
3 | Linear Neural Networks

Before we get into the details of deep neural networks, we need to cover the basics of neural net-
work training. In this chapter, we will cover the entire training process, including defining simple
neural network architectures, handling data, specifying a loss function, and training the model.
In order to make things easier to grasp, we begin with the simplest concepts. Fortunately, classic
statistical learning techniques such as linear and logistic regression can be cast as shallow neural
networks. Starting from these classic algorithms, we will introduce you to the basics, providing
the basis for more complex techniques such as softmax regression (introduced at the end of this
chapter) and multilayer perceptrons (introduced in the next chapter).

3.1 Linear Regression

Regression refers to a set of methods for modeling the relationship between data points x and
corresponding real-valued targets y. In the natural sciences and social sciences, the purpose of
regression is most often to characterize the relationship between the inputs and outputs. Machine
learning, on the other hand, is most often concerned with prediction.

Regression problems pop up whenever we want to predict a numerical value. Common exam-
ples include predicting prices (of homes, stocks, etc.), predicting length of stay (for patients in
the hospital), demand forecasting (for retail sales), among countless others. Not every prediction
problem is a classic regression problem. In subsequent sections, we will introduce classification
problems, where the goal is to predict membership among a set of categories.

3.1.1 Basic Elements of Linear Regression

Linear regression may be both the simplest and most popular among the standard tools to regres-
sion. Dating back to the dawn of the 19th century, linear regression flows from a few simple
assumptions. First, we assume that the relationship between the features x and targets y is linear,
i.e., that y can be expressed as a weighted sum of the inputs x, give or take some noise on the ob-
servations. Second, we assume that any noise is well-behaved (following a Gaussian distribution).
To motivate the approach, let s̓ start with a running example. Suppose that we wish to estimate
the prices of houses (in dollars) based on their area (in square feet) and age (in years).

To actually fit a model for predicting house prices, we would need to get our hands on a dataset
consisting of sales for which we know the sale price, area and age for each home. In the termi-
nology of machine learning, the dataset is called a training data or training set, and each row (here
the data corresponding to one sale) is called an instance or example. The thing we are trying to
predict (here, the price) is called a target or label. The variables (here age and area) upon which
the predictions are based are called features or covariates.

89

Typically, we will use n to denote the number of examples in our dataset. We index the samples
by i, denoting each input data point as x(i) = [x

(i)
1 , x

(i)
2] and the corresponding label as y(i).

Linear Model

The linearity assumption just says that the target (price) can be expressed as a weighted sum of
the features (area and age):

price = warea · area + wage · age + b. (3.1.1)

Here, warea and wage are called weights, and b is called a bias (also called an offset or intercept). The
weights determine the influence of each feature on our prediction and the bias just says what value
the predicted price should take when all of the features take value 0. Even if we will never see any
homes with zero area, or that are precisely zero years old, we still need the intercept or else we
will limit the expressivity of our linear model.

Given a dataset, our goal is to choose the weightsw and bias b such that on average, the predictions
made according our model best fit the true prices observed in the data.

In disciplines where it is common to focus on datasets with just a few features, explicitly ex-
pressing models long-form like this is common. In ML, we usually work with high-dimensional
datasets, so it is more convenient to employ linear algebra notation. When our inputs consist of
d features, we express our prediction ŷ as

ŷ = w1 · x1 + ...+ wd · xd + b. (3.1.2)

Collecting all features into a vector x and all weights into a vector w, we can express our model
compactly using a dot product:

ŷ = wTx+ b. (3.1.3)

Here, the vector x corresponds to a single data point. We will often find it convenient to refer to
our entire dataset via the design matrix X. Here, X contains one row for every example and one
column for every feature.

For a collection of data points X, the predictions ŷ can be expressed via the matrix-vector product:

ŷ = Xw+ b. (3.1.4)

Given a training dataset X and corresponding (known) targets y, the goal of linear regression is
to find the weight vector w and bias term b that given some a new data point xi, sampled from the
same distribution as the training data will (in expectation) predict the target yi with the lowest
error.

Even if we believe that the best model for predicting y given x is linear, we would not expect to
find real-world data where yi exactly equals wTx + b for all points (x, y). For example, whatever
instruments we use to observe the features X and labels y might suffer small amount of measure-
ment error. Thus, even when we are confident that the underlying relationship is linear, we will
incorporate a noise term to account for such errors.

Before we can go about searching for the best parameters w and b, we will need two more things:
(i) a quality measure for some given model; and (ii) a procedure for updating the model to improve
its quality.

90 Chapter 3. Linear Neural Networks

Loss Function

Before we start thinking about how to fit our model, we need to determine a measure of fitness.
The loss function quantifies the distance between the real and predicted value of the target. The loss
will usually be a non-negative number where smaller values are better and perfect predictions
incur a loss of 0. The most popular loss function in regression problems is the sum of squared
errors. When our prediction for some example i is ŷ(i) and the corresponding true label is y(i), the
squared error is given by:

l(i)(w, b) =
1

2

(
ŷ(i) − y(i)

)2
. (3.1.5)

The constant 1/2 makes no real difference but will prove notationally convenient, cancelling out
when we take the derivative of the loss. Since the training dataset is given to us, and thus out of
our control, the empirical error is only a function of the model parameters. To make things more
concrete, consider the example below where we plot a regression problem for a one-dimensional
case as shown in Fig. 3.1.1.

Fig. 3.1.1: Fit data with a linear model.

Note that large differences between estimates ŷ(i) and observations y(i) lead to even larger contri-
butions to the loss, due to the quadratic dependence. To measure the quality of a model on the
entire dataset, we simply average (or equivalently, sum) the losses on the training set.

L(w, b) =
1

n

n∑
i=1

l(i)(w, b) =
1

n

n∑
i=1

1

2

(
w⊤x(i) + b− y(i)

)2
. (3.1.6)

When training the model, we want to find parameters (w∗, b∗) that minimize the total loss across
all training samples:

w∗, b∗ = argmin
w,b

L(w, b). (3.1.7)

3.1. Linear Regression 91

Analytic Solution

Linear regression happens to be an unusually simple optimization problem. Unlike most other
models that we will encounter in this book, linear regression can be solved analytically by apply-
ing a simple formula, yielding a global optimum. To start, we can subsume the bias b into the
parameter w by appending a column to the design matrix consisting of all 1s. Then our predic-
tion problem is to minimize ||y−Xw||. Because this expression has a quadratic form, it is convex,
and so long as the problem is not degenerate (our features are linearly independent), it is strictly
convex.

