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The Jackknife and the Bootstrap

A central element of frequentist inference is the standard error. An algo-
rithm has produced an estimate of a parameter of interest, for instance the
mean Nx D 0:752 for the 47 ALL scores in the top panel of Figure 1.4.
How accurate is the estimate? In this case, formula (1.2) for the standard
deviation1 of a sample mean gives estimated standard error

bse D 0:040; (10.1)

so one can’t take the third digit of Nx D 0:752 very seriously, and even the
5 is dubious.

Direct standard error formulas like (1.2) exist for various forms of aver-
aging, such as linear regression (7.34), and for hardly anything else. Tay-
lor series approximations (“device 2” of Section 2.1) extend the formulas
to smooth functions of averages, as in (8.30). Before computers, applied
statisticians needed to be Taylor series experts in laboriously pursuing the
accuracy of even moderately complicated statistics.

The jackknife (1957) was a first step toward a computation-based, non-
formulaic approach to standard errors. The bootstrap (1979) went further
toward automating a wide variety of inferential calculations, including stan-
dard errors. Besides sparing statisticians the exhaustion of tedious routine
calculations the jackknife and bootstrap opened the door for more com-
plicated estimation algorithms, which could be pursued with the assurance
that their accuracy would be easily assessed. This chapter focuses on stan-
dard errors, with more adventurous bootstrap ideas deferred to Chapter 11.
We end with a brief discussion of accuracy estimation for robust statistics.

1 We will use the terms “standard error” and “standard deviation” interchangeably.
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156 The Jackknife and the Bootstrap

10.1 The Jackknife Estimate of Standard Error

The basic applications of the jackknife apply to one-sample problems, where
the statistician has observed an independent and identically distributed (iid)
sample x D .x1; x2; : : : ; xn/0 from an unknown probability distribution F
on some space X ,

xi
iid
� F for i D 1; 2; : : : ; n: (10.2)

X can be anything: the real line, the plane, a function space.2 A real-valued
statistic O� has been computed by applying some algorithm s.�/ to x,

O� D s.x/; (10.3)

and we wish to assign a standard error to O� . That is, we wish to estimate
the standard deviation of O� D s.x/ under sampling model (10.2).

Let x.i/ be the sample with xi removed,

x.i/ D .x1; x2; : : : ; xi�1; xiC1; : : : ; xn/
0; (10.4)

and denote the corresponding value of the statistic of interest as

O�.i/ D s.x.i//: (10.5)

Then the jackknife estimate of standard error for O� is

bsejack D

"
n � 1

n

nX
1

�
O�.i/ � O�.�/

�2#1=2
; with O�.�/ D

nX
1

O�.i/=n: (10.6)

In the case where O� is the mean Nx of real values x1; x2; : : : ; xn (i.e., X
is an interval of the real line), O�.i/ is their average excluding xi , which can
be expressed as

O�.i/ D .n Nx � xi /=.n � 1/: (10.7)

Equation (10.7) gives O�.�/ D Nx, O�.i/ � O�.�/ D . Nx � xi /=.n � 1/, and

bsejack D

"
nX
iD1

.xi � Nx/
2= .n.n � 1//

#1=2
; (10.8)

exactly the same as the classic formula (1.2). This is no coincidence. The
fudge factor .n�1/=n in definition (10.6) was inserted to make bsejack agree
with (1.2) when O� is Nx.
2 If X is an interval of the real line we might take F to be the usual cumulative

distribution function, but here we will just think of F as any full description of the
probability distribution for an xi on X .
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The advantage of bsejack is that definition (10.6) can be applied in an au-
tomatic way to any statistic O� D s.x/. All that is needed is an algorithm
that computes s.�/ for the deleted data sets x.i/. Computer power is being
substituted for theoretical Taylor series calculations. Later we will see that
the underlying inferential ideas—plug-in estimation of frequentist standard
errors—haven’t changed, only their implementation.

As an example, consider the kidney function data set of Section 1.1. Here
the data consists of n D 157 points .xi ; yi /, with x D age and y D tot in
Figure 1.1. (So the generic xi in (10.2) now represents the pair .xi ; yi /, and
F describes a distribution in the plane.) Suppose we are interested in the
correlation between age and tot, estimated by the usual sample correlation
O� D s.x/,

s.x/ D

nX
iD1

.xi � Nx/.yi � Ny/

,"
nX
1

.xi � Nx/
2

nX
1

.yi � Ny/
2

#1=2
; (10.9)

computed to be O� D �0:572 for the kidney data.
Applying (10.6) gave bsejack D 0:058 for the accuracy of O� . Nonpara-

metric bootstrap computations, Section 10.2, also gave estimated standard
error 0.058. The classic Taylor series formula looks quite formidable in this
case,

bsetaylor D

(
O�2

4n

�
O�40

O�220
C
O�04

O�202
C

2 O�22

O�20 O�02
C
4 O�22

O�211
�

4 O�31

O�11 O�20
�

4 O�13

O�11 O�02

�)1=2
(10.10)

where

O�hk D

nX
iD1

.xi � Nx/
h.yi � Ny/

k=n: (10.11)

It gave bse D 0:057.
It is worth emphasizing some features of the jackknife formula (10.6).

