	nginx-fast-storage

spec:

		template:

				metadata:

						labels:

								app:	nginx

								ssd:	"true"

				spec:

						nodeSelector:

								ssd:	"true"

						containers:

								-	name:	nginx

										image:	nginx:1.10.0

Let’s	see	what	happens	when	we	submit	the	nginx-fast-storage	DaemonSet	to
the	Kubernetes	API:

$	kubectl	apply	-f	nginx-fast-storage.yaml

daemonset	"nginx-fast-storage"	created

Since	there	is	only	one	node	with	the	ssd=true	label,	the	nginx-fast-storage
Pod	will	only	run	on	that	node:

$	kubectl	get	pods	-o	wide

NAME																							STATUS				NODE

nginx-fast-storage-7b90t			Running			k0-default-pool-35609c18-z7tb

Adding	the	ssd=true	label	to	additional	nodes	will	case	the	nginx-fast-
storage	Pod	to	be	deployed	on	those	nodes.	The	inverse	is	also	true:	if	a
required	label	is	removed	from	a	node,	the	Pod	will	be	removed	by	the
DaemonSet	controller.

WARNING
Removing	labels	from	a	node	that	are	required	by	a	DaemonSet’s	node	selector	will	cause	the
Pod	being	managed	by	that	DaemonSet	to	be	removed	from	the	node.

Updating	a	DaemonSet
DaemonSets	are	great	for	deploying	services	across	an	entire	cluster,	but	what
about	upgrades?	Prior	to	Kubernetes	1.6,	the	only	way	to	update	Pods	managed
by	a	DaemonSet	was	to	update	the	DaemonSet	and	then	manually	delete	each
Pod	that	was	managed	by	the	DaemonSet	so	that	it	would	be	re-created	with	the
new	configuration.	With	the	release	of	Kubernetes	1.6	DaemonSets	gained	an
equivalent	to	the	Deployment	object	that	manages	a	DaemonSet	rollout	inside
the	cluster.

Updating	a	DaemonSet	by	Deleting	Individual	Pods
If	you	are	running	a	pre-1.6	version	of	Kubernetes,	you	can	perform	a	rolling
delete	of	the	Pods	a	DaemonSet	manages	using	a	for	loop	on	your	own	machine
to	update	one	DaemonSet	Pod	every	60	seconds:

PODS=$(kubectl	get	pods	-o	jsonpath	-template='{.items[*].metadata.name}'

for	x	in	$PODS;	do

		kubectl	delete	pods	${x}

		sleep	60

done

An	alternative,	easier	approach	is	to	just	delete	the	entire	DaemonSet	and	create
a	new	DaemonSet	with	the	updated	configuration.	However,	this	approach	has	a
major	drawback	—	downtime.	When	a	DaemonSet	is	deleted	all	Pods	managed
by	that	DaemonSet	will	also	be	deleted.	Depending	on	the	size	of	your	container
images,	recreating	a	DaemonSet	may	push	you	outside	of	your	SLA	thresholds,
so	it	might	be	worth	considering	pulling	updated	container	images	across	your
cluster	before	updating	a	DaemonSet.

Rolling	Update	of	a	DaemonSet
With	Kubernetes	1.6,	DaemonSets	can	now	be	rolled	out	using	the	same	rolling
update	strategy	that	deployments	use.	However,	for	reasons	of	backward
compatability,	the	current	default	update	strategy	is	the	delete	method	described
in	the	previous	section.	To	set	a	DaemonSet	to	use	the	rolling	update	strategy,
you	need	to	configure	the	update	strategy	using	the	spec.updateStrategy.type
field.	That	field	should	have	the	value	RollingUpdate.	When	a	DaemonSet	has
an	update	strategy	of	RollingUpdate,	any	change	to	the	spec.template	field	(or
subfields)	in	the	DaemonSet	will	initiate	a	rolling	update.

As	with	rolling	updates	of	deployments	(see	Chapter	12),	the	rolling	update
strategy	gradually	updates	members	of	a	DaemonSet	until	all	of	the	Pods	are
running	the	new	configuration.	There	are	two	parameters	that	control	the	rolling
update	of	a	DaemonSet:

spec.minReadySeconds,	which	determines	how	long	a	Pod	must	be	“ready”
before	the	rolling	update	proceeds	to	upgrade	subsequent	Pods

spec.updateStrategy.rollingUpdate.maxUnavailable,	which	indicates
how	many	Pods	may	be	simultaneously	updated	by	the	rolling	update

You	will	likely	want	to	set	spec.minReadySeconds	to	a	reasonably	long	value,
for	example	30–60	seconds,	to	ensure	that	your	Pod	is	truly	healthy	before	the
rollout	proceeds.

The	setting	for	spec.updateStrategy.rollingUpdate.maxUnavailable	is	more
likely	to	be	application-dependent.	Setting	it	to	1	is	a	safe,	general-purpose
strategy,	but	it	also	takes	a	while	to	complete	the	rollout	(number	of	nodes	×
maxReadySeconds).	Increasing	the	maximum	unavailability	will	make	your
rollout	move	faster,	but	increases	the	“blast	radius”	of	a	failed	rollout.	The
characteristics	of	your	application	and	cluster	environment	dictate	the	relative
values	of	speed	versus	safety.	A	good	approach	might	be	to	set	maxUnavailable
to	1	and	only	increase	it	if	users	or	administrators	complain	about	DaemonSet
rollout	speed.

Once	a	rolling	update	has	started,	you	can	use	the	kubectl	rollout	commands

to	see	the	current	status	of	a	DaemonSet	rollout.

For	example,	kubectl	rollout	status	daemonSets	my-daemon-set	will	show
the	current	rollout	status	of	a	DaemonSet	named	my-daemon-set.

Deleting	a	DaemonSet
Deleting	a	DaemonSet	is	pretty	straightforward	using	the	kubectl	delete
command.	Just	be	sure	to	supply	the	correct	name	of	the	DaemonSet	you	would
like	to	delete:

$	kubectl	delete	-f	fluentd.yaml

WARNING
Deleting	a	DaemonSet	will	also	delete	all	the	Pods	being	managed	by	that	DaemonSet.	Set	the
--cascade	flag	to	false	to	ensure	only	the	DaemonSet	is	deleted	and	not	the	Pods.

Summary
DaemonSets	provide	an	easy-to-use	abstraction	for	running	a	set	of	Pods	on
every	node	in	a	Kubernetes	cluster,	or	if	the	case	requires	it,	on	a	subset	of	nodes
based	on	labels.	The	DaemonSet	provides	its	own	controller	and	scheduler	to
ensure	key	services	like	monitoring	agents	are	always	up	and	running	on	the
right	nodes	in	your	cluster.

For	some	applications,	you	simply	want	to	schedule	a	certain	number	of	replicas;
you	don’t	really	care	where	they	run	as	long	as	they	have	sufficient	resources
and	distribution	to	operate	reliably.	However,	there	is	a	different	class	of
applications,	like	agents	and	monitoring	applications,	that	need	to	be	present	on
every	machine	in	a	cluster	to	function	properly.	These	DaemonSets	aren’t	really
traditional	serving	applications,	but	rather	add	additional	capabilities	and
features	to	the	Kubernetes	cluster	itself.	Because	the	DaemonSet	is	an	active
declarative	object	managed	by	a	controller,	it	makes	it	easy	to	declare	your	intent
that	an	agent	run	on	every	machine	without	explicitly	placing	it	on	every
machine.	This	is	especially	useful	in	the	context	of	an	autoscaled	Kubernetes
cluster	where	nodes	may	constantly	be	coming	and	going	without	user
intervention.	In	such	cases,	the	DaemonSet	automatically	adds	the	proper	agents
to	each	node	as	it	is	added	to	the	cluster	by	the	autoscaler.

Chapter	10.	Jobs

So	far	we	have	focused	on	long-running	processes	such	as	databases	and	web
applications.	These	types	of	workloads	run	until	either	they	are	upgraded	or	the
service	is	no	longer	needed.	While	long-running	processes	make	up	the	large
majority	of	workloads	that	run	on	a	Kubernetes	cluster,	there	is	often	a	need	to
run	short-lived,	one-off	tasks.	The	Job	object	is	made	for	handling	these	types	of
tasks.

A	Job	creates	Pods	that	run	until	successful	termination	(i.e.,	exit	with	0).	In
contrast,	a	regular	Pod	will	continually	restart	regardless	of	its	exit	code.	Jobs
are	useful	for	things	you	only	want	to	do	once,	such	as	database	migrations	or
batch	jobs.	If	run	as	a	regular	Pod,	your	database	migration	task	would	run	in	a
loop,	continually	repopulating	the	database	after	every	exit.

In	this	chapter	we	explore	the	most	common	Job	patterns	afforded	by
Kubernetes.	We	will	also	leverage	these	patterns	in	real-life	scenarios.

The	Job	Object
The	Job	object	is	responsible	for	creating	and	managing	pods	defined	in	a
template	in	the	Job	specification.	These	pods	generally	run	until	successful
completion.	The	Job	object	coordinates	running	a	number	of	pods	in	parallel.

If	the	Pod	fails	before	a	successful	termination,	the	Job	controller	will	create	a
new	Pod	based	on	the	Pod	template	in	the	Job	specification.	Given	that	Pods
have	to	be	scheduled,	there	is	a	chance	that	your	Job	will	not	execute	if	the
required	resources	are	not	found	by	the	scheduler.	Also,	due	to	the	nature	of
distributed	systems	there	is	a	small	chance,	during	certain	failure	scenarios,	that
duplicate	pods	will	be	created	for	a	specific	task.

Job	Patterns
Jobs	are	designed	to	manage	batch-like	workloads	where	work	items	are
processed	by	one	or	more	Pods.	By	default	each	Job	runs	a	single	Pod	once	until
successful	termination.	This	Job	pattern	is	defined	by	two	primary	attributes	of	a
Job,	namely	the	number	of	Job	completions	and	the	number	of	Pods	to	run	in
parallel.	In	the	case	of	the	“run	once	until	completion”	pattern,	the	completions
and	parallelism	parameters	are	set	to	1.

Table	10-1	highlights	Job	patterns	based	on	the	combination	of	completions	and
parallelism	for	a	Job	configuration.

Table	10-1.	Job	patterns

Type Use	case Behavior completions parallelism

One	shot Database	migrations A	single	pod	running	once	until
successful	termination

1 1

Parallel
fixed
completions

Multiple	pods	processing
a	set	of	work	in	parallel

One	or	more	Pods	running	one	or
more	times	until	reaching	a	fixed
completion	count

1+ 1+

Work	queue:
parallel	Jobs

Multiple	pods	processing
from	a	centralized	work
queue

One	or	more	Pods	running	once	until
successful	termination

1 2+

One	Shot
One-shot	Jobs	provide	a	way	to	run	a	single	Pod	once	until	successful
termination.	While	this	may	sound	like	an	easy	task,	there	is	some	work
involved	in	pulling	this	off.	First,	a	Pod	must	be	created	and	submitted	to	the
Kubernetes	API.	This	is	done	using	a	Pod	template	defined	in	the	Job
configuration.	Once	a	Job	is	up	and	running,	the	Pod	backing	the	Job	must	be
monitored	for	successful	termination.	A	Job	can	fail	for	any	number	of	reasons
including	an	application	error,	an	uncaught	exception	during	runtime,	or	a	node
failure	before	the	Job	has	a	chance	to	complete.	In	all	cases	the	Job	controller	is
responsible	for	recreating	the	Pod	until	a	successful	termination	occurs.

There	are	multiple	ways	to	create	a	one-shot	Job	in	Kubernetes.	The	easiest	is	to
use	the	kubectl	command-line	tool:

$	kubectl	run	-i	oneshot	\

		--image=gcr.io/kuar-demo/kuard-amd64:1	\

		--restart=OnFailure	\

		--	--keygen-enable	\

					--keygen-exit-on-complete	\

					--keygen-num-to-gen	10

...

(ID	0)	Workload	starting

(ID	0	1/10)	Item	done:	SHA256:nAsUsG54XoKRkJwyN+OShkUPKew3mwq7OCc

(ID	0	2/10)	Item	done:	SHA256:HVKX1ANns6SgF/er1lyo+ZCdnB8geFGt0/8

(ID	0	3/10)	Item	done:	SHA256:irjCLRov3mTT0P0JfsvUyhKRQ1TdGR8H1jg

(ID	0	4/10)	Item	done:	SHA256:nbQAIVY/yrhmEGk3Ui2sAHuxb/o6mYO0qRk

(ID	0	5/10)	Item	done:	SHA256:CCpBoXNlXOMQvR2v38yqimXGAa/w2Tym+aI

(ID	0	6/10)	Item	done:	SHA256:wEY2TTIDz4ATjcr1iimxavCzZzNjRmbOQp8

(ID	0	7/10)	Item	done:	SHA256:t3JSrCt7sQweBgqG5CrbMoBulwk4lfDWiTI

(ID	0	8/10)	Item	done:	SHA256:E84/Vze7KKyjCh9OZh02MkXJGoty9PhaCec

(ID	0	9/10)	Item	done:	SHA256:UOmYex79qqbI1MhcIfG4hDnGKonlsij2k3s

(ID	0	10/10)	Item	done:	SHA256:WCR8wIGOFag84Bsa8f/9QHuKqF+0mEnCADY

(ID	0)	Workload	exiting

There	are	some	things	to	note	here:
The	-i	option	to	kubectl	indicates	that	this	is	an	interactive	command.
kubectl	will	wait	until	the	Job	is	running	and	then	show	the	log	output
from	the	first	(and	in	this	case	only)	pod	in	the	Job.

--restart=OnFailure	is	the	option	that	tells	kubectl	to	create	a	Job
object.

All	of	the	options	after	--	are	command-line	arguments	to	the	container

image.	These	instruct	our	test	server	(kuard)	to	generate	10	4,096-bit	SSH
keys	and	then	exit.

Your	output	may	not	match	this	exactly.	kubectl	often	misses	the	first
couple	of	lines	of	output	with	the	-i	option.

After	the	Job	has	completed,	the	Job	object	and	related	Pod	are	still	around.	This
is	so	that	you	can	inspect	the	log	output.	Note	that	this	Job	won’t	show	up	in
kubectl	get	jobs	unless	you	pass	the	-a	flag.	Without	this	flag	kubectl	hides
completed	Jobs.	Delete	the	Job	before	continuing:

$	kubectl	delete	jobs	oneshot

The	other	option	for	creating	a	one-shot	Job	is	using	a	configuration	file,	as
shown	in	Example	10-1.

Example	10-1.	job-oneshot.yaml
apiVersion:	batch/v1

kind:	Job

metadata:

		name:	oneshot

		labels:

				chapter:	jobs

spec:

		template:

				metadata:

						labels:

								chapter:	jobs

				spec:

						containers:

						-	name:	kuard

								image:	gcr.io/kuar-demo/kuard-amd64:1

								imagePullPolicy:	Always

								args:

								-	"--keygen-enable"

								-	"--keygen-exit-on-complete"

								-	"--keygen-num-to-gen=10"

						restartPolicy:	OnFailure

Submit	the	job	using	the	kubectl	apply	command:

$	kubectl	apply	-f	job-oneshot.yaml

job	"oneshot"	created

Then	describe	the	oneshot	job:

$	kubectl	describe	jobs	oneshot

Name:											oneshot

Namespace:						default

Image(s):							gcr.io/kuar-demo/kuard-amd64:1

Selector:							controller-uid=cf87484b-e664-11e6-8222-42010a8a007b

Parallelism:				1

Completions:				1

Start	Time:					Sun,	29	Jan	2017	12:52:13	-0800

Labels:									Job=oneshot

Pods	Statuses:		0	Running	/	1	Succeeded	/	0	Failed

No	volumes.

Events:

		...	Reason													Message

		...	------													-------

		...	SuccessfulCreate			Created	pod:	oneshot-4kfdt

You	can	view	the	results	of	the	Job	by	looking	at	the	logs	of	the	pod	that	was
created:

$	kubectl	logs	oneshot-4kfdt

...

Serving	on	:8080

(ID	0)	Workload	starting

(ID	0	1/10)	Item	done:	SHA256:+r6b4W81DbEjxMcD3LHjU+EIGnLEzbpxITKn8IqhkPI

(ID	0	2/10)	Item	done:	SHA256:mzHewajaY1KA8VluSLOnNMk9fDE5zdn7vvBS5Ne8AxM

(ID	0	3/10)	Item	done:	SHA256:TRtEQHfflJmwkqnNyGgQm/IvXNykSBIg8c03h0g3onE

(ID	0	4/10)	Item	done:	SHA256:tSwPYH/J347il/mgqTxRRdeZcOazEtgZlA8A3/HWbro

(ID	0	5/10)	Item	done:	SHA256:IP8XtguJ6GbWwLHqjKecVfdS96B17nnO21I/TNc1j9k

(ID	0	6/10)	Item	done:	SHA256:ZfNxdQvuST/6ZzEVkyxdRG98p73c/5TM99SEbPeRWfc

(ID	0	7/10)	Item	done:	SHA256:tH+CNl/IUl/HUuKdMsq2XEmDQ8oAvmhMO6Iwj8ZEOj0

(ID	0	8/10)	Item	done:	SHA256:3GfsUaALVEHQcGNLBOu4Qd1zqqqJ8j738i5r+I5XwVI

(ID	0	9/10)	Item	done:	SHA256:5wV4L/xEiHSJXwLUT2fHf0SCKM2g3XH3sVtNbgskCXw

(ID	0	10/10)	Item	done:	SHA256:bPqqOonwSbjzLqe9ZuVRmZkz+DBjaNTZ9HwmQhbdWLI

(ID	0)	Workload	exiting

Congratulations,	your	job	has	run	successfully!

NOTE
You	may	have	noticed	that	we	didn’t	specify	any	labels	when	creating	the	Job	object.	Like
with	other	controllers	(DaemonSet,	ReplicaSets,	deployments,	etc.)	that	use	labels	to	identify	a
set	of	Pods,	unexpected	behaviors	can	happen	if	a	pod	is	reused	across	objects.

Because	Jobs	have	a	finite	beginning	and	ending,	it	is	common	for	users	to	create	many	of
them.	This	makes	picking	unique	labels	more	difficult	and	more	critical.	For	this	reason,	the
Job	object	will	automatically	pick	a	unique	label	and	use	it	to	identify	the	pods	it	creates.	In
advanced	scenarios	(such	as	swapping	out	a	running	Job	without	killing	the	pods	it	is
managing)	users	can	choose	to	turn	off	this	automatic	behavior	and	manually	specify	labels
and	selectors.

Pod	failure

We	just	saw	how	a	Job	can	complete	successfully.	But	what	happens	if
something	fails?	Let’s	try	that	out	and	see	what	happens.

Let’s	modify	the	arguments	to	kuard	in	our	configuration	file	to	cause	it	to	fail
out	with	a	nonzero	exit	code	after	generating	three	keys,	as	shown	in
Example	10-2.

Example	10-2.	job-oneshot-failure1.yaml
...

spec:

		template:

				spec:

						containers:

								...

								args:

								-	"--keygen-enable"

								-	"--keygen-exit-on-complete"

								-	"--keygen-exit-code=1"

								-	"--keygen-num-to-gen=3"

...

Now	launch	this	with	kubectl	apply	-f	jobs-oneshot-failure1.yaml.	Let	it
run	for	a	bit	and	then	look	at	the	pod	status:

$	kubectl	get	pod	-a	-l	job-name=oneshot

NAME												READY					STATUS													RESTARTS			AGE

oneshot-3ddk0			0/1							CrashLoopBackOff			4										3m

Here	we	see	that	the	same	Pod	has	restarted	four	times.	Kubernetes	is	in
CrashLoopBackOff	for	this	Pod.	It	is	not	uncommon	to	have	a	bug	someplace
that	causes	a	program	to	crash	as	soon	as	it	starts.	In	that	case,	Kubernetes	will
wait	a	bit	before	restarting	the	pod	to	avoid	a	crash	loop	eating	resources	on	the
node.	This	is	all	handled	local	to	the	node	by	the	kubelet	without	the	Job	being
involved	at	all.

Kill	the	Job	(kubectl	delete	jobs	oneshot),	and	let’s	try	something	else.
Modify	the	config	file	again	and	change	the	restartPolicy	from	OnFailure	to
Never.	Launch	this	with	kubectl	apply	-f	jobs-oneshot-failure2.yaml.

If	we	let	this	run	for	a	bit	and	then	look	at	related	pods	we’ll	find	something
interesting:

$	kubectl	get	pod	-l	job-name=oneshot	-a

NAME												READY					STATUS				RESTARTS			AGE	oneshot-0wm49			0/1

Error					0										1m	oneshot-6h9s2			0/1							Error					0										39s

oneshot-hkzw0			1/1							Running			0										6s	oneshot-k5swz			0/1

Error					0										28s	oneshot-m1rdw			0/1							Error					0										19s

oneshot-x157b			0/1							Error					0										57s

What	we	see	is	that	we	have	multiple	pods	here	that	have	errored	out.	By	setting
restartPolicy:	Never	we	are	telling	the	kubelet	not	to	restart	the	Pod	on
failure,	but	rather	just	declare	the	Pod	as	failed.	The	Job	object	then	notices	and
creates	a	replacement	Pod.	If	you	aren’t	careful,	this’ll	create	a	lot	of	“junk”	in
your	cluster.	For	this	reason,	we	suggest	you	use	restartPolicy:	OnFailure	so
failed	Pods	are	rerun	in	place.

Clean	this	up	with	kubectl	delete	jobs	oneshot.

So	far	we’ve	seen	a	program	fail	by	exiting	with	a	nonzero	exit	code.	But
workers	can	fail	in	other	ways.	Specifically,	they	can	get	stuck	and	not	make	any
forward	progress.	To	help	cover	this	case,	you	can	use	liveness	probes	with	Jobs.
If	the	liveness	probe	policy	determines	that	a	Pod	is	dead,	it’ll	be
restarted/replaced	for	you.

Parallelism
Generating	keys	can	be	slow.	Let’s	start	a	bunch	of	workers	together	to	make	key
generation	faster.	We’re	going	to	use	a	combination	of	the	completions	and
parallelism	parameters.	Our	goal	is	to	generate	100	keys	by	having	10	runs	of
kuard	with	each	run	generating	10	keys.	But	we	don’t	want	to	swamp	our
cluster,	so	we’ll	limit	ourselves	to	only	five	pods	at	a	time.

This	translates	to	setting	completions	to	10	and	parallelism	to	5.	The	config	is
shown	in	Example	10-2.

Example	10-3.	job-parallel.yaml
apiVersion:	batch/v1

kind:	Job

metadata:

		name:	parallel

		labels:

				chapter:	jobs

spec:

		parallelism:	5

		completions:	10

		template:

				metadata:

						labels:

								chapter:	jobs

				spec:

						containers:

						-	name:	kuard

								image:	gcr.io/kuar-demo/kuard-amd64:1

								imagePullPolicy:	Always

								args:

								-	"--keygen-enable"

								-	"--keygen-exit-on-complete"

								-	"--keygen-num-to-gen=10"

						restartPolicy:	OnFailure

Start	it	up:

$	kubectl	apply	-f	job-parallel.yaml

job	"parallel"	created

Now	watch	as	the	pods	come	up,	do	their	thing,	and	exit.	New	pods	are	created
until	10	have	completed	altogether.	Here	we	use	the	--watch	flag	to	have
kubectl	stay	around	and	list	changes	as	they	happen:

$	kubectl	get	pods	-w

NAME													READY					STATUS				RESTARTS			AGE

parallel-55tlv			1/1							Running			0										5s

parallel-5s7s9			1/1							Running			0										5s

parallel-jp7bj			1/1							Running			0										5s

parallel-lssmn			1/1							Running			0										5s

parallel-qxcxp			1/1							Running			0										5s

NAME													READY					STATUS						RESTARTS			AGE

parallel-jp7bj			0/1							Completed			0										26s

parallel-tzp9n			0/1							Pending			0									0s

parallel-tzp9n			0/1							Pending			0									0s

parallel-tzp9n			0/1							ContainerCreating			0									1s

parallel-tzp9n			1/1							Running			0									1s

parallel-tzp9n			0/1							Completed			0									48s

parallel-x1kmr			0/1							Pending			0									0s

parallel-x1kmr			0/1							Pending			0									0s

parallel-x1kmr			0/1							ContainerCreating			0									0s

parallel-x1kmr			1/1							Running			0									1s

parallel-5s7s9			0/1							Completed			0									1m

parallel-tprfj			0/1							Pending			0									0s

parallel-tprfj			0/1							Pending			0									0s

parallel-tprfj			0/1							ContainerCreating			0									0s

parallel-tprfj			1/1							Running			0									2s

parallel-x1kmr			0/1							Completed			0									52s

parallel-bgvz5			0/1							Pending			0									0s

parallel-bgvz5			0/1							Pending			0									0s

parallel-bgvz5			0/1							ContainerCreating			0									0s

parallel-bgvz5			1/1							Running			0									2s

parallel-qxcxp			0/1							Completed			0									2m

parallel-xplw2			0/1							Pending			0									1s

parallel-xplw2			0/1							Pending			0									1s

parallel-xplw2			0/1							ContainerCreating			0									1s

parallel-xplw2			1/1							Running			0									3s

parallel-bgvz5			0/1							Completed			0									40s

parallel-55tlv			0/1							Completed			0									2m

parallel-lssmn			0/1							Completed			0									2m

Feel	free	to	poke	around	at	the	completed	Jobs	and	check	out	their	logs	to	see	the
fingerprints	of	the	keys	they	generated.	Clean	up	by	deleting	the	finished	Job
object	with	kubectl	delete	job	parallel.

Work	Queues
A	common	use	case	for	Jobs	is	to	process	work	from	a	work	queue.	In	this
scenario,	some	task	creates	a	number	of	work	items	and	publishes	them	to	a
work	queue.	A	worker	Job	can	be	run	to	process	each	work	item	until	the	work
queue	is	empty	(Figure	10-1).

Figure	10-1.	Parallel	jobs

Starting	a	work	queue
We	start	by	launching	a	centralized	work	queue	service.	kuard	has	a	simple
memory-based	work	queue	system	built	in.	We	will	start	an	instance	of	kuard	to
act	as	a	coordinator	for	all	the	work	to	be	done.

