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24 Minimax Lower Bounds for
Stochastic Linear Bandits

Lower bounds for linear bandits turn out to be more nuanced than those for
the classical finite-armed bandit. The difference is that for linear bandits the
shape of the action set plays a role in the form of the regret, not just the
distribution of the noise. This should not come as a big surprise because the
stochastic finite-armed bandit problem can be modeled as a linear bandit with
actions being the standard basis vectors, A = {e1, . . . , eK}. In this case the
actions are orthogonal, which means that samples from one action do not give
information about the rewards for other actions. Other action sets such as the
sphere (A = Sd−1 = {x ∈ Rd : ‖x‖2 = 1}) do not share this property. For
example, if d = 2 and A = S1 and an algorithm chooses actions e1 = (1, 0) and
e2 = (0, 1) many times, then it can deduce the reward it would obtain from
choosing any other action.

All results of this chapter have a worst-case flavor showing what is (not)
achievable in general, or under a sparsity constraint, or if the realizable assumption
is not satisfied. The analysis uses the information-theoretic tools introduced in
Part IV combined with careful choices of action sets. The hard part is guessing
what is the worst case, which is followed by simply turning the crank on the
usual machinery.

In all lower bounds we use a simple model with Gaussian noise. For action
At ∈ A ⊆ Rd the reward is Xt = µ(At) + ηt where ηt ∼ N (0, 1) is a sequence of
independent standard Gaussian noise and µ : A → [0, 1] is the mean reward. We
will usually assume there exists a θ ∈ Rd such that µ(a) = 〈a, θ〉. We write Pµ to
indicate the measure on outcomes induced by the interaction of the fixed policy
and the Gaussian bandit paramterised by µ. Because we are now proving lower
bounds it becomes necessary to be explicit about the dependence of the regret
on A and µ or θ. The regret of a policy is:

Rn(A, µ) = nmax
a∈A

µ(a)− Eµ

[
n∑

t=1
Xt

]
,

where the expectation is taken with respect to Pµ. Except in Section 24.4 we
assume the reward function is linear, which means there exists a θ ∈ Rd such
that µ(a) = 〈a, θ〉. In these cases we write Rn(A, θ) and Eθ and Pθ. Recall the
notation used for finite-armed bandits by defining Tx(t) =

∑t
s=1 I {As = x}.
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24.1 Hypercube

The first lower bound is for the hypercube action-set and shows that the upper
bounds in Chapter 19 cannot be improved in general.

theorem 24.1 Let A = [−1, 1]d and Θ = {−n−1/2, n−1/2}d. Then for any
policy there exists a θ ∈ Θ such that:

Rn(A, θ) ≥ exp(−2)
8 d

√
n .

Proof By the relative entropy identity (Lemma 15.1) we have for θ, θ′ ∈ Θ that

D(Pθ,Pθ′) = 1
2

n∑

t=1
Eθ
[
〈At, θ − θ′〉2

]
. (24.1)

For i ∈ [d] and θ ∈ Θ define

pθi = Pθ

(
n∑

t=1
I {sign(Ati) 6= sign(θi)} ≥ n/2

)
.

Now let i ∈ [d] and θ ∈ Θ be fixed and let θ′ = θ except for θ′i = −θi. Then by the
high probability version of Pinsker’s inequality (Theorem 14.2) and Eq. (24.1),

pθi + pθ′i ≥
1
2 exp

(
−1

2

n∑

t=1
Eθ[〈At, θ − θ′〉2]

)
≥ 1

2 exp (−2) . (24.2)

Applying an ‘averaging hammer’ over all θ ∈ Θ, which satisfies |Θ| = 2d:

∑

θ∈Θ

1
|Θ|

d∑

i=1
pθi = 1

|Θ|
d∑

i=1

∑

θ∈Θ
pθi ≥

d

4 exp (−2) .

Since pθi is nonnegative this implies there exists a θ ∈ Θ such that
∑d
i=1 pθi ≥

d exp (−2) /4. By the definition of pθi the regret for this choice of θ is at least

Rn(A, θ) ≥
√

1
n

d∑

i=1
E

[
n∑

t=1
I {sign(Ati) 6= sign(θi)}

]

≥
√
n

2

d∑

i=1
Pθ

(
n∑

t=1
I {sign(Ati) 6= sign(θi)} ≥ n/2

)

=
√
n

2

d∑

i=1
pθi ≥

exp(−2)
8 d

√
n .