Thus there is just one critical point on the loss surface and it corresponds to the global minimum.
Taking the derivative of the loss with respect to w and setting it equal to 0 yields the analytic solu-
tion:

w∗ = (XTX)−1XT y. (3.1.8)

While simple problems like linear regression may admit analytic solutions, you should not get
used to such good fortune. Although analytic solutions allow for nice mathematical analysis, the
requirement of an analytic solution is so restrictive that it would exclude all of deep learning.

Gradient descent

Even in cases where we cannot solve the models analytically, and even when the loss surfaces are
high-dimensional and nonconvex, it turns out that we can still train models effectively in practice.
Moreover, for many tasks, these difficult-to-optimize models turn out to be so much better that
figuring out how to train them ends up being well worth the trouble.

The key technique for optimizing nearly any deep learning model, and which we will call upon
throughout this book, consists of iteratively reducing the error by updating the parameters in the
direction that incrementally lowers the loss function. This algorithm is called gradient descent. On
convex loss surfaces, it will eventually converge to a global minimum, and while the same cannot
be said for nonconvex surfaces, it will at least lead towards a (hopefully good) local minimum.

The most naive application of gradient descent consists of taking the derivative of the true loss,
which is an average of the losses computed on every single example in the dataset. In practice,
this can be extremely slow. We must pass over the entire dataset before making a single update.
Thus, we will often settle for sampling a random minibatch of examples every time we need to
computer the update, a variant called stochastic gradient descent.

In each iteration, we first randomly sample a minibatchB consisting of a fixed number of training
data examples. We then compute the derivative (gradient) of the average loss on the mini batch
with regard to the model parameters. Finally, we multiply the gradient by a predetermined step
size η > 0 and subtract the resulting term from the current parameter values.

We can express the update mathematically as follows (∂ denotes the partial derivative) :

(w, b)← (w, b)− η

|B|
∑
i∈B

∂(w,b)l
(i)(w, b). (3.1.9)

To summarize, steps of the algorithm are the following: (i) we initialize the values of the model pa-
rameters, typically at random; (ii) we iteratively sample random batches from the the data (many
times), updating the parameters in the direction of the negative gradient.

92 Chapter 3. Linear Neural Networks

For quadratic losses and linear functions, we can write this out explicitly as follows: Note that w
and x are vectors. Here, the more elegant vector notation makes the math much more readable
than expressing things in terms of coefficients, say w1, w2, . . . , wd.

w← w− η

|B|
∑
i∈B

∂wl
(i)(w, b) = w − η

|B|
∑
i∈B

x(i)
(
w⊤x(i) + b− y(i)

)
,

b← b− η

|B|
∑
i∈B

∂bl
(i)(w, b) = b− η

|B|
∑
i∈B

(
w⊤x(i) + b− y(i)

)
.

(3.1.10)

In the above equation, |B| represents the number of examples in each minibatch (the batch size)
and η denotes the learning rate. We emphasize that the values of the batch size and learning rate
are manually pre-specified and not typically learned through model training. These parameters
that are tunable but not updated in the training loop are called hyper-parameters. Hyperparameter
tuning is the process by which these are chosen, and typically requires that we adjust the hyper-
parameters based on the results of the inner (training) loop as assessed on a separate validation
split of the data.

After training for some predetermined number of iterations (or until some other stopping criteria
is met), we record the estimated model parameters, denoted ŵ, b̂ (in general the “hat” symbol
denotes estimates). Note that even if our function is truly linear and noiseless, these parameters
will not be the exact minimizers of the loss because, although the algorithm converges slowly
towards a local minimum it cannot achieve it exactly in a finite number of steps.

Linear regression happens to be a convex learning problem, and thus there is only one (global)
minimum. However, for more complicated models, like deep networks, the loss surfaces contain
many minima. Fortunately, for reasons that are not yet fully understood, deep learning prac-
titioners seldom struggle to find parameters that minimize the loss on training data. The more
formidable task is to find parameters that will achieve low loss on data that we have not seen be-
fore, a challenge called generalization. We return to these topics throughout the book.

Making Predictions with the Learned Model

Given the learned linear regression model ŵ⊤x+ b̂, we can now estimate the price of a new house
(not contained in the training data) given its area x1 and age (year) x2. Estimating targets given
features is commonly called prediction and inference.

We will try to stick with prediction because calling this step inference, despite emerging as standard
jargon in deep learning, is somewhat of a misnomer. In statistics, inference more often denotes
estimating parameters based on a dataset. This misuse of terminology is a common source of
confusion when deep learning practitioners talk to statisticians.

Vectorization for Speed

When training our models, we typically want to process whole minibatches of examples simulta-
neously. Doing this efficiently requires that we vectorize the calculations and leverage fast linear
algebra libraries rather than writing costly for-loops in Python.

To illustrate why this matters so much, we can consider two methods for adding vectors. To start
we instantiate two 100000-dimensional vectors containing all ones. In one method we will loop
over the vectors with a Python for loop. In the other method we will rely on a single call to np.

3.1. Linear Regression 93

%matplotlib inline
import d2l
import math
from mxnet import np
import time

n = 10000
a = np.ones(n)
b = np.ones(n)

Since we will benchmark the running time frequently in this book, let s̓ define a timer (hereafter
accessed via the d2l package to track the running time.

Saved in the d2l package for later use
class Timer(object):

"""Record multiple running times."""
def __init__(self):

self.times = []
self.start()

def start(self):
Start the timer
self.start_time = time.time()

def stop(self):
Stop the timer and record the time in a list
self.times.append(time.time() - self.start_time)
return self.times[-1]

def avg(self):
Return the average time
return sum(self.times)/len(self.times)

def sum(self):
Return the sum of time
return sum(self.times)

def cumsum(self):
Return the accumuated times
return np.array(self.times).cumsum().tolist()

Now we can benchmark the workloads. First, we add them, one coordinate at a time, using a for
loop.

timer = Timer()
c = np.zeros(n)
for i in range(n):

c[i] = a[i] + b[i]
'%.5f sec' % timer.stop()

'3.51575 sec'

Alternatively, we rely on np to compute the elementwise sum:

94 Chapter 3. Linear Neural Networks

timer.start()
d = a + b
'%.5f sec' % timer.stop()

'0.00023 sec'

You probably noticed that the second method is dramatically faster than the first. Vectorizing code
often yields order-of-magnitude speedups. Moreover, we push more of the math to the library and
need not write as many calculations ourselves, reducing the potential for errors.