Create	a	simple	ReplicaSet	to	manage	a	singleton	work	queue	daemon.	We	are
using	a	ReplicaSet	to	ensure	that	a	new	Pod	will	get	created	in	the	face	of
machine	failure,	as	shown	in	Example	10-4.

Example	10-4.	rs-queue.yaml
apiVersion:	extensions/v1beta1

kind:	ReplicaSet

metadata:

		labels:

				app:	work-queue

				component:	queue

				chapter:	jobs

		name:	queue

spec:

		replicas:	1

		template:

				metadata:

						labels:

								app:	work-queue

								component:	queue

								chapter:	jobs

				spec:

						containers:

						-	name:	queue

								image:	"gcr.io/kuar-demo/kuard-amd64:1"

								imagePullPolicy:	Always

Run	the	work	queue	with	the	following	command:

$	kubectl	apply	-f	rs-queue.yaml

At	this	point	the	work	queue	daemon	should	be	up	and	running.	Let’s	use	port
forwarding	to	connect	to	it.	Leave	this	command	running	in	a	terminal	window:

$	QUEUE_POD=$(kubectl	get	pods	-l	app=work-queue,component=queue	\

				-o	jsonpath='{.items[0].metadata.name}')

$	kubectl	port-forward	$QUEUE_POD	8080:8080

Forwarding	from	127.0.0.1:8080	->	8080

Forwarding	from	[::1]:8080	->	8080

You	can	open	your	browser	to	http://localhost:8080	and	see	the	kuard	interface.
Switch	to	the	“MemQ	Server”	tab	to	keep	an	eye	on	what	is	going	on.

With	the	work	queue	server	in	place,	we	should	expose	it	using	a	service.	This
will	make	it	easy	for	producers	and	consumers	to	locate	the	work	queue	via
DNS,	as	Example	10-5	shows.

Example	10-5.	service-queue.yaml
apiVersion:	v1

kind:	Service

metadata:

		labels:

				app:	work-queue

				component:	queue

				chapter:	jobs

		name:	queue

spec:

		ports:

		-	port:	8080

				protocol:	TCP

				targetPort:	8080

		selector:

				app:	work-queue

				component:	queue

Create	the	queue	service	with	kubectl:

$	kubectl	apply	-f	service-queue.yaml

service	"queue"	created

http://localhost:8080

Loading	up	the	queue
We	are	now	ready	to	put	a	bunch	of	work	items	in	the	queue.	For	the	sake	of
simplicity	we’ll	just	use	curl	to	drive	the	API	for	the	work	queue	server	and
insert	a	bunch	of	work	items.	curl	will	communicate	to	the	work	queue	through
the	kubectl	port-forward	we	set	up	earlier,	as	shown	in	Example	10-6.

Example	10-6.	load-queue.sh
#	Create	a	work	queue	called	'keygen'

curl	-X	PUT	localhost:8080/memq/server/queues/keygen

#	Create	100	work	items	and	load	up	the	queue.

for	i	in	work-item-{0..99};	do

		curl	-X	POST	localhost:8080/memq/server/queues/keygen/enqueue	\

				-d	"$i"

done

Run	these	commands,	and	you	should	see	100	JSON	objects	output	to	your
terminal	with	a	unique	message	identifier	for	each	work	item.	You	can	confirm
the	status	of	the	queue	by	looking	at	the	“MemQ	Server”	tab	in	the	UI,	or	you
can	ask	the	work	queue	API	directly:

$	curl	127.0.0.1:8080/memq/server/stats

{

				"kind":	"stats",

				"queues":	[

								{

												"depth":	100,

												"dequeued":	0,

												"drained":	0,

												"enqueued":	100,

												"name":	"keygen"

								}

]

}

Now	we	are	ready	to	kick	off	a	Job	to	consume	the	work	queue	until	it’s	empty.

Creating	the	consumer	job
This	is	where	things	get	interesting!	kuard	is	also	able	to	act	in	consumer	mode.
Here	we	set	it	up	to	draw	work	items	from	the	work	queue,	create	a	key,	and	then
exit	once	the	queue	is	empty,	as	shown	in	Example	10-7.

Example	10-7.	job-consumers.yaml
apiVersion:	batch/v1

kind:	Job

metadata:

		labels:

				app:	message-queue

				component:	consumer

				chapter:	jobs

		name:	consumers

spec:

		parallelism:	5

		template:

				metadata:

						labels:

								app:	message-queue

								component:	consumer

								chapter:	jobs

				spec:

						containers:

						-	name:	worker

								image:	"gcr.io/kuar-demo/kuard-amd64:1"

								imagePullPolicy:	Always

								args:

								-	"--keygen-enable"

								-	"--keygen-exit-on-complete"

								-	"--keygen-memq-server=http://queue:8080/memq/server"

								-	"--keygen-memq-queue=keygen"

						restartPolicy:	OnFailure

We	are	telling	the	Job	to	start	up	five	pods	in	parallel.	As	the	completions
parameter	is	unset,	we	put	the	Job	into	a	worker	pool	mode.	Once	the	first	pod
exits	with	a	zero	exit	code,	the	Job	will	start	winding	down	and	will	not	start	any
new	Pods.	This	means	that	none	of	the	workers	should	exit	until	the	work	is
done	and	they	are	all	in	the	process	of	finishing	up.

Create	the	consumers	Job:

$	kubectl	apply	-f	job-consumers.yaml

job	"consumers"	created

Once	the	Job	has	been	created	you	can	view	the	pods	backing	the	Job:

$	kubectl	get	pods

NAME														READY					STATUS				RESTARTS			AGE

queue-43s87							1/1							Running			0										5m

consumers-6wjxc			1/1							Running			0										2m

consumers-7l5mh			1/1							Running			0										2m

consumers-hvz42			1/1							Running			0										2m

consumers-pc8hr			1/1							Running			0										2m

consumers-w20cc			1/1							Running			0										2m

Note	there	are	five	pods	running	in	parallel.	These	pods	will	continue	to	run	until
the	work	queue	is	empty.	You	can	watch	as	it	happens	in	the	UI	on	the	work
queue	server.	As	the	queue	empties,	the	consumer	pods	will	exit	cleanly	and	the
consumers	Job	will	be	considered	complete.

Cleaning	up
Using	labels	we	can	clean	up	all	of	the	stuff	we	created	in	this	section:

$	kubectl	delete	rs,svc,job	-l	chapter=jobs

Summary
On	a	single	cluster,	Kubernetes	can	handle	both	long-running	workloads	such	as
web	applications	and	short-lived	workloads	such	as	batch	jobs.	The	Job
abstraction	allows	you	to	model	batch	job	patterns	ranging	from	simple	one-time
tasks	to	parallel	jobs	that	process	many	items	until	work	has	been	exhausted.

Jobs	are	a	low-level	primitive	and	can	be	used	directly	for	simple	workloads.
However,	Kubernetes	is	built	from	the	ground	up	to	be	extensible	by	higher-
level	objects.	Jobs	are	no	exception;	they	can	easily	be	used	by	higher-level
orchestration	systems	to	take	on	more	complex	tasks.

Chapter	11.	ConfigMaps	and	Secrets

It	is	a	good	practice	to	make	container	images	as	reusable	as	possible.	The	same
image	should	be	able	to	be	used	for	development,	staging,	and	production.	It	is
even	better	if	the	same	image	is	general	purpose	enough	to	be	used	across
applications	and	services.	Testing	and	versioning	get	riskier	and	more
complicated	if	images	need	to	be	recreated	for	each	new	environment.	But	then
how	do	we	specialize	the	use	of	that	image	at	runtime?

This	is	where	ConfigMaps	and	secrets	come	into	play.	ConfigMaps	are	used	to
provide	configuration	information	for	workloads.	This	can	either	be	fine-grained
information	(a	short	string)	or	a	composite	value	in	the	form	of	a	file.	Secrets	are
similar	to	ConfigMaps	but	focused	on	making	sensitive	information	available	to
the	workload.	They	can	be	used	for	things	like	credentials	or	TLS	certificates.

ConfigMaps
One	way	to	think	of	a	ConfigMap	is	as	a	Kubernetes	object	that	defines	a	small
filesystem.	Another	way	is	as	a	set	of	variables	that	can	be	used	when	defining
the	environment	or	command	line	for	your	containers.	The	key	thing	is	that	the
ConfigMap	is	combined	with	the	Pod	right	before	it	is	run.	This	means	that	the
container	image	and	the	pod	definition	itself	can	be	reused	across	many	apps	by
just	changing	the	ConfigMap	that	is	used.

Creating	ConfigMaps
Let’s	jump	right	in	and	create	a	ConfigMap.	Like	many	objects	in	Kubernetes,
you	can	create	these	in	an	immediate,	imperative	way	or	you	can	create	them
from	a	manifest	on	disk.	We’ll	start	with	the	imperative	method.

First,	suppose	we	have	a	file	on	disk	(called	my-config.txt)	that	we	want	to	make
available	to	the	Pod	in	question,	as	shown	in	Example	11-1.

Example	11-1.	my-config.txt
#	This	is	a	sample	config	file	that	I	might	use	to	configure	an	application

parameter1	=	value1

parameter2	=	value2

Next,	let’s	create	a	ConfigMap	with	that	file.	We’ll	also	add	a	couple	of	simple
key/value	pairs	here.	These	are	referred	to	as	literal	values	on	the	command	line:

$	kubectl	create	configmap	my-config	\

		--from-file=my-config.txt	\

		--from-literal=extra-param=extra-value	\

		--from-literal=another-param=another-value

The	equivalent	YAML	for	the	ConfigMap	object	we	just	created	is:

$	kubectl	get	configmaps	my-config	-o	yaml

apiVersion:	v1

data:

		another-param:	another-value

		extra-param:	extra-value

		my-config.txt:	|

				#	This	is	a	sample	config	file	that	I	might	use	to	configure	an	application

				parameter1	=	value1

				parameter2	=	value2

kind:	ConfigMap

metadata:

		creationTimestamp:	...

		name:	my-config

		namespace:	default

		resourceVersion:	"13556"

		selfLink:	/api/v1/namespaces/default/configmaps/my-config

		uid:	3641c553-f7de-11e6-98c9-06135271a273

As	you	can	see,	the	ConfigMap	is	really	just	some	key/value	pairs	stored	in	an
object.	The	interesting	stuff	happens	when	you	try	to	use	a	ConfigMap.

Using	a	ConfigMap
There	are	three	main	ways	to	use	a	ConfigMap:

Filesystem
You	can	mount	a	ConfigMap	into	a	Pod.	A	file	is	created	for	each	entry
based	on	the	key	name.	The	contents	of	that	file	are	set	to	the	value.

Environment	variable
A	ConfigMap	can	be	used	to	dynamically	set	the	value	of	an	environment
variable.

Command-line	argument
Kubernetes	supports	dynamically	creating	the	command	line	for	a	container
based	on	ConfigMap	values.

Let’s	create	a	manifest	for	kuard	that	pulls	all	of	these	together,	as	shown	in
Example	11-2.

Example	11-2.	kuard-config.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard-config

spec:

		containers:

				-	name:	test-container

						image:	gcr.io/kuar-demo/kuard-amd64:1

						imagePullPolicy:	Always

						command:

								-	"/kuard"

								-	"$(EXTRA_PARAM)"

						env:

								-	name:	ANOTHER_PARAM

										valueFrom:

												configMapKeyRef:

														name:	my-config

														key:	another-param

								-	name:	EXTRA_PARAM

										valueFrom:

												configMapKeyRef:

														name:	my-config

														key:	extra-param

						volumeMounts:

								-	name:	config-volume

										mountPath:	/config

		volumes:

				-	name:	config-volume

						configMap:

								name:	my-config

		restartPolicy:	Never

For	the	filesystem	method,	we	create	a	new	volume	inside	the	pod	and	give	it	the
name	config-volume.	We	then	define	this	volume	to	be	a	ConfigMap	volume
and	point	at	the	ConfigMap	to	mount.	We	have	to	specify	where	this	gets
mounted	into	the	kuard	container	with	a	volumeMount.	In	this	case	we	are
mounting	it	at	/config.

Environment	variables	are	specified	with	a	special	valueFrom	member.	This
references	the	ConfigMap	and	the	data	key	to	use	within	that	ConfigMap.

Command-line	arguments	build	on	environment	variables.	Kubernetes	will
perform	the	correct	substitution	with	a	special	$(<env-var-name>)	syntax.

Run	this	Pod	and	let’s	port-forward	to	examine	how	the	app	sees	the	world:

$	kubectl	apply	-f	kuard-config.yaml

$	kubectl	port-forward	kuard-config	8080

Now	point	your	browser	at	http://localhost:8080.	We	can	look	at	how	we’ve
injected	configuration	values	into	the	program	in	all	three	ways.

Click	on	the	“Server	Env”	tab	on	the	left.	This	will	show	the	command	line	that
the	app	was	launched	with	along	with	its	environment,	as	shown	in	Figure	11-1.

http://localhost:8080

Figure	11-1.	kuard	showing	its	environment

Here	we	can	see	that	we’ve	added	two	environment	variables	(ANOTHER_PARAM
and	EXTRA_PARAM)	whose	values	are	set	via	the	ConfigMap.	Furthermore,	we’ve
added	an	argument	to	the	command	line	of	kuard	based	on	the	EXTRA_PARAM
value.

Next,	click	on	the	“File	system	browser”	tab	(Figure	11-2).	This	lets	you	explore
the	filesystem	as	the	application	sees	it.	You	should	see	an	entry	called	/config.
This	is	a	volume	created	based	on	our	ConfigMap.	If	you	navigate	into	that,
you’ll	see	that	a	file	has	been	created	for	each	entry	of	the	ConfigMap.	You’ll
also	see	some	hidden	files	(prepended	with	..)	that	are	used	to	do	a	clean	swap	of

new	values	when	the	ConfigMap	is	updated.

Figure	11-2.	The	/config	directory	as	seen	through	kuard

Secrets
While	ConfigMaps	are	great	for	most	configuration	data,	there	is	certain	data
that	is	extra-sensitive.	This	can	include	passwords,	security	tokens,	or	other
types	of	private	keys.	Collectively,	we	call	this	type	of	data	“secrets.”
Kubernetes	has	native	support	for	storing	and	handling	this	data	with	care.

Secrets	enable	container	images	to	be	created	without	bundling	sensitive	data.
This	allows	containers	to	remain	portable	across	environments.	Secrets	are
exposed	to	pods	via	explicit	declaration	in	pod	manifests	and	the	Kubernetes
API.	In	this	way	the	Kubernetes	secrets	API	provides	an	application-centric
mechanism	for	exposing	sensitive	configuration	information	to	applications	in	a
way	that’s	easy	to	audit	and	leverages	native	OS	isolation	primitives.

WARNING
Depending	on	your	requirements,	Kubernetes	secrets	may	not	be	secure	enough	for	you.	As	of
Kubernetes	version	1.6,	anyone	with	root	access	on	any	node	has	access	to	all	secrets	in	the
cluster.	While	Kubernetes	utilizes	native	OS	containerization	primitives	to	only	expose	Pods	to
secrets	they	are	supposed	to	see,	isolation	between	nodes	is	still	a	work	in	progress.

Kubernetes	version	1.7	improves	this	situation	quite	a	bit.	When	properly	configured,	it	both
encrypts	stored	secrets	and	restricts	the	secrets	that	each	individual	node	has	access	to.

The	remainder	of	this	section	will	explore	how	to	create	and	manage	Kubernetes
secrets,	and	also	lay	out	best	practices	for	exposing	secrets	to	pods	that	require
them.

Creating	Secrets
Secrets	are	created	using	the	Kubernetes	API	or	the	kubectl	command-line	tool.
Secrets	hold	one	or	more	data	elements	as	a	collection	of	key/value	pairs.

In	this	section	we	will	create	a	secret	to	store	a	TLS	key	and	certificate	for	the
kuard	application	that	meets	the	storage	requirements	listed	above.

NOTE
The	kuard	container	image	does	not	bundle	a	TLS	certificate	or	key.	This	allows	the	kuard
container	to	remain	portable	across	environments	and	distributable	through	public	Docker
repositories.

The	first	step	in	creating	a	secret	is	to	obtain	the	raw	data	we	want	to	store.	The
TLS	key	and	certificate	for	the	kuard	application	can	be	downloaded	by	running
the	following	commands	(please	don’t	use	these	certificates	outside	of	this
example):

$	curl	-O	https://storage.googleapis.com/kuar-demo/kuard.crt

$	curl	-O	https://storage.googleapis.com/kuar-demo/kuard.key

With	the	kuard.crt	and	kuard.key	files	stored	locally,	we	are	ready	to	create	a
secret.	Create	a	secret	named	kuard-tls	using	the	create	secret	command:

$	kubectl	create	secret	generic	kuard-tls	\

		--from-file=kuard.crt	\

		--from-file=kuard.key

The	kuard-tls	secret	has	been	created	with	two	data	elements.	Run	the
following	command	to	get	details:

$	kubectl	describe	secrets	kuard-tls

Name:									kuard-tls

Namespace:				default

Labels:							<none>

Annotations:		<none>

Type:									Opaque

Data

====

kuard.crt:				1050	bytes

kuard.key:				1679	bytes

With	the	kuard-tls	secret	in	place,	we	can	consume	it	from	a	pod	by	using	a
secrets	volume.

Consuming	Secrets
Secrets	can	be	consumed	using	the	Kubernetes	REST	API	by	applications	that
know	how	to	call	that	API	directly.	However,	our	goal	is	to	keep	applications
portable.	Not	only	should	they	run	well	in	Kubernetes,	but	they	should	run,
unmodified,	on	other	platforms.

Instead	of	accessing	secrets	through	the	API	server,	we	can	use	a	secrets	volume.

Secrets	volumes
Secret	data	can	be	exposed	to	pods	using	the	secrets	volume	type.	Secrets
volumes	are	managed	by	the	kubelet	and	are	created	at	pod	creation	time.
Secrets	are	stored	on	tmpfs	volumes	(aka	RAM	disks)	and,	as	such,	are	not
written	to	disk	on	nodes.

Each	data	element	of	a	secret	is	stored	in	a	separate	file	under	the	target	mount
point	specified	in	the	volume	mount.	The	kuard-tls	secret	contains	two	data
elements:	kuard.crt	and	kuard.key.	Mounting	the	kuard-tls	secrets	volume	to
/tls	results	in	the	following	files:

/tls/cert.pem

/tls/key.pem

The	following	pod	manifest	(Example	11-3)	demonstrates	how	to	declare	a
secrets	volume,	which	exposes	the	kuard-tls	secret	to	the	kuard	container
under	/tls.

Example	11-3.	kuard-secret.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard-tls

spec:

		containers:

				-	name:	kuard-tls

						image:	gcr.io/kuar-demo/kuard-amd64:1

						imagePullPolicy:	Always

						volumeMounts:

						-	name:	tls-certs

								mountPath:	"/tls"

								readOnly:	true

		volumes:

				-	name:	tls-certs

						secret:

								secretName:	kuard-tls

Create	the	kuard-tls	pod	using	kubectl	and	observe	the	log	output	from	the
running	pod:

$	kubectl	apply	-f	kuard-secret.yaml

Connect	to	the	pod	by	running:

$	kubectl	port-forward	kuard-tls	8443:8443

Now	navigate	your	browser	to	https://localhost:8443.	You	should	see	some
invalid	certificate	warnings	as	this	is	a	self-signed	certificate	for
kuard.example.com.	If	you	navigate	past	this	warning,	you	should	see	the	kuard
server	hosted	via	HTTPS.	Use	the	“File	system	browser”	tab	to	find	the
certificates	on	disk.

https://localhost:8443

Private	Docker	Registries
A	special	use	case	for	secrets	is	to	store	access	credentials	for	private	Docker
registries.	Kubernetes	supports	using	images	stored	on	private	registries,	but
access	to	those	images	requires	credentials.	Private	images	can	be	stored	across
one	or	more	private	registries.	This	presents	a	challenge	for	managing
credentials	for	each	private	registry	on	every	possible	node	in	the	cluster.

Image	pull	secrets	leverage	the	secrets	API	to	automate	the	distribution	of
private	registry	credentials.	Image	pull	secrets	are	stored	just	like	normal	secrets
but	are	consumed	through	the	spec.imagePullSecrets	Pod	specification	field.

Use	the	create	secret	docker-registry	to	create	this	special	kind	of	secret:

$	kubectl	create	secret	docker-registry	my-image-pull-secret	\

		--docker-username=<username>	\

		--docker-password=<password>	\

		--docker-email=<email-address>

Enable	access	to	the	private	repository	by	referencing	the	image	pull	secret	in
the	pod	manifest	file,	as	shown	in	Example	11-4.

Example	11-4.	kuard-secret-ips.yaml
apiVersion:	v1

kind:	Pod

metadata:

		name:	kuard-tls

spec:

		containers:

				-	name:	kuard-tls

						image:	gcr.io/kuar-demo/kuard-amd64:1

						imagePullPolicy:	Always

						volumeMounts:

						-	name:	tls-certs

								mountPath:	"/tls"

								readOnly:	true

		imagePullSecrets:

		-	name:		my-image-pull-secret

		volumes:

				-	name:	tls-certs

						secret:

								secretName:	kuard-tls

Naming	Constraints
The	key	names	for	data	items	inside	of	a	secret	or	ConfigMap	are	defined	to	map
to	valid	environment	variable	names.	They	may	begin	with	a	dot	followed	by	a
letter	or	number.	Following	characters	include	dots,	dashes,	and	underscores.
Dots	cannot	be	repeated	and	dots	and	underscores	or	dashes	cannot	be	adjacent
to	each	other.	More	formally,	this	means	that	they	must	conform	to	the	regular
expression	[.]?[a-zA-Z0-9]([.]?[-_a-zA-Z0-9]*[a-zA-Z0-9])*.	Some
examples	of	valid	and	invalid	names	for	ConfigMaps	or	secrets	are	given	in
Table	11-1.

Table	11-1.	ConfigMap	and	secret	key	examples

Valid	key	name Invalid	key	name

.auth_token Token..properties

Key.pem auth	file.json

config_file _password.txt

NOTE
When	selecting	a	key	name	consider	that	these	keys	can	be	exposed	to	pods	via	a	volume
mount.	Pick	a	name	that	is	going	to	make	sense	when	specified	on	a	command	line	or	in	a
config	file.	Storing	a	TLS	key	as	key.pem	is	more	clear	than	tls-key	when	configuring
applications	to	access	secrets.

ConfigMap	data	values	are	simple	UTF-8	text	specified	directly	in	the	manifest.
As	of	Kubernetes	1.6,	ConfigMaps	are	unable	to	store	binary	data.

Secret	data	values	hold	arbitrary	data	encoded	using	base64.	The	use	of	base64
encoding	makes	it	possible	to	store	binary	data.	This	does,	however,	make	it
more	difficult	to	manage	secrets	that	are	stored	in	YAML	files	as	the	base64-
encoded	value	must	be	put	in	the	YAML.

Managing	ConfigMaps	and	Secrets
Secrets	and	ConfigMaps	are	managed	through	the	Kubernetes	API.	The	usual
create,	delete,	get,	and	describe	commands	work	for	manipulating	these
objects.

Listing
You	can	use	the	kubectl	get	secrets	command	to	list	all	secrets	in	the	current
namespace:

$	kubectl	get	secrets

NAME																		TYPE																																		DATA						AGE

default-token-f5jq2			kubernetes.io/service-account-token			3									1h

kuard-tls													Opaque																																2									20m

Similarly,	you	can	list	all	of	the	ConfigMaps	in	a	namespace:

$	kubectl	get	configmaps

NAME								DATA						AGE

my-config			3									1m

kubectl	describe	can	be	used	to	get	more	details	on	a	single	object:

$	kubectl	describe	configmap	my-config

Name:											my-config

Namespace:						default

Labels:									<none>

Annotations:				<none>

Data

====

another-param:		13	bytes

extra-param:				11	bytes

my-config.txt:		116	bytes

Finally,	you	can	see	the	raw	data	(including	values	in	secrets!)	with	something
like	kubectl	get	configmap	my-config	-o	yaml	or	kubectl	get	secret
kuard-tls	-o	yaml.

Creating
The	easiest	way	to	create	a	secret	or	a	ConfigMap	is	via	kubectl	create
secret	generic	or	kubectl	create	configmap.	There	are	a	variety	of	ways	to
specify	the	data	items	that	go	into	the	secret	or	ConfigMap.	These	can	be
combined	in	a	single	command:

--from-file=<filename>

Load	from	the	file	with	the	secret	data	key	the	same	as	the	filename.

--from-file=<key>=<filename>

Load	from	the	file	with	the	secret	data	key	explicitly	specified.

--from-file=<directory>

Load	all	the	files	in	the	specified	directory	where	the	filename	is	an
acceptable	key	name.

--from-literal=<key>=<value>

Use	the	specified	key/value	pair	directly.

Updating
You	can	update	a	ConfigMap	or	secret	and	have	it	reflected	in	running	programs.
There	is	no	need	to	restart	if	the	application	is	configured	to	reread	configuration
values.	This	is	a	rare	feature	but	might	be	something	you	put	in	your	own
applications.

The	following	are	three	ways	to	update	ConfigMaps	or	secrets.

Update	from	file
If	you	have	a	manifest	for	your	ConfigMap	or	secret,	you	can	just	edit	it	directly
and	push	a	new	version	with	kubectl	replace	-f	<filename>.	You	can	also
use	kubectl	apply	-f	<filename>	if	you	previously	created	the	resource	with
kubectl	apply.

Due	to	the	way	that	datafiles	are	encoded	into	these	objects,	updating	a
configuration	can	be	a	bit	cumbersome	as	there	is	no	provision	in	kubectl	to
load	data	from	an	external	file.	The	data	must	be	stored	directly	in	the	YAML
manifest.

The	most	common	use	case	is	when	the	ConfigMap	is	defined	as	part	of	a
directory	or	list	of	resources	and	everything	is	created	and	updated	together.
Oftentimes	these	manifests	will	be	checked	into	source	control.