� It is nonparametric; no special form of the underlying distribution F
need be assumed.
� It is completely automatic: a single master algorithm can be written that

inputs the data set x and the function s.x/, and outputs bsejack.
� The algorithm works with data sets of size n�1, not n. There is a hidden

assumption of smooth behavior across sample sizes. This can be worri-
some for statistics like the sample median that have a different definition
for odd and even sample size.
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� The jackknife standard error is upwardly biased as an estimate of the
true standard error.��1

� The connection of the jackknife formula (10.6) with Taylor series meth-
ods is closer than it appears. We can write

bsejack D

�Pn
1D

2
i

n2

�1=2
; where Di D

O�.i/ � O�.�/

1=
p
n.n � 1/

: (10.12)

As discussed in Section 10.3, theDi are approximate directional deriva-
tives, measures of how fast the statistic s.x/ is changing as we decrease
the weight on data point xi . So se2jack is proportional to the sum of
squared derivatives of s.x/ in the n component directions. Taylor series
expressions such as (10.10) amount to doing the derivatives by formula
rather than numerically.
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Figure 10.1 The lowess curve for the kidney data of
Figure 1.2. Vertical bars indicate˙2 standard errors: jackknife
(10.6) blue dashed; bootstrap (10.16) red solid. The jackknife
greatly overestimates variability at age 25.

The principal weakness of the jackknife is its dependence on local deriva-
tives. Unsmooth statistics s.x/, such as the kidney data lowess curve in
Figure 1.2, can result in erratic behavior for bsejack. Figure 10.1 illustrates
the point. The dashed blue vertical bars indicate ˙2 jackknife standard er-
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rors for the lowess curve evaluated at ages 20; 25; : : : ; 85. For the most
part these agree with the dependable bootstrap standard errors, solid red
bars, described in Section 10.2. But things go awry at age 25, where the
local derivatives greatly overstate the sensitivity of the lowess curve to
global changes in the sample x.

10.2 The Nonparametric Bootstrap

From the point of view of the bootstrap, the jackknife was a halfway house
between classical methodology and a full-throated use of electronic com-
putation. (The term “computer-intensive statistics” was coined to describe
the bootstrap.) The frequentist standard error of an estimate O� D s.x/ is,
ideally, the standard deviation we would observe by repeatedly sampling
new versions of x from F . This is impossible since F is unknown. Instead,
the bootstrap (“ingenious device” number 4 in Section 2.1) substitutes an
estimate OF for F and then estimates the frequentist standard by direct sim-
ulation, a feasible tactic only since the advent of electronic computation.

The bootstrap estimate of standard error for a statistic O� D s.x/ com-
puted from a random sample x D .x1; x2; : : : ; xn/ (10.2) begins with the
notion of a bootstrap sample

x� D .x�1 ; x
�
2 ; : : : ; x

�
n/; (10.13)

where each x�i is drawn randomly with equal probability and with replace-
ment from fx1; x2; : : : ; xng. Each bootstrap sample provides a bootstrap
replication of the statistic of interest,3

O�� D s.x�/: (10.14)

Some large number B of bootstrap samples are independently drawn
(B D 500 in Figure 10.1). The corresponding bootstrap replications are
calculated, say

O��b D s.x�b/ for b D 1; 2; : : : ; B: (10.15)

The resulting bootstrap estimate of standard error for O� is the empirical
standard deviation of the O��b values,

bseboot D

"
BX
bD1

�
O��b � O���

�2.
.B � 1/

#1=2
; with O��� D

BX
bD1

O��b
ı
B:

(10.16)
3 The star notation x� is intended to avoid confusion with the original data x, which stays

fixed in bootstrap computations, and likewise O�� vis-a-vis O� .
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Motivation for bseboot begins by noting that O� is obtained in two steps:
first x is generated by iid sampling from probability distribution F , and
then O� is calculated from x according to algorithm s.�/,

F
iid
�! x

s
�! O�: (10.17)

We don’t know F , but we can estimate it by the empirical probability dis-
tribution OF that puts probability 1=n on each point xi (e.g., weight 1=157
on each point .xi ; yi / in Figure 1.2). Notice that a bootstrap sample x�

(10.13) is an iid sample drawn from OF , since then each x� independently
has equal probability of being any member of fx1; x2; : : : ; xng. It can be
shown that OF maximizes the probability of obtaining the observed sample
x under all possible choices of F in (10.2), i.e., it is the nonparametric
MLE of F .

Bootstrap replications O�� are obtained by a process analogous to (10.17),

OF
iid
�! x�

s
�! O��: (10.18)

In the real world (10.17) we only get to see the single value O� , but the boot-
strap world (10.18) is more generous: we can generate as many bootstrap
replications O��b as we want, or have time for, and directly estimate their
variability as in (10.16). The fact that OF approaches F as n grows large
suggests, correctly in most cases, that bseboot approaches the true standard
error of O� .

The true standard deviation of O� , i.e., its standard error, can be thought
of as a function of the probability distribution F that generates the data,
say Sd.F /. Hypothetically, Sd.F / inputs F and outputs the standard devi-
ation of O� , which we can imagine being evaluated by independently run-
ning (10.17) some enormous number of times N , and then computing the
empirical standard deviation of the resulting O� values,

Sd.F / D

24 NX
jD1

�
O� .j / � O� .�/

�2.
.N � 1/

351=2 ; with O� .�/ D
NX
1

O� .j /
ı
N:

(10.19)
The bootstrap standard error of O� is the plug-in estimatebseboot D Sd. OF /: (10.20)

More exactly, Sd. OF / is the ideal bootstrap estimate of standard error, what
we would get by letting the number of bootstrap replications B go to in-
finity. In practice we have to stop at some finite value of B , as discussed in
what follows.
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As with the jackknife, there are several important points worth empha-
sizing about bseboot.