Except for logarithmic factors this shows the algorithm of Chapter 19 is near-
optimal for this action set. The same proof works when A = {−1, 1}d is
restricted to the corners of the hypercube, which is a finite-armed linear bandit.
In Chapter 22 we gave a policy with regret Rn = O(

√
nd log(nK)) where
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K = |A|. There is no contradiction because the action set in the above proof
has K = |A| = 2d.

24.2 Sphere

Lower bounding the minimax regret when the action-set is the sphere presents
an additional challenge relative to the hypercube. The product structure of
the hypercube means that the learner can treat the dimensions independently,
which is reflected in the lower bound. For the sphere this is not true because
the magnitude of the action in one dimension constrains the learner in other
dimensions. Nevertheless, almost the same technique with one modification allows
us to prove a similar bound.

theorem 24.2 Assume d ≤ 2n and let A = {x ∈ Rd : ‖x‖2 = 1}. Then there
exists a θ ∈ Rd with ‖θ‖22 = d2/(4n) such that Rn(A, θ) ≥ d√n/16.

Proof Let ∆ = 1
4
√
d/n and θ ∈ {±∆}d and τi = n ∧min{t :

∑t
s=1A

2
si ≥ n/d}.

Then

Rn(A, θ) = ∆Eθ

[
n∑

t=1

d∑

i=1

(
1√
d
−Ati sign(θi)

)]

= ∆
√
d

2 Eθ

[
n∑

t=1

d∑

i=1

(
1√
d
−Ati sign(θi)

)2
]

≥ ∆
√
d

2

d∑

i=1
Eθ

[
τi∑

t=1

(
1√
d
−Ati sign(θi)

)2
]
.

Let Ui(x) =
∑τi
t=1(1/

√
d−Atix)2 and θ′ ∈ {±∆}d be another parameter vector

such that θj = θ′j for j 6= i and θ′i = −θi and assume without loss of generality
that θi > 0. Let P and P′ be the laws of Ui(1) with respect to the bandit/learner
interaction measure induced by θ and θ′ respectively, then

Eθ[Ui(1)] ≥ Eθ′ [Ui(1)]−
(

4n
d

+ 2
)√

1
2 D(P,P′)

≥ Eθ′ [Ui(1)]− ∆
2

(
4n
d

+ 2
)√√√√E

[
τi∑

t=1
A2
ti

]

≥ Eθ′ [Ui(1)]− ∆
2

(
4n
d

+ 2
)√

n

d

≥ Eθ′ [Ui(1)]− 4∆n
d

√
n

d
,

where in the first inequality we used Pinsker’s inequality (Eq. (14.9)) and the
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bound Ui(1) ≤ 4n/d + 2, which follows from the definition of τi and the fact
that |Aτii| ≤ 1. In the second line we used the chain rule for the relative entropy
up to a stopping time (Exercise 15.6). The second last inequality is true by the
definition of τi and the last by the assumption that d ≤ 2n.

Eθ[Ui(1)] + Eθ′ [Ui(−1)] ≥ Eθ′ [Ui(1) + Ui(−1)]− 4n∆
d

√
n

d

= 2Eθ′
[
τi
d

+
τi∑

t=1
A2
ti

]
− 4n∆

d

√
n

d
≥ 2n

d
− 4n∆

d

√
n

d
= n

d
.

The proof is completed using the randomization hammer:

∑

θ∈{±∆}d
Rn(A, θ) ≥ ∆

√
d

2

d∑

i=1

∑

θ∈{±∆}d
Eθ[Ui(sign(θi))]

= ∆
√
d

2

d∑

i=1

∑

θ−i∈{±∆}d−1

∑

θi∈{±∆}
Eθ[Ui(sign(θi))]

≥ ∆
√
d

2

d∑

i=1

∑

θ−i∈{±∆}d−1

n

d
= 2d−2n∆

√
d .

Hence there exists a θ ∈ {±∆}d such that Rn(A, θ) ≥ n∆
√
d

4 = d
√
n

16 .