WARNING
It	is	generally	a	bad	idea	to	check	secret	YAML	files	into	source	control.	It	is	too	easy	to	push
these	files	someplace	public	and	leak	your	secrets.

Recreate	and	update
If	you	store	the	inputs	into	your	ConfigMaps	or	secrets	as	separate	files	on	disk
(as	opposed	to	embedded	into	YAML	directly),	you	can	use	kubectl	to	recreate
the	manifest	and	then	use	it	to	update	the	object.

This	will	look	something	like	this:

$	kubectl	create	secret	generic	kuard-tls	\

		--from-file=kuard.crt	--from-file=kuard.key	\

		--dry-run	-o	yaml	|	kubectl	replace	-f	-

This	command	line	first	creates	a	new	secret	with	the	same	name	as	our	existing
secret.	If	we	just	stopped	there,	the	Kubernetes	API	server	would	return	an	error
complaining	that	we	are	trying	to	create	a	secret	that	already	exists.	Instead,	we
tell	kubectl	not	to	actually	send	the	data	to	the	server	but	instead	to	dump	the
YAML	that	it	would	have	sent	to	the	API	server	to	stdout.	We	then	pipe	that	to
kubectl	replace	and	use	-f	-	to	tell	it	to	read	from	stdin.	In	this	way	we	can
update	a	secret	from	files	on	disk	without	having	to	manually	base64-encode
data.

Edit	current	version
The	final	way	to	update	a	ConfigMap	is	to	use	kubectl	edit	to	bring	up	a
version	of	the	ConfigMap	in	your	editor	so	you	can	tweak	it	(you	could	also	do
this	with	a	secret,	but	you’d	be	stuck	managing	the	base64	encoding	of	values	on
your	own):

$	kubectl	edit	configmap	my-config

You	should	see	the	ConfigMap	definition	in	your	editor.	Make	your	desired
changes	and	then	save	and	close	your	editor.	The	new	version	of	the	object	will
be	pushed	to	the	Kubernetes	API	server.

Live	updates
Once	a	ConfigMap	or	secret	is	updated	using	the	API,	it’ll	be	automatically
pushed	to	all	volumes	that	use	that	ConfigMap	or	secret.	It	may	take	a	few
seconds,	but	the	file	listing	and	contents	of	the	files,	as	seen	by	kuard,	will	be
updated	with	these	new	values.	Using	this	live	update	feature	you	can	update	the
configuration	of	applications	without	restarting	them.

Currently	there	is	no	built-in	way	to	signal	an	application	when	a	new	version	of
a	ConfigMap	is	deployed.	It	is	up	to	the	application	(or	some	helper	script)	to
look	for	the	config	files	to	change	and	reload	them.

Using	the	file	browser	in	kuard	(accessed	through	kubectl	port-forward)	is	a
great	way	to	interactively	play	with	dynamically	updating	secrets	and

ConfigMaps.

Summary
ConfigMaps	and	secrets	are	a	great	way	to	provide	dynamic	configuration	in
your	application.	They	allow	you	to	create	a	container	image	(and	pod
definition)	once	and	reuse	it	in	different	contexts.	This	can	include	using	the
exact	same	image	as	you	move	from	dev	to	staging	to	production.	It	can	also
include	using	a	single	image	across	multiple	teams	and	services.	Separating
configuration	from	application	code	will	make	your	applications	more	reliable
and	reusable.

Chapter	12.	Deployments

So	far,	you	have	seen	how	to	package	your	application	as	a	container,	create	a
replicated	set	of	these	containers,	and	use	services	to	load-balance	traffic	to	your
service.	All	of	these	objects	are	used	to	build	a	single	instance	of	your
application.	They	do	little	to	help	you	manage	the	daily	or	weekly	cadence	of
releasing	new	versions	of	your	application.	Indeed,	both	Pods	and	ReplicaSets
are	expected	to	be	tied	to	specific	container	images	that	don’t	change.

The	Deployment	object	exists	to	manage	the	release	of	new	versions.
Deployments	represent	deployed	applications	in	a	way	that	transcends	any
particular	software	version	of	the	application.	Additionally,	Deployments	enable
you	to	easily	move	from	one	version	of	your	code	to	the	next	version	of	your
code.	This	“rollout”	process	is	configurable	and	careful.	It	waits	for	a	user-
configurable	amount	of	time	between	upgrading	individual	Pods.	It	also	uses
health	checks	to	ensure	that	the	new	version	of	the	application	is	operating
correctly,	and	stops	the	deployment	if	too	many	failures	occur.

Using	Deployments	you	can	simply	and	reliably	roll	out	new	software	versions
without	downtime	or	errors.	The	actual	mechanics	of	the	software	rollout
performed	by	a	Deployment	is	controlled	by	a	Deployment	controller	that	runs
in	the	Kubernetes	cluster	itself.	This	means	you	can	let	a	Deployment	proceed
unattended	and	it	will	still	operate	correctly	and	safely.	This	makes	it	easy	to
integrate	Deployments	with	numerous	continuous	delivery	tools	and	services.
Further,	running	server-side	makes	it	safe	to	perform	a	rollout	from	places	with
poor	or	intermittent	internet	connectivity.	Imagine	rolling	out	a	new	version	of
your	software	from	your	phone	while	riding	on	the	subway.	Deployments	make
this	possible	and	safe!

NOTE
When	Kubernetes	was	first	released,	one	of	the	most	popular	demonstrations	of	its	power	was
the	“rolling	update,”	which	showed	how	you	could	use	a	single	command	to	seamlessly	update
a	running	application	without	taking	any	downtime	or	losing	requests.	This	original	demo	was
based	on	the	kubectl	rolling-update	command,	which	is	still	available	in	the	command-line
tool,	but	its	functionality	has	largely	been	subsumed	by	the	Deployment	object.

Your	First	Deployment
At	the	beginning	of	this	book,	you	created	a	Pod	by	running	kubectl	run.	It	was
something	similar	to:

$	kubectl	run	nginx	--image=nginx:1.7.12

Under	the	hood,	this	was	actually	creating	a	Deployment	object.

You	can	view	this	Deployment	object	by	running:

$	kubectl	get	deployments	nginx

NAME				DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

nginx			1									1									1												1											13s

Deployment	Internals
Let’s	explore	how	Deployments	actually	work.	Just	as	we	learned	that
ReplicaSets	manage	Pods,	Deployments	manage	ReplicaSets.	As	with	all
relationships	in	Kubernetes,	this	relationship	is	defined	by	labels	and	a	label
selector.	You	can	see	the	label	selector	by	looking	at	the	Deployment	object:

$	kubectl	get	deployments	nginx	\

		-o	jsonpath	--template	{.spec.selector.matchLabels}

map[run:nginx]

From	this	you	can	see	that	the	Deployment	is	managing	a	ReplicaSet	with	the
labels	run=nginx.	We	can	use	this	in	a	label	selector	query	across	ReplicaSets	to
find	that	specific	ReplicaSet:

$	kubectl	get	replicasets	--selector=run=nginx

NAME														DESIRED			CURRENT			READY					AGE

nginx-1128242161		1									1									1									13m

Now	let’s	see	the	relationship	between	a	Deployment	and	a	ReplicaSet	in	action.
We	can	resize	the	Deployment	using	the	imperative	scale	command:

$	kubectl	scale	deployments	nginx	--replicas=2

deployment	"nginx"	scaled

Now	if	we	list	that	ReplicaSet	again,	we	should	see:

$	kubectl	get	replicasets	--selector=run=nginx

NAME														DESIRED			CURRENT			READY					AGE

nginx-1128242161		2									2									2									13m

Scaling	the	Deployment	has	also	scaled	the	ReplicaSet	it	controls.

Now	let’s	try	the	opposite,	scaling	the	ReplicaSet:

$	kubectl	scale	replicasets	nginx-1128242161	--replicas=1

replicaset	"nginx-1128242161"	scaled

Now	get	that	ReplicaSet	again:

$	kubectl	get	replicasets	--selector=run=nginx

NAME														DESIRED			CURRENT			READY					AGE

nginx-1128242161		2									2									2									13m

That’s	odd.	Despite	our	scaling	the	ReplicaSet	to	one	replica,	it	still	has	two
replicas	as	its	desired	state.	What’s	going	on?	Remember,	Kubernetes	is	an
online,	self-healing	system.	The	top-level	Deployment	object	is	managing	this
ReplicaSet.	When	you	adjust	the	number	of	replicas	to	one,	it	no	longer	matches
the	desired	state	of	the	Deployment,	which	has	replicas	set	to	2.	The
Deployment	controller	notices	this	and	takes	action	to	ensure	the	observed	state
matches	the	desired	state,	in	this	case	readjusting	the	number	of	replicas	back	to
two.

If	you	ever	want	to	manage	that	ReplicaSet	directly,	you	need	to	delete	the
Deployment	(remember	to	set	--cascade	to	false,	or	else	it	will	delete	the
ReplicaSet	and	Pods	as	well!).

Creating	Deployments
Of	course,	as	has	been	stated	elsewhere,	you	should	have	a	preference	for
declarative	management	of	your	Kubernetes	configurations.	This	means
maintaining	the	state	of	your	deployments	in	YAML	or	JSON	files	on	disk.

As	a	starting	point,	download	this	Deployment	into	a	YAML	file:

$	kubectl	get	deployments	nginx	--export	-o	yaml	>	nginx-deployment.yaml

$	kubectl	replace	-f	nginx-deployment.yaml	--save-config

If	you	look	in	the	file,	you	will	see	something	like	this:

apiVersion:	extensions/v1beta1

kind:	Deployment

metadata:

		annotations:

				deployment.kubernetes.io/revision:	"1"

		labels:

				run:	nginx

		name:	nginx

		namespace:	default

spec:

		replicas:	2

		selector:

				matchLabels:

						run:	nginx

		strategy:

				rollingUpdate:

						maxSurge:	1

						maxUnavailable:	1

				type:	RollingUpdate

		template:

				metadata:

						labels:

								run:	nginx

				spec:

						containers:

						-	image:	nginx:1.7.12

								imagePullPolicy:	Always

						dnsPolicy:	ClusterFirst

						restartPolicy:	Always

NOTE
A	lot	of	read-only	and	default	fields	were	removed	in	the	preceding	listing	for	brevity.	We	also
need	to	run	kubectl	replace	--save-config.	This	adds	an	annotation	so	that,	when	applying
changes	in	the	future,	kubectl	will	know	what	the	last	applied	configuration	was	for	smarter
merging	of	configs.	If	you	always	use	kubectl	apply,	this	step	is	only	required	after	the	first
time	you	create	a	Deployment	using	kubectl	create	-f.

The	Deployment	spec	has	a	very	similar	structure	to	the	ReplicaSet	spec.	There
is	a	Pod	template,	which	contains	a	number	of	containers	that	are	created	for
each	replica	managed	by	the	Deployment.	In	addition	to	the	Pod	specification,
there	is	also	a	strategy	object:

...

		strategy:

				rollingUpdate:

						maxSurge:	1

						maxUnavailable:	1

				type:	RollingUpdate

...

The	strategy	object	dictates	the	different	ways	in	which	a	rollout	of	new
software	can	proceed.	There	are	two	different	strategies	supported	by
Deployments:	Recreate	and	RollingUpdate.

These	are	discussed	in	detail	later	in	this	chapter.

Managing	Deployments
As	with	all	Kubernetes	objects,	you	can	get	detailed	information	about	your
Deployment	via	the	kubectl	describe	command:

$	kubectl	describe	deployments	nginx

Name:																			nginx

Namespace:														default

CreationTimestamp:						Sat,	31	Dec	2016	09:53:32	-0800

Labels:																	run=nginx

Selector:															run=nginx

Replicas:															2	updated	|	2	total	|	2	available	|	0	unavailable

StrategyType:											RollingUpdate

MinReadySeconds:								0

RollingUpdateStrategy:		1	max	unavailable,	1	max	surge

OldReplicaSets:									<none>

NewReplicaSet:										nginx-1128242161	(2/2	replicas	created)

Events:

		FirstSeen			...			Message

		---------			...			-------

		5m										...			Scaled	up	replica	set	nginx-1128242161	to	1

		4m										...			Scaled	up	replica	set	nginx-1128242161	to	2

In	the	output	of	describe	there	is	a	great	deal	of	important	information.

Two	of	the	most	important	pieces	of	information	in	the	output	are
OldReplicaSets	and	NewReplicaSet.	These	fields	point	to	the	ReplicaSet
objects	this	Deployment	is	currently	managing.	If	a	Deployment	is	in	the	middle
of	a	rollout,	both	fields	will	be	set	to	a	value.	If	a	rollout	is	complete,
OldReplicaSets	will	be	set	to	<none>.

In	addition	to	the	describe	command,	there	is	also	the	kubectl	rollout
command	for	deployments.	We	will	go	into	this	command	in	more	detail	later
on,	but	for	now,	you	can	use	kubectl	rollout	history	to	obtain	the	history	of
rollouts	associated	with	a	particular	Deployment.	If	you	have	a	current
Deployment	in	progress,	then	you	can	use	kubectl	rollout	status	to	obtain
the	current	status	of	a	rollout.

Updating	Deployments
Deployments	are	declarative	objects	that	describe	a	deployed	application.	The
two	most	common	operations	on	a	Deployment	are	scaling	and	application
updates.

Scaling	a	Deployment
Although	we	previously	showed	how	you	could	imperatively	scale	a
Deployment	using	the	kubectl	scale	command,	the	best	practice	is	to	manage
your	Deployments	declaratively	via	the	YAML	files,	and	then	use	those	files	to
update	your	Deployment.	To	scale	up	a	Deployment,	you	would	edit	your	YAML
file	to	increase	the	number	of	replicas:

...

spec:

		replicas:	3

...

Once	you	have	saved	and	committed	this	change,	you	can	update	the
Deployment	using	the	kubectl	apply	command:

$	kubectl	apply	-f	nginx-deployment.yaml

This	will	update	the	desired	state	of	the	Deployment,	causing	it	to	increase	the
size	of	the	ReplicaSet	it	manages,	and	eventually	create	a	new	Pod	managed	by
the	Deployment:

$	kubectl	get	deployments	nginx

NAME						DESIRED			CURRENT			UP-TO-DATE			AVAILABLE			AGE

nginx					3									3									3												3											4m

Updating	a	Container	Image
The	other	common	use	case	for	updating	a	Deployment	is	to	roll	out	a	new
version	of	the	software	running	in	one	or	more	containers.	To	do	this,	you	should
likewise	edit	the	deployment	YAML	file,	though	in	this	case	you	are	updating
the	container	image,	rather	than	the	number	of	replicas:

...

						containers:

						-	image:	nginx:1.9.10

								imagePullPolicy:	Always

...

We	are	also	going	to	put	an	annotation	in	the	template	for	the	Deployment	to
record	some	information	about	the	update:

...

spec:

		...

		template:

				annotations:

						kubernetes.io/change-cause:	"Update	nginx	to	1.9.10"

...

CAUTION
Make	sure	you	add	this	annotation	to	the	template	and	not	the	Deployment	itself.	Also,	do	not
update	the	change-cause	annotation	when	doing	simple	scaling	operations.	A	modification	of
change-cause	is	a	significant	change	to	the	template	and	will	trigger	a	new	rollout.

Again,	you	can	use	kubectl	apply	to	update	the	Deployment:

$	kubectl	apply	-f	nginx-deployment.yaml

After	you	update	the	Deployment	it	will	trigger	a	rollout,	which	you	can	then
monitor	via	the	kubectl	rollout	command:

$	kubectl	rollout	status	deployments	nginx

deployment	nginx	successfully	rolled	out

You	can	see	the	old	and	new	ReplicaSets	managed	by	the	deployment	along	with

the	images	being	used.	Both	the	old	and	new	ReplicaSets	are	kept	around	in	case
you	want	to	roll	back:

$	kubectl	get	replicasets	-o	wide

NAME															DESIRED			CURRENT			READY			...			IMAGE(S)							...

nginx-1128242161			0									0									0							...			nginx:1.7.12			...

nginx-1128635377			3									3									3							...			nginx:1.9.10			...

If	you	are	in	the	middle	of	a	rollout	and	you	want	to	temporarily	pause	it	for
some	reason	(e.g.,	if	you	start	seeing	weird	behavior	in	your	system	and	you
want	to	investigate),	you	can	use	the	pause	command:

$	kubectl	rollout	pause	deployments	nginx

deployment	"nginx"	paused

If,	after	investigation,	you	believe	the	rollout	can	safely	proceed,	you	can	use	the
resume	command	to	start	up	where	you	left	off:

$	kubectl	rollout	resume	deployments	nginx

deployment	"nginx"	resumed

Rollout	History
Kubernetes	Deployments	maintain	a	history	of	rollouts,	which	can	be	useful	both
for	understanding	the	previous	state	of	the	Deployment	and	to	roll	back	to	a
specific	version.

You	can	see	the	deployment	history	by	running:

$	kubectl	rollout	history	deployment	nginx

deployments	"nginx"

REVISION								CHANGE-CAUSE

1															<none>

2															Update	nginx	to	1.9.10

The	revision	history	is	given	in	oldest	to	newest	order.	A	unique	revision	number
is	incremented	for	each	new	rollout.	So	far	we	have	two:	the	initial	deployment,
the	update	of	the	image	to	nginx:1.9.10.

If	you	are	interested	in	more	details	about	a	particular	revision,	you	can	add	the	-
-revision	flag	to	view	details	about	that	specific	revision:

$	kubectl	rollout	history	deployment	nginx	--revision=2

deployments	"nginx"	with	revision	#2

		Labels:							pod-template-hash=2738859366

								run=nginx

		Annotations:		kubernetes.io/change-cause=Update	nginx	to	1.9.10

		Containers:

			nginx:

				Image:						nginx:1.9.10

				Port:

				Volume	Mounts:						<none>

				Environment	Variables:						<none>

		No	volumes.

Let’s	do	one	more	update	for	this	example.	Update	the	nginx	version	to	1.10.2
by	modifying	the	container	version	number	and	updating	the	change-cause
annotation.	Apply	it	with	kubectl	apply.	Our	history	should	now	have	three
entries:

$	kubectl	rollout	history	deployment	nginx

deployments	"nginx"

REVISION								CHANGE-CAUSE

1															<none>

2															Update	nginx	to	1.9.10

3															Update	nginx	to	1.10.2

Let’s	say	there	is	an	issue	with	the	latest	release	and	you	want	to	roll	back	while
you	investigate.	You	can	simply	undo	the	last	rollout:

$	kubectl	rollout	undo	deployments	nginx

deployment	"nginx"	rolled	back

The	undo	command	works	regardless	of	the	stage	of	the	rollout.	You	can	undo
both	partially	completed	and	fully	completed	rollouts.	An	undo	of	a	rollout	is
actually	simply	a	rollout	in	reverse	(e.g.,	from	v2	to	v1,	instead	of	from	v1	to	v2),
and	all	of	the	same	policies	that	control	the	rollout	strategy	apply	to	the	undo
strategy	as	well.	You	can	see	the	Deployment	object	simply	adjusts	the	desired
replica	counts	in	the	managed	ReplicaSets:

$	kubectl	get	replicasets	-o	wide

NAME															DESIRED			CURRENT			READY			...			IMAGE(S)							...

nginx-1128242161			0									0									0							...			nginx:1.7.12			...

nginx-1570155864			0									0									0							...			nginx:1.10.2			...

nginx-2738859366			3									3									3							...			nginx:1.9.10			...

CAUTION
When	using	declarative	files	to	control	your	production	systems,	you	want	to,	as	much	as
possible,	ensure	that	the	checked-in	manifests	match	what	is	actually	running	in	your	cluster.
When	you	do	a	kubectl	rollout	undo	you	are	updating	the	production	state	in	a	way	that
isn’t	reflected	in	your	source	control.

An	alternate	(and	perhaps	preferred)	way	to	undo	a	rollout	is	to	revert	your	YAML	file	and
kubectl	apply	the	previous	version.	In	this	way	your	“change	tracked	configuration”	more
closely	tracks	what	is	really	running	in	your	cluster.

Let’s	look	at	our	deployment	history	again:

$	kubectl	rollout	history	deployment	nginx

REVISION								CHANGE-CAUSE

1															<none>

3															Update	nginx	to	1.10.2

4															Update	nginx	to	1.9.10

Revision	2	is	missing!	It	turns	out	that	when	you	roll	back	to	a	previous	revision,

the	Deployment	simply	reuses	the	template	and	renumbers	it	so	that	it	is	the
latest	revision.	What	was	revision	2	before	is	now	reordered	into	revision	4.

We	previously	saw	that	you	can	use	the	kubectl	rollout	undo	command	to	roll
back	to	a	previous	version	of	a	deployment.	Additionally,	you	can	roll	back	to	a
specific	revision	in	the	history	using	the	--to-revision	flag:

$	kubectl	rollout	undo	deployments	nginx	--to-revision=3

deployment	"nginx"	rolled	back

$	kubectl	rollout	history	deployment	nginx

deployments	"nginx"

REVISION								CHANGE-CAUSE

1															<none>

4															Update	nginx	to	1.9.10

5															Update	nginx	to	1.10.2

Again,	the	undo	took	revision	3,	applied	it,	and	renumbered	it	as	revision	5.

Specifying	a	revision	of	0	is	a	shorthand	way	of	specifying	the	previous	revision.
In	this	way,	kubectl	rollout	undo	is	equivalent	to	kubectl	rollout	undo	--
to-revision=0.

By	default,	the	complete	revision	history	of	a	Deployment	is	kept	attached	to	the
Deployment	object	itself.	Over	time	(e.g.,	years)	this	history	can	grow	fairly
large,	so	it	is	recommended	that	if	you	have	Deployments	that	you	expect	to
keep	around	for	a	long	time	you	set	a	maximum	history	size	for	the	Deployment
revision	history,	to	limit	the	total	size	of	the	Deployment	object.	For	example,	if
you	do	a	daily	update	you	may	limit	your	revision	history	to	14,	to	keep	a
maximum	of	2	weeks’	worth	of	revisions	(if	you	don’t	expect	to	need	to	roll
back	beyond	2	weeks).

To	accomplish	this,	use	the	revisionHistoryLimit	property	in	the	Deployment
specification:

...

spec:

		#	We	do	daily	rollouts,	limit	the	revision	history	to	two	weeks	of

		#	releases	as	we	don't	expect	to	roll	back	beyond	that.

		revisionHistoryLimit:	14

...

Deployment	Strategies
When	it	comes	time	to	change	the	version	of	software	implementing	your
service,	a	Kubernetes	Deployment	supports	two	different	rollout	strategies:

Recreate

RollingUpdate

Recreate	Strategy
The	recreate	strategy	is	the	simpler	of	the	two	rollout	strategies.	It	simply
updates	the	ReplicaSet	it	manages	to	use	the	new	image	and	terminates	all	of	the
Pods	associated	with	the	Deployment.	The	ReplicaSet	notices	that	it	no	longer
has	any	replicas,	and	re-creates	all	Pods	using	the	new	image.	Once	the	Pods	are
re-created,	they	are	running	the	new	version.

While	this	strategy	is	fast	and	simple,	it	has	one	major	drawback	—	it	is
potentially	catastrophic,	and	will	almost	certainly	result	in	some	site	downtime.
Because	of	this,	the	recreate	strategy	should	only	be	used	for	test	deployments
where	a	service	is	not	user-facing	and	a	small	amount	of	downtime	is	acceptable.

RollingUpdate	Strategy
The	RollingUpdate	strategy	is	the	generally	preferable	strategy	for	any	user-
facing	service.	While	it	is	slower	than	Recreate,	it	is	also	significantly	more
sophisticated	and	robust.	Using	RollingUpdate,	you	can	roll	out	a	new	version
of	your	service	while	it	is	still	receiving	user	traffic,	without	any	downtime.

As	you	might	infer	from	the	name,	the	rolling	update	strategy	works	by	updating
a	few	Pods	at	a	time,	moving	incrementally	until	all	of	the	Pods	are	running	the
new	version	of	your	software.

Managing	multiple	versions	of	your	service
Importantly,	this	means	that	for	a	period	of	time,	both	the	new	and	the	old
version	of	your	service	will	be	receiving	requests	and	serving	traffic.	This	has
important	implications	for	how	you	build	your	software.	Namely,	it	is	critically
important	that	each	version	of	your	software,	and	all	of	its	clients,	is	capable	of
talking	interchangeably	with	both	a	slightly	older	and	a	slightly	newer	version	of
your	software.

As	an	example	of	why	this	is	important,	consider	the	following	scenario:

You	are	in	the	middle	of	rolling	out	your	frontend	software;	half	of	your
servers	are	running	version	1	and	half	are	running	version	2.	A	user	makes	an
initial	request	to	your	service	and	downloads	a	client-side	JavaScript	library
that	implements	your	UI.	This	request	is	serviced	by	a	version	1	server	and
thus	the	user	receives	the	version	1	client	library.	This	client	library	runs	in	the
user’s	browser	and	makes	subsequent	API	requests	to	your	service.	These	API
requests	happen	to	be	routed	to	a	version	2	server;	thus,	version	1	of	your
JavaScript	client	library	is	talking	to	version	2	of	your	API	server.	If	you
haven’t	ensured	compatibility	between	these	versions,	your	application	won’t
function	correctly.

At	first,	this	might	seem	like	an	extra	burden.	But	in	truth,	you	always	had	this
problem;	you	may	just	not	have	noticed.	Concretely,	a	user	can	make	a	request	at
time	t	just	before	you	initiate	an	update.	This	request	is	serviced	by	a	version	1
server.	At	t_1	you	update	your	service	to	version	2.	At	t_2	the	version	1	client
code	running	on	the	user’s	browser	runs	and	hits	an	API	endpoint	being	operated
by	a	version	2	server.	No	matter	how	you	update	your	software,	you	have	to

maintain	backward	and	forward	compatibility	for	reliable	updates.	The	nature	of
the	rolling	update	strategy	simply	makes	it	more	clear	and	explicit	that	this	is
something	to	think	about.