� It is completely automatic. Once again, a master algorithm can be writ-
ten that inputs the data x and the function s.�/, and outputs bseboot.
� We have described the one-sample nonparametric bootstrap. Parametric

and multisample versions will be taken up later.
� Bootstrapping “shakes” the original data more violently than jackknif-

ing, producing nonlocal deviations of x� from x. The bootstrap is more
dependable than the jackknife for unsmooth statistics since it doesn’t
depend on local derivatives.
� B D 200 is usually sufficient� for evaluating bseboot. Larger values, 1000 �2

or 2000, will be required for the bootstrap confidence intervals of Chap-
ter 11.
� There is nothing special about standard errors. We could just as well

use the bootstrap replications to estimate the expected absolute error
Efj O� � � jg, or any other accuracy measure.
� Fisher’s MLE formula (4.27) is applied in practice viabsefisher D .nI O� /�1=2; (10.21)

that is, by plugging in O� for � after a theoretical calculation of se. The
bootstrap operates in the same way at (10.20), though the plugging in is
done before rather than after the calculation. The connection with Fishe-
rian theory is more obvious for the parametric bootstrap of Section 10.4.

The jackknife is a completely frequentist device, both in its assumptions
and in its applications (standard errors and biases). The bootstrap is also
basically frequentist, but with a touch of the Fisherian as in the relation
with (10.21). Its versatility has led to applications in a variety of estima-
tion and prediction problems, with even some Bayesian connections. � �3
Unusual applications can also pop up for the jackknife; see the jackknife-
after-bootstrap comment in the chapter endnotes.� �4

From a classical point of view, the bootstrap is an incredible computa-
tional spendthrift. Classical statistics was fashioned to minimize the hard
labor of mechanical computation. The bootstrap seems to go out of its way
to multiply it, by factors of B D 200 or 2000 or more. It is nice to re-
port that all this computational largesse can have surprising data analytic
payoffs.

The 22 students of Table 3.1 actually each took five tests, mechanics,
vectors, algebra, analytics, and statistics. Table 10.1 shows
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Table 10.1 Correlation matrix for the student score data. The eigenvalues
are 3.463, 0.660, 0.447, 0.234, and 0.197. The eigenratio statistic
O� D 0:693, and its bootstrap standard error estimate is 0.075
(B D 2000).

mechanics vectors algebra analytics statistics

mechanics 1.00 .50 .76 .65 .54
vectors .50 1.00 .59 .51 .38
algebra .76 .59 1.00 .76 .67
analysis .65 .51 .76 1.00 .74
statistics .54 .38 .67 .74 1.00

the sample correlation matrix and also its eigenvalues. The “eigenratio”
statistic,

O� D largest eigenvalue=sum eigenvalues; (10.22)

measures how closely the five scores can be predicted by a single linear
combination, essentially an IQ score for each student: O� D 0:693 here,
indicating strong predictive power for the IQ score. How accurate is 0.693?
B D 2000 bootstrap replications (10.15) yielded bootstrap standard er-

ror estimate (10.16) bseboot D 0:075. (This was 10 times more bootstraps
than necessary for bseboot, but will be needed for Chapter 11’s bootstrap con-
fidence interval calculations.) The jackknife (10.6) gave a bigger estimate,bsejack D 0:083.

Standard errors are usually used to suggest approximate confidence in-
tervals, often O�˙1:96bse for 95% coverage. These are based on an assump-
tion of normality for O� . The histogram of the 2000 bootstrap replications of
O� , as seen in Figure 10.2, disabuses belief in even approximate normality.
Compared with classical methods, a massive amount of computation has
gone into the histogram, but this will pay off in Chapter 11 with more ac-
curate confidence limits. We can claim a double reward here for bootstrap
methods: much wider applicability and improved inferences. The bootstrap
histogram—invisible to classical statisticians—nicely illustrates the advan-
tages of computer-age statistical inference.

10.3 Resampling Plans

There is a second way to think about the jackknife and the bootstrap:
as algorithms that reweight, or resample, the original data vector x D
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Figure 10.2 Histogram of B D 2000 bootstrap replications O��
for the eigenratio statistic (10.22) for the student score data. The
vertical black line is at O� D :693. The long left tail shows that
normality is a dangerous assumption in this case.

.x1; x2; : : : ; xn/
0. At the price of a little more abstraction, resampling con-

nects the two algorithms and suggests a class of other possibilities.
A resampling vector P D .P1; P2; : : : ; Pn/0 is by definition a vector of

nonnegative weights summing to 1,

P D .P1; P2; : : : ; Pn/
0 with Pi � 0 and

nX
iD1

Pi D 1: (10.23)

That is,P is a member of the simplex Sn (5.39). Resampling plans operate
by holding the original data set x fixed, and seeing how the statistic of
interest O� changes as the weight vector P varies across Sn.

We denote the value of O� for a vector putting weight Pi on xi as

O�� D S.P/; (10.24)

the star notation now indicating any reweighting, not necessarily from boot-
strapping; O� D s.x/ describes the behavior of O� in the real world (10.17),
while O�� D S.P/ describes it in the resampling world. For the sample
mean s.x/ D Nx, we have S.P/ D

Pn
1 Pixi . The unbiased estimate of
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variance s.x/ D
Pn
i .xi � Nx/

2=.n � 1/ can be seen to have

S.P/ D
n

n � 1

24 nX
iD1

Pix
2
i �

 
nX
iD1

Pixi

!235 : (10.25)

P0 

P(1) P(2) 

P(3) 

(3,0,0) 
(2,1,0) (1,2,0) 

(0,3,0) 

(1,1,1) 
(2,0,1) (0,2,1) 

(1,0,2) (0,1,2) 

(0,0,3) 

0.5 1.0 1.5 0.0 – 0.5 – 1.0 – 1.5 

0.
5 

1.
0 

1.
5 

0.
0 

– 
0.