3.1.2 The Normal Distribution and Squared Loss

While you can already get your hands dirty using only the information above, in the following
section we can more formally motivate the square loss objective via assumptions about the distri-
bution of noise.

Recall from the above that the squared loss l(y, ŷ) = 1
2(y − ŷ)2 has many convenient properties.

These include a simple derivative ∂ŷl(y, ŷ) = (ŷ − y).

As we mentioned earlier, linear regression was invented by Gauss in 1795, who also discovered
the normal distribution (also called the Gaussian). It turns out that the connection between the
normal distribution and linear regression runs deeper than common parentage. To refresh your
memory, the probability density of a normal distribution with mean µ and variance σ2 is given as
follows:

p(z) =
1√
2πσ2

exp
(
− 1

2σ2
(z − µ)2

)
. (3.1.11)

Below we define a Python function to compute the normal distribution.

x = np.arange(-7, 7, 0.01)

def normal(z, mu, sigma):
p = 1 / math.sqrt(2 * math.pi * sigma**2)
return p * np.exp(- 0.5 / sigma**2 * (z - mu)**2)

We can now visualize the normal distributions.

Mean and variance pairs
parameters = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in parameters], xlabel='z',

ylabel='p(z)', figsize=(4.5, 2.5),
legend=['mean %d, var %d' % (mu, sigma) for mu, sigma in parameters])

3.1. Linear Regression 95

As you can see, changing the mean corresponds to a shift along the x axis, and increasing the
variance spreads the distribution out, lowering its peak.

One way to motivate linear regression with the mean squared error loss function is to formally
assume that observations arise from noisy observations, where the noise is normally distributed
as follows

y = w⊤x+ b+ ϵ where ϵ ∼ N (0, σ2). (3.1.12)

Thus, we can now write out the likelihood of seeing a particular y for a given x via

p(y|x) = 1√
2πσ2

exp
(
− 1

2σ2
(y −w⊤x− b)2

)
. (3.1.13)

Now, according to the maximum likelihood principle, the best values of b and w are those that max-
imize the likelihood of the entire dataset:

P (Y | X) =

n∏
i=1

p(y(i)|x(i)). (3.1.14)

Estimators chosen according to the maximum likelihood principle are called Maximum Likelihood
Estimators (MLE). While, maximizing the product of many exponential functions, might look dif-
ficult, we can simplify things significantly, without changing the objective, by maximizing the log
of the likelihood instead. For historical reasons, optimizations are more often expressed as mini-
mization rather than maximization. So, without changing anything we can minimize the Negative
Log-Likelihood (NLL)− log p(y|X). Working out the math gives us:

− log p(y|X) =
n∑

i=1

1

2
log(2πσ2) +

1

2σ2

(
y(i) −w⊤x(i) − b

)2
. (3.1.15)

Now we just need one more assumption: thatσ is some fixed constant. Thus we can ignore the first
term because it does not depend on w or b. Now the second term is identical to the squared error
objective introduced earlier, but for the multiplicative constant 1

σ2 . Fortunately, the solution does
not depend on σ. It follows that minimizing squared error is equivalent to maximum likelihood
estimation of a linear model under the assumption of additive Gaussian noise.

96 Chapter 3. Linear Neural Networks

3.1.3 From Linear Regression to Deep Networks

So far we only talked about linear functions. While neural networks cover a much richer family
of models, we can begin thinking of the linear model as a neural network by expressing it the
language of neural networks. To begin, let s̓ start by rewriting things in a ʻlayerʼ notation.

Neural Network Diagram

Deep learning practitioners like to draw diagrams to visualize what is happening in their models.
In Fig. 3.1.2, we depict our linear model as a neural network. Note that these diagrams indicate
the connectivity pattern (here, each input is connected to the output) but not the values taken by
the weights or biases.

Fig. 3.1.2: Linear regression is a single-layer neural network.

Because there is just a single computed neuron (node) in the graph (the input values are not com-
puted but given), we can think of linear models as neural networks consisting of just a single ar-
tificial neuron. Since for this model, every input is connected to every output (in this case there
is only one output!), we can regard this transformation as a fully-connected layer, also commonly
called a dense layer. We will talk a lot more about networks composed of such layers in the next
chapter on multilayer perceptrons.

Biology

Although linear regression (invented in 1795) predates computational neuroscience, so it might
seem anachronistic to describe linear regression as a neural network. To see why linear models
were a natural place to begin when the cyberneticists/neurophysiologists Warren McCulloch and
Walter Pitts looked when they began to develop models of artificial neurons, consider the cartoon-
ish picture of a biological neuron in Fig. 3.1.3, consisting of dendrites (input terminals), the nucleus
(CPU), the axon (output wire), and the axon terminals (output terminals), enabling connections to
other neurons via synapses.

3.1. Linear Regression 97

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Fig. 3.1.3: The real neuron

Information xi arriving from other neurons (or environmental sensors such as the retina) is re-
ceived in the dendrites. In particular, that information is weighted by synapticweightswi determin-
ing the effect of the inputs (e.g., activation or inhibition via the product xiwi). The weighted inputs
arriving from multiple sources are aggregated in the nucleus as a weighted sum y =

∑
i xiwi + b,

and this information is then sent for further processing in the axon y, typically after some nonlin-
ear processing via σ(y). From there it either reaches its destination (e.g., a muscle) or is fed into
another neuron via its dendrites.

Certainly, the high-level idea that many such units could be cobbled together with the right con-
nectivity and right learning algorithm, to produce far more interesting and complex behavior than
any one neuron along could express owes to our study of real biological neural systems.

At the same time, most research in deep learning today draws little direct inspiration in neuro-
science. We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial In-
telligence: A Modern Approach (Russell & Norvig, 2016), pointed out that although airplanes might
have been inspired by birds, orninthology has not been the primary driver of aeronautics inno-
vation for some centuries. Likewise, inspiration in deep learning these days comes in equal or
greater measure from mathematics, statistics, and computer science.