Note	that	this	doesn’t	just	apply	to	JavaScript	clients	—	the	same	thing	is	true	of
client	libraries	that	are	compiled	into	other	services	that	make	calls	to	your
service.	Just	because	you	updated	doesn’t	mean	they	have	updated	their	client
libraries.	This	sort	of	backward	compatibility	is	critical	to	decoupling	your
service	from	systems	that	depend	on	your	service.	If	you	don’t	formalize	your
APIs	and	decouple	yourself,	you	are	forced	to	carefully	manage	your	rollouts
with	all	of	the	other	systems	that	call	into	your	service.	This	kind	of	tight
coupling	makes	it	extremely	hard	to	produce	the	necessary	agility	to	be	able	to
push	out	new	software	every	week,	let	alone	every	hour	or	every	day.	In	the	de-
coupled	architecture	shown	in	Figure	12-1,	the	frontend	is	isolated	from	the
backend	via	an	API	contract	and	a	load	balancer,	whereas	in	the	coupled
architecture,	a	thick	client	compiled	into	the	frontend	is	used	to	connect	directly
to	the	backends.

Figure	12-1.	Diagrams	of	both	de-coupled	(left)	and	couple	(right)	application	architectures

Configuring	a	rolling	update
RollingUpdate	is	a	fairly	generic	strategy;	it	can	be	used	to	update	a	variety	of

applications	in	a	variety	of	settings.	Consequently,	the	rolling	update	itself	is
quite	configurable;	you	can	tune	its	behavior	to	suit	your	particular	needs.	There
are	two	parameters	you	can	use	to	tune	the	rolling	update	behavior:
maxUnavailable	and	maxSurge.

The	maxUnavailable	parameter	sets	the	maximum	number	of	Pods	that	can	be
unavailable	during	a	rolling	update.	It	can	either	be	set	to	an	absolute	number
(e.g.,	3	meaning	a	maximum	of	three	Pods	can	be	unavailable)	or	to	a	percentage
(e.g.,	20%	meaning	a	maximum	of	20%	of	the	desired	number	of	replicas	can	be
unavailable).

Generally	speaking,	using	a	percentage	is	a	good	approach	for	most	services,
since	the	value	is	correctly	applicable	regardless	of	the	desired	number	of
replicas	in	the	Deployment.	However,	there	are	times	when	you	may	want	to	use
an	absolute	number	(e.g.,	limiting	the	maximum	unavailable	pods	to	one).

At	its	core,	the	maxUnavailable	parameter	helps	tune	how	quickly	a	rolling
update	proceeds.	For	example,	if	you	set	maxUnavailable	to	50%,	then	the
rolling	update	will	immediately	scale	the	old	ReplicaSet	down	to	50%	of	its
original	size.	If	you	have	four	replicas,	it	will	scale	it	down	to	two	replicas.	The
rolling	update	will	then	replace	the	removed	pods	by	scaling	the	new	ReplicaSet
up	to	two	replicas,	for	a	total	of	four	replicas	(two	old,	two	new).	It	will	then
scale	the	old	ReplicaSet	down	to	zero	replicas,	for	a	total	size	of	two	new
replicas.	Finally,	it	will	scale	the	new	ReplicaSet	up	to	four	replicas,	completing
the	rollout.	Thus,	with	maxUnavailable	set	to	50%,	our	rollout	completes	in	four
steps,	but	with	only	50%	of	our	service	capacity	at	times.

Consider	instead	what	happens	if	we	set	maxUnavailable	to	25%.	In	this
situation,	each	step	is	only	performed	with	a	single	replica	at	a	time	and	thus	it
takes	twice	as	many	steps	for	the	rollout	to	complete,	but	availability	only	drops
to	a	minimum	of	75%	during	the	rollout.	This	illustrates	how	maxUnavailable
allows	us	to	trade	rollout	speed	for	availability.

NOTE
The	observant	among	you	will	note	that	the	recreate	strategy	is	actually	identical	to	the	rolling
update	strategy	with	maxUnavailable	set	to	100%.

Using	reduced	capacity	to	achieve	a	successful	rollout	is	useful	either	when	your
service	has	cyclical	traffic	patterns	(e.g.,	much	less	traffic	at	night)	or	when	you
have	limited	resources,	so	scaling	to	larger	than	the	current	maximum	number	of
replicas	isn’t	possible.

However,	there	are	situations	where	you	don’t	want	to	fall	below	100%	capacity,
but	you	are	willing	to	temporarily	use	additional	resources	in	order	to	perform	a
rollout.	In	these	situations,	you	can	set	the	maxUnavailable	parameter	to	0%,	and
instead	control	the	rollout	using	the	maxSurge	parameter.	Like	maxUnavailable,
maxSurge	can	be	specified	either	as	a	specific	number	or	a	percentage.

The	maxSurge	parameter	controls	how	many	extra	resources	can	be	created	to
achieve	a	rollout.	To	illustrate	how	this	works,	imagine	we	have	a	service	with
10	replicas.	We	set	maxUnavailable	to	0	and	maxSurge	to	20%.	The	first	thing	the
rollout	will	do	is	scale	the	new	ReplicaSet	up	to	2	replicas,	for	a	total	of	12
(120%)	in	the	service.	It	will	then	scale	the	old	ReplicaSet	down	to	8	replicas,
for	a	total	of	10	(8	old,	2	new)	in	the	service.	This	process	proceeds	until	the
rollout	is	complete.	At	any	time,	the	capacity	of	the	service	is	guaranteed	to	be	at
least	100%	and	the	maximum	extra	resources	used	for	the	rollout	are	limited	to
an	additional	20%	of	all	resources.

NOTE
Setting	maxSurge	to	100%	is	equivalent	to	a	blue/green	deployment.	The	Deployment	controller
first	scales	the	new	version	up	to	100%	of	the	old	version.	Once	the	new	version	is	healthy,	it
immediately	scales	the	old	version	down	to	0%.

Slowing	Rollouts	to	Ensure	Service	Health
The	purpose	of	a	staged	rollout	is	to	ensure	that	the	rollout	results	in	a	healthy,
stable	service	running	the	new	software	version.	To	do	this,	the	Deployment
controller	always	waits	until	a	Pod	reports	that	it	is	ready	before	moving	on	to
updating	the	next	Pod.

WARNING
The	Deployment	controller	examines	the	Pod’s	status	as	determined	by	its	readiness	checks.
Readiness	checks	are	part	of	the	Pod’s	health	probes,	and	they	are	described	in	detail	in
Chapter	5.	If	you	want	to	use	Deployments	to	reliably	roll	out	your	software,	you	have	to
specify	readiness	health	checks	for	the	containers	in	your	Pod.	Without	these	checks	the
Deployment	controller	is	running	blind.

Sometimes,	however,	simply	noticing	that	a	Pod	has	become	ready	doesn’t	give
you	sufficient	confidence	that	the	Pod	actually	is	behaving	correctly.	Some	error
conditions	only	occur	after	a	period	of	time.	For	example,	you	could	have	a
serious	memory	leak	that	still	takes	a	few	minutes	to	show	up,	or	you	could	have
a	bug	that	is	only	triggered	by	1%	of	all	requests.	In	most	real-world	scenarios,
you	want	to	wait	a	period	of	time	to	have	high	confidence	that	the	new	version	is
operating	correctly	before	you	move	on	to	updating	the	next	Pod.

For	deployments,	this	time	to	wait	is	defined	by	the	minReadySeconds
parameter:

...

spec:

		minReadySeconds:	60

...

Setting	minReadySeconds	to	60	indicates	that	the	Deployment	must	wait	for	60
seconds	after	seeing	a	Pod	become	healthy	before	moving	on	to	updating	the
next	Pod.

In	addition	to	waiting	a	period	of	time	for	a	Pod	to	become	healthy,	you	also
want	to	set	a	timeout	that	limits	how	long	the	system	will	wait.	Suppose,	for
example,	the	new	version	of	your	service	has	a	bug	and	immediately	deadlocks.

It	will	never	become	ready,	and	in	the	absence	of	a	timeout,	the	Deployment
controller	will	stall	your	roll-out	forever.

The	correct	behavior	in	such	a	situation	is	to	time	out	the	rollout.	This	in	turn
marks	the	rollout	as	failed.	This	failure	status	can	be	used	to	trigger	alerting	that
can	indicate	to	an	operator	that	there	is	a	problem	with	the	rollout.

NOTE
At	first	blush,	timing	out	a	rollout	might	seem	like	a	unnecessary	complication.	However,
increasingly,	things	like	rollouts	are	being	triggered	by	fully	automated	systems	with	little	to
no	human	involvement.	In	such	a	situation,	timing	out	becomes	a	critical	exception,	which	can
either	trigger	an	automated	rollback	of	the	release	or	create	a	ticket/event	that	triggers	human
intervention.

To	set	the	timeout	period,	the	Deployment	parameter	progressDeadlineSeconds
is	used:

...

spec:

		progressDeadlineSeconds:	600

...

This	example	sets	the	progress	deadline	to	10	minutes.	If	any	particular	stage	in
the	rollout	fails	to	progress	in	10	minutes,	then	the	Deployment	is	marked	as
failed,	and	all	attempts	to	move	the	Deployment	forward	are	halted.

It	is	important	to	note	that	this	timeout	is	given	in	terms	of	Deployment	progress,
not	the	overall	length	of	a	Deployment.	In	this	context	progress	is	defined	as	any
time	the	deployment	creates	or	deletes	a	Pod.	When	that	happens,	the	timeout
clock	is	reset	to	zero.	Figure	12-2	is	an	illustration	of	the	deployment	lifecycle.

Figure	12-2.	The	Kubernetes	Deployment	lifecycle

Deleting	a	Deployment
If	you	ever	want	to	delete	a	deployment,	you	can	do	it	either	with	the	imperative
command:

$	kubectl	delete	deployments	nginx

or	using	the	declarative	YAML	file	we	created	earlier:

$	kubectl	delete	-f	nginx-deployment.yaml

In	either	case,	by	default,	deleting	a	Deployment	deletes	the	entire	service.	It	will
delete	not	just	the	Deployment,	but	also	any	ReplicaSets	being	managed	by	the
Deployment,	as	well	as	any	Pods	being	managed	by	the	ReplicaSets.	As	with
ReplicaSets,	if	this	is	not	the	desired	behavior,	you	can	use	the	--cascade=false
flag	to	exclusively	delete	the	Deployment	object.

Summary
At	the	end	of	the	day,	the	primary	goal	of	Kubernetes	is	to	make	it	easy	for	you
to	build	and	deploy	reliable	distributed	systems.	This	means	not	just	instantiating
the	application	once,	but	managing	the	regularly	scheduled	rollout	of	new
versions	of	that	software	service.	Deployments	are	a	critical	piece	of	reliable
rollouts	and	rollout	management	for	your	services.

Chapter	13.	Integrating	Storage
Solutions	and	Kubernetes

In	many	cases	decoupling	state	from	applications	and	building	your
microservices	to	be	as	stateless	as	possible	results	in	maximally	reliable,
manageable	systems.

However,	nearly	every	system	that	has	any	complexity	has	state	in	the	system
somewhere,	from	the	records	in	a	database	to	the	index	shards	that	serve	results
for	a	web	search	engine.	At	some	point	you	have	to	have	data	stored	somewhere.

Integrating	this	data	with	containers	and	container	orchestration	solutions	is
often	the	most	complicated	aspect	of	building	a	distributed	system.	This
complexity	largely	stems	from	the	fact	that	the	move	to	containerized
architectures	is	also	a	move	toward	decoupled,	immutable,	and	declarative
application	development.	These	patterns	are	relatively	easy	to	apply	to	stateless
web	applications,	but	even	“cloud-native”	storage	solutions	like	Cassandra	or
MongoDB	involve	some	sort	of	manual	or	imperative	steps	to	set	up	a	reliable,
replicated	solution.

As	an	example	of	this,	consider	setting	up	a	ReplicaSet	in	MongoDB,	which
involves	deploying	the	Mongo	daemon	and	then	running	an	imperative
command	to	identify	the	leader,	as	well	as	the	participants	in	the	Mongo	cluster.
Of	course,	these	steps	can	be	scripted,	but	in	a	containerized	world	it	is	difficult
to	see	how	to	integrate	such	commands	into	a	deployment.	Likewise,	even
getting	DNS-resolvable	names	for	individual	containers	in	a	replicated	set	of
containers	is	challenging.

Additional	complexity	comes	from	the	fact	that	there	is	data	gravity.	Most
containerized	systems	aren’t	built	in	a	vacuum;	they	are	usually	adapted	from
existing	systems	deployed	onto	VMs,	and	these	systems	likely	include	data	that
has	to	be	imported	or	migrated.

Finally,	evolution	to	the	cloud	means	that	many	times	storage	is	actually	an
externalized	cloud	service,	and	in	that	context	it	can	never	really	exist	inside	of
the	Kubernetes	cluster.

This	chapter	covers	a	variety	of	approaches	for	integrating	storage	into
containerized	microservices	in	Kubernetes.	First,	we	cover	how	to	import
existing	external	storage	solutions	(either	cloud	services	or	running	on	VMs)
into	Kubernetes.	Next,	we	explore	how	to	run	reliable	singletons	inside	of
Kubernetes	that	enable	you	to	have	an	environment	that	largely	matches	the
VMs	where	you	previously	deployed	storage	solutions.	Finally	we	cover
StatefulSets,	which	are	still	under	development	but	represent	the	future	of
stateful	workloads	in	Kubernetes.

Importing	External	Services
In	many	cases,	you	have	an	existing	machine	running	in	your	network	that	has
some	sort	of	database	running	on	it.	In	this	situation	you	may	not	want	to
immediately	move	that	database	into	containers	and	Kubernetes.	Perhaps	it	is
run	by	a	different	team,	or	you	are	doing	a	gradual	move,	or	the	task	of
migrating	the	data	is	simply	more	trouble	than	it’s	worth.

Regardless	of	the	reasons	for	staying	put,	this	legacy	server	and	service	are	not
going	to	move	into	Kubernetes,	but	nonetheless	it	is	still	worthwhile	to	represent
this	server	in	Kubernetes.	When	you	do	this,	you	get	to	take	advantage	of	all	of
the	built-in	naming	and	service	discovery	primitives	provided	by	Kubernetes.
Additionally,	this	enables	you	to	configure	all	your	applications	so	that	it	looks
like	the	database	that	is	running	on	a	machine	somewhere	is	actually	a
Kubernetes	service.	This	means	that	it	is	trivial	to	replace	it	with	a	database	that
is	a	Kubernetes	service.	For	example,	in	production,	you	may	rely	on	your
legacy	database	that	is	running	on	a	machine,	but	for	continuous	testing	you	may
deploy	a	test	database	as	a	transient	container.	Since	it	is	created	and	destroyed
for	each	test	run,	data	persistence	isn’t	important	in	the	continuous	testing	case.
Representing	both	databases	as	Kubernetes	services	enables	you	to	maintain
identical	configurations	in	both	testing	and	production.	High	fidelity	between
test	and	production	ensures	that	passing	tests	will	lead	to	successful	deployment
in	production.

To	see	concretely	how	you	maintain	high	fidelity	between	development	and
production,	remember	that	all	Kubernetes	objects	are	deployed	into	namespaces.
Imagine	that	we	have	test	and	product	namespaces	defined.	The	test	service	is
imported	using	an	object	like:

kind:	Service

metadata:

		name:	my-database

		#	note	'test'	namespace	here

		namespace:	test

...

The	production	service	looks	the	same,	except	it	uses	a	different	namespace:

kind:	Service

metadata:

		name:	my-database

		#	note	'prod'	namespace	here

		namespace:	prod

...

When	you	deploy	a	Pod	into	the	test	namespace	and	it	looks	up	the	service
named	my-database,	it	will	receive	a	pointer	to	my-
database.test.svc.cluster.internal,	which	in	turn	points	to	the	test
database.	In	contrast,	when	a	Pod	deployed	in	the	prod	namespace	looks	up	the
same	name	(my-database)	it	will	receive	a	pointer	to	my-
database.prod.svc.cluster.internal,	which	is	the	production	database.
Thus,	the	same	service	name,	in	two	different	namespaces,	resolves	to	two
different	services.	For	more	details	on	how	this	works,	see	Chapter	7.

NOTE
The	following	techniques	all	use	database	or	other	storage	services,	but	these	approaches	can
be	used	equally	well	with	other	services	that	aren’t	running	inside	your	Kubernetes	cluster.

Services	Without	Selectors
When	we	first	introduced	services,	we	talked	at	length	about	label	queries	and
how	they	were	used	to	identify	the	dynamic	set	of	Pods	that	were	the	backends
for	a	particular	service.	With	external	services,	however,	there	is	no	such	label
query.	Instead,	you	generally	have	a	DNS	name	that	points	to	the	specific	server
running	the	database.	For	our	example,	let’s	assume	that	this	server	is	named
database.company.com.	To	import	this	external	database	service	into
Kubernetes,	we	start	by	creating	a	service	without	a	Pod	selector	that	references
the	DNS	name	of	the	database	server	(Example	13-1).

Example	13-1.	dns-service.yaml
kind:	Service

apiVersion:	v1

metadata:

		name:	external-database

spec:

		type:	ExternalName

		externalName:	"database.company.com

When	a	typical	Kubernetes	service	is	created,	an	IP	address	is	also	created	and
the	Kubernetes	DNS	service	is	populated	with	an	A	record	that	points	to	that	IP
address.	When	you	create	a	service	of	type	ExternalName,	the	Kubernetes	DNS
service	is	instead	populated	with	a	CNAME	record	that	points	to	the	external
name	you	specified	(database.company.com	in	this	case).	When	an	application
in	the	cluster	does	a	DNS	lookup	for	the	hostname	external-
database.svc.default.cluster,	the	DNS	protocol	aliases	that	name	to
“database.company.com.”	This	then	resolves	to	the	IP	address	of	your	external
database	server.	In	this	way,	all	containers	in	Kubernetes	believe	that	they	are
talking	to	a	service	that	is	backed	with	other	containers,	when	in	fact	they	are
being	redirected	to	the	external	database.

Note	that	this	is	not	restricted	to	databases	you	are	running	on	your	own
infrastructure.	Many	cloud	databases	and	other	services	provide	you	with	a	DNS
name	to	use	when	accessing	the	database	(e.g.,	my-
database.databases.cloudprovider.com).	You	can	use	this	DNS	name	as	the
externalName.	This	imports	the	cloud-provided	database	into	the	namespace	of
your	Kubernetes	cluster.

Sometimes,	however,	you	don’t	have	a	DNS	address	for	an	external	database
service,	just	an	IP	address.	In	such	cases,	it	is	still	possible	to	import	this	server
as	a	Kubernetes	service,	but	the	operation	is	a	little	different.	First,	you	create	a
Service	without	a	label	selector,	but	also	without	the	ExternalName	type	we
used	before	(Example	13-2).

Example	13-2.	external-ip-service.yaml
kind:	Service

apiVersion:	v1

metadata:

		name:	external-ip-database

At	this	point,	Kubernetes	will	allocate	a	virtual	IP	address	for	this	service	and
populate	an	A	record	for	it.	However,	because	there	is	no	selector	for	the	service,
there	will	be	no	endpoints	populated	for	the	load	balancer	to	redirect	traffic	to.

Given	that	this	is	an	external	service,	the	user	is	responsible	for	populating	the
endpoints	manually	with	an	Endpoints	resource	(Example	13-3).

Example	13-3.	external-ip-endpoints.yaml
kind:	Endpoints

apiVersion:	v1

metadata:

		name:	external-ip-database

subsets:

		-	addresses:

				-	ip:	192.168.0.1

				ports:

				-	port:	3306

If	you	have	more	than	one	IP	address	for	redundancy,	you	can	repeat	them	in	the
addresses	array.	Once	the	endpoints	are	populated,	the	load	balancer	will	start
redirecting	traffic	from	your	Kubernetes	service	to	the	IP	address	endpoint(s).

NOTE
Because	the	user	has	assumed	responsibility	for	keeping	the	IP	address	of	the	server	up	to	date,
you	need	to	either	ensure	that	it	never	changes	or	make	sure	that	some	automated	process
updates	the	Endpoints	record.

Limitations	of	External	Services:	Health	Checking
External	services	in	Kubernetes	have	one	significant	restriction:	they	do	not
perform	any	health	checking.	The	user	is	responsible	for	ensuring	that	the
endpoint	or	DNS	name	supplied	to	Kubernetes	is	as	reliable	as	necessary	for	the
application.

Running	Reliable	Singletons
The	challenge	of	running	storage	solutions	in	Kubernetes	is	often	that	primitives
like	ReplicaSet	expect	that	every	container	is	identical	and	replaceable,	but	for
most	storage	solutions	this	isn’t	the	case.	One	option	to	address	this	is	to	use
Kubernetes	primitives,	but	not	attempt	to	replicate	the	storage.	Instead,	simply
run	a	single	Pod	that	runs	the	database	or	other	storage	solution.	In	this	way	the
challenges	of	running	replicated	storage	in	Kubernetes	don’t	occur,	since	there	is
no	replication.

At	first	blush,	this	might	seem	to	run	counter	to	the	principles	of	building
reliable	distributed	systems,	but	in	general,	it	is	no	less	reliable	than	running
your	database	or	storage	infrastructure	on	a	single	virtual	or	physical	machine,
which	is	how	many	people	currently	have	built	their	systems.	Indeed,	in	reality,
if	you	structure	the	system	properly	the	only	thing	you	are	sacrificing	is	potential
downtime	for	upgrades	or	in	case	of	machine	failure.	While	for	large-scale	or
mission-critical	systems	this	may	not	be	acceptable,	for	many	smaller-scale
applications	this	kind	of	limited	downtime	is	a	reasonable	trade-off	for	the
reduced	complexity.	If	this	is	not	true	for	you,	feel	free	to	skip	this	section	and
either	import	existing	services	as	described	in	the	previous	section,	or	move	on
to	Kubernetes-native	StatefulSets,	described	in	the	following	section.	For
everyone	else,	we’ll	review	how	to	build	reliable	singletons	for	data	storage.

Running	a	MySQL	Singleton
In	this	section,	we’ll	describe	how	to	run	a	reliable	singleton	instance	of	the
MySQL	database	as	a	Pod	in	Kubernetes,	and	how	to	expose	that	singleton	to
other	applications	in	the	cluster.

To	do	this,	we	are	going	to	create	three	basic	objects:
A	persistent	volume	to	manage	the	lifespan	of	the	on-disk	storage
independently	from	the	lifespan	of	the	running	MySQL	application

A	MySQL	Pod	that	will	run	the	MySQL	application

A	service	that	will	expose	this	Pod	to	other	containers	in	the	cluster

In	Chapter	5	we	described	persistent	volumes,	but	a	quick	review	makes	sense.
A	persistent	volume	is	a	storage	location	that	has	a	lifetime	independent	of	any
Pod	or	container.	This	is	very	useful	in	the	case	of	persistent	storage	solutions
where	the	on-disk	representation	of	a	database	should	survive	even	if	the
containers	running	the	database	application	crash,	or	move	to	different	machines.
If	the	application	moves	to	a	different	machine,	the	volume	should	move	with	it,
and	data	should	be	preserved.	Separating	the	data	storage	out	as	a	persistent
volume	makes	this	possible.	To	begin,	we’ll	create	a	persistent	volume	for	our
MySQL	database	to	use.

This	example	uses	NFS	for	maximum	portability,	but	Kubernetes	supports	many
different	persistent	volume	drive	types.	For	example,	there	are	persistent	volume
drivers	for	all	major	public	cloud	providers,	as	well	as	many	private	cloud
providers.	To	use	these	solutions,	simply	replace	nfs	with	the	appropriate	cloud
provider	volume	type	(e.g.,	azure,	awsElasticBlockStore,	or
gcePersistentDisk).	In	all	cases,	this	change	is	all	you	need.	Kubernetes	knows
how	to	create	the	appropriate	storage	disk	in	the	respective	cloud	provider.	This
is	a	great	example	of	how	Kubernetes	simplifies	the	development	of	reliable
distributed	systems.

Here’s	the	example	persistent	volume	object	(Example	13-4).

Example	13-4.	nfs-volume.yaml
apiVersion:	v1

kind:	PersistentVolume

metadata:

		name:	database

		labels:

				volume:	my-volume

spec:

		capacity:

				storage:	1Gi

		nfs:

				server:	192.168.0.1

				path:	"/exports"

This	defines	an	NFS	persistent	volume	object	with	1	GB	of	storage	space.

We	can	create	this	persistent	volume	as	usual	with:

$	kubectl	apply	-f	nfs-volume.yaml

Now	that	we	have	a	persistent	volume	created,	we	need	to	claim	that	persistent
volume	for	our	Pod.	We	do	this	with	a	PersistentVolumeClaim	object
(Example	13-5).

Example	13-5.	nfs-volume-claim.yaml
kind:	PersistentVolumeClaim

apiVersion:	v1

metadata:

		name:	database

spec:

		resources:

				requests:

						storage:	1Gi

		selector:

				matchLabels:

						volume:	my-volume

The	selector	field	uses	labels	to	find	the	matching	volume	we	defined
previously.

This	kind	of	indirection	may	seem	overly	complicated,	but	it	has	a	purpose	—	it
serves	to	isolate	our	Pod	definition	from	our	storage	definition.	You	can	declare
volumes	directly	inside	a	Pod	specification,	but	this	locks	that	Pod	specification
to	a	particular	volume	provider	(e.g.,	a	specific	public	or	private	cloud).	By
using	volume	claims,	you	can	keep	your	Pod	specifications	cloud-agnostic;
simply	create	different	volumes,	specific	to	the	cloud,	and	use	a
PersistentVolumeClaim	to	bind	them	together.

Now	that	we’ve	claimed	our	volume,	we	can	use	a	ReplicaSet	to	construct	our
singleton	Pod.	It	might	seem	odd	that	we	are	using	a	ReplicaSet	to	manage	a
single	Pod,	but	it	is	necessary	for	reliability.	Remember	that	once	scheduled	to	a

machine,	a	bare	Pod	is	bound	to	that	machine	forever.	If	the	machine	fails,	then
any	Pods	that	are	on	that	machine	that	are	not	being	managed	by	a	higher-level
controller	like	a	ReplicaSet	vanish	along	with	the	machine	and	are	not
rescheduled	elsewhere.	Consequently,	to	ensure	that	our	database	Pod	is
rescheduled	in	the	presence	of	machine	failures,	we	use	the	higher-level
ReplicaSet	controller,	with	a	replica	size	of	one,	to	manage	our	database
(Example	13-6).