5 
2.

0 

Figure 10.3 Resampling simplex for sample size n D 3. The
center point is P0 (10.26); the green circles are the jackknife
points P.i/ (10.28); triples indicate bootstrap resampling numbers
.N1; N2; N3/ (10.29). The bootstrap probabilities are 6=27 for
P0, 1=27 for each corner point, and 3=27 for each of the six
starred points.

Letting

P0 D .1; 1; : : : ; 1/
0=n; (10.26)

the resampling vector putting equal weight on each value xi , we require in
the definition of S.�/ that

S.P0/ D s.x/ D O�; (10.27)

the original estimate. The i th jackknife value O�.i/ (10.5) corresponds to
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resampling vector

P.i/ D .1; 1; : : : ; 1; 0; 1; : : : ; 1/
0=.n � 1/; (10.28)

with 0 in the i th place. Figure 10.3 illustrates the resampling simplex S3
applying to sample size n D 3, with the center point beingP0 and the open
circles the three possible jackknife vectors P.i/.

With n D 3 sample points fx1; x2; x3g there are only 10 distinct boot-
strap vectors (10.13), also shown in Figure 10.3. Let

Ni D #fx�j D xig; (10.29)

the number of bootstrap draws in x� equaling xi . The triples in the fig-
ure are .N1; N2; N3/, for example .1; 0; 2/ for x� having x1 once and x3
twice.4 The bootstrap resampling vectors are of the form

P� D .N1; N2; : : : ; Nn/
0=n; (10.30)

where the Ni are nonnegative integers summing to n. According to defi-
nition (10.13) of bootstrap sampling, the vector N D .N1; N2; : : : ; Nn/

0

follows a multinomial distribution (5.38) with n draws on n equally likely
categories,

N � Multn.n;P0/: (10.31)

This gives bootstrap probability (5.37)

nŠ

N1ŠN2Š : : : NnŠ

1

nn
(10.32)

on P� (10.30).
Figure 10.3 is misleading in that the jackknife vectors P.i/ appear only

slightly closer to P0 than are the bootstrap vectors P�. As n grows large
they are, in fact, an order of magnitude closer. Subtracting (10.26) from
(10.28) gives Euclidean distance

kP.i/ �P0k D 1
.p

n.n � 1/: (10.33)

For the bootstrap, notice that Ni in (10.29) has a binomial distribution,

Ni � Bi
�
n;
1

n

�
; (10.34)

4 A hidden assumption of definition (10.24) is that O� D s.x/ has the same value for any
permutation of x, so for instance s.x1; x3; x3/ D s.x3; x1; x3/ D S.1=3; 0; 2=3/.
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with mean 1 and variance .n�1/=n. Then P �i D Ni=n has mean and vari-
ance .1=n; .n � 1/=n3/. Adding over the n coordinates gives the expected
root mean square distance for bootstrap vector P�,�

EkP� �P0k
2
�1=2
D
p
.n � 1/=n2; (10.35)

an order of magnitude
p
n times further than (10.33).

The function S.P/ has approximate directional derivative

Di D
S.P.i// � S.P0/

kP.i/ �P0k
(10.36)

in the direction from P0 toward P.i/ (measured along the dashed lines
in Figure 10.3). Di measures the slope of function S.P/ at P0, in the
direction of P.i/. Formula (10.12) shows bsejack as proportional to the root
mean square of the slopes.

If S.P/ is a linear function of P , as it is for the sample mean, it turns
out that bsejack equals bseboot (except for the fudge factor .n�1/=n in (10.6)).
Most statistics are not linear, and then the local jackknife resamples may
provide a poor approximation to the full resampling behavior of S.P/. This
was the case at one point in Figure 10.1.

With only 10 possible resampling points P�, we can easily evaluate the
ideal bootstrap standard error estimate

bseboot D

"
10X
kD1

pk

�
O��k � O���

�2#1=2
; O��� D

10X
kD1

pk O�
�k; (10.37)

with O��k D S.Pk/ and pk the probability from (10.32) (listed in Fig-
ure 10.3). This rapidly becomes impractical. The number of distinct boot-
strap samples for n points turns out to be 

2n � 1

n

!
: (10.38)

For n D 10 this is already 92,378, while n D 20 gives 6:9 � 1010 distinct
possible resamples. Choosing B vectors P� at random, which is what al-
gorithm (10.13)–(10.15) effectively is doing, makes the un-ideal bootstrap
standard error estimate (10.16) almost as accurate as (10.37) for B as small
as 200 or even less.

The luxury of examining the resampling surface provides a major advan-
tage to modern statisticians, both in inference and methodology. A variety
of other resampling schemes have been proposed, a few of which follow.



10.3 Resampling Plans 167

The Infinitesimal Jackknife

Looking at Figure 10.3 again, the vector

Pi .�/ D .1 � �/P0 C �P.i/ D P0 C �.P.i/ �P0/ (10.39)

lies proportion � of the way from P0 to P.i/. Then

QDi D lim
�!0

S .Pi .�// � S.P0/

�kP.i/ �P0k
(10.40)

exactly defines the direction derivative at P0 in the direction of P.i/. The
infinitesimal jackknife estimate of standard error is

bseIJ D

 
nX
iD1

QD2
i

ı
n2

!1=2
; (10.41)

usually evaluated numerically by setting � to some small value in (10.40)–
(10.41) (rather than � D 1 in (10.12)). We will meet the infinitesimal jack-
knife again in Chapters 17 and 20.