Summary

• Key ingredients in a machine learning model are training data, a loss function, an optimiza-
tion algorithm, and quite obviously, the model itself.

• Vectorizing makes everything better (mostly math) and faster (mostly code).

• Minimizing an objective function and performing maximum likelihood can mean the same
thing.

• Linear models are neural networks, too.

98 Chapter 3. Linear Neural Networks

Exercises

1. Assume that we have some data x1, . . . , xn ∈ R. Our goal is to find a constant b such that∑
i(xi − b)2 is minimized.

• Find a closed-form solution for the optimal value of b.

• How does this problem and its solution relate to the normal distribution?

2. Derive the closed-form solution to the optimization problem for linear regression with
squared error. To keep things simple, you can omit the bias b from the problem (we can
do this in principled fashion by adding one column to X consisting of all ones).

• Write out the optimization problem in matrix and vector notation (treat all the data as
a single matrix, all the target values as a single vector).

• Compute the gradient of the loss with respect to w.

• Find the closed form solution by setting the gradient equal to zero and solving the ma-
trix equation.

• When might this be better than using stochastic gradient descent? When might this
method break?

3. Assume that the noise model governing the additive noise ϵ is the exponential distribution.
That is, p(ϵ) = 1

2 exp(−|ϵ|).

• Write out the negative log-likelihood of the data under the model− logP (Y | X).

• Can you find a closed form solution?

• Suggest a stochastic gradient descent algorithm to solve this problem. What could pos-
sibly go wrong (hint - what happens near the stationary point as we keep on updating
the parameters). Can you fix this?

3.2 Linear Regression Implementation from Scratch

Now that you understand the key ideas behind linear regression, we can begin to work through
a hands-on implementation in code. In this section, we will implement the entire method from
scratch, including the data pipeline, the model, the loss function, and the gradient descent op-
timizer. While modern deep learning frameworks can automate nearly all of this work, imple-
menting things from scratch is the only to make sure that you really know what you are doing.
Moreover, when it comes time to customize models, defining our own layers, loss functions, etc.,
understanding how things work under the hood will prove handy. In this section, we will rely only
on ndarray and autograd. Afterwards, we will introduce a more compact implementation, taking
advantage of Gluons̓ bells and whistles. To start off, we import the few required packages.

%matplotlib inline
import d2l

(continues on next page)

3.2. Linear Regression Implementation from Scratch 99

(continued from previous page)

from mxnet import autograd, np, npx
import random
npx.set_np()

3.2.1 Generating the Dataset

To keep things simple, we will construct an artificial dataset according to a linear model with
additive noise. Out task will be to recover this model s̓ parameters using the finite set of examples
contained in our dataset. We will keep the data low-dimensional so we can visualize it easily. In
the following code snippet, we generated a dataset containing 1000 examples, each consisting of
2 features sampled from a standard normal distribution. Thus our synthetic dataset will be an
object X ∈ R1000×2.

The true parameters generating our data will be w = [2,−3.4]⊤ and b = 4.2 and our synthetic
labels will be assigned according to the following linear model with noise term ϵ:

y = Xw+ b+ ϵ. (3.2.1)

You could think of ϵ as capturing potential measurement errors on the features and labels. We
will assume that the standard assumptions hold and thus that ϵ obeys a normal distribution with
mean of 0. To make our problem easy, we will set its standard deviation to 0.01. The following
code generates our synthetic dataset:

Saved in the d2l package for later use
def synthetic_data(w, b, num_examples):

"""generate y = X w + b + noise"""
X = np.random.normal(0, 1, (num_examples, len(w)))
y = np.dot(X, w) + b
y += np.random.normal(0, 0.01, y.shape)
return X, y

true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

Note that each row in features consists of a 2-dimensional data point and that each row in labels
consists of a 1-dimensional target value (a scalar).

print('features:', features[0],'\nlabel:', labels[0])

features: [2.2122064 1.1630787]
label: 4.662078

By generating a scatter plot using the second features[:, 1] and labels, we can clearly observe
the linear correlation between the two.

d2l.set_figsize((3.5, 2.5))
d2l.plt.scatter(features[:, 1].asnumpy(), labels.asnumpy(), 1);

100 Chapter 3. Linear Neural Networks

3.2.2 Reading the Dataset

Recall that training models consists of making multiple passes over the dataset, grabbing one
minibatch of examples at a time, and using them to update our model. Since this process is so fun-
damental to training machine learning algorithms, its worth defining a utility function to shuffle
the data and access it in minibatches.

In the following code, we define a data_iter function to demonstrate one possible implementa-
tion of this functionality. The function takes a batch size, a design matrix, and a vector of labels,
yielding minibatches of size batch_size. Each minibatch consists of an tuple of features and la-
bels.

def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
The examples are read at random, in no particular order
random.shuffle(indices)
for i in range(0, num_examples, batch_size):

batch_indices = np.array(
indices[i: min(i + batch_size, num_examples)])

yield features[batch_indices], labels[batch_indices]

In general, note that we want to use reasonably sized minibatches to take advantage of the GPU
hardware, which excels at parallelizing operations. Because each example can be fed through our
models in parallel and the gradient of the loss function for each example can also be taken in
parallel, GPUs allow us to process hundreds of examples in scarcely more time than it might take
to process just a single example.

To build some intuition, let s̓ read and print the first small batch of data examples. The shape of
the features in each minibatch tells us both the minibatch size and the number of input features.
Likewise, our minibatch of labels will have a shape given by batch_size.

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break

3.2. Linear Regression Implementation from Scratch 101

[[1.0779219 0.38224545]
[0.24021588 -0.5396039]
[-0.66915834 -1.197868]
[0.11402581 -1.1407781]
[1.015367 1.2454321]
[0.71535987 1.8271433]
[1.0240983 0.56759083]
[1.1291474 -0.41478267]
[-1.6327407 0.07702067]
[0.3925466 -0.18325637]]
[5.03691 6.494923 6.9462047 8.31074 2.0036945 -0.57446426
4.3213058 7.877404 0.6821707 5.610293]

As we run the iterator, we obtain distinct minibatches successively until all the data has been
exhausted (try this). While the iterator implemented above is good for didactic purposes, it is
inefficient in ways that might get us in trouble on real problems. For example, it requires that we
load all data in memory and that we perform lots of random memory access. The built-in iterators
implemented in Apache MXNet are considerably efficient and they can deal both with data stored
on file and data fed via a data stream.