Example	13-6.	mysql-replicaset.yaml
apiVersion:	extensions/v1beta1

kind:	ReplicaSet

metadata:

		name:	mysql

		#	labels	so	that	we	can	bind	a	Service	to	this	Pod

		labels:

				app:	mysql

spec:

		replicas:	1

		selector:

				matchLabels:

						app:	mysql

		template:

				metadata:

						labels:

								app:	mysql

				spec:

						containers:

						-	name:	database

								image:	mysql

								resources:

										requests:

												cpu:	1

												memory:	2Gi

								env:

								#	Environment	variables	are	not	a	best	practice	for	security,

								#	but	we're	using	them	here	for	brevity	in	the	example.

								#	See	Chapter	11	for	better	options.

								-	name:	MYSQL_ROOT_PASSWORD

										value:	some-password-here

								livenessProbe:

										tcpSocket:

												port:	3306

								ports:

								-	containerPort:	3306

								volumeMounts:

										-	name:	database

												#	/var/lib/mysql	is	where	MySQL	stores	its	databases

												mountPath:	"/var/lib/mysql"

						volumes:

						-	name:	database

								persistentVolumeClaim:

										claimName:	database

Once	we	create	the	ReplicaSet	it	will	in	turn	create	a	Pod	running	MySQL
using	the	persistent	disk	we	originally	created.	The	final	step	is	to	expose	this	as

a	Kubernetes	service	(Example	13-7).

Example	13-7.	mysql-service.yaml
apiVersion:	v1

kind:	Service

metadata:

		name:	mysql

spec:

		ports:

		-	port:	3306

				protocol:	TCP

		selector:

				app:	mysql

Now	we	have	a	reliable	singleton	MySQL	instance	running	in	our	cluster	and
exposed	as	a	service	named	mysql,	which	we	can	access	at	the	full	domain	name
mysql.svc.default.cluster.

Similar	instructions	can	be	used	for	a	variety	of	data	stores,	and	if	your	needs	are
simple	and	you	can	survive	limited	downtime	in	the	face	of	a	machine	failure	or
a	need	to	upgrade	the	database	software,	a	reliable	singleton	may	be	the	right
approach	to	storage	for	your	application.

Dynamic	Volume	Provisioning
Many	clusters	also	include	dynamic	volume	provisioning.	With	dynamic	volume
provisioning,	the	cluster	operator	creates	one	or	more	StorageClass	objects.
Here’s	a	default	storage	class	that	automatically	provisions	disk	objects	on	the
Microsoft	Azure	platform	(Example	13-8).

Example	13-8.	storageclass.yaml
apiVersion:	storage.k8s.io/v1beta1

kind:	StorageClass

metadata:

		name:	default

		annotations:

				storageclass.beta.kubernetes.io/is-default-class:	"true"

		labels:

				kubernetes.io/cluster-service:	"true"

provisioner:	kubernetes.io/azure-disk

Once	a	storage	class	has	been	created	for	a	cluster,	you	can	refer	to	this	storage
class	in	your	persistent	volume	claim,	rather	than	referring	to	any	specific
persistent	volume.	When	the	dynamic	provisioner	sees	this	storage	claim,	it	uses
the	appropriate	volume	driver	to	create	the	volume	and	bind	it	to	your	persistent
volume	claim.

Here’s	an	example	of	a	PersistentVolumeClaim	that	uses	the	default	storage
class	we	just	defined	to	claim	a	newly	created	persistent	volume	(Example	13-9).

Example	13-9.	dynamic-volume-claim.yaml
kind:	PersistentVolumeClaim

apiVersion:	v1

metadata:

		name:	my-claim

		annotations:

				volume.beta.kubernetes.io/storage-class:	default

spec:

		accessModes:

		-	ReadWriteOnce

		resources:

				requests:

						storage:	10Gi

The	volume.beta.kubernetes.io/storage-class	annotation	is	what	links	this
claim	back	up	to	the	storage	class	we	created.

Persistent	volumes	are	great	for	traditional	applications	that	require	storage,	but
if	you	need	to	develop	high-availability,	scalable	storage	in	a	Kubernetes-native
fashion,	the	newly	released	StatefulSet	object	can	be	used.	With	this	in	mind,

we’ll	describe	how	to	deploy	MongoDB	using	StatefulSets	in	the	next	section.

Kubernetes-Native	Storage	with	StatefulSets
When	Kubernetes	was	first	developed,	there	was	a	heavy	emphasis	on
homogeneity	for	all	replicas	in	a	replicated	set.	In	this	design,	no	replica	had	an
individual	identity	or	configuration.	It	was	up	to	the	individual	application
developer	to	determine	a	design	that	could	establish	this	identity	for	the
application.

While	this	approach	provides	a	great	deal	of	isolation	for	the	orchestration
system,	it	also	makes	it	quite	difficult	to	develop	stateful	applications.	After
significant	input	from	the	community	and	a	great	deal	of	experimentation	with
various	existing	stateful	applications,	StatefulSets	were	introduced	into
Kubernetes	in	version	1.5.

NOTE
Because	StatefulSets	are	a	beta	feature,	it’s	possible	that	the	API	will	change	before	it	becomes
an	official	Kubernetes	API.	The	StatefulSet	API	has	had	a	lot	of	input	and	is	generally
considered	fairly	stable,	but	the	beta	status	should	be	considered	before	taking	on	StatefulSets.
In	many	cases	the	previously	outlined	patterns	for	stateful	applications	may	serve	you	better	in
the	near	term.

Properties	of	StatefulSets
StatefulSets	are	replicated	groups	of	Pods	similar	to	ReplicaSets,	but	unlike	a
ReplicaSet,	they	have	certain	unique	properties:

Each	replica	gets	a	persistent	hostname	with	a	unique	index	(e.g.,
database-0,	database-1,	etc.).

Each	replica	is	created	in	order	from	lowest	to	highest	index,	and	creation
will	block	until	the	Pod	at	the	previous	index	is	healthy	and	available.	This
also	applies	to	scaling	up.

When	deleted,	each	replica	will	be	deleted	in	order	from	highest	to	lowest.
This	also	applies	to	scaling	down	the	number	of	replicas.

Manually	Replicated	MongoDB	with	StatefulSets
In	this	section,	we’ll	deploy	a	replicated	MongoDB	cluster.	For	now,	the
replication	setup	itself	will	be	done	manually	to	give	you	a	feel	for	how
StatefulSets	work.	Eventually	we	will	automate	this	setup	as	well.

To	start,	we’ll	create	a	replicated	set	of	three	MongoDB	Pods	using	a	StatefulSet
object	(Example	13-10).

Example	13-10.	mongo-simple.yaml
apiVersion:	apps/v1beta1

kind:	StatefulSet

metadata:

		name:	mongo

spec:

		serviceName:	"mongo"

		replicas:	3

		template:

				metadata:

						labels:

								app:	mongo

				spec:

						containers:

						-	name:	mongodb

								image:	mongo:3.4.1

								command:

								-	mongod

								-	--replSet

								-	rs0

								ports:

								-	containerPort:	27017

										name:	peer

As	you	can	see,	the	definition	is	similar	to	the	ReplicaSet	definition	from
previous	sections.	The	only	changes	are	the	apiVersion	and	kind	fields.	Create
the	StatefulSet:

$	kubectl	apply	-f	mongo-simple.yaml

Once	created,	the	differences	between	a	ReplicaSet	and	a	StatefulSet	become
apparent.	Run	kubectl	get	pods	and	you	will	likely	see:

NAME						READY					STATUS												RESTARTS			AGE

mongo-0			1/1							Running											0										1m

mongo-1			0/1							ContainerCreating	0										10s

There	are	two	important	differences	between	this	and	what	you	would	see	with	a
ReplicaSet.	The	first	is	that	each	replicated	Pod	has	a	numeric	index	(0,	1,	…),

instead	of	the	random	suffix	that	is	added	by	the	ReplicaSet	controller.	The
second	is	that	the	Pods	are	being	slowly	created	in	order,	not	all	at	once	as	they
would	be	with	a	ReplicaSet.

Once	the	StatefulSet	is	created,	we	also	need	to	create	a	“headless”	service	to
manage	the	DNS	entries	for	the	StatefulSet.	In	Kubernetes	a	service	is	called
“headless”	if	it	doesn’t	have	a	cluster	virtual	IP	address.	Since	with	StatefulSets
each	Pod	has	a	unique	identity,	it	doesn’t	really	make	sense	to	have	a	load-
balancing	IP	address	for	the	replicated	service.	You	can	create	a	headless	service
using	clusterIP:	None	in	the	service	specification	(Example	13-11).

Example	13-11.	mongo-service.yaml
apiVersion:	v1

kind:	Service

metadata:

		name:	mongo

spec:

		ports:

		-	port:	27017

				name:	peer

		clusterIP:	None

		selector:

				app:	mongo

Once	you	create	that	service,	there	are	usually	four	DNS	entries	that	are
populated.	As	usual,	mongo.default.svc.cluster.local	is	created,	but	unlike
with	a	standard	service,	doing	a	DNS	lookup	on	this	hostname	provides	all	the
addresses	in	the	StatefulSet.	In	addition,	entries	are	created	for	mongo-
0⁠.mongo⁠.default⁠.svc⁠.cluster​.local	as	well	as	mongo-1.mongo	and
mongo-2.mongo.	Each	of	these	resolves	to	the	specific	IP	address	of	the	replica
index	in	the	StatefulSet.	Thus,	with	StatefulSets	you	get	well-defined,	persistent
names	for	each	replica	in	the	set.	This	is	often	very	useful	when	you	are
configuring	a	replicated	storage	solution.	You	can	see	these	DNS	entries	in
action	by	running	commands	in	one	of	the	Mongo	replicas:

$	kubectl	exec	mongo-0	bash	ping	mongo-1.mongo

Next,	we’re	going	to	manually	set	up	Mongo	replication	using	these	per-Pod
hostnames.

We’ll	choose	mongo-0.mongo	to	be	our	initial	primary.	Run	the	mongo	tool	in	that
Pod:

$	kubectl	exec	-it	mongo-0	mongo

>	rs.initiate({

		_id:	"rs0",

		members:[{	_id:	0,	host:	"mongo-0.mongo:27017"	}]

	});

	OK

This	command	tells	mongodb	to	initiate	the	ReplicaSet	rs0	with	mongo-0.mongo
as	the	primary	replica.

NOTE
The	rs0	name	is	arbitrary.	You	can	use	whatever	you’d	like,	but	you’ll	need	to	change	it	in	the
mongo.yaml	StatefulSet	definition	as	well.

Once	you	have	initiated	the	Mongo	ReplicaSet,	you	can	add	the	remaining
replicas	by	running	the	following	commands	in	the	mongo	tool	on	the	mongo-
0.mongo	Pod:

$	kubectl	exec	-it	mongo-0	mongo

>	rs.add("mongo-1.mongo:27017");

>	rs.add("mongo-2.mongo:27017");

As	you	can	see,	we	are	using	the	replica-specific	DNS	names	to	add	them	as
replicas	in	our	Mongo	cluster.	At	this	point,	we’re	done.	Our	replicated
MongoDB	is	up	and	running.	But	it’s	really	not	as	automated	as	we’d	like	it	to
be.	In	the	next	section,	we’ll	see	how	to	use	scripts	to	automate	the	setup.

Automating	MongoDB	Cluster	Creation
To	automate	the	deployment	of	our	StatefulSet-based	MongoDB	cluster,	we’re
going	to	add	an	additional	container	to	our	Pods	to	perform	the	initialization.

To	configure	this	Pod	without	having	to	build	a	new	Docker	image,	we’re	going
to	use	a	ConfigMap	to	add	a	script	into	the	existing	MongoDB	image.	Here’s	the
container	we’re	adding:

...

						-	name:	init-mongo

								image:	mongo:3.4.1

								command:

								-	bash

								-	/config/init.sh

								volumeMounts:

								-	name:	config

										mountPath:	/config

						volumes:

						-	name:	config

								configMap:

										name:	"mongo-init"

Note	that	it	is	mounting	a	ConfigMap	volume	whose	name	is	mongo-init.	This
ConfigMap	holds	a	script	that	performs	our	initialization.	First,	the	script
determines	whether	it	is	running	on	mongo-0	or	not.	If	it	is	on	mongo-0,	it	creates
the	ReplicaSet	using	the	same	command	we	ran	imperatively	previously.	If	it	is
on	a	different	Mongo	replica,	it	waits	until	the	ReplicaSet	exists,	and	then	it
registers	itself	as	a	member	of	that	ReplicaSet.

Example	13-12	has	the	complete	ConfigMap	object.

Example	13-12.	mongo-configmap.yaml
apiVersion:	v1

kind:	ConfigMap

metadata:

		name:	mongo-init

data:

		init.sh:	|

				#!/bin/bash

				#	Need	to	wait	for	the	readiness	health	check	to	pass	so	that	the

				#	mongo	names	resolve.	This	is	kind	of	wonky.

				until	ping	-c	1	${HOSTNAME}.mongo;	do

						echo	"waiting	for	DNS	(${HOSTNAME}.mongo)..."

						sleep	2

				done

				until	/usr/bin/mongo	--eval	'printjson(db.serverStatus())';	do

						echo	"connecting	to	local	mongo..."

						sleep	2

				done

				echo	"connected	to	local."

				HOST=mongo-0.mongo:27017

				until	/usr/bin/mongo	--host=${HOST}	--eval	'printjson(db.serverStatus())';	do

						echo	"connecting	to	remote	mongo..."

						sleep	2

				done

				echo	"connected	to	remote."

				if	[["${HOSTNAME}"	!=	'mongo-0']];	then

						until	/usr/bin/mongo	--host=${HOST}	--eval="printjson(rs.status())"	\

												|	grep	-v	"no	replset	config	has	been	received";	do

								echo	"waiting	for	replication	set	initialization"

								sleep	2

						done

						echo	"adding	self	to	mongo-0"

						/usr/bin/mongo	--host=${HOST}	\

									--eval="printjson(rs.add('${HOSTNAME}.mongo'))"

				fi

				if	[["${HOSTNAME}"	==	'mongo-0']];	then

						echo	"initializing	replica	set"

						/usr/bin/mongo	--eval="printjson(rs.initiate(\

										{'_id':	'rs0',	'members':	[{'_id':	0,	\

											'host':	'mongo-0.mongo:27017'}]}))"

				fi

				echo	"initialized"

				while	true;	do

						sleep	3600

				done

NOTE
This	script	currently	sleeps	forever	after	initializing	the	cluster.	Every	container	in	a	Pod	has	to
have	the	same	RestartPolicy.	Since	we	want	our	main	Mongo	container	to	be	restarted,	we
need	to	have	our	initialization	container	run	forever	too,	or	else	Kubernetes	might	think	our
Mongo	Pod	is	unhealthy.

Putting	it	all	together,	here	is	the	complete	StatefulSet	that	uses	the	ConfigMap
in	Example	13-13.

Example	13-13.	mongo.yaml
apiVersion:	apps/v1beta1

kind:	StatefulSet

metadata:

		name:	mongo

spec:

		serviceName:	"mongo"

		replicas:	3

		template:

				metadata:

						labels:

								app:	mongo

				spec:

						containers:

						-	name:	mongodb

								image:	mongo:3.4.1

								command:

								-	mongod

								-	--replSet

								-	rs0

								ports:

								-	containerPort:	27017

										name:	web

						#	This	container	initializes	the	mongodb	server,	then	sleeps.

						-	name:	init-mongo

								image:	mongo:3.4.1

								command:

								-	bash

								-	/config/init.sh

								volumeMounts:

								-	name:	config

										mountPath:	/config

						volumes:

						-	name:	config

								configMap:

										name:	"mongo-init"

Given	all	of	these	files,	you	can	create	a	Mongo	cluster	with:

$	kubectl	apply	-f	mongo-config-map.yaml

$	kubectl	apply	-f	mongo-service.yaml

$	kubectl	apply	-f	mongo.yaml

Or	if	you	want,	you	can	combine	them	all	into	a	single	YAML	file	where	the
individual	objects	are	separated	by	---.	Ensure	that	you	keep	the	same	ordering,
since	the	StatefulSet	definition	relies	on	the	ConfigMap	definition	existing.

Persistent	Volumes	and	StatefulSets
For	persistent	storage,	you	need	to	mount	a	persistent	volume	into	the	/data/db
directory.	In	the	Pod	template,	you	need	to	update	it	to	mount	a	persistent
volume	claim	to	that	directory:

...

								volumeMounts:

								-	name:	database

										mountPath:	/data/db

While	this	approach	is	similar	to	the	one	we	saw	with	reliable	singletons,
because	the	StatefulSet	replicates	more	than	one	Pod	you	cannot	simply
reference	a	persistent	volume	claim.	Instead,	you	need	to	add	a	persistent	volume
claim	template.	You	can	think	of	the	claim	template	as	being	identical	to	the	Pod
template,	but	instead	of	creating	Pods,	it	creates	volume	claims.	You	need	to	add
the	following	onto	the	bottom	of	your	StatefulSet	definition:

		volumeClaimTemplates:

		-	metadata:

						name:	database

						annotations:

								volume.alpha.kubernetes.io/storage-class:	anything

				spec:

						accessModes:	["ReadWriteOnce"]

						resources:

								requests:

										storage:	100Gi

When	you	add	a	volume	claim	template	to	a	StatefulSet	definition,	each	time	the
StatefulSet	controller	creates	a	Pod	that	is	part	of	the	StatefulSet	it	will	create	a
persistent	volume	claim	based	on	this	template	as	part	of	that	Pod.

NOTE
In	order	for	these	replicated	persistent	volumes	to	work	correctly,	you	either	need	to	have
autoprovisioning	set	up	for	persistent	volumes,	or	you	need	to	prepopulate	a	collection	of
persistent	volume	objects	for	the	StatefulSet	controller	to	draw	from.	If	there	are	no	claims	that
can	be	created,	the	StatefulSet	controller	will	not	be	able	to	create	the	corresponding	Pods.

One	Final	Thing:	Readiness	Probes
The	final	piece	in	productionizing	our	MongoDB	cluster	is	to	add	liveness
checks	to	our	Mongo-serving	containers.	As	we	learned	in	“Health	Checks”,	the
liveness	probe	is	used	to	determine	if	a	container	is	operating	correctly.	For	the
liveness	checks,	we	can	use	the	mongo	tool	itself	by	adding	the	following	to	the
Pod	template	in	the	StatefulSet	object:

...

	livenessProbe:

			exec:

					command:

							-	/usr/bin/mongo

							-	--eval

							-	db.serverStatus()

					initialDelaySeconds:	10

					timeoutSeconds:	10

	...

Summary
Once	we	have	combined	StatefulSets,	persistent	volume	claims,	and	liveness
probing,	we	have	a	hardened,	scalable	cloud-native	MongoDB	installation
running	on	Kubernetes.	While	this	example	dealt	with	MongoDB,	the	steps	for
creating	StatefulSets	to	manage	other	storage	solutions	are	quite	similar	and
similar	patterns	can	be	followed.

Chapter	14.	Deploying	Real-World
Applications

The	previous	chapters	described	a	variety	of	API	objects	that	are	available	in	a
Kubernetes	cluster	and	ways	in	which	those	objects	can	best	be	used	to	construct
reliable	distributed	systems.	However,	none	of	the	preceding	chapters	really
discussed	how	you	might	use	the	objects	in	practice	to	deploy	a	complete,	real-
world	application.	That	is	the	focus	of	this	chapter.

We’ll	take	a	look	at	three	real-world	applications:
Parse,	an	open	source	API	server	for	mobile	applications

Ghost,	a	blogging	and	content	management	platform

Redis,	a	lightweight,	performant	key/value	store

These	complete	examples	should	give	you	a	better	idea	of	how	to	structure	your
own	deployments	using	Kubernetes.

Parse
The	Parse	server	is	a	cloud	API	dedicated	to	providing	easy-to-use	storage	for
mobile	applications.	It	provides	a	variety	of	different	client	libraries	that	make	it
easy	to	integrate	with	Android,	iOS,	and	other	mobile	platforms.	Parse	was
purchased	by	Facebook	in	2013	and	subsequently	shut	down.	Fortunately	for	us,
a	compatible	server	was	open	sourced	by	the	core	Parse	team	and	is	available	for
us	to	use.	This	section	describes	how	to	set	up	Parse	in	Kubernetes.

https://parse.com

Prerequisites
Parse	uses	MongoDB	cluster	for	its	storage.	Chapter	13	described	how	to	set	up
a	replicated	MongoDB	using	Kubernetes	StatefulSets.	This	section	assumes
you	have	a	three-replica	Mongo	cluster	running	in	Kubernetes	with	the	names
mongo-0.mongo,	mongo-1.mongo,	and	mongo-2.mongo.

These	instructions	also	assume	that	you	have	a	Docker	login;	if	you	don’t	have
one,	you	can	get	one	for	free	at	https://docker.com.

Finally,	we	assume	you	have	a	Kubernetes	cluster	deployed	and	the	kubectl	tool
properly	configured.

https://docker.com

Building	the	parse-server
The	open	source	parse-server	comes	with	a	Dockerfile	by	default,	for	easy
containerization.	First,	clone	the	Parse	repository:

$	git	clone	https://github.com/ParsePlatform/parse-server

Then	move	into	that	directory	and	build	the	image:

$	cd	parse-server

$	docker	build	-t	${DOCKER_USER}/parse-server	.

Finally,	push	that	image	up	to	the	Docker	hub:

$	docker	push	${DOCKER_USER}/parse-server

Deploying	the	parse-server
Once	you	have	the	container	image	built,	deploying	the	parse-server	into	your
cluster	is	fairly	straightforward.	Parse	looks	for	three	environment	variables
when	being	configured:

APPLICATION_ID

An	identifier	for	authorizing	your	application

MASTER_KEY

An	identifier	that	authorizes	the	master	(root)	user

DATABASE_URI

The	URI	for	your	MongoDB	cluster
Putting	this	all	together,	you	can	deploy	Parse	as	a	Kubernetes	Deployment
using	the	YAML	file	in	Example	14-1.

Example	14-1.	parse.yaml
apiVersion:	extensions/v1beta1

kind:	Deployment

metadata:

		name:	parse-server

		namespace:	default

spec:

		replicas:	1

		template:

				metadata:

						labels:

								run:	parse-server

				spec:

						containers:

						-	name:	parse-server

								image:	${DOCKER_USER}/parse-server

								env:

								-	name:	DATABASE_URI

										value:	"mongodb://mongo-0.mongo:27017,\

												mongo-1.mongo:27017,mongo-2.mongo\

												:27017/dev?replicaSet=rs0"

								-	name:	APP_ID

										value:	my-app-id

								-	name:	MASTER_KEY

										value:	my-master-key

Testing	Parse
To	test	your	deployment,	you	need	to	expose	it	as	a	Kubernetes	service.	You	can
do	that	using	the	service	definition	in	Example	14-2.

Example	14-2.	parse-service.yaml
apiVersion:	v1

kind:	Service

metadata:

		name:	parse-server

		namespace:	default

spec:

		ports:

		-	port:	1337

				protocol:	TCP

				targetPort:	1337

		selector:

				run:	parse-server

Now	your	Parse	server	is	up	and	running	and	ready	to	receive	requests	from	your
mobile	applications.	Of	course,	in	any	real	application	you	are	likely	going	to
want	to	secure	the	connection	with	HTTPS.	You	can	see	the	parse-server
GitHub	page	for	more	details	on	such	a	configuration.

https://github.com/parse-community/parse-server

Ghost
Ghost	is	a	popular	blogging	engine	with	a	clean	interface	written	in	JavaScript.	It
can	either	use	a	file-based	SQLite	database	or	MySQL	for	storage.

Configuring	Ghost
Ghost	is	configured	with	a	simple	JavaScript	file	that	describes	the	server.	We
will	store	this	file	as	a	configuration	map.	A	simple	development	configuration
for	Ghost	looks	like	Example	14-3.

Example	14-3.	ghost-config.js
var	path	=	require('path'),

				config;

config	=	{

				development:	{

								url:	'http://localhost:2368',

								database:	{

												client:	'sqlite3',

												connection:	{

																filename:	path.join(process.env.GHOST_CONTENT,

																																				'/data/ghost-dev.db')

												},

												debug:	false

								},

								server:	{

												host:	'0.0.0.0',

												port:	'2368'

								},

								paths:	{

												contentPath:	path.join(process.env.GHOST_CONTENT,	'/')

								}

				}

};

module.exports	=	config;

Once	you	have	this	configuration	file	saved	to	config.js,	you	can	create	a
Kubernetes	ConfigMap	object	using:

$	kubectl	apply	cm	--from-file	ghost-config.js	ghost-config

This	creates	a	ConfigMap	that	is	named	ghost-config.	As	with	the	Parse
example,	we	will	mount	this	configuration	file	as	a	volume	inside	of	our
container.	We	will	deploy	Ghost	as	a	Deployment	object,	which	defines	this
volume	mount	as	part	of	the	Pod	template	(Example	14-4).

Example	14-4.	ghost.yaml
apiVersion:	extensions/v1beta1

kind:	Deployment

metadata:

		name:	ghost

spec:

		replicas:	1

		selector:

				matchLabels:

						run:	ghost

		template:

				metadata:

						labels:

								run:	ghost

				spec:

						containers:

						-	image:	ghost

								name:	ghost

								command:

								-	sh

								-	-c

								-	cp	/ghost-config/config.js	/var/lib/ghost/config.js

										&&	/entrypoint.sh	npm	start

								volumeMounts:

								-	mountPath:	/ghost-config

										name:	config

						volumes:

						-	name:	config

								configMap:

										defaultMode:	420

										name:	ghost-config

One	thing	to	note	here	is	that	we	are	copying	the	config.js	file	from	a	different
location	into	the	location	where	Ghost	expects	to	find	it,	since	the	ConfigMap
can	only	mount	directories,	not	individual	files.	Ghost	expects	other	files	that	are
not	in	that	ConfigMap	to	be	present	in	its	directory,	and	thus	we	cannot	simply
mount	the	entire	ConfigMap	into	/var/lib/ghost.