Multisample Bootstrap

The median difference between the AML and the ALL scores in Figure 1.4
is

mediff D 0:968 � 0:733 D 0:235: (10.42)

How accurate is 0.235? An appropriate form of bootstrapping draws 25
times with replacement from the 25 AML patients, 47 times with replace-
ment from the 47 ALL patients, and computes mediff� as the difference
between the medians of the two bootstrap samples. (Drawing one boot-
strap sample of size 72 from all the patients would result in random sample
sizes for the AML�=ALL� groups, adding inappropriate variability to the
frequentist standard error estimate.)

A histogram of B D 500 mediff� values appears in Figure 10.4. They
give bseboot D 0:074. The estimate (10.42) is 3.18 bse units above zero, agree-
ing surprisingly well with the usual two-sample t -statistic 3.13 (based on
mean differences), and its permutation histogram Figure 4.3. Permutation
testing can be considered another form of resampling.
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Figure 10.4 B D 500 bootstrap replications for the median
difference between the AML and ALL scores in Figure 1.4, givingbseboot D 0:074. The observed value mediff D 0:235 (vertical
black line) is more than 3 standard errors above zero.

Moving Blocks Bootstrap

Suppose x D .x1; x2; : : : ; xn/, instead of being an iid sample (10.2), is a
time series. That is, the x values occur in a meaningful order, perhaps with
nearby observations highly correlated with each other. Let Bm be the set of
contiguous blocks of length m, for example

B3 D f.x1; x2; x3/; .x2; x3; x4/; : : : ; .xn�2; xn�1; xn/g : (10.43)

Presumably,m is chosen large enough that correlations between xi and xj ,
jj � i j > m, are neglible. The moving block bootstrap first selects n=m
blocks from Bm, and assembles them in random order to construct a boot-
strap sample x�. Having constructed B such samples, bseboot is calculated
as in (10.15)–(10.16).

The Bayesian Bootstrap

Let G1; G2; : : : ; Gn be independent one-sided exponential variates (de-
noted Gam(1,1) in Table 5.1), each having density exp.�x/ for x > 0.
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The Bayesian bootstrap uses resampling vectors

P� D .G1; G2; : : : ; Gn/

,
nX
1

Gi : (10.44)

It can be shown that P� is then uniformly distributed over the resampling
simplex Sn; for n D 3, uniformly distributed over the triangle in Fig-
ure 10.3. Prescription (10.44) is motivated by assuming a Jeffreys-style
uninformative prior distribution (Section 3.2) on the unknown distribution
F (10.2).

Distribution (10.44) for P� has mean vector and covariance matrix

P� �

�
P0;

1

nC 1

�
diag.P0/ �P0P 00

��
: (10.45)

This is almost identical to the mean and covariance of bootstrap resamples
P� � Multn.n, P0/=n,

P� �

�
P0;

1

n

�
diag.P0/ �P0P 00

��
; (10.46)

(5.40). The Bayesian bootstrap and the ordinary bootstrap tend to agree, at
least for smoothly defined statistics O�� D S.P�/.

There was some Bayesian disparagement of the bootstrap when it first
appeared because of its blatantly frequentist take on estimation accuracy.
And yet connections like (10.45)–(10.46) have continued to pop up, as we
will see in Chapter 13.

10.4 The Parametric Bootstrap

In our description (10.18) of bootstrap resampling,

OF
iid
�! x� �! O��; (10.47)

there is no need to insist that OF be the nonparametric MLE of F . Suppose
we are willing to assume that the observed data vector x comes from a
parametric family F as in (5.1),

F D ˚f�.x/; � 2 �	 : (10.48)

Let O� be the MLE of �. The bootstrap parametric resamples from f O�.�/,

f O� �! x� �! O��; (10.49)

and proceeds as in (10.14)–(10.16) to calculate bseboot.
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As an example, suppose that x D .x1; x2; : : : ; xn/ is an iid sample of
size n from a normal distribution,

xi
iid
� N .�; 1/; i D 1; 2; : : : ; n: (10.50)

Then O� D Nx, and a parametric bootstrap sample is x� D .x�1 ; x
�
2 ; : : : ; x

�
n/,

where

x�i
iid
� N . Nx; 1/; i D 1; 2; : : : ; n: (10.51)

More adventurously, if F were a family of time series models for x,
algorithm (10.49) would still apply (now without any iid structure): x�

would be a time series sampled from model f O�.�/, and O�� D s.x�/ the
resampled statistic of interest. B independent realizations x�b would give
O��b , b D 1; 2; : : : ; B , and bseboot from (10.16).
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Figure 10.5 The gfr data of Figure 5.7 (histogram). Curves
show the MLE fits from polynomial Poisson models, for degrees
of freedom df D 2; 3; : : : ; 7. The points on the curves show the
fits computed at the centers x.j / of the bins, with the responses
being the counts in the bins. The dashes at the base of the plot
show the nine gfr values appearing in Table 10.2.

As an example of parametric bootstrapping, Figure 10.5 expands the
gfr investigation of Figure 5.7. In addition to the seventh-degree polyno-
mial fit (5.62), we now show lower-degree polynomial fits for 2, 3, 4, 5,



10.4 The Parametric Bootstrap 171

and 6 degrees of freedom; dfD 2 obviously gives a poor fit; dfD 3; 4; 5; 6
give nearly identical curves; df D 7 gives only a slightly better fit to the
raw data.