3.2.3 Initializing Model Parameters

Before we can begin optimizing our model s̓ parameters by gradient descent, we need to have some
parameters in the first place. In the following code, we initialize weights by sampling random
numbers from a normal distribution with mean 0 and a standard deviation of 0.01, setting the
bias b to 0.

w = np.random.normal(0, 0.01, (2, 1))
b = np.zeros(1)

Now that we have initialized our parameters, our next task is to update them until they fit our data
sufficiently well. Each update requires taking the gradient (a multi-dimensional derivative) of our
loss function with respect to the parameters. Given this gradient, we can update each parameter
in the direction that reduces the loss.

Since nobody wants to compute gradients explicitly (this is tedious and error prone), we use au-
tomatic differentiation to compute the gradient. See Section 2.5 for more details. Recall from the
autograd chapter that in order for autograd to know that it should store a gradient for our param-
eters, we need to invoke the attach_grad function, allocating memory to store the gradients that
we plan to take.

w.attach_grad()
b.attach_grad()

102 Chapter 3. Linear Neural Networks

3.2.4 Defining the Model

Next, we must define our model, relating its inputs and parameters to its outputs. Recall that
to calculate the output of the linear model, we simply take the matrix-vector dot product of the
examples X and the models weights w, and add the offset b to each example. Note that below np.
dot(X, w) is a vector and b is a scalar. Recall that when we add a vector and a scalar, the scalar is
added to each component of the vector.

Saved in the d2l package for later use
def linreg(X, w, b):

return np.dot(X, w) + b

3.2.5 Defining the Loss Function

Since updating our model requires taking the gradient of our loss function, we ought to define
the loss function first. Here we will use the squared loss function as described in the previous
section. In the implementation, we need to transform the true value y into the predicted value s̓
shape y_hat. The result returned by the following function will also be the same as the y_hat
shape.

Saved in the d2l package for later use
def squared_loss(y_hat, y):

return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

3.2.6 Defining the Optimization Algorithm

As we discussed in the previous section, linear regression has a closed-form solution. However,
this is not a book about linear regression, it is a book about deep learning. Since none of the
other models that this book introduces can be solved analytically, we will take this opportunity to
introduce your first working example of stochastic gradient descent (SGD).

At each step, using one batch randomly drawn from our dataset, we will estimate the gradient of
the loss with respect to our parameters. Next, we will update our parameters (a small amount)
in the direction that reduces the loss. Recall from Section 2.5 that after we call backward each
parameter (param) will have its gradient stored in param.grad. The following code applies the SGD
update, given a set of parameters, a learning rate, and a batch size. The size of the update step
is determined by the learning rate lr. Because our loss is calculated as a sum over the batch of
examples, we normalize our step size by the batch size (batch_size), so that the magnitude of a
typical step size does not depend heavily on our choice of the batch size.

Saved in the d2l package for later use
def sgd(params, lr, batch_size):

for param in params:
param[:] = param - lr * param.grad / batch_size

3.2. Linear Regression Implementation from Scratch 103

3.2.7 Training

Now that we have all of the parts in place, we are ready to implement the main training loop. It
is crucial that you understand this code because you will see nearly identical training loops over
and over again throughout your career in deep learning.

In each iteration, we will grab minibatches of models, first passing them through our model to
obtain a set of predictions. After calculating the loss, we call the backward function to initiate the
backwards pass through the network, storing the gradients with respect to each parameter in its
corresponding .grad attribute. Finally, we will call the optimization algorithm sgd to update the
model parameters. Since we previously set the batch size batch_size to 10, the loss shape l for
each minibatch is (10, 1).

In summary, we will execute the following loop:

• Initialize parameters (w, b)

• Repeat until done

– Compute gradient g← ∂(w,b)
1
B
∑

i∈B l(xi, yi,w, b)

– Update parameters (w, b)← (w, b)− ηg

In the code below, l is a vector of the losses for each example in the minibatch. Because l is not a
scalar variable, running l.backward() adds together the elements in l to obtain the new variable
and then calculates the gradient.

In each epoch (a pass through the data), we will iterate through the entire dataset (using the
data_iter function) once passing through every examples in the training dataset (assuming the
number of examples is divisible by the batch size). The number of epochs num_epochs and the
learning rate lr are both hyper-parameters, which we set here to 3 and 0.03, respectively. Unfor-
tunately, setting hyper-parameters is tricky and requires some adjustment by trial and error. We
elide these details for now but revise them later in Chapter 11.

lr = 0.03 # Learning rate
num_epochs = 3 # Number of iterations
net = linreg # Our fancy linear model
loss = squared_loss # 0.5 (y-y')^2

for epoch in range(num_epochs):
Assuming the number of examples can be divided by the batch size, all
the examples in the training dataset are used once in one epoch
iteration. The features and tags of minibatch examples are given by X
and y respectively
for X, y in data_iter(batch_size, features, labels):

with autograd.record():
l = loss(net(X, w, b), y) # Minibatch loss in X and y

l.backward() # Compute gradient on l with respect to [w, b]
sgd([w, b], lr, batch_size) # Update parameters using their gradient

train_l = loss(net(features, w, b), labels)
print('epoch %d, loss %f' % (epoch + 1, train_l.mean().asnumpy()))

epoch 1, loss 0.024923
epoch 2, loss 0.000091
epoch 3, loss 0.000051

104 Chapter 3. Linear Neural Networks

In this case, because we synthesized the data ourselves, we know precisely what the true param-
eters are. Thus, we can evaluate our success in training by comparing the true parameters with
those that we learned through our training loop. Indeed they turn out to be very close to each
other.

print('Error in estimating w', true_w - w.reshape(true_w.shape))
print('Error in estimating b', true_b - b)

Error in estimating w [5.5313110e-05 -2.6226044e-06]
Error in estimating b [0.00063753]

Note that we should not take it for granted that we are able to recover the parameters accurately.
This only happens for a special category problems: strongly convex optimization problems with
“enough” data to ensure that the noisy samples allow us to recover the underlying dependency.
In most cases this is not the case. In fact, the parameters of a deep network are rarely the same (or
even close) between two different runs, unless all conditions are identical, including the order in
which the data is traversed. However, in machine learning, we are typically less concerned with
recovering true underlying parameters, and more concerned with parameters that lead to accu-
rate prediction. Fortunately, even on difficult optimization problems, stochastic gradient descent
can often find remarkably good solutions, owing partly to the fact that, for deep networks, there
exist many configurations of the parameters that lead to accurate prediction.