You	can	run	this	with:

$	kubectl	apply	-f	ghost.yaml

Once	the	pod	is	up	and	running,	you	can	expose	it	as	a	service	with:

$	kubectl	expose	deployments	ghost	--port=2368

Once	the	service	is	exposed,	you	can	use	the	kubectl	proxy	command	to	access
the	Ghost	server:

$	kubectl	proxy

Then	visit	http://localhost:8001/api/v1/namespaces/default/services/ghost/proxy/
in	your	web	browser	to	begin	interacting	with	Ghost.

Ghost	+	MySQL

http://localhost:8001/api/v1/namespaces/default/services/ghost/proxy/

Of	course,	this	example	isn’t	very	scalable,	or	even	reliable,	since	the	contents	of
the	blog	are	stored	in	a	local	file	inside	the	container.	A	more	scalable	approach
is	to	store	the	blog’s	data	in	a	MySQL	database.

To	do	this,	first	modify	config.js	to	include:

...

database:	{

			client:	'mysql',

			connection:	{

					host					:	'mysql',

					user					:	'root',

					password	:	'root',

					database	:	'ghost_db',

					charset		:	'utf8'

			}

	},

...

Next,	create	a	new	ghost-config	ConfigMap	object:

$	kubectl	create	configmap	ghost-config-mysql	--from-file	config.js

Then	update	the	Ghost	deployment	to	change	the	name	of	the	ConfigMap
mounted	from	config-map	to	config-map-mysql:

...

						-	configMap:

										name:	ghost-config-mysql

...

Using	the	instructions	from	“Kubernetes-Native	Storage	with	StatefulSets”,
deploy	a	MySQL	server	in	your	Kubernetes	cluster.	Make	sure	that	it	has	a
service	named	mysql	defined	as	well.

You	will	need	to	create	the	database	in	the	MySQL	database:

$	kubectl	exec	-it	mysql-zzmlw	--	mysql	-u	root	-p

Enter	password:

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

...

mysql>	create	database	ghost_db;

...

Finally,	perform	a	rollout	to	deploy	this	new	configuration.

$	kubectl	apply	-f	ghost.yaml

Because	your	Ghost	server	is	now	decoupled	from	its	database,	you	can	scale	up
your	Ghost	server	and	it	will	continue	to	share	the	data	across	all	replicas.

Edit	ghost.yaml	to	set	spec.replicas	to	3,	then	run:

$	kubectl	apply	-f	ghost.yaml

Your	ghost	installation	is	now	scaled	up	to	three	replicas.

Redis
Redis	is	a	popular	in-memory	key/value	store,	with	numerous	additional
features.	It’s	an	interesting	application	to	deploy	because	it	is	a	good	example	of
the	value	of	the	Kubernetes	Pod	abstraction.	This	is	because	a	reliable	Redis
installation	actually	is	two	programs	working	together.	The	first	is	redis-
server,	which	implements	the	key/value	store,	and	the	other	is	redis-sentinel,
which	implements	health	checking	and	failover	for	a	replicated	Redis	cluster.

When	Redis	is	deployed	in	a	replicated	manner,	there	is	a	single	master	server
that	can	be	used	for	both	read	and	write	operations.	Additionally,	there	are	other
replica	servers	that	duplicate	the	data	written	to	the	master	and	can	be	used	for
load-balancing	read	operations.	Any	of	these	replicas	can	fail	over	to	become	the
master	if	the	original	master	fails.	This	failover	is	performed	by	the	Redis
sentinel.	In	our	deployment,	both	a	Redis	server	and	a	Redis	sentinel	are
colocated	in	the	same	file.

Configuring	Redis
As	before,	we’re	going	to	use	Kubernetes	ConfigMaps	to	configure	our	Redis
installation.	Redis	needs	separate	configurations	for	the	master	and	slave
replicas.	To	configure	the	master,	create	a	file	named	master.conf	that	contains
the	code	in	Example	14-5.

Example	14-5.	master.conf
bind	0.0.0.0

port	6379

dir	/redis-data

This	directs	Redis	to	bind	to	all	network	interfaces	on	port	6379	(the	default
Redis	port)	and	store	its	files	in	the	/redis-data	directory.

The	slave	configuration	is	identical,	but	it	adds	a	single	slaveof	directive.
Create	a	file	named	slave.conf	that	contains	what’s	in	Example	14-6.

Example	14-6.	slave.conf
bind	0.0.0.0

port	6379

dir	.

slaveof	redis-0.redis	6379

Notice	that	we	are	using	redis-0.redis	for	the	name	of	the	master.	We	will	set
up	this	name	using	a	service	and	a	StatefulSet.

We	also	need	a	configuration	for	the	Redis	sentinel.	Create	a	file	named
sentinel.conf	with	the	contents	of	Example	14-7.

Example	14-7.	sentinel.conf
bind	0.0.0.0

port	26379

sentinel	monitor	redis	redis-0.redis	6379	2

sentinel	parallel-syncs	redis	1

sentinel	down-after-milliseconds	redis	10000

sentinel	failover-timeout	redis	20000

Now	that	we	have	all	of	our	configuration	files,	we	need	to	create	a	couple	of
simple	wrapper	scripts	to	use	in	our	StatefulSet	deployment.

The	first	script	simply	looks	at	the	hostname	for	the	Pod	and	determines	whether
this	is	the	master	or	a	slave,	and	launches	Redis	with	the	appropriate

configuration.	Create	a	file	named	init.sh	containing	the	code	in	Example	14-8.

Example	14-8.	init.sh
#!/bin/bash

if	[[${HOSTNAME}	==	'redis-0']];	then

		redis-server	/redis-config/master.conf

else

		redis-server	/redis-config/slave.conf

fi

The	other	script	is	for	the	sentinel.	In	this	case	it	is	necessary	because	we	need	to
wait	for	the	redis-0.redis	DNS	name	to	become	available.	Create	a	script
named	sentinel.sh	containing	the	code	in	Example	14-9.

Example	14-9.	sentinel.sh
#!/bin/bash

while	!	ping	-c	1	redis-0.redis;	do

		echo	'Waiting	for	server'

		sleep	1

done

redis-sentinel	/redis-config/sentinel.conf

Now	we	need	to	package	all	of	these	files	up	into	a	ConfigMap	object.	You	can
do	this	with	a	single	command	line:

$	kubectl	create	configmap	\

		--from-file=slave.conf=./slave.conf	\

		--from-file=master.conf=./master.conf	\

		--from-file=sentinel.conf=./sentinel.conf	\

		--from-file=init.sh=./init.sh	\

		--from-file=sentinel.sh=./sentinel.sh	\

		redis-config

Creating	a	Redis	Service
The	next	step	in	deploying	Redis	is	to	create	a	Kubernetes	service	that	will
provide	naming	and	discovery	for	the	Redis	replicas	(e.g.,	redis-0.redis).	To
do	this,	we	create	a	service	without	a	cluster	IP	address	(Example	14-10).

Example	14-10.	redis-service.yaml
apiVersion:	v1

kind:	Service

metadata:

		name:	redis

spec:

		ports:

		-	port:	6379

				name:	peer

		clusterIP:	None

		selector:

				app:	redis

You	can	create	this	service	with	kubectl	apply	-f	redis-service.yaml.
Don’t	worry	that	the	Pods	for	the	service	don’t	exist	yet.	Kubernetes	doesn’t
care;	it	will	add	the	right	names	when	the	Pods	are	created.

Deploying	Redis
We’re	ready	to	deploy	our	Redis	cluster.	To	do	this	we’re	going	to	use	a
StatefulSet.	We	introduced	StatefulSets	in	“Manually	Replicated	MongoDB	with
StatefulSets”,	when	we	discussed	our	MongoDB	installation.	StatefulSets
provide	indexing	(e.g.,	redis-0.redis)	as	well	as	ordered	creation	and	deletion
semantics	(redis-0	will	always	be	created	before	redis-1,	and	so	on).	They’re
quite	useful	for	stateful	applications	like	Redis,	but	honestly,	they	basically	look
like	Kubernetes	Deployments.	For	our	Redis	cluster,	here’s	what	the	StatefulSet
looks	like	Example	14-11.

Example	14-11.	redis.yaml
apiVersion:	apps/v1beta1

kind:	StatefulSet

metadata:

		name:	redis

spec:

		replicas:	3

		serviceName:	redis

		template:

				metadata:

						labels:

								app:	redis

				spec:

						containers:

						-	command:	[sh,	-c,	source	/redis-config/init.sh]

								image:	redis:3.2.7-alpine

								name:	redis

								ports:

								-	containerPort:	6379

										name:	redis

								volumeMounts:

								-	mountPath:	/redis-config

										name:	config

								-	mountPath:	/redis-data

										name:	data

						-	command:	[sh,	-c,	source	/redis-config/sentinel.sh]

								image:	redis:3.2.7-alpine

								name:	sentinel

								volumeMounts:

								-	mountPath:	/redis-config

										name:	config

						volumes:

						-	configMap:

										defaultMode:	420

										name:	redis-config

								name:	config

						-	emptyDir:

								name:	data

You	can	see	that	there	are	two	containers	in	this	Pod.	One	runs	the	init.sh	script
that	we	created	and	the	main	Redis	server,	and	the	other	is	the	sentinel	that

monitors	the	servers.

You	can	also	note	that	there	are	two	volumes	defined	in	the	Pod.	One	is	the
volume	that	uses	our	ConfigMap	to	configure	the	two	Redis	applications,	and
the	other	is	a	simple	emptyDir	volume	that	is	mapped	into	the	Redis	server
container	to	hold	the	application	data	so	that	it	survives	a	container	restart.	For	a
more	reliable	Redis	installation	this	could	be	a	network-attached	disk,	as
discussed	in	Chapter	13.

Now	that	we’ve	defined	our	Redis	cluster,	we	can	create	it	using:

$	kubectl	apply	-f	redis.yaml

Playing	with	Our	Redis	Cluster
To	demonstrate	that	we’ve	actually	successfully	created	a	Redis	cluster,	we	can
perform	some	tests.

First,	we	can	determine	which	server	the	Redis	sentinel	believes	is	the	master.	To
do	this,	we	can	run	the	redis-cli	command	in	one	of	the	pods:

$	kubectl	exec	redis-2	-c	redis	\

		--	redis-cli	-p	26379	sentinel	get-master-addr-by-name	redis

This	should	print	out	the	IP	address	of	the	redis-0	pod.	You	can	confirm	this
using	kubectl	get	pods	-o	wide.

Next,	we’ll	confirm	that	the	replication	is	actually	working.

To	do	this,	first	try	to	read	the	value	foo	from	one	of	the	replicas:

$	kubectl	exec	redis-2	-c	redis	--	redis-cli	-p	6379	get	foo

You	should	see	no	data	in	the	response.

Next,	try	to	write	that	data	to	a	replica:

$	kubectl	exec	redis-2	-c	redis	--	redis-cli	-p	6379	set	foo	10

READONLY	You	can't	write	against	a	read	only	slave.

You	can’t	write	to	a	replica,	because	it’s	read-only.	Let’s	try	the	same	command
against	redis-0,	which	is	the	master:

$	kubectl	exec	redis-0	-c	redis	--	redis-cli	-p	6379	set	foo	10

OK

Now	try	the	original	read	from	a	replica:

$	kubectl	exec	redis-2	-c	redis	--	redis-cli	-p	6379	get	foo

10

This	shows	that	our	cluster	is	set	up	correctly,	and	data	is	replicating	between
masters	and	slaves.

Summary
In	the	preceding	sections	we	described	how	to	deploy	a	variety	of	applications
using	assorted	Kubernetes	concepts.	We	saw	how	to	put	together	service-based
naming	and	discovery	to	deploy	web	frontends	like	Ghost	as	well	as	API	servers
like	Parse,	and	we	saw	how	Pod	abstraction	makes	it	easy	to	deploy	the
components	that	make	up	a	reliable	Redis	cluster.	Regardless	of	whether	you
will	actually	deploy	these	applications	to	production,	the	examples	demonstrated
patterns	that	you	can	repeat	to	manage	your	applications	using	Kubernetes.	We
hope	that	seeing	the	concepts	we	described	in	previous	chapters	come	to	life	in
real-world	examples	helps	you	better	understand	how	to	make	Kubernetes	work
for	you.

Appendix	A.	Building	a	Raspberry	Pi
Kubernetes	Cluster

While	Kubernetes	is	often	experienced	through	the	virtual	world	of	public	cloud
computing,	where	the	closest	you	get	to	your	cluster	is	a	web	browser	or	a
terminal,	it	can	be	a	very	rewarding	experience	to	physically	build	a	Kubernetes
cluster	on	bare	metal.	Likewise,	nothing	compares	to	physically	pulling	the
power	or	network	on	a	node	and	watching	how	Kubernetes	reacts	to	heal	your
application	to	convince	you	of	its	utility.

Building	your	own	cluster	might	seem	like	both	a	challenging	and	an	expensive
effort,	but	fortunately	it	is	neither.	The	ability	to	purchase	low-cost,	system-on-
chip	computer	boards	as	well	as	a	great	deal	of	work	by	the	community	to	make
Kubernetes	easier	to	install	mean	that	it	is	possible	to	build	a	small	Kubernetes
cluster	in	a	few	hours.

In	the	following	instructions,	we	focus	on	building	a	cluster	of	Raspberry	Pi
machines,	but	with	slight	adaptations	the	same	instructions	could	be	made	to
work	with	a	variety	of	different	single-board	machines.

Parts	List
The	first	thing	you	need	to	do	is	assemble	the	pieces	for	your	cluster.	In	all	of	the
examples	here,	we’ll	assume	a	four-node	cluster.	You	could	build	a	cluster	of
three	nodes,	or	even	a	cluster	of	a	hundred	nodes	if	you	wanted	to,	but	four	is	a
pretty	good	number.

To	start,	you’ll	need	to	purchase	(or	scrounge)	the	various	pieces	needed	to	build
the	cluster.	Here	is	the	shopping	list,	with	some	approximate	prices	as	of	the	time
of	writing:

1.	 Four	Raspberry	Pi	3	boards	(Raspberry	Pi	2	will	also	work)	—	$160

2.	 Four	SDHC	memory	cards,	at	least	8	GB	(buy	high-quality	ones!)	—
$30–50

3.	 Four	12-inch	Cat.	6	Ethernet	cables	—	$10

4.	 Four	12-inch	USB	A–Micro	USB	cables	—	$10

5.	 One	5-port	10/100	Fast	Ethernet	switch	—	$10

6.	 One	5-port	USB	charger	—	$25

7.	 One	Raspberry	Pi	stackable	case	capable	of	holding	four	Pis	—	$40	(or
build	your	own)

8.	 One	USB-to-barrel	plug	for	powering	the	Ethernet	switch	(optional)	—
$5

The	total	for	the	cluster	comes	out	to	be	about	$300,	which	you	can	drop	down
to	$200	by	building	a	three-node	cluster	and	skipping	the	case	and	the	USB
power	cable	for	the	switch	(though	the	case	and	the	cable	really	clean	up	the
whole	cluster).

One	other	note	on	memory	cards:	do	not	scrimp	here.	Low-end	memory	cards
behave	unpredictably	and	make	your	cluster	really	unstable.	If	you	want	to	save
some	money,	buy	a	smaller,	high-quality	card.	High-quality	8	GB	cards	can	be
had	for	around	$7	each	online.

Anyway,	once	you	have	your	parts,	you’re	ready	to	move	on	to	building	the
cluster.

These	instructions	also	assume	that	you	have	a	device	capable	of	flashing	an
SDHC	card.	If	you	do	not,	you	will	need	to	purchase	a	USB	→	memory	card
reader/writer.

Flashing	Images
The	default	Raspbian	image	now	supports	Docker	through	the	standard	install
methods,	but	to	make	things	even	easier,	the	Hypriot	project	provides	images
with	Docker	preinstalled.

Visit	the	Hypriot	downloads	page	and	download	the	latest	stable	image.	Unzip
the	image,	and	you	should	now	have	an	.img	file.	The	Hypriot	project	also
provides	really	excellent	documentation	for	writing	this	image	to	your	memory
card:

macOS

Windows

Linux

Write	the	same	image	onto	each	of	your	memory	cards.

http://hypriot.com
http://blog.hypriot.com/downloads/
http://bit.ly/hypriot-docker
http://bit.ly/hypriot-windows
http://bit.ly/hypriot-linux

First	Boot:	Master
The	first	thing	to	do	is	to	boot	just	your	master	node.	Assemble	your	cluster,	and
decide	which	is	going	to	be	the	master	node.	Insert	the	memory	card,	plug	the
board	into	an	HDMI	output,	and	plug	a	keyboard	into	the	USB	port.

Next,	attach	the	power	to	boot	the	board.

Log	in	at	the	prompt	using	the	username	pirate	and	the	password	hypriot.

WARNING
The	very	first	thing	you	should	do	with	your	Raspberry	Pi	(or	any	new	device)	is	to	change	the
default	password.	The	default	password	for	every	type	of	install	everywhere	is	well	known	by
people	who	will	misbehave	given	a	default	login	to	a	system.	This	makes	the	internet	less	safe
for	everyone.	Please	change	your	default	passwords!

Setting	Up	Networking
The	next	step	is	to	set	up	networking	on	the	master.

First,	set	up	WiFi.	This	is	going	to	be	the	link	between	your	cluster	and	the
outside	world.	Edit	the	/boot/device-init.yaml	file.	Update	the	WiFi	SSID	and
password	to	match	your	environment.	If	you	ever	want	to	switch	networks,	this
is	the	file	you	need	to	edit.	Once	you	have	edited	this,	reboot	with	sudo	reboot
and	validate	that	your	networking	is	working.

The	next	step	in	networking	is	to	set	up	a	static	IP	address	for	your	cluster’s
internal	network.	To	do	this,	edit	/etc/network/interfaces.d/eth0	to	read:

allow-hotplug	eth0

iface	eth0	inet	static

				address	10.0.0.1

				netmask	255.255.255.0

				broadcast	10.0.0.255

				gateway	10.0.0.1

This	sets	the	main	Ethernet	interface	to	have	the	statically	allocated	address
10.0.0.1.

Reboot	the	machine	to	claim	the	10.0.0.1	address.

Next,	we’re	going	to	install	DHCP	on	this	master	so	it	will	allocate	addresses	to
the	worker	nodes.	Run:

$	apt-get	install	isc-dhcp-server

Then	configure	the	DHCP	server	as	follows:

#	Set	a	domain	name,	can	basically	be	anything

option	domain-name	"cluster.home";

#	Use	Google	DNS	by	default,	you	can	substitute	ISP-supplied	values	here

option	domain-name-servers	8.8.8.8,	8.8.4.4;

#	We'll	use	10.0.0.X	for	our	subnet

subnet	10.0.0.0	netmask	255.255.255.0	{

				range	10.0.0.1	10.0.0.10;

				option	subnet-mask	255.255.255.0;

				option	broadcast-address	10.0.0.255;

				option	routers	10.0.0.1;

}

default-lease-time	600;

max-lease-time	7200;

authoritative;

Restart	the	DHCP	server	with	sudo	systemctl	restart	dhcpd.

Now	your	machine	should	be	handing	out	IP	addresses.	You	can	test	this	by
hooking	up	a	second	machine	to	the	switch	via	the	Ethernet.	This	second
machine	should	get	the	address	10.0.0.2	from	the	DHCP	server.

Remember	to	edit	the	/boot/device-init.yaml	file	to	rename	this	machine	to	node-
1.

The	final	step	in	setting	up	networking	is	setting	up	network	address	translation
(NAT)	so	that	your	nodes	can	reach	the	public	internet	(if	you	want	them	to	be
able	to	do	so).

Edit	/etc/sysctl.conf	and	set	net.ipv4.ip_forward=1	to	turn	on	IP	forwarding.

Then	edit	/etc/rc.local	(or	the	equivalent)	and	add	iptables	rules	for	forwarding
from	eth0	to	wlan0	(and	back):

$	iptables	-t	nat	-A	POSTROUTING	-o	wlan0	-j	MASQUERADE

$	iptables	-A	FORWARD	-i	wlan0	-o	eth0	-m	state	\

		--state	RELATED,ESTABLISHED	-j	ACCEPT

$	iptables	-A	FORWARD	-i	eth0	-o	wlan0	-j	ACCEPT

At	this	point,	basic	networking	setup	should	be	complete.	Plug	in	and	power	up
the	remaining	two	boards	(you	should	see	them	assigned	the	addresses	10.0.0.3
and	10.0.0.4).	Edit	the	/boot/device-init.yaml	file	on	each	machine	to	name	them
node-2	and	node-3,	respectively.

Validate	this	by	first	looking	at	/var/lib/dhcp/dhcpd.leases	and	then	SSH	to	the
nodes	(remember	again	to	change	the	default	password	first	thing).	Validate	that
the	nodes	can	connect	to	the	external	internet.

Extra	credit
There	are	a	couple	of	extra	things	in	networking	that	make	it	easier	to	manage
your	cluster.

The	first	is	to	edit	/etc/hosts	on	each	machine	to	map	the	names	to	the	right
addresses.	On	each	machine,	add:

...

10.0.0.1	kubernetes

10.0.0.2	node-1

10.0.0.3	node-2

10.0.0.4	node-3

...

Now	you	can	use	those	names	when	connecting	to	those	machines.

The	second	is	to	set	up	passwordless	SSH	access.	To	do	this,	run	ssh-keygen
and	then	copy	the	$HOME/.ssh/id_rsa.pub	file	into
/home/pirate/.ssh/authorized_keys	on	node-1,	node-2,	and	node-3.

Installing	Kubernetes
At	this	point	you	should	have	all	nodes	up,	with	IP	addresses	and	capable	of
accessing	the	internet.	Now	it’s	time	to	install	Kubernetes	on	all	of	the	nodes.

Using	SSH,	run	the	following	commands	on	all	nodes	to	the	kubelet	and
kubeadm	tools.	You	will	need	to	be	root	for	the	following	commands.	Use	sudo
su	to	elevate	to	the	root	user.

First,	add	the	encryption	key	for	the	packages:

#	curl	-s	https://packages.cloud.google.com/apt/doc/apt-key.gpg	|	apt-key	add	-

Then	add	the	repository	to	your	list	of	repositories:

#	echo	"deb	http://apt.kubernetes.io/	kubernetes-xenial	main"	\

		>>	/etc/apt/sources.list.d/kubernetes.list

Finally,	update	and	install	the	Kubernetes	tools.	This	will	also	update	all
packages	on	your	system	for	good	measure:

#	apt-get	update

$	apt-get	upgrade

$	apt-get	install	-y	kubelet	kubeadm	kubectl	kubernetes-cni

Setting	Up	the	Cluster
On	the	master	node	(the	one	running	DHCP	and	connected	to	the	internet),	run:

$	kubeadm	init	--pod-network-cidr	10.244.0.0/16	\

--api-advertise-addresses	10.0.0.1

Note	that	you	are	advertising	your	internal-facing	IP	address,	not	your	external
address.

Eventually,	this	will	print	out	a	command	for	joining	nodes	to	your	cluster.	It
will	look	something	like:

$	kubeadm	join	--token=<token>	10.0.0.1

SSH	onto	each	of	the	worker	nodes	in	your	cluster	and	run	that	command.

When	all	of	that	is	done,	you	should	be	able	to	run	and	see	your	working	cluster:

$	kubectl	get	nodes

Setting	up	cluster	networking
You	have	your	node-level	networking	setup,	but	you	need	to	set	up	the	pod-to-
pod	networking.	Since	all	of	the	nodes	in	your	cluster	are	running	on	the	same
physical	Ethernet	network,	you	can	simply	set	up	the	correct	routing	rules	in	the
host	kernels.

The	easiest	way	to	manage	this	is	to	use	the	Flannel	tool	created	by	CoreOS.
Flannel	supports	a	number	of	different	routing	modes;	we	will	use	the	host-gw
mode.	You	can	download	an	example	configuration	from	the	Flannel	project
page:

$	curl	https://rawgit.com/coreos/flannel/master/Documentation/kube-flannel.yml	\

		>	kube-flannel.yaml

The	default	configuration	that	CoreOS	supplies	uses	vxlan	mode	instead,	and
also	uses	the	AMD64	architecture	instead	of	ARM.	To	fix	this,	open	up	that
configuration	file	in	your	favorite	editor;	replace	vxlan	with	host-gw	and
replace	all	instances	of	amd64	with	arm.

http://bit.ly/2vgBsKU
https://github.com/coreos/flannel

You	can	also	do	this	with	the	sed	tool	in	place:

$	curl	https://rawgit.com/coreos/flannel/master/Documentation/kube-flannel.yml	\

|		sed	"s/amd64/arm/g"	|	sed	"s/vxlan/host-gw/g"	\

		>	kube-flannel.yaml

Once	you	have	your	updated	kube-flannel.yaml	file,	you	can	create	the	Flannel
networking	setup	with:

$	kubectl	apply	-f	kube-flannel.yaml

This	will	create	two	objects,	a	ConfigMap	used	to	configure	Flannel	and	a
DaemonSet	that	runs	the	actual	Flannel	daemon.	You	can	inspect	these	with:

$	kubectl	describe	--namespace=kube-system	configmaps/kube-flannel-cfg

$	kubectl	describe	--namespace=kube-system	daemonsets/kube-flannel-ds

Setting	up	the	GUI
Kubernetes	ships	with	a	rich	GUI.	You	can	install	it	by	running:

$	DASHSRC=https://raw.githubusercontent.com/kubernetes/dashboard/master/

$	curl	-sSL	\

		$DASHSRC/src/deploy/kubernetes-dashboard.yaml	\

		|	sed	"s/amd64/arm/g"	\

		|	kubectl	apply	-f	-

To	access	this	UI,	you	can	run	kubectl	proxy	and	then	point	your	browser	to
http://localhost:8001/ui,	where	localhost	is	local	to	the	master	node	in	your
cluster.	To	view	this	from	your	laptop/desktop,	you	may	need	to	set	up	an	SSH
tunnel	to	the	root	node	using	ssh	-L8001:localhost:8001	<master-ip-
address>.

http://localhost:8001/ui

Summary
At	this	point	you	should	have	a	working	Kubernetes	cluster	operating	on	your
Raspberry	Pis.	This	can	be	great	for	exploring	Kubernetes.	Schedule	some	jobs,
open	up	the	UI,	and	try	breaking	your	cluster	by	rebooting	machines	or
disconnecting	the	network.