The plotted curves were obtained from the Poisson regression method
used in Section 8.3.5

� The x-axis was partitioned into K D 32 bins, with endpoints 13; 16; 19,
: : : ; 109, and centerpoints, say,

x. / D .x.1/; x.2/; : : : ; x.K//; (10.52)

x.1/ D 14:5, x.2/ D 17:5, etc.
� Count vector y D .y1; y2; : : : ; yK/ was computed

yk D #fxi in binkg (10.53)

(so y gives the heights of the bars in Figure 10.5).
� An independent Poisson model was assumed for the counts,

yk
ind
� Poi.�k/ for k D 1; 2; : : : ; K: (10.54)

� The parametric model of degree “df” assumed that the �k values were
described by an exponential polynomial of degree df in the x.k/ values,

log.�k/ D
dfX
jD0

ˇjx
j

.k/
: (10.55)

� The MLE Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒdf/ in model (10.54)–(10.55) was found.6

� The plotted curves in Figure 10.5 trace the MLE values O�k ,

log. O�k/ D
dfX
jD0

Ǒ
jx

j

.k/
: (10.56)

How accurate are the curves? Parametric bootstraps were used to assess
their standard errors. That is, Poisson resamples were generated according
to

y�k
ind
� Poi. O�k/ for k D 1; 2; : : : ; K; (10.57)

and bootstrap MLE values O��
k

calculated as above, but now based on count
vector y� rather than y . All of this was done B D 200 times, yielding
bootstrap standard errors (10.16).
5 “Lindsey’s method,” discussed further in Chapter 15.
6 A single R command, glm(y�poly(x,df),family=poisson) accomplishes

this.
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Table 10.2 Bootstrap estimates of standard error for the gfr density.
Poisson regression models (10.54)–(10.55), df D 2; 3; : : : ; 7, as in
Figure 10.5; each B D 200 bootstrap replications; nonparametric
standard errors based on binomial bin counts.

Degrees of freedom Nonparametric
standard error

gfr 2 3 4 5 6 7

20.5 .28 .07 .13 .13 .12 .05 .00
29.5 .65 .57 .57 .66 .74 1.11 1.72
38.5 1.05 1.39 1.33 1.52 1.72 1.73 2.77
47.5 1.47 1.91 2.12 1.93 2.15 2.39 4.25
56.5 1.57 1.60 1.79 1.93 1.87 2.28 4.35
65.5 1.15 1.10 1.07 1.31 1.34 1.27 1.72
74.5 .76 .61 .62 .68 .81 .71 1.72
83.5 .40 .30 .40 .38 .49 .68 1.72
92.5 .13 .20 .29 .29 .34 .46 .00

The results appear in Table 10.2, showing bseboot for df D 2; 3; : : : ; 7

degrees of freedom evaluated at nine values of gfr. Variability generally
increases with increasing df, as expected. Choosing a “best” model is a
compromise between standard error and possible definitional bias as sug-
gested by Figure 10.5, with perhaps df D 3 or 4, the winner.

If we kept increasing the degrees of freedom, eventually (at df D 32)
we would exactly match the bar heights yk in the histogram. At this point
the parametric bootstrap would merge into the nonparametric bootstrap.
“Nonparametric” is another name for “very highly parameterized.” The
huge sample sizes associated with modern applications have encouraged
nonparametric methods, on the sometimes mistaken ground that estimation
efficiency is no longer of concern. It is costly here, as the “nonparametric”
column of Table 10.2 shows.7

Figure 10.6 returns to the student score eigenratio calculations of Fig-
ure 10.2. The solid histogram shows 2000 parametric bootstrap replica-
tions (10.49), with f O� the five-dimensional bivariate normal distribution
N5. Nx; O†/. Here Nx and O† are the usual MLE estimates for the expectation
vector and covariance matrix based on the 22 five-component student score
vectors. It is narrower than the corresponding nonparametric bootstrap his-
togram, with bseboot D 0:070 compared with the nonparametric estimate

7 These are the binomial standard errors Œyk.1� yk/=n�1=2, n D 211. The
nonparametric results look much more competitive when estimating cdf’s rather than
densities.
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Figure 10.6 Eigenratio example, student score data. Solid
histogram B D 2000 parametric bootstrap replications O�� from
the five-dimensional normal MLE; line histogram the 2000
nonparametric replications of Figure 10.2. MLE O� D :693 is
vertical red line.

0.075. (Note the different histogram bin limits from Figure 10.2, changing
the details of the nonparametric histogram.)

Parametric families act as regularizers, smoothing out the raw data and
de-emphasizing outliers. In fact the student score data is not a good can-
didate for normal modeling, having at least one notable outlier,8 casting
doubt on the smaller estimate of standard error.

The classical statistician could only imagine a mathematical device that
given any statistic O� D s.x/ would produce a formula for its standard er-
ror, as formula (1.2) does for Nx. The electronic computer is such a device.
As harnessed by the bootstrap, it automatically produces a numerical esti-
mate of standard error (though not a formula), with no further cleverness
required. Chapter 11 discusses a more ambitious substitution of computer
power for mathematical analysis: the bootstrap computation of confidence
intervals.

8 As revealed by examining scatterplots of the five variates taken two at a time. Fast and
painless plotting is another advantage for twenty-first-century data analysts.
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10.5 Influence Functions and Robust Estimation

The sample mean played a dominant role in classical statistics for reasons
heavily weighted toward mathematical tractibility. Beginning in the 1960s,
an important counter-movement, robust estimation, aimed to improve upon
the statistical properties of the mean. A central element of that theory, the
influence function, is closely related to the jackknife and infinitesimal jack-
knife estimates of standard error.