Summary

We saw how a deep network can be implemented and optimized from scratch, using just ndarray
and autograd, without any need for defining layers, fancy optimizers, etc. This only scratches the
surface of what is possible. In the following sections, we will describe additional models based
on the concepts that we have just introduced and learn how to implement them more concisely.

Exercises

1. What would happen if we were to initialize the weights w = 0. Would the algorithm still
work?

2. Assume that you are Georg Simon Ohm51 trying to come up with a model between voltage
and current. Can you use autograd to learn the parameters of your model.

3. Can you use Planck s̓ Law52 to determine the temperature of an object using spectral energy
density?

4. What are the problems you might encounter if you wanted to extend autograd to second
derivatives? How would you fix them?

5. Why is the reshape function needed in the squared_loss function?

6. Experiment using different learning rates to find out how fast the loss function value drops.

7. If the number of examples cannot be divided by the batch size, what happens to the
data_iter functions̓ behavior?

51 https://en.wikipedia.org/wiki/Georg_Ohm
52 https://en.wikipedia.org/wiki/Planck%27s_law

3.2. Linear Regression Implementation from Scratch 105

https://en.wikipedia.org/wiki/Georg_Ohm
https://en.wikipedia.org/wiki/Planck%27s_law

3.3 Concise Implementation of Linear Regression

Broad and intense interest in deep learning for the past several years has inspired both companies,
academics, and hobbyists to develop a variety of mature open source frameworks for automating
the repetitive work of implementing gradient-based learning algorithms. In the previous section,
we relied only on (i) ndarray for data storage and linear algebra; and (ii) autograd for calculating
derivatives. In practice, because data iterators, loss functions, optimizers, and neural network
layers (and some whole architectures) are so common, modern libraries implement these com-
ponents for us as well.

In this section, we will show you how to implement the linear regression model from Section 3.2
concisely by using Gluon.

3.3.1 Generating the Dataset

To start, we will generate the same dataset as in the previous section.

import d2l
from mxnet import autograd, gluon, np, npx
npx.set_np()

true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

3.3.2 Reading the Dataset

Rather than rolling our own iterator, we can call upon Gluons̓ data module to read data. The first
step will be to instantiate an ArrayDataset. This object s̓ constructor takes one or more ndarrays
as arguments. Here, we pass in features and labels as arguments. Next, we will use the Array-
Dataset to instantiate a DataLoader, which also requires that we specify a batch_size and specify
a Boolean value shuffle indicating whether or not we want the DataLoader to shuffle the data on
each epoch (pass through the dataset).

Saved in the d2l package for later use
def load_array(data_arrays, batch_size, is_train=True):

"""Construct a Gluon data loader"""
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)

106 Chapter 3. Linear Neural Networks

Now we can use data_iter in much the same way as we called the data_iter function in the pre-
vious section. To verify that it is working, we can read and print the first minibatch of instances.

for X, y in data_iter:
print(X, '\n', y)
break

[[1.9118724 0.99435186]
[-0.69279176 -0.11865307]
[-0.83655155 -0.58954424]
[-0.9345107 1.0642178]
[-0.34534106 -0.7556803]
[0.30967948 -1.7559303]
[-0.6308071 0.53733146]
[0.46879596 -0.30394194]
[0.75600237 0.16707687]
[-0.16452314 -0.21437684]]
[4.6377006 3.2253058 4.530804 -1.2874792 6.07641 10.791387
1.0948168 6.1717677 5.1450267 4.620073]

3.3.3 Defining the Model

When we implemented linear regression from scratch (in :numref``sec_linear_scratch``), we de-
fined our model parameters explicitly and coded up the calculations to produce output using ba-
sic linear algebra operations. You should know how to do this. But once your models get more
complex, and once you have to do this nearly every day, you will be glad for the assistance. The
situation is similar to coding up your own blog from scratch. Doing it once or twice is rewarding
and instructive, but you would be a lousy web developer if every time you needed a blog you spent
a month reinventing the wheel.

For standard operations, we can use Gluons̓ predefined layers, which allow us to focus especially
on the layers used to construct the model rather than having to focus on the implementation.
To define a linear model, we first import the nn module, which defines a large number of neural
network layers (note that “nn” is an abbreviation for neural networks). We will first define a model
variable net, which will refer to an instance of the Sequential class. In Gluon, Sequential defines
a container for several layers that will be chained together. Given input data, a Sequential passes
it through the first layer, in turn passing the output as the second layer s̓ input and so forth. In
the following example, our model consists of only one layer, so we do not really need Sequential.
But since nearly all of our future models will involve multiple layers, we will use it anyway just to
familiarize you with the most standard workflow.

from mxnet.gluon import nn
net = nn.Sequential()

Recall the architecture of a single-layer network as shown in Fig. 3.3.1. The layer is said to be
fully-connected because each of its inputs are connected to each of its outputs by means of a matrix-
vector multiplication. In Gluon, the fully-connected layer is defined in the Dense class. Since we
only want to generate a single scalar output, we set that number to 1.

3.3. Concise Implementation of Linear Regression 107

Fig. 3.3.1: Linear regression is a single-layer neural network.

net.add(nn.Dense(1))

It is worth noting that, for convenience, Gluon does not require us to specify the input shape for
each layer. So here, we do not need to tell Gluon how many inputs go into this linear layer. When
we first try to pass data through our model, e.g., when we execute net(X) later, Gluon will auto-
matically infer the number of inputs to each layer. We will describe how this works in more detail
in the chapter “Deep Learning Computation”.