24.3 Sparse parameter vectors

In Chapter 23 we gave an algorithm with Rn = Õ(
√
dpn) where p ≥ ‖θ‖0 is a

known bound on the sparsity of the unknown parameter. Except for logarithmic
terms this bound cannot be improved. An extreme case is when p = 1, which
essentially reduces to the finite-armed bandit problem where the minimax regret
has order

√
dn (see Chapter 15). For this reason we cannot expect too much from

sparsity and in particular the worst case bound will depend on polynomially on
the ambient dimension d.

Constructing a lower bound for p > 1 is relatively straightforward. For simplicity
we assume that d = pk for some integer k > 1. A sparse linear bandit can mimic
the learner playing p finite-armed bandits simultaneously, each with k arms.
Rather than observing the reward for each bandit, however, the learner only
observes the sum of the rewards and the noise is added at the end. This is
sometimes called the multitask bandit problem.

theorem 24.3 Assume pd ≤ n and there exists a natural number k > 1 such
that d = pk. Let A = {ei : i ∈ [k]}p ⊂ Rd. Then for any policy there exists a
θ ∈ Rd with ‖θ‖0 = p and ‖θ‖∞ ≤

√
d/(pn) such that Rn(A, θ) ≥ 1

8
√
pdn.
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Proof Let ∆ > 0 and Θ = {∆ei : i ∈ [k]} ⊂ Rk. Given θ ∈ Θp and i ∈ [p] let
θ(i) ∈ Rk be defined by θ(i)

k = θ(i−1)p+k, which means that

θ> = [θ(1)>, θ(2)>, . . . , θ(p)>] .

Next define matrix V ∈ Rp×d be the matrix with Vij = 1 + (j − 1) mod k. For
example, when p = 2:

V =




1 · · · k 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · k 0 · · · 0
0 · · · 0 0 · · · 0 1 · · · k


 .

Let Bt = V At ∈ [k]p represent the vector of ‘base’ actions chosen by the learner
in each of the p bandits in round t. The optimal action in the ith bandit is

b∗i (θ) = argmaxb∈[k] θ
(i)
b .

The regret can be decomposed into

Rn(θ) =
p∑

i=1
∆Eθ

[
n∑

t=1
I {Bti 6= b∗i }

]

︸ ︷︷ ︸
Rni(θ)

.

For i ∈ [p] we abbreviate θ(−i) = θ(1), . . . , θ(i−1), θ(i+1), · · · , θ(p). Then

1
|Θ|p

∑

θ∈Θp
Rn(θ) = 1

|Θ|p
p∑

i=1
Rni(θ)

=
p∑

i=1

1
|Θ|p−1

∑

θ(−i)∈Θp−1

1
|Θ|

∑

θ(i)∈Θ

Rni(θ)

≥ 1
8

p∑

i=1

1
|Θ|p−1

∑

θ(−i)∈Θp−1

√
kn (24.3)

= 1
8p
√
kn = 1

8
√
dpn .

The only tricky step is the inequality, which follows by choosing ∆ ≈
√
k/n and

repeating the argument outlined in Exercise 15.1. We leave it to the reader to
check the details (Exercise 24.1).

24.4 Unrealizable case

An important generalization of the linear model is the unrealizable case where
the mean rewards are not assumed to follow a linear model exactly. Suppose
that A ⊂ Rd is a finite set with |A| = K and that Xt = ηt + µ(At) where
µ : A → R is an unknown function. Let θ ∈ Rd be the parameter vector for which
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supa∈A |〈θ, a〉 − µ(a)| is as small as possible:

θ = argminθ∈Rd sup
a∈A
|〈θ, a〉 − µ(a)| .

Then let ε = supa∈A |〈θ, a〉 − µ(a)| be the maximum error. It would be very
pleasant to have an algorithm such that

Rn(A, µ) = nmax
a∈A

µ(a)− E

[
n∑

t=1
µ(At)

]
= Õ(min{d√n+ εn,

√
Kn}) . (24.4)

Unfortunately it turns out that results of this kind are not achievable. To show
this we will prove a generic bound for the classical finite-armed bandit problem
and afterwards show how this implies the impossibility of an adaptive bound like
the above.

theorem 24.4 Let A = [K] and for µ ∈ [0, 1]K the reward is Xt = µAt + ηt
and the regret is

Rn(µ) = nmax
i∈A

µi − Eµ

[
n∑

t=1
µAt

]
.