We will only consider the case where X , the sample space, is an interval
of the real line. The unknown probability distribution F yielding the iid
sample x D .x1; x2; : : : ; xn/ in (10.2) is now the cdf of a density function
f .x/ on X . A parameter of interest, i.e., a function of F , is to be estimated
by the plug-in principle, O� D T . OF /, where, as in Section 10.2, OF is the
empirical probability distribution putting probability 1=n on each sample
point xi . For the mean,

� D T .F / D

Z
X
xf .x/ dx and O� D T

�
OF
�
D
1

n

nX
iD1

xi : (10.58)

(In Riemann–Stieltjes notation, � D
R
xdF.x/ and O� D

R
xd OF .x/.)

The influence function of T .F /, evaluated at point x in X , is defined to
be

IF.x/ D lim
�!0

T ..1 � �/F C �ıx/ � T .F /

�
; (10.59)

where ıx is the “one-point probability distribution” putting probability 1
on x. In words, IF.x/ measures the differential effect of modifying F by
putting additional probability on x. For the mean � D

R
xf .x/dx we cal-

culate that

IF.x/ D x � �: (10.60)

A fundamental theorem� says that O� D T . OF / is approximately�5

O�
:
D � C

1

n

nX
iD1

IF.xi /; (10.61)

with the approximation becoming exact as n goes to infinity. This implies
that O� � � is, approximately, the mean of the n iid variates IF.xi /, and that
the variance of O� is approximately

var
n
O�
o
:
D
1

n
var fIF.x/g ; (10.62)
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varfIF.x/g being the variance of IF.x/ for any one draw of x from F . For
the sample mean, using (10.60) in (10.62) gives the familiar equality

varf Nxg D
1

n
varfxg: (10.63)

The sample mean suffers from an unbounded influence function (10.60),
which grows ever larger as x moves farther from � . This makes Nx unstable
against heavy-tailed densities such as the Cauchy (4.39). Robust estimation
theory seeks estimators O� of bounded influence, that do well against heavy-
tailed densities without giving up too much efficiency against light-tailed
densities such as the normal. Of particular interest have been the trimmed
mean and its close cousin the winsorized mean.

Let x.˛/ denote the 100˛th percentile of distributionF , satisfyingF.x.˛//
D ˛ or equivalently

˛ D

Z x.˛/

�1

f .x/ dx: (10.64)

The ˛th trimmed mean of F , �trim.˛/, is defined as

�trim.˛/ D
1

1 � 2˛

Z x.1�˛/

x.˛/
xf .x/ dx; (10.65)

the mean of the central 1 � 2˛ portion of F , trimming off the lower and
upper ˛ portions. This is not the same as the ˛th winsorized mean �wins.˛/,

�wins.˛/ D

Z
X
W.x/f .x/ dx; (10.66)

where

W.x/ D

8̂<̂
:
x.˛/ if x � x.˛/

x if x.˛/ � x � x.1�˛/

x.1�˛/ if x � x.1�˛/I

(10.67)

�trim.˛/ removes the outer portions of F , while �wins.˛/ moves them into
x.˛/ or x.1�˛/. In practice, empirical versions O�trim.˛/ and O�wins.˛/ are used,
substituting the empirical density Of , with probability 1=n at each xi , for
f .

There turns out to be an interesting relationship between the two: the
influence function of �trim.˛/ is a function of �wins.˛/,

IF˛.x/ D
W.x/ � �wins.˛/

1 � 2˛
: (10.68)

This is pictured in Figure 10.7, where we have plotted empirical influence
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Figure 10.7 Empirical influence functions for the 47 leukemia
ALL scores of Figure 1.4. The two dashed curves are IF˛.x/ for
the trimmed means (10.68), for ˛ D 0:2 and ˛ D 0:4. The solid
curve is IF.x/ for the sample mean Nx (10.60).

functions (plugging in OF for F in definition (10.59)) relating to the 47
leukemia ALL scores of Figure 1.4: IF0:2.x/ and IF0:4.x/ are plotted, along
with IF0.x/ (10.60), that is, for the mean.

Table 10.3 Trimmed means and their bootstrap standard deviations for
the 47 leukemia ALL scores of Figure 1.4; B D 1000 bootstrap
replications for each trim value. The last column gives empirical influence
function estimates of the standard error, which are also the infinitesimal
jackknife estimates (10.41). These fail for the median.

Trimmed Bootstrap
Trim mean sd (IFse)

Mean .0 .752 .040 (.040)
.1 .729 .038 (.034)
.2 .720 .035 (.034)
.3 .725 .044 (.044)
.4 .734 .047 (.054)

Median .5 .733 .053
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The upper panel of Figure 1.4 shows a moderately heavy right tail for
the ALL distribution. Would it be more efficient to estimate the center of
the distribution with a trimmed mean rather than Nx? The bootstrap pro-
vides an answer: bseboot (10.16) was calculated for Nx and O�trim.˛/, ˛ D
0:1; 0:2; 0:3; 0:4, and 0.5, the last being the sample median. It appears that
O�trim.0:2/ is moderately better than Nx. This brings up an important question
discussed in Chapter 20: if we use something like Table 10.3 to select an
estimator, how does the selection process affect the accuracy of the result-
ing estimate?

We might also use the square root of formula (10.62) to estimate the
standard errors of the various estimators, plugging in the empirical influ-
ence function for IF.x/. This turns out to be the same as using the infinites-
imal jackknife (10.41). These appear in the last column of Table 10.3. Pre-
dictably, this approach fails for the sample median, whose influence func-
tion is a square wave, sharply discontinuous at the median � ,

IF.x/ D ˙1
ı
.2f .�// : (10.69)

Robust estimation offers a nice illustration of statistical progress in the
computer age. Trimmed means go far back into the classical era. Influence
functions are an insightful inferential tool for understanding the tradeoffs in
trimmed mean estimation. And finally the bootstrap allows easy assessment
of the accuracy of robust estimation, including some more elaborate ones
not discussed here.