Index

A

abstracting	infrastructure,	Abstracting	Your	Infrastructure

Alpine	Linux	distribution,	Dockerfiles

Amazon	Web	Services	(AWS),	installing	Kubernetes	on,	Installing
Kubernetes	on	Amazon	Web	Services

annotations,	Labeling	and	Annotating	Objects-Labeling	and	Annotating
Objects,	Annotations-Defining	Annotations

and	finding	ReplicaSets,	Finding	a	ReplicaSet	from	a	Pod

metadata	section,	Defining	Annotations

API	objects

label	selectors	in,	Label	Selectors	in	API	Objects-Label	Selectors	in	API
Objects

viewing,	kubectl	commands	for,	Viewing	Kubernetes	API	Objects

application	container	images,	Container	Images-The	Docker	Image	Format

building	with	Docker,	Dockerfiles-Optimizing	Image	Sizes

Dockerfiles,	Dockerfiles

image	security,	Image	Security

optimizing	image	sizes,	Exploring	the	kuard	Application

cleaning	up,	Cleanup

container	layering,	The	Docker	Image	Format

Docker	container	runtime,	The	Docker	Container	Runtime-Limiting	CPU
resources

Docker	image	format,	Container	Images-The	Docker	Image	Format

removing	files,	Optimizing	Image	Sizes

storing	in	remote	registry,	Storing	Images	in	a	Remote	Registry-Storing
Images	in	a	Remote	Registry

apt-get	update	tool,	The	Value	of	Immutability

autoscaling,	of	ReplicaSets,	Autoscaling	a	ReplicaSet-Autoscaling	a
ReplicaSet

az	tool,	Installing	Kubernetes	with	Azure	Container	Service,	Installing
Kubernetes	on	Amazon	Web	Services

Azure

Cloud	shell,	Installing	Kubernetes	with	Azure	Container	Service

Container	Service,	Installing	Kubernetes	with	Azure	Container	Service-
Installing	Kubernetes	with	Azure	Container	Service

portal,	Installing	Kubernetes	with	Azure	Container	Service

C

cache,	Cache

Capping	Resource	Usage	with	Limits	example,	kuard-pod-reslim.yaml,
Capping	Resource	Usage	with	Limits

cloud	integration,	Cloud	Integration-Cloud	Integration

clusters

checking	status	of,	Checking	Cluster	Status-Checking	Cluster	Status

cluster	IPs,	kube-proxy	and	Cluster	IPs

components	of,	Cluster	Components-Kubernetes	UI

ConfigMaps,	ConfigMaps-Using	a	ConfigMap

creating,	Creating	ConfigMaps-Creating	ConfigMaps,	Creating

Ghost,	example,	Configuring	Ghost-Configuring	Ghost

kuard	manifest,	Using	a	ConfigMap

kuard-config.yaml,	Using	a	ConfigMap

listing,	Listing-Listing

MongoDB	cluster,	example,	Automating	MongoDB	Cluster	Creation-
Automating	MongoDB	Cluster	Creation

my-config.txt,	Creating	ConfigMaps

naming	constraints,	Naming	Constraints-Naming	Constraints

Redis,	example,	Configuring	Redis-Configuring	Redis

updating,	Updating

editing	current	version,	Edit	current	version

from	file,	Update	from	file

live	updates,	Live	updates

recreating	and,	Recreate	and	update

using,	Using	a	ConfigMap-Using	a	ConfigMap

valid	and	invalid	names,	Naming	Constraints-Naming	Constraints

configuration,	declarative,	Declarative	Configuration

container	registry,	Container	Images

containers

benefits	of,	Introduction-Efficiency

system	containers,	The	Docker	Image	Format

contexts,	Contexts

copying	files,	to	and	from	containers,	Copying	Files	to	and	from	Containers

CrashLoopBackOff,	Pod	failure-Pod	failure

current	state,	reconciliation	loop,	Reconciliation	Loops

D

DaemonSets,	DaemonSets-Summary

API	object,	Kubernetes	Proxy

creating,	Creating	DaemonSets-Creating	DaemonSets

deleting,	Deleting	a	DaemonSet

fluentd	logging	agent	example,	Creating	DaemonSets-Creating
DaemonSets

limiting	to	specific	nodes,	Limiting	DaemonSets	to	Specific	Nodes-Node
Selectors

adding	labels	to	nodes,	Adding	Labels	to	Nodes-Adding	Labels	to

Nodes

node	selectors,	Node	Selectors-Node	Selectors

nginx	example,	Node	Selectors

Pods,	updating	with	for	loop,	Updating	a	DaemonSet	by	Deleting
Individual	Pods

scheduler,	DaemonSet	Scheduler

updating,	Updating	a	DaemonSet

debugging	containers,	kubectl	commands	for,	Debugging	Commands

declarative	configuration,	Declarative	Configuration

decoupling

APIs,	Decoupling

components	via	load	balancers,	Decoupling

load	balancers,	Decoupling

microservices,	colocation,	Scaling	Development	Teams	with	Microservices

Pods	and	ReplicaSets,	Relating	Pods	and	ReplicaSets

servers	via	APIs,	Decoupling

default	passwords,	First	Boot:	Master

deleting

DaemonSets,	Deleting	a	DaemonSet

Pods,	Deleting	a	Pod

ReplicaSets,	Deleting	ReplicaSets

deploying	real-world	applications,	Deploying	Real-World	Applications-
Summary

Ghost,	Ghost-Ghost	+	MySQL

Parse	server,	Parse

building,	Building	the	parse-server

deploying,	Deploying	the	parse-server

prerequisites,	Prerequisites

testing,	Testing	Parse

Redis,	Redis-Playing	with	Our	Redis	Cluster

configuring,	Configuring	Redis-Configuring	Redis

creating,	Creating	a	Redis	Service

deploying,	Creating	a	Redis	Service-Deploying	Redis

playing	without	cluster,	Playing	with	Our	Redis	Cluster

Deployments,	Kubernetes	DNS,	Deployments-Summary

change-cause	annotation,	Updating	a	Container	Image-Rollout	History

creating,	Creating	Deployments-Creating	Deployments

deleting,	Deleting	a	Deployment

lifecycle	illustration,	Slowing	Rollouts	to	Ensure	Service	Health

managing,	Managing	Deployments

overview,	Deployments-Deployment	Internals

readiness	checks,	Slowing	Rollouts	to	Ensure	Service	Health

rolling	update,	Deployments

strategies	for,	Deployment	Strategies-Slowing	Rollouts	to	Ensure	Service
Health

recreate	strategy,	Recreate	Strategy

RollingUpdate	strategy,	RollingUpdate	Strategy-Configuring	a	rolling
update

slowing	rollouts	to	ensure	stable	service,	Slowing	Rollouts	to	Ensure
Service	Health-Slowing	Rollouts	to	Ensure	Service	Health

strategy	object,	Creating	Deployments-Creating	Deployments

updating,	Updating	a	Container	Image-Rollout	History

rollout	history,	Rollout	History-Rollout	History

scaling	Deployment,	Scaling	a	Deployment

updating	container	image,	Updating	a	Container	Image-Updating	a
Container	Image

YAML	file,	example,	Creating	Deployments-Creating	Deployments

desired	state,	reconciliation	loop,	Reconciliation	Loops

destroying	objects,	Creating,	Updating,	and	Destroying	Kubernetes	Objects

distributed	system,	Introduction

DNS,	Kubernetes	DNS,	Service	DNS-Service	DNS

Docker

building	application	container	images	with,	Dockerfiles

Dockerfiles,	Dockerfiles

image	security,	Image	Security

optimizing	image	sizes,	Image	Security-Optimizing	Image	Sizes

commands,	The	Docker	Image	Format,	Dockerfiles

container	runtime,	The	Docker	Container	Runtime-Limiting	CPU
resources

image	format,	Container	Images-The	Docker	Image	Format

Docker	Hub,	Storing	Images	in	a	Remote	Registry

docker-gc	tool,	Cleanup,	Google	Container	Service

dynamic	volume	provisioning,	Dynamic	Volume	Provisioning

E

edit	configmap,	Edit	current	version

efficiency,	Efficiency

endpoints,	Endpoints-Endpoints

Endpoints	resource,	Services	Without	Selectors

"Environment"	section,	Cluster	IP	Environment	Variables

environment	variables

cluster	IPs,	Cluster	IP	Environment	Variables

use	of	ConfigMap,	Using	a	ConfigMap

environments,	high	fidelity	between,	Importing	External	Services

ExternalName	service	type,	Services	Without	Selectors

F

files,	copying	to	and	from	containers,	Copying	Files	to	and	from	Containers

filesystem,	use	of	ConfigMap,	Using	a	ConfigMap

Flannel	tool,	Setting	up	cluster	networking

G

Ghost,	Ghost-Ghost	+	MySQL

Google

Container	Registry,	Storing	Images	in	a	Remote	Registry

Container	Service,	Google	Container	Service

H

"headless"	service,	Manually	Replicated	MongoDB	with	StatefulSets

Health	checks	example,	Liveness	Probe-Readiness	Probe

Heapster	Pod,	Autoscaling	a	ReplicaSet

horizontal	pod	autoscaling	(HPA),	Autoscaling	a	ReplicaSet-Autoscaling	a
ReplicaSet

host	filesystem,	mounting,	Mounting	the	host	filesystem

Hypriot	project,	Flashing	Images

I

immutability,	value	of,	The	Value	of	Immutability-The	Value	of
Immutability

imperative	configuration,	Declarative	Configuration

imperative	scaling	of	ReplicaSets,	Imperative	Scaling	with	kubectl	Scale

installing	Kubernetes,	on	public	cloud	provider,	Installing	Kubernetes	on	a
Public	Cloud	Provider

J

Jobs,	Jobs-Summary

configuration,	example,	One	Shot

consumer	mode,	Creating	the	consumer	job-Creating	the	consumer	job

Job	object,	The	Job	Object

Job	patterns,	Job	Patterns-Creating	the	consumer	job

one	shot,	One	Shot-Pod	failure

parallelism,	Parallelism-Parallelism

work	queue,	Work	Queues-Creating	the	consumer	job

job-oneshot-failure1-yaml,	Pod	failure-Pod	failure

job-oneshot.yaml,	One	Shot

ReplicaSet-managed	work	queue,	Work	Queues

restartPolicy	field,	Pod	failure

service	queue,	Starting	a	work	queue

work	queue,	Loading	up	the	queue-Loading	up	the	queue

K

KaaS	(Kubernetes-as-a-Service),	Separation	of	Concerns	for	Consistency
and	Scaling

kops,	for	installing	Kubernetes	on	AWS,	Installing	Kubernetes	on	Amazon
Web	Services

kuard	application,	Dockerfiles,	Exploring	the	kuard	Application

database,	Running	Containers	with	Docker

DNS	resolver	section,	Service	DNS

File	system	browser	tab,	Using	a	ConfigMap

GitHub	URL,	Creating	and	Running	Containers

image,	Storing	Images	in	a	Remote	Registry-Storing	Images	in	a	Remote
Registry

MemQ	Server	tab,	Starting	a	work	queue

Server	Env	tab,	Using	a	ConfigMap

TLS	key	and	certificate,	Creating	Secrets

web	interface,	Exploring	the	kuard	Application,	Using	Port	Forwarding

kube-apiserver	binary,	--service-cluster-ip-range,	kube-proxy	and	Cluster
IPs

kube-proxy,	kube-proxy	and	Cluster	IPs

kube-system	namespace,	Cluster	Components

kubeadm,	Installing	Kubernetes

kubectl	tool,	Running	Pods,	Using	Port	Forwarding,	Request	limit	details

checking	cluster	status,	Checking	Cluster	Status-Checking	Cluster	Status

commands,	Contexts-Debugging	Commands

annotate,	Labeling	and	Annotating	Objects-Labeling	and	Annotating
Objects

apply,	Creating,	Updating,	and	Destroying	Kubernetes	Objects,
Running	Pods,	Liveness	Probe,	Declaratively	Scaling	with	kubectl
apply,	One	Shot,	Ghost	+	MySQL-Redis

autoscale	rs,	Autoscaling	based	on	CPU

config	set-context,	Namespaces

cp,	Debugging	Commands,	Copying	Files	to	and	from	Containers

create,	Creating,	Updating,	and	Destroying	Kubernetes	Objects,	Pod
Templates,	Creating	DaemonSets,	Using	a	ConfigMap,	Running	a
MySQL	Singleton,	Manually	Replicated	MongoDB	with	StatefulSets,
Automating	MongoDB	Cluster	Creation,	Configuring	Ghost-Cleaning
up,	Configuring	Ghost,	Setting	up	cluster	networking

create	configmap,	Creating	ConfigMaps,	Creating,	Ghost	+	MySQL

create	secret	docker-registry,	Private	Docker	Registries

create	secret	generic,	Creating	Secrets,	Creating-Update	from	file

creating,	updating,	and	destroying	objects,	Creating,	Updating,	and
Destroying	Kubernetes	Objects

delete,	Creating,	Updating,	and	Destroying	Kubernetes	Objects,

Creating	a	Pod,	Deleting	a	Pod,	Endpoints,	Deleting	a	DaemonSet,
Parallelism,	Deleting	a	Deployment

delete	deployments,	Cleanup

delete	jobs,	One	Shot,	Pod	failure

delete	rs,	Deleting	ReplicaSets

delete	rs,svc,job,	Cleaning	up

describe,	Viewing	Kubernetes	API	Objects,	Pod	Details,	Liveness
Probe,	Finding	a	Set	of	Pods	for	a	ReplicaSet,	Listing,	Listing,	Setting
up	cluster	networking

describe	deployments,	Managing	Deployments

describe	endpoints,	Endpoints

describe	jobs,	One	Shot

describe	nodes,	Listing	Kubernetes	Worker	Nodes-Listing	Kubernetes
Worker	Nodes

describe	rs,	Inspecting	a	ReplicaSet

describe	secrets,	Creating	Secrets

describe	service,	Looking	Beyond	the	Cluster,	Cloud	Integration

edit,	Creating,	Updating,	and	Destroying	Kubernetes	Objects,
Readiness	Checks

edit	service,	Looking	Beyond	the	Cluster

exec,	Debugging	Commands,	Running	Commands	in	Your	Container

with	exec,	Manually	Replicated	MongoDB	with	StatefulSets,	Ghost	+
MySQL,	Playing	with	Our	Redis	Cluster

expose,	The	Service	Object,	Looking	Beyond	the	Cluster

expose	deployments,	Configuring	Ghost

for	debugging	containers,	Debugging	Commands

get,	Namespaces,	Creating	a	Pod,	Applying	Labels-Modifying	Labels

get	configmaps,	Listing

get	daemonSets,	Kubernetes	DNS

get	Deployments,	Your	First	Deployment

get	endpoints,	Endpoints-Endpoints

get	hpa,	Autoscaling	a	ReplicaSet

get	nodes,	Checking	Cluster	Status,	Adding	Labels	to	Nodes-Adding
Labels	to	Nodes,	Setting	Up	the	Cluster

get	Pods,	Running	Pods

get	pods,	Label	Selectors,	Manual	Service	Discovery,	Finding	a
ReplicaSet	from	a	Pod-Deleting	ReplicaSets,	Pod	failure-Pod	failure

get	replicasets,	Deployment	Internals,	Deployment	Internals,	Updating
a	Container	Image,	Rollout	History

get	secrets,	Listing

get	services,	Kubernetes	DNS,	Cloud	Integration

imperative	scaling	of	ReplicaSets	with,	Imperative	Scaling	with	kubectl
Scale

label,	Labeling	and	Annotating	Objects,	Modifying	Labels,	Adding
Labels	to	Nodes-Adding	Labels	to	Nodes

labeling	and	annotating	objects,	Labeling	and	Annotating	Objects-
Labeling	and	Annotating	Objects

namespaces,	Namespaces

port-forward,	Using	Port	Forwarding,	Liveness	Probe,	The	Service
Object,	Readiness	Checks,	Cluster	IP	Environment	Variables,	Starting
a	work	queue,	Starting	a	work	queue,	Using	a	ConfigMap,	Secrets
volumes,	Live	updates

proxy,	Kubernetes	UI,	Configuring	Ghost

replace,	Recreate	and	update

replace	--save-config,	Creating	Deployments

resource	requests,	Resource	Requests:	Minimum	Required	Resources

rolling-update,	Deployments

rollout,	Rolling	Update	of	a	DaemonSet,	Managing	Deployments

rollout	history,	Managing	Deployments

rollout	history	deployments,	Rollout	History-Rollout	History

rollout	pause	deployments,	Updating	a	Container	Image

rollout	resume	deployments,	Updating	a	Container	Image

rollout	status	deployments,	Updating	a	Container	Image

rollout	undo	deployments,	Rollout	History

run,	Creating	a	Pod,	Applying	Labels,	Label	Selectors,	The	Service
Object,	Manual	Service	Discovery,	One	Shot,	Your	First	Deployment

scale,	Imperative	Scaling	with	kubectl	Scale

scale	replicasets,	Deployment	Internals

version,	Installing	Kubernetes	Locally	Using	minikube,	Checking
Cluster	Status

viewing	API	objects,	Viewing	Kubernetes	API	Objects

watch,	Readiness	Checks

configuration,	Installing	Kubernetes	Locally	Using	minikube

listing	worker	nodes,	Listing	Kubernetes	Worker	Nodes-Listing
Kubernetes	Worker	Nodes

logs,	versus	log	aggregation	service,	Getting	More	Info	with	Logs

kubelet	tool,	Installing	Kubernetes

Kubernetes,	Installing	Kubernetes	on	a	Public	Cloud	Provider-Summary

benefits	of,	Introduction-Efficiency

cluster	components,	Cluster	Components-Kubernetes	UI

GUI,	Setting	up	the	GUI

installing

locally	using	minikube,	Installing	Kubernetes	on	Amazon	Web
Services-Installing	Kubernetes	Locally	Using	minikube

on	public	cloud	provider,	Installing	Kubernetes	on	a	Public	Cloud
Provider-Installing	Kubernetes	with	Azure	Container	Service

running	on	Raspberry	Pi,	Running	Kubernetes	on	Raspberry	Pi

Kubernetes-as-a-Service	(KaaS),	Separation	of	Concerns	for	Consistency
and	Scaling

kubernetes.io/created-by,	Finding	a	ReplicaSet	from	a	Pod

L

label	selectors,	Label	Selectors	in	API	Objects,	Label	Selectors	in	API
Objects

labels,	Labeling	and	Annotating	Objects-Labeling	and	Annotating	Objects,
Labels-Label	Selectors	in	API	Objects

alpaca	app,	Applying	Labels-Label	Selectors	in	API	Objects

applying,	Applying	Labels-Applying	Labels

bandicoot	app,	Applying	Labels-Label	Selectors	in	API	Objects

deployments	Venn	diagram,	Applying	Labels

modifying,	Modifying	Labels

persist	data	using,	Mounting	the	host	filesystem

pod-template-hash,	Modifying	Labels,	Label	Selectors

selectors,	Label	Selectors-Label	Selectors	in	API	Objects

legacy	servers	and	services,	Importing	External	Services

lifecycle	illustration,	Slowing	Rollouts	to	Ensure	Service	Health

limits,	capping	usage	with,	Capping	Resource	Usage	with	Limits

listing

ConfigMaps,	Listing-Listing

secrets,	Listing-Listing

live	updates,	of	ConfigMaps	and	secrets,	Live	updates

liveness	probe,	Liveness	Probe-Liveness	Probe

logs,	Getting	More	Info	with	Logs

M

manual	service	discovery,	Manual	Service	Discovery

maxSurge	parameter,	Configuring	a	rolling	update-Configuring	a	rolling
update

maxUnavailable	parameter,	Configuring	a	rolling	update-Configuring	a
rolling	update

microservice	architecture,	Scaling	Development	Teams	with	Microservices

minikube,	installing	Kubernetes	locally	using,	Installing	Kubernetes	Locally
Using	minikube-Installing	Kubernetes	Locally	Using	minikube

minReadySeconds	parameter,	Slowing	Rollouts	to	Ensure	Service	Health-
Slowing	Rollouts	to	Ensure	Service	Health

MongoDB

automating	cluster	creation,	Automating	MongoDB	Cluster	Creation-
Automating	MongoDB	Cluster	Creation

cluster,	example,	Manually	Replicated	MongoDB	with	StatefulSets-
Automating	MongoDB	Cluster	Creation

manually	replicated	with	StatefulSets,	Manually	Replicated	MongoDB
with	StatefulSets-Manually	Replicated	MongoDB	with	StatefulSets

Parse,	example,	Prerequisites

mounting	host	filesystem,	Mounting	the	host	filesystem

mutable	infrastructure,	The	Value	of	Immutability

MySQL	singleton,	Running	a	MySQL	Singleton-Running	a	MySQL
Singleton

N

namespaces,	Efficiency,	Namespaces,	Importing	External	Services-
Importing	External	Services

new	container,	building,	The	Value	of	Immutability

NewReplicaSet	field,	Managing	Deployments

nginx-fast-storage	DaemonSet,	Node	Selectors

NodeBalancer	type,	Cloud	Integration

nodeName	field,	DaemonSet	Scheduler

NodePort	feature,	Looking	Beyond	the	Cluster-Looking	Beyond	the	Cluster

O

objects

creating,	Creating,	Updating,	and	Destroying	Kubernetes	Objects

destroying,	Creating,	Updating,	and	Destroying	Kubernetes	Objects

labeling	and	annotating,	Labeling	and	Annotating	Objects-Labeling	and
Annotating	Objects

updating,	Creating,	Updating,	and	Destroying	Kubernetes	Objects

observed	state,	reconciliation	loop,	Reconciliation	Loops

OldReplicaSet	field,	Managing	Deployments

P

Parse	server,	Parse

building,	Building	the	parse-server

deploying,	Deploying	the	parse-server

prerequisites,	Prerequisites

testing,	Testing	Parse

Persist	Data	Using	Remote	Disks	example,	Persisting	Data	Using	Remote
Disks,	Putting	It	All	Together

persistent	data,	Persistent	data

persistent	volume,	Running	a	MySQL	Singleton

persistent	volume	claim	template,	Persistent	Volumes	and	StatefulSets

PersistentVolumeClaim	object,	Running	a	MySQL	Singleton,	Dynamic
Volume	Provisioning

plugins,	Abstracting	Your	Infrastructure

Pod	template	in	ReplicaSet,	Pod	Templates

Pods,	Pods-Summary

accessing,	Accessing	Your	Pod-Getting	More	Info	with	Logs

copying	files	to	and	from	containers,	Copying	Files	to	and	from
Containers

getting	info	with	logs,	Getting	More	Info	with	Logs

running	commands	in	container	with	exec,	Running	Commands	in
Your	Container	with	exec

using	port	forwarding,	Using	Port	Forwarding

creating,	Creating	a	Pod

declarative	configuration,	The	Pod	Manifest

deleting,	Deleting	a	Pod

details	about,	viewing,	Pod	Details-Pod	Details

listing,	Listing	Pods-Listing	Pods

manifest,	The	Pod	Manifest

overview,	Pods-Thinking	with	Pods

Pending	state,	Running	Pods

PersistentVolumes	object,	Deleting	a	Pod

process	health	checks,	Health	Checks-Types	of	Health	Checks

liveness	probe,	Liveness	Probe-Liveness	Probe

readiness	probe,	Readiness	Probe

types	of,	Types	of	Health	Checks

ReplicaSets	and,	The	Pod	Manifest,	Relating	Pods	and	ReplicaSets-
Quarantining	Containers

adopting	existing	containers,	Adopting	Existing	Containers

finding	ReplicaSet	from	Pod,	Finding	a	ReplicaSet	from	a	Pod

finding	set	of	Pods	for	ReplicaSet,	Finding	a	Set	of	Pods	for	a
ReplicaSet

Pod	labels,	Labels

Pod	Templates,	Pod	Templates

quarantining	containers,	Quarantining	Containers

resource	management,	Resource	Management-Request	limit	details

capping	usage	with	limits,	Capping	Resource	Usage	with	Limits

minimum	required	resources,	Resource	Management-Request	limit
details

running,	Running	Pods-Pod	Details

secret	volume,	Secrets	volumes

spec.imagePullSecrets	field,	Private	Docker	Registries

Terminating	state,	Deleting	a	Pod

using	volumes	with,	Using	Volumes	with	Pods-Mounting	the	host
filesystem

what	to	put	into,	Thinking	with	Pods

port-forwarding,	accessing	Pods	using,	Using	Port	Forwarding

process	health	checks,	Health	Checks-Types	of	Health	Checks

liveness	probe,	Liveness	Probe-Liveness	Probe

readiness	probe,	Readiness	Probe

types	of,	Types	of	Health	Checks

progressDeadlineSeconds	parameter,	Slowing	Rollouts	to	Ensure	Service
Health

proxy,	Kubernetes	Proxy

public	cloud	provider

public	cloud	provider,	installing	Kubernetes	on,	Installing	Kubernetes	on	a
Public	Cloud	Provider-Installing	Kubernetes	with	Azure	Container	Service