3.3.4 Initializing Model Parameters

Before using net, we need to initialize the model parameters, such as the weights and biases in
the linear regression model. We will import the initializer module from MXNet. This module
provides various methods for model parameter initialization. Gluon makes init available as a
shortcut (abbreviation) to access the initializer package. By calling init.Normal(sigma=0.01),
we specify that each weight parameter should be randomly sampled from a normal distribution
with mean 0 and standard deviation 0.01. The bias parameter will be initialized to zero by default.
Both the weight vector and bias will have attached gradients.

from mxnet import init
net.initialize(init.Normal(sigma=0.01))

The code above may look straightforward but you should note that something strange is happening
here. We are initializing parameters for a network even though Gluon does not yet know how
many dimensions the input will have! It might be 2 as in our example or it might be 2000. Gluon
lets us get away with this because behind the scenes, the initialization is actually deferred. The
real initialization will take place only when we for the first time attempt to pass data through the
network. Just be careful to remember that since the parameters have not been initialized yet, we
cannot access or manipulate them.

3.3.5 Defining the Loss Function

In Gluon, the loss module defines various loss functions. We will the imported module loss with
the pseudonym gloss, to avoid confusing it for the variable holding our chosen loss function. In
this example, we will use the Gluon implementation of squared loss (L2Loss).

from mxnet.gluon import loss as gloss
loss = gloss.L2Loss() # The squared loss is also known as the L2 norm loss

108 Chapter 3. Linear Neural Networks

3.3.6 Defining the Optimization Algorithm

Minibatch SGD and related variants are standard tools for optimizing neural networks and thus
Gluon supports SGD alongside a number of variations on this algorithm through its Trainer class.
When we instantiate the Trainer, we will specify the parameters to optimize over (obtainable from
our net via net.collect_params()), the optimization algorithm we wish to use (sgd), and a dictio-
nary of hyper-parameters required by our optimization algorithm. SGD just requires that we set
the value learning_rate, (here we set it to 0.03).

from mxnet import gluon
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})

3.3.7 Training

You might have noticed that expressing our model through Gluon requires comparatively few lines
of code. We did not have to individually allocate parameters, define our loss function, or im-
plement stochastic gradient descent. Once we start working with much more complex models,
Gluons̓ advantages will grow considerably. However, once we have all the basic pieces in place,
the training loop itself is strikingly similar to what we did when implementing everything from
scratch.

To refresh your memory: for some number of epochs, we will make a complete pass over the
dataset (train_data), iteratively grabbing one minibatch of inputs and the corresponding ground-
truth labels. For each minibatch, we go through the following ritual:

• Generate predictions by calling net(X) and calculate the loss l (the forward pass).

• Calculate gradients by calling l.backward() (the backward pass).

• Update the model parameters by invoking our SGD optimizer (note that trainer already
knows which parameters to optimize over, so we just need to pass in the minibatch size.

For good measure, we compute the loss after each epoch and print it to monitor progress.

num_epochs = 3
for epoch in range(1, num_epochs + 1):

for X, y in data_iter:
with autograd.record():

l = loss(net(X), y)
l.backward()
trainer.step(batch_size)

l = loss(net(features), labels)
print('epoch %d, loss: %f' % (epoch, l.mean().asnumpy()))

epoch 1, loss: 0.025167
epoch 2, loss: 0.000090
epoch 3, loss: 0.000051

Below, we compare the model parameters learned by training on finite data and the actual param-
eters that generated our dataset. To access parameters with Gluon, we first access the layer that we
need from net and then access that layer s̓ weight (weight) and bias (bias). To access each param-
eter s̓ values as an ndarray, we invoke its data method. As in our from-scratch implementation,
note that our estimated parameters are close to their ground truth counterparts.

3.3. Concise Implementation of Linear Regression 109

w = net[0].weight.data()
print('Error in estimating w', true_w.reshape(w.shape) - w)
b = net[0].bias.data()
print('Error in estimating b', true_b - b)

Error in estimating w [[0.00019813 0.0003016]]
Error in estimating b [0.00057745]

Summary

• Using Gluon, we can implement models much more succinctly.

• In Gluon, the data module provides tools for data processing, the nn module defines a large
number of neural network layers, and the loss module defines many common loss func-
tions.

• MXNet s̓ module initializer provides various methods for model parameter initialization.

• Dimensionality and storage are automatically inferred (but be careful not to attempt to ac-
cess parameters before they have been initialized).

Exercises

1. If we replace l = loss(output, y) with l = loss(output, y).mean(), we need to change
trainer.step(batch_size) to trainer.step(1) for the code to behave identically. Why?

2. Review the MXNet documentation to see what loss functions and initialization methods are
provided in the modules gluon.loss and init. Replace the loss by Huber s̓ loss.

3. How do you access the gradient of dense.weight?

3.4 Softmax Regression

In Section 3.1, we introduced linear regression, working through implementations from scratch
in Section 3.2 and again using Gluon in Section 3.3 to do the heavy lifting.

Regression is the hammer we reach for when we want to answer how much? or how many? ques-
tions. If you want to predict the number of dollars (the price) at which a house will be sold, or
the number of wins a baseball team might have, or the number of days that a patient will remain
hospitalized before being discharged, then you are probably looking for a regression model.

In practice, we are more often interested in classification: asking not how much? but which one?

• Does this email belong in the spam folder or the inbox*?

• Is this customer more likely to sign up or not to sign up for a subscription service?*

110 Chapter 3. Linear Neural Networks

• Does this image depict a donkey, a dog, a cat, or a rooster?

• Which movie is Aston most likely to watch next?

Colloquially, machine learning practitioners overload the word classification to describe two subtly
different problems: (i) those where we are interested only in hard assignments of examples to
categories; and (ii) those where we wish to make soft assignments, i.e., to assess the probability that
each category applies. The distinction tends to get blurred, in part, because often, even when we
only care about hard assignments, we still use models that make soft assignments.

3.4.1 Classification Problems

To get our feet wet, let s̓ start off with a simple image classification problem. Here, each input
consists of a 2× 2 grayscale image. We can represent each pixel value with a single scalar, giving
us four features x1, x2, x3, x4. Further, let s̓ assume that each image belongs to one among the
categories “cat”, “chicken” and “dog”.

Next, we have to choose how to represent the labels. We have two obvious choices. Perhaps the
most natural impulse would be to choose y ∈ {1, 2, 3}, where the integers represent {dog, cat,
chicken} respectively. This is a great way of storing such information on a computer. If the cat-
egories had some natural ordering among them, say if we were trying to predict {baby, toddler,
adolescent, young adult, adult, geriatric}, then it might even make sense to cast this problem as
regression and keep the labels in this format.