10.6 Notes and Details

Quenouille (1956) introduced what is now called the jackknife estimate
of bias. Tukey (1958) realized that Quenouille-type calculations could be
repurposed for nonparametric standard-error estimation, inventing formula
(10.6) and naming it “the jackknife,” as a rough and ready tool. Miller’s im-
portant 1964 paper, “A trustworthy jackknife,” asked when formula (10.6)
could be trusted. (Not for the median.)

The bootstrap (Efron, 1979) began as an attempt to better understand
the jackknife’s successes and failures. Its name celebrates Baron Mun-
chausen’s success in pulling himself up by his own bootstraps from the
bottom of a lake. Burgeoning computer power soon overcame the boot-
strap’s main drawback, prodigous amounts of calculation, propelling it into
general use. Meanwhile, 1000C theoretical papers were published asking
when the bootstrap itself could be trusted. (Most but not all of the time in
common practice).
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A main reference for the chapter is Efron’s 1982 monograph The Jack-
knife, the Bootstrap and Other Resampling Plans. Its Chapter 6 shows the
equality of three nonparametric standard error estimates: Jaeckel’s (1972)
infinitesimal jackknife (10.41); the empirical influence function estimate,
based on (10.62); and what is known as the nonparametric delta method.

Bootstrap Packages

Various bootstrap packages in R are available on the CRAN contributed-
packages web site, bootstrap being an ambitious one. Algorithm 10.1
shows a simple R program for nonparametric bootstrapping. Aside from
bookkeeping, it’s only a few lines long.

Algorithm 10.1 An R program for the nonparametric bootstrap.

Boot <- function (x, B, func, ...){
# x is data vector or matrix (with each row a case)
# B is number of bootstrap replications
# func is R function that inputs a data vector or
# matrix and returns a numeric number or vector
# ... other arguments for func

x <- as.matrix(x)
n <- nrow(x)
f0=func(x,...) # get size of output
fmat <- matrix(0,length(f0),B)
for (b in 1:B) {

i=sample(1:n, n, replace = TRUE)
fmat[,b] <- func(x[i, ],...)

}
drop(fmat)

}

�1 [p. 158] The jackknife standard error. The 1982 monograph also contains
Efron and Stein’s (1981) result on the bias of the jackknife variance esti-
mate, the square of formula (10.6): modulo certain sample size considera-
tions, the expectation of the jackknife variance estimate is biased upward
for the true variance.

For the sample mean Nx, the jackknife yields exactly the usual variance
estimate (1.2),

P
i .xi � Nx/

2=.n.n� 1//, while the ideal bootstrap estimate
(B !1) gives

nX
iD1

.xi � Nx/
2=n2: (10.70)
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As with the jackknife, we could append a fudge factor to get perfect agree-
ment with (1.2), but there is no real gain in doing so.

�2 [p. 161] Bootstrap sample sizes. Let bseB indicate the bootstrap standard er-
ror estimate (10.16) based onB replications, and bse1 the “ideal bootstrap,”
B ! 1. In any actual application, there are diminishing returns from in-
creasing B past a certain point, because bse1 is itself a statistic whose value
varies with the observed sample x (as in (10.70)), leaving an irreducible re-
mainder of randomness in any standard error estimate. Section 6.4 of Efron
and Tibshirani (1993) shows that B D 200 will almost always be plenty
(for standard errors, but not for bootstrap confidence intervals, Chapter 11).
Smaller numbers, 25 or even less, can still be quite useful in complicated
situations where resampling is expensive. An early complaint, “Bootstrap
estimates are random,” is less often heard in an era of frequent and massive
simulations.

�3 [p. 161] The Bayesian bootstrap. Rubin (1981) suggested the Bayesian
bootstrap (10.44). Section 10.6 of Efron (1982) used (10.45)–(10.46) as
an objective Bayes justification for what we will call the percentile-method
bootstrap confidence intervals in Chapter 12.

�4 [p. 161] Jackknife-after-bootstrap. For the eigenratio example displayed in
Figure 10.2, B D 2000 nonparametric bootstrap replications gave bseboot D

0:075. How accurate is this value? Bootstrapping the bootstrap seems like
too much work, perhaps 200 times 2000 resamples. It turns out, though,
that we can use the jackknife to estimate the variability of bseboot based on
just the original 2000 replications.

Now the deleted sample estimate in (10.6) is bseboot.i/. The key idea is
to consider those bootstrap samples x� (10.13), among the original 2000,
that do not include the point xi . About 37% of the original B samples will
be in this subset. Section 19.4 of Efron and Tibshirani (1993) shows that
applying definition (10.16) to this subset gives bseboot.i/. For the estimate of
Figure 10.2, the jackknife-after-bootstrap calculations gave bsejack D 0:022

for bseboot D 0:075. In other words, 0.075 isn’t very accurate, which is
to be expected for the standard error of a complicated statistic estimated
from only n D 22 observations. An infinitesimal jackknife version of this
technique will play a major role in Chapter 20.

�5 [p. 174] A fundamental theorem. Tukey can justly be considered the found-
ing father of robust statistics, his 1960 paper being especially influential.
Huber’s celebrated 1964 paper brought the subject into the realm of high-
concept mathematical statistics. Robust Statistics: The Approach Based on
Influence Functions, the 1986 book by Hampel et al., conveys the breadth
of a subject only lightly scratched in our Section 10.5. Hampel (1974)
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introduced the influence function as a statistical tool. Boos and Serfling
(1980) verified expression (10.62). Qualitative notions of robustness, more
than specific theoretical results, have had a continuing influence on modern
data analysis.