R

Raspberry	Pi

building	Kubernetes	cluster,	First	Boot:	Master-Summary

booting	master	node,	First	Boot:	Master-Setting	up	the	GUI

images,	Flashing	Images

parts	list,	Parts	List-Parts	List

running	Kubernetes	on,	Running	Kubernetes	on	Raspberry	Pi

readiness	checks,	Readiness	Checks-Readiness	Checks

readiness	probe,	Readiness	Probe

reconciliation	loops,	Reconciliation	Loops

recreate	strategy,	Recreate	Strategy

Redis,	Redis-Playing	with	Our	Redis	Cluster

configuring,	Configuring	Redis-Configuring	Redis

creating,	Creating	a	Redis	Service

deploying,	Deploying	Redis-Deploying	Redis

playing	without	cluster,	Playing	with	Our	Redis	Cluster

ReplicaSets,	Creating	a	Pod,	ReplicaSets-Summary

configuration,	example,	Pod	Templates

creating,	Creating	a	ReplicaSet

definition,	minimal,	ReplicaSet	Spec

deleting,	Deleting	ReplicaSets

designing	with,	Designing	with	ReplicaSets

inspecting,	Inspecting	a	ReplicaSet

finding	ReplicaSet	from	Pod,	Finding	a	ReplicaSet	from	a	Pod

finding	set	of	Pods	for	ReplicaSet,	Finding	a	Set	of	Pods	for	a
ReplicaSet

kuard-rs.yaml,	example,	ReplicaSet	Spec

managing	directly,	Deployment	Internals

metadata.name	field,	ReplicaSet	Spec

Pods	and,	Relating	Pods	and	ReplicaSets-Quarantining	Containers

adopting	existing	containers,	Adopting	Existing	Containers

finding	ReplicaSet	from	Pod,	Finding	a	ReplicaSet	from	a	Pod

finding	set	of	Pods	for	ReplicaSet,	Finding	a	Set	of	Pods	for	a
ReplicaSet

quarantining	containers,	Quarantining	Containers

reconciliation	loops,	Reconciliation	Loops

reliability	for	singleton	pod,	Running	a	MySQL	Singleton-Running	a
MySQL	Singleton

scaling,	Imperative	Scaling	with	kubectl	Scale-Declaratively	Scaling	with
kubectl	apply

autoscaling,	Autoscaling	a	ReplicaSet-Autoscaling	a	ReplicaSet

declaratively	scaling	with	kubectl	apply,	Declaratively	Scaling	with
kubectl	apply

imperative,	with	kubectl	scale,	Imperative	Scaling	with	kubectl	Scale

specifications,	ReplicaSet	Spec-Labels

Pod	labels,	Labels

Pod	Templates,	Pod	Templates

resource	management,	Resource	Management-Capping	Resource	Usage
with	Limits

capping	usage	with	limits,	Capping	Resource	Usage	with	Limits

minimum	required	resources,	Resource	Requests:	Minimum	Required
Resources-Request	limit	details

resource	requests

cpu-shares,	Request	limit	details

RestartPolicy,	Automating	MongoDB	Cluster	Creation

revisionHistoryLimit	parameter,	Rollout	History

rollback

of	change	using	declarative	configuration,	Declarative	Configuration

of	image	using	immutable	infrastructure,	The	Value	of	Immutability

rolling	update

JavaScript	library	example,	Managing	multiple	versions	of	your	service

maxSurge	parameter,	Configuring	a	rolling	update-Configuring	a	rolling
update

maxUnavailable	parameter,	Configuring	a	rolling	update-Configuring	a
rolling	update

RollingUpdate	strategy,	RollingUpdate	Strategy-Configuring	a	rolling
update

configuring	rolling	update,	Configuring	a	rolling	update-Configuring	a
rolling	update

managing	multiple	versions	of	service,	Managing	multiple	versions	of
your	service

S

scaling

autoscaling,	Easy	Scaling	for	Applications	and	Clusters

horizontal	pod	autoscaling	(HPA),	Autoscaling	a	ReplicaSet-Autoscaling
a	ReplicaSet

ReplicaSets,	Imperative	Scaling	with	kubectl	Scale-Declaratively	Scaling
with	kubectl	apply

autoscaling,	Autoscaling	a	ReplicaSet-Autoscaling	a	ReplicaSet

declaratively	scaling	with	kubectl	apply,	Declaratively	Scaling	with
kubectl	apply

imperative,	with	kubectl	scale,	Imperative	Scaling	with	kubectl	Scale

services	and	teams,	Scaling	Your	Service	and	Your	Teams-Separation	of
Concerns	for	Consistency	and	Scaling

applications	and	clusters,	Easy	Scaling	for	Applications	and	Clusters

decoupling,	Scaling	Your	Service	and	Your	Teams

separation	of	concerns	for,	Separation	of	Concerns	for	Consistency	and
Scaling-Separation	of	Concerns	for	Consistency	and	Scaling

with	microservices,	Scaling	Development	Teams	with	Microservices

vertical,	Autoscaling	a	ReplicaSet

secrets,	Secrets-Private	Docker	Registries

consuming,	Consuming	Secrets-Secrets	volumes

creating,	Creating	Secrets-Creating	Secrets,	Creating

kuard-secret-ips.yaml,	Private	Docker	Registries

kuard-secret.yaml,	Secrets	volumes

listing,	Listing-Listing

private	Docker	registries,	Private	Docker	Registries-Private	Docker
Registries

updating,	Updating

editing	current	version,	Edit	current	version

from	file,	Update	from	file

live	updates,	Live	updates

valid	and	invalid	names,	Naming	Constraints-Naming	Constraints

volumes,	Secrets	volumes-Private	Docker	Registries

security,	of	application	container	images,	Image	Security

selectors,	label,	Label	Selectors-Label	Selectors

self-healing	systems,	Self-Healing	Systems-Self-Healing	Systems

separation	of	concerns,	Separation	of	Concerns	for	Consistency	and	Scaling

Service	Discovery,	Service	Discovery-Summary

cleaning	up,	Cleanup

cloud	integration,	Cloud	Integration-Cloud	Integration

cluster	IP	environment	variables,	Cluster	IP	Environment	Variables

endpoints,	Endpoints-Endpoints

kube-proxy	and	Cluster	IPs,	kube-proxy	and	Cluster	IPs

NodePort	feature,	Looking	Beyond	the	Cluster-Looking	Beyond	the
Cluster

service	discovery

manual	service	discovery,	Manual	Service	Discovery

overview,	What	Is	Service	Discovery?-What	Is	Service	Discovery?

Service	object,	The	Service	Object-Readiness	Checks

service	environment	variables,	Cluster	IP	Environment	Variables

service	object,	cluster	ip,	The	Service	Object

service-level	agreement,	Separation	of	Concerns	for	Consistency	and
Scaling

services,	Scaling	Your	Service	and	Your	Teams-Separation	of	Concerns	for
Consistency	and	Scaling

configuration,	example,	Importing	External	Services-Services	Without
Selectors

“headless”	service,	Manually	Replicated	MongoDB	with	StatefulSets

scaling

applications	and	clusters,	Easy	Scaling	for	Applications	and	Clusters

decoupling,	Scaling	Your	Service	and	Your	Teams

microservices,	Scaling	Development	Teams	with	Microservices

separation	of	concerns	for,	Separation	of	Concerns	for	Consistency	and
Scaling-Separation	of	Concerns	for	Consistency	and	Scaling

singletons,	Running	a	MySQL	Singleton-Running	a	MySQL	Singleton

dynamic	volume	provisioning,	Dynamic	Volume	Provisioning

MySQL	singleton,	running,	Running	a	MySQL	Singleton-Running	a
MySQL	Singleton

spec.replicas	key,	Scaling	ReplicaSets

spec.type,	Cloud	Integration

SSH	tunneling,	Looking	Beyond	the	Cluster

StatefulSets,	Kubernetes-Native	Storage	with	StatefulSets-Summary

automating	MongoDB	cluster	creation,	Automating	MongoDB	Cluster
Creation-Automating	MongoDB	Cluster	Creation

manually	replicated	MongoDB	with,	Manually	Replicated	MongoDB	with
StatefulSets-Manually	Replicated	MongoDB	with	StatefulSets

mongo	tool,	One	Final	Thing:	Readiness	Probes

persistent	volumes	and,	Persistent	Volumes	and	StatefulSets

properties	of,	Properties	of	StatefulSets

readiness	probes,	One	Final	Thing:	Readiness	Probes

Redis,	example,	Deploying	Redis-Deploying	Redis

storage	solutions,	Integrating	Storage	Solutions	and	Kubernetes-Summary

external	services,	importing,	Importing	External	Services-Services
Without	Selectors

singletons,	Running	a	MySQL	Singleton-Dynamic	Volume	Provisioning

dynamic	volume	provisioning,	Dynamic	Volume	Provisioning

running	MySQL	singleton,	Running	a	MySQL	Singleton-Running	a
MySQL	Singleton

StatefulSets,	Kubernetes-Native	Storage	with	StatefulSets-One	Final
Thing:	Readiness	Probes

automating	MongoDB	cluster	creation,	Automating	MongoDB	Cluster
Creation-Automating	MongoDB	Cluster	Creation

manually	replicated	MongoDB	with,	Manually	Replicated	MongoDB
with	StatefulSets-Manually	Replicated	MongoDB	with	StatefulSets

persistent	volumes	and,	Persistent	Volumes	and	StatefulSets-Persistent
Volumes	and	StatefulSets

properties	of,	Properties	of	StatefulSets

readiness	probes,	One	Final	Thing:	Readiness	Probes

StorageClass	object,	Dynamic	Volume	Provisioning

T

teams,	scaling,	Scaling	Your	Service	and	Your	Teams-Separation	of
Concerns	for	Consistency	and	Scaling

applications	and	clusters,	Easy	Scaling	for	Applications	and	Clusters

decoupling,	Scaling	Your	Service	and	Your	Teams

separation	of	concerns	for,	Separation	of	Concerns	for	Consistency	and
Scaling-Separation	of	Concerns	for	Consistency	and	Scaling

with	microservices,	Scaling	Development	Teams	with	Microservices

U

UI	server,	Kubernetes	UI

updating

ConfigMaps,	Updating-Live	updates

editing	current	version,	Edit	current	version

from	file,	Update	from	file

live	updates,	Live	updates

recreating	and,	Recreate	and	update

DaemonSets,	Updating	a	DaemonSet	by	Deleting	Individual	Pods

Deployments,	Updating	Deployments-Rollout	History

rollout	history,	Rollout	History-Rollout	History

scaling	Deployment,	Scaling	a	Deployment

updating	container	image,	Updating	a	Container	Image-Updating	a
Container	Image

objects,	Creating,	Updating,	and	Destroying	Kubernetes	Objects

secrets,	Updating-Live	updates

editing	current	version,	Edit	current	version

from	file,	Update	from	file

live	updates,	Live	updates

recreating	and,	Recreate	and	update

V

value	of	immutability,	The	Value	of	Immutability-The	Value	of
Immutability

velocity,	Velocity-Self-Healing	Systems

declarative	configuration,	Declarative	Configuration

self-healing	systems,	Self-Healing	Systems-Self-Healing	Systems

value	of	immutability,	The	Value	of	Immutability-The	Value	of
Immutability

vertical	scaling,	Autoscaling	a	ReplicaSet

volumes	with	pods,	Communication/synchronization

W

work	queue,	Job	patterns,	Work	Queues

cleaning	up,	Cleaning	up

creating	consumer	Job,	Creating	the	consumer	job

loading	up,	Loading	up	the	queue-Loading	up	the	queue

worker	nodes,	listing,	Listing	Kubernetes	Worker	Nodes-Listing
Kubernetes	Worker	Nodes

About	the	Authors
Kelsey	Hightower	has	worn	every	hat	possible	throughout	his	career	in	tech,
and	enjoys	leadership	roles	focused	on	making	things	happen	and	shipping
software.	Kelsey	is	a	strong	open	source	advocate	focused	on	building	simple
tools	that	make	people	smile.	When	he	is	not	slinging	Go	code,	you	can	catch
him	giving	technical	workshops	covering	everything	from	programming	to
system	administration.

Joe	Beda	started	his	career	at	Microsoft	working	on	Internet	Explorer	(he	was
young	and	naive).	Throughout	7	years	at	Microsoft	and	10	at	Google,	Joe	has
worked	on	GUI	frameworks,	real-time	voice	and	chat,	telephony,	machine
learning	for	ads,	and	cloud	computing.	Most	notably,	while	at	Google,	Joe
started	the	Google	Compute	Engine	and,	along	with	Brendan	and	Craig
McLuckie,	created	Kubernetes.	Joe	is	now	CTO	of	Heptio,	a	startup	he	founded
along	with	Craig.	Joe	proudly	calls	Seattle	home.

Brendan	Burns	began	his	career	with	a	brief	stint	in	the	software	industry
followed	by	a	PhD	in	Robotics	focused	on	motion	planning	for	human-like	robot
arms.	This	was	followed	by	a	brief	stint	as	a	professor	of	computer	science.
Eventually,	he	returned	to	Seattle	and	joined	Google,	where	he	worked	on	web
search	infrastructure	with	a	special	focus	on	low-latency	indexing.	While	at
Google,	he	created	the	Kubernetes	project	with	Joe	and	Craig	McLuckie.
Brendan	is	currently	a	Director	of	Engineering	at	Microsoft	Azure.

Colophon
The	animal	on	the	cover	of	Kubernetes:	Up	and	Running	is	a	bottlenose	dolphin
(Tursiops	truncatus).

Bottlenose	dolphins	live	in	groups	typically	of	10–30	members,	called	pods,	but
group	size	varies	from	single	individuals	to	more	than	1,000.	Dolphins	often
work	as	a	team	to	harvest	fish	schools,	but	they	also	hunt	individually.	Dolphins
search	for	prey	primarily	using	echolocation,	which	is	similar	to	sonar.

The	Bottlenose	dolphin	is	found	in	most	tropical	to	temperate	oceans;	its	color	is
grey,	with	the	shade	of	grey	varying	among	populations;	it	can	be	bluish-grey,
brownish-grey,	or	even	nearly	black,	and	is	often	darker	on	the	back	from	the
rostrum	to	behind	the	dorsal	fin.	Bottlenose	dolphins	have	the	largest	brain	to
body	mass	ratio	of	any	mammal	on	Earth,	sharing	close	ratios	with	those	of
humans	and	other	great	apes,	which	more	than	likely	attributes	to	their
incredibly	high	intelligence	and	emotional	intelligence.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	image	is	from	British	Quadrapeds.	The	cover	fonts	are	URW
Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading
font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu
Mono.

http://animals.oreilly.com

Preface
Kubernetes:	A	Dedication

Who	Should	Read	This	Book

Why	We	Wrote	This	Book

A	Word	on	Cloud-Native	Applications	Today

Navigating	This	Book

Online	Resources

Conventions	Used	in	This	Book

Using	Code	Examples

O’Reilly	Safari

How	to	Contact	Us

1.	Introduction
Velocity

The	Value	of	Immutability

Declarative	Configuration

Self-Healing	Systems

Scaling	Your	Service	and	Your	Teams
Decoupling

Easy	Scaling	for	Applications	and	Clusters

Scaling	Development	Teams	with	Microservices

Separation	of	Concerns	for	Consistency	and	Scaling

Abstracting	Your	Infrastructure

Efficiency

Summary

2.	Creating	and	Running	Containers
Container	Images

The	Docker	Image	Format

Building	Application	Images	with	Docker
Dockerfiles

Image	Security

Optimizing	Image	Sizes

Storing	Images	in	a	Remote	Registry

The	Docker	Container	Runtime
Running	Containers	with	Docker

Exploring	the	kuard	Application

Limiting	Resource	Usage

Cleanup

Summary

3.	Deploying	a	Kubernetes	Cluster
Installing	Kubernetes	on	a	Public	Cloud	Provider

Google	Container	Service

Installing	Kubernetes	with	Azure	Container	Service

Installing	Kubernetes	on	Amazon	Web	Services

Installing	Kubernetes	Locally	Using	minikube

Running	Kubernetes	on	Raspberry	Pi

The	Kubernetes	Client
Checking	Cluster	Status

Listing	Kubernetes	Worker	Nodes

Cluster	Components
Kubernetes	Proxy

Kubernetes	DNS

Kubernetes	UI

Summary

4.	Common	kubectl	Commands
Namespaces

Contexts

Viewing	Kubernetes	API	Objects

Creating,	Updating,	and	Destroying	Kubernetes	Objects

Labeling	and	Annotating	Objects

Debugging	Commands

Summary

5.	Pods
Pods	in	Kubernetes

Thinking	with	Pods

The	Pod	Manifest
Creating	a	Pod

Creating	a	Pod	Manifest

Running	Pods
Listing	Pods

Pod	Details

Deleting	a	Pod

Accessing	Your	Pod
Using	Port	Forwarding

Getting	More	Info	with	Logs

Running	Commands	in	Your	Container	with	exec

Copying	Files	to	and	from	Containers

Health	Checks
Liveness	Probe

Readiness	Probe

Types	of	Health	Checks

Resource	Management
Resource	Requests:	Minimum	Required	Resources

Capping	Resource	Usage	with	Limits

Persisting	Data	with	Volumes
Using	Volumes	with	Pods

Different	Ways	of	Using	Volumes	with	Pods

Persisting	Data	Using	Remote	Disks

Putting	It	All	Together

Summary

6.	Labels	and	Annotations
Labels

Applying	Labels

Modifying	Labels

Label	Selectors

Label	Selectors	in	API	Objects

Annotations
Defining	Annotations

Cleanup

Summary

7.	Service	Discovery
What	Is	Service	Discovery?

The	Service	Object
Service	DNS

Readiness	Checks

Looking	Beyond	the	Cluster

Cloud	Integration

Advanced	Details
Endpoints

Manual	Service	Discovery

kube-proxy	and	Cluster	IPs

Cluster	IP	Environment	Variables

Cleanup

Summary

8.	ReplicaSets
Reconciliation	Loops

Relating	Pods	and	ReplicaSets
Adopting	Existing	Containers

Quarantining	Containers

Designing	with	ReplicaSets

ReplicaSet	Spec
Pod	Templates

Labels

Creating	a	ReplicaSet

Inspecting	a	ReplicaSet
Finding	a	ReplicaSet	from	a	Pod

Finding	a	Set	of	Pods	for	a	ReplicaSet

Scaling	ReplicaSets
Imperative	Scaling	with	kubectl	Scale

Declaratively	Scaling	with	kubectl	apply

Autoscaling	a	ReplicaSet

Deleting	ReplicaSets

Summary

9.	DaemonSets
DaemonSet	Scheduler

Creating	DaemonSets

Limiting	DaemonSets	to	Specific	Nodes
Adding	Labels	to	Nodes

Node	Selectors

Updating	a	DaemonSet
Updating	a	DaemonSet	by	Deleting	Individual	Pods

Rolling	Update	of	a	DaemonSet

Deleting	a	DaemonSet

Summary

10.	Jobs
The	Job	Object

Job	Patterns
One	Shot

Parallelism

Work	Queues

Summary

11.	ConfigMaps	and	Secrets
ConfigMaps

Creating	ConfigMaps

Using	a	ConfigMap

Secrets
Creating	Secrets

Consuming	Secrets

Private	Docker	Registries

Naming	Constraints

Managing	ConfigMaps	and	Secrets
Listing

Creating

Updating

Summary

12.	Deployments
Your	First	Deployment

Deployment	Internals

Creating	Deployments

Managing	Deployments

Updating	Deployments
Scaling	a	Deployment

Updating	a	Container	Image

Rollout	History

Deployment	Strategies
Recreate	Strategy

RollingUpdate	Strategy

Slowing	Rollouts	to	Ensure	Service	Health

Deleting	a	Deployment

Summary

13.	Integrating	Storage	Solutions	and	Kubernetes
Importing	External	Services

Services	Without	Selectors

Limitations	of	External	Services:	Health	Checking

Running	Reliable	Singletons
Running	a	MySQL	Singleton

Dynamic	Volume	Provisioning

Kubernetes-Native	Storage	with	StatefulSets
Properties	of	StatefulSets

Manually	Replicated	MongoDB	with	StatefulSets

Automating	MongoDB	Cluster	Creation

Persistent	Volumes	and	StatefulSets

One	Final	Thing:	Readiness	Probes

Summary

14.	Deploying	Real-World	Applications
Parse

Prerequisites

Building	the	parse-server

Deploying	the	parse-server

Testing	Parse

Ghost
Configuring	Ghost

Redis
Configuring	Redis

Creating	a	Redis	Service

Deploying	Redis

Playing	with	Our	Redis	Cluster

Summary

A.	Building	a	Raspberry	Pi	Kubernetes	Cluster
Parts	List

Flashing	Images

First	Boot:	Master
Setting	Up	Networking

Installing	Kubernetes

Setting	Up	the	Cluster

Summary

Index

	Preface
	Kubernetes: A Dedication
	Who Should Read This Book
	Why We Wrote This Book
	A Word on Cloud-Native Applications Today
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us

	1. Introduction
	Velocity
	The Value of Immutability
	Declarative Configuration
	Self-Healing Systems

	Scaling Your Service and Your Teams
	Decoupling
	Easy Scaling for Applications and Clusters
	Scaling Development Teams with Microservices
	Separation of Concerns for Consistency and Scaling

	Abstracting Your Infrastructure
	Efficiency
	Summary

	2. Creating and Running Containers
	Container Images
	The Docker Image Format

	Building Application Images with Docker
	Dockerfiles
	Image Security
	Optimizing Image Sizes

	Storing Images in a Remote Registry
	The Docker Container Runtime
	Running Containers with Docker
	Exploring the kuard Application
	Limiting Resource Usage
	Limiting memory resources
	Limiting CPU resources

	Cleanup
	Summary

	3. Deploying a Kubernetes Cluster
	Installing Kubernetes on a Public Cloud Provider
	Google Container Service
	Installing Kubernetes with Azure Container Service
	Installing Kubernetes on Amazon Web Services

	Installing Kubernetes Locally Using minikube
	Running Kubernetes on Raspberry Pi
	The Kubernetes Client
	Checking Cluster Status
	Listing Kubernetes Worker Nodes

	Cluster Components
	Kubernetes Proxy
	Kubernetes DNS
	Kubernetes UI

	Summary

	4. Common kubectl Commands
	Namespaces
	Contexts
	Viewing Kubernetes API Objects
	Creating, Updating, and Destroying Kubernetes Objects
	Labeling and Annotating Objects
	Debugging Commands
	Summary

	5. Pods
	Pods in Kubernetes
	Thinking with Pods
	The Pod Manifest
	Creating a Pod
	Creating a Pod Manifest

	Running Pods
	Listing Pods
	Pod Details
	Deleting a Pod

	Accessing Your Pod
	Using Port Forwarding
	Getting More Info with Logs
	Running Commands in Your Container with exec
	Copying Files to and from Containers

	Health Checks
	Liveness Probe
	Readiness Probe
	Types of Health Checks

	Resource Management
	Resource Requests: Minimum Required Resources
	Request limit details

	Capping Resource Usage with Limits

	Persisting Data with Volumes
	Using Volumes with Pods
	Different Ways of Using Volumes with Pods
	Communication/synchronization
	Cache
	Persistent data
	Mounting the host filesystem

	Persisting Data Using Remote Disks

	Putting It All Together
	Summary

	6. Labels and Annotations
	Labels
	Applying Labels
	Modifying Labels
	Label Selectors
	Label Selectors in API Objects

	Annotations
	Defining Annotations

	Cleanup
	Summary

	7. Service Discovery
	What Is Service Discovery?
	The Service Object
	Service DNS
	Readiness Checks

	Looking Beyond the Cluster
	Cloud Integration
	Advanced Details
	Endpoints
	Manual Service Discovery
	kube-proxy and Cluster IPs
	Cluster IP Environment Variables

	Cleanup
	Summary

	8. ReplicaSets
	Reconciliation Loops
	Relating Pods and ReplicaSets
	Adopting Existing Containers
	Quarantining Containers

	Designing with ReplicaSets
	ReplicaSet Spec
	Pod Templates
	Labels

	Creating a ReplicaSet
	Inspecting a ReplicaSet
	Finding a ReplicaSet from a Pod
	Finding a Set of Pods for a ReplicaSet

	Scaling ReplicaSets
	Imperative Scaling with kubectl Scale
	Declaratively Scaling with kubectl apply
	Autoscaling a ReplicaSet
	Autoscaling based on CPU

	Deleting ReplicaSets
	Summary

	9. DaemonSets
	DaemonSet Scheduler
	Creating DaemonSets
	Limiting DaemonSets to Specific Nodes
	Adding Labels to Nodes
	Node Selectors

	Updating a DaemonSet
	Updating a DaemonSet by Deleting Individual Pods
	Rolling Update of a DaemonSet

	Deleting a DaemonSet
	Summary

	10. Jobs
	The Job Object
	Job Patterns
	One Shot
	Pod failure

	Parallelism
	Work Queues
	Starting a work queue
	Loading up the queue
	Creating the consumer job
	Cleaning up

	Summary

	11. ConfigMaps and Secrets
	ConfigMaps
	Creating ConfigMaps
	Using a ConfigMap

	Secrets
	Creating Secrets
	Consuming Secrets
	Secrets volumes

	Private Docker Registries

	Naming Constraints
	Managing ConfigMaps and Secrets
	Listing
	Creating
	Updating
	Update from file
	Recreate and update
	Edit current version
	Live updates

	Summary

	12. Deployments
	Your First Deployment
	Deployment Internals

	Creating Deployments
	Managing Deployments
	Updating Deployments
	Scaling a Deployment
	Updating a Container Image
	Rollout History

	Deployment Strategies
	Recreate Strategy
	RollingUpdate Strategy
	Managing multiple versions of your service
	Configuring a rolling update

	Slowing Rollouts to Ensure Service Health

	Deleting a Deployment
	Summary

	13. Integrating Storage Solutions and Kubernetes
	Importing External Services
	Services Without Selectors
	Limitations of External Services: Health Checking

	Running Reliable Singletons
	Running a MySQL Singleton
	Dynamic Volume Provisioning

	Kubernetes-Native Storage with StatefulSets
	Properties of StatefulSets
	Manually Replicated MongoDB with StatefulSets
	Automating MongoDB Cluster Creation
	Persistent Volumes and StatefulSets
	One Final Thing: Readiness Probes

	Summary

	14. Deploying Real-World Applications
	Parse
	Prerequisites
	Building the parse-server
	Deploying the parse-server
	Testing Parse

	Ghost
	Configuring Ghost
	Ghost + MySQL

	Redis
	Configuring Redis
	Creating a Redis Service
	Deploying Redis
	Playing with Our Redis Cluster

	Summary

	A. Building a Raspberry Pi Kubernetes Cluster
	Parts List
	Flashing Images
	First Boot: Master
	Setting Up Networking
	Extra credit

	Installing Kubernetes
	Setting Up the Cluster
	Setting up cluster networking
	Setting up the GUI

	Summary

	Index