Define Θ,Θ′ ⊂ RK by

Θ =
{
µ ∈ [0, 1]K : µi = 0 for i > 1

}
Θ′ =

{
µ ∈ [0, 1]K

}
.

If V ∈ R is such that 2(K−1) ≤ V ≤
√
n(K − 1) exp(−2)/8 and supµ∈ΘRn(µ) ≤

V , then

sup
µ′∈Θ′

Rn(µ′) ≥ n(K − 1)
8V exp(−2) .

Proof Recall that Ti(n) =
∑n
t=1 I {At = i} is the number of times arm i is

played after all n rounds. Let µ ∈ Θ be given by µ1 = ∆ = (K − 1)/V ≤ 1/2.
The regret is then decomposed as:

Rn(µ) = ∆
K∑

i=2
Eµ[Ti(n)] ≤ V .

Rearranging shows that
∑K
i=2 Eµ[Ti(n)] ≤ V

∆ and so by the pigeonhole principle
there exists an i > 1 such that

Eµ[Ti(n)] ≤ V

(K − 1)∆ = 1
∆2 .

Then define µ′ ∈ Θ′ by

µ′j =





∆ if j = 1
2∆ if j = i

0 otherwise .
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Then by Theorem 14.2 and Lemma 15.1, for any event A we have

Pµ(A) + Pµ′(Ac) ≥
1
2 exp (D(Pµ,Pµ′)) = 1

2 exp
(
−2∆2E[Ti(n)]

)
≥ 1

2 exp (−2) .

By choosing A = {T1(n) ≤ n/2} we have

Rn(µ) +Rn(µ′) ≥ n∆
4 exp(−2) = n(K − 1)

4V exp(−2) .

Therefore by the assumption that Rn(µ) ≤ V ≤
√
n(K − 1) exp(−2)/8 we have

Rn(µ′) ≥ n(K − 1)
8V exp(−2) .

As promised we now relate this to the unrealizable linear bandits. Suppose that
d = 1 (an absurd case) and that there are K arms A = {a1, a2, . . . , aK} ⊂ R1

where a1 = (1) and ai = (0) for i > 1. Clearly if θ > 0 and µ(ai) = 〈ai, θ〉, then
the problem can be modelled as a finite-armed bandit with means µ ∈ Θ ⊂ [0, 1]K .
In the general case we just have a finite-armed bandit with µ ∈ Θ′. If in the first
case we have Rn(A, µ) = O(

√
n), then the theorem shows for large enough n that

sup
µ∈Θ′

Rn(A, µ) = O(K
√
n) .

It follows that Eq. (24.4) is a pipe dream. To our knowledge it is still an open
question of what is possible on this front. Our conjecture is that there is a policy
for which

Rn(A, θ) = Õ

(
min

{
d
√
n+ εn,

K

d

√
n

})
.

In fact, it is not hard to design an algorithm that tries to achieve this bound by
assuming the problem is realizable, but using some additional time to explore
the remaining arms up to some accuracy to confirm the hypothesis.

24.5 Notes

1 The worst-case bound demonstrates the near-optimality of the OFUL algorithm
for a specific action set. It is an open question to characterize the optimal
regret for a wide range of action sets. We will return to these issues soon when
we discuss adversarial linear bandits.

24.6 Bibliographic remarks

Worst-case lower bounds for stochastic bandits have appeared in a variety of places,
all with roughly the same bound, but for different action sets. Our very simple
proof for the hypercube is new, but takes inspiration from the paper by Shamir
[2015]. The first lower bound for the sphere was given by Rusmevichientong and
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Tsitsiklis [2010] with smaller constants and a complicated proof. As far as we know
the first lower bound of Ω(d

√
n) was given by Dani et al. [2008] for an action-set

equal to the product of 2-dimensional disks. The results for the unrealizable case
are inspired by the work of one of the authors on the Pareto-regret frontier for
bandits, which characterizes what trade-offs are available when it is desirable to
have a regret that is unusually small relative to some specific arms [Lattimore,
2015a].

24.7 Exercises

24.1 Completing the missing steps to prove the inequality in Eq. (24.3).