But general classification problems do not come with natural orderings among the classes. For-
tunately, statisticians long ago invented a simple way to represent categorical data: the one hot
encoding. A one-hot encoding is a vector with as many components as we have categories. The
component corresponding to particular instance s̓ category is set to 1 and all other components
are set to 0.

y ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (3.4.1)

In our case, y would be a three-dimensional vector, with (1, 0, 0) corresponding to “cat”, (0, 1, 0) to
“chicken” and (0, 0, 1) to “dog”.

Network Architecture

In order to estimate the conditional probabilities associated with each classes, we need a model
with multiple outputs, one per class. To address classification with linear models, we will need as
many linear functions as we have outputs. Each output will correspond to its own linear function.
In our case, since we have 4 features and 3 possible output categories, we will need 12 scalars to
represent the weights, (w with subscripts) and 3 scalars to represent the biases (b with subscripts).
We compute these three logits, o1, o2, and o3, for each input:

o1 = x1w11 + x2w12 + x3w13 + x4w14 + b1,

o2 = x1w21 + x2w22 + x3w23 + x4w24 + b2,

o3 = x1w31 + x2w32 + x3w33 + x4w34 + b3.

(3.4.2)

We can depict this calculation with the neural network diagram shown in Fig. 3.4.1. Just as in lin-
ear regression, softmax regression is also a single-layer neural network. And since the calculation
of each output, o1, o2, and o3, depends on all inputs, x1, x2, x3, and x4, the output layer of softmax
regression can also be described as fully-connected layer.

3.4. Softmax Regression 111

Fig. 3.4.1: Softmax regression is a single-layer neural network.

To express the model more compactly, we can use linear algebra notation. In vector form, we
arrive at o = Wx + b, a form better suited both for mathematics, and for writing code. Note that
we have gathered all of our weights into a 3× 4 matrix and that for a given example x, our outputs
are given by a matrix-vector product of our weights by our inputs plus our biases b.

Softmax Operation

The main approach that we are going to take here is to interpret the outputs of our model as proba-
bilities. We will optimize our parameters to produce probabilities that maximize the likelihood of
the observed data. Then, to generate predictions, we will set a threshold, for example, choosing
the argmax of the predicted probabilities.

Put formally, we would like outputs ŷk that we can interpret as the probability that a given item
belongs to class k. Then we can choose the class with the largest output value as our prediction
argmaxk yk. For example, if ŷ1, ŷ2, and ŷ3 are 0.1, .8, and 0.1, respectively, then we predict category
2, which (in our example) represents “chicken”.

You might be tempted to suggest that we interpret the logits o directly as our outputs of interest.
However, there are some problems with directly interpreting the output of the linear layer as a
probability. Nothing constrains these numbers to sum to 1. Moreover, depending on the inputs,
they can take negative values. These violate basic axioms of probability presented in Section 2.6

To interpret our outputs as probabilities, we must guarantee that (even on new data), they will be
nonnegative and sum up to 1. Moreover, we need a training objective that encourages the model
to estimate faithfully probabilities. Of all instances when a classifier outputs .5, we hope that half
of those examples will actually belong to the predicted class. This is a property called calibration.

The softmax function, invented in 1959 by the social scientist R Duncan Luce in the context of choice
models does precisely this. To transform our logits such that they become nonnegative and sum to
1, while requiring that the model remains differentiable, we first exponentiate each logit (ensuring
non-negativity) and then divide by their sum (ensuring that they sum to 1).

ŷ = softmax(o) where ŷi =
exp(oi)∑
j exp(oj)

. (3.4.3)

It is easy to see ŷ1 + ŷ2 + ŷ3 = 1 with 0 ≤ ŷi ≤ 1 for all i. Thus, ŷ is a proper probability distribu-
tion and the values of ŷ can be interpreted accordingly. Note that the softmax operation does not
change the ordering among the logits, and thus we can still pick out the most likely class by:

ı̂(o) = argmax
i

oi = argmax
i

ŷi. (3.4.4)

The logits o then are simply the pre-softmax values that determining the probabilities assigned
to each category. Summarizing it all in vector notation we get o(i) = Wx(i) + b, where ŷ(i) =
softmax(o(i)).

112 Chapter 3. Linear Neural Networks

Vectorization for Minibatches

To improve computational efficiency and take advantage of GPUs, we typically carry out vector
calculations for minibatches of data. Assume that we are given a minibatch X of examples with
dimensionality d and batch size n. Moreover, assume that we have q categories (outputs). Then
the minibatch features X are in Rn×d, weights W ∈ Rd×q, and the bias satisfies b ∈ Rq.

O = XW+ b,
Ŷ = softmax(O).

(3.4.5)

This accelerates the dominant operation into a matrix-matrix product WX vs the matrix-vector
products we would be executing if we processed one example at a time. The softmax itself can be
computed by exponentiating all entries in O and then normalizing them by the sum.

3.4.2 Loss Function

Next, we need a loss function to measure the quality of our predicted probabilities. We will rely on
likelihood maximization, the very same concept that we encountered when providing a probabilis-
tic justification for the least squares objective in linear regression (Section 3.1).

Log-Likelihood

The softmax function gives us a vector ŷ, which we can interpret as estimated conditional prob-
abilities of each class given the input x, e.g., ŷ1 = P̂ (y = cat | x). We can compare the estimates
with reality by checking how probable the actual classes are according to our model, given the
features.

P (Y | X) =

n∏
i=1

P (y(i) | x(i)) and thus − logP (Y | X) =

n∑
i=1

− logP (y(i) | x(i)). (3.4.6)

Maximizing P (Y | X) (and thus equivalently minimizing− logP (Y | X)) corresponds to predict-
ing the label well. This yields the loss function (we dropped the superscript (i) to avoid notation
clutter):

l = − logP (y | x) = −
∑
j

yj log ŷj . (3.4.7)

For reasons explained later on, this loss function is commonly called the cross-entropy loss. Here,
we used that by construction ŷ is a discrete probability distribution and that the vector y is a one-
hot vector. Hence the the sum over all coordinates j vanishes for all but one term. Since all ŷj are
probabilities, their logarithm is never larger than 0. Consequently, the loss function cannot be
minimized any further if we correctly predict y with certainty, i.e., if P (y | x) = 1 for the correct
label. Note that this is often not possible. For example, there might be label noise in the dataset
(some examples may be mislabeled). It may also not be possible when the input features are not
sufficiently informative to classify every example perfectly.

3.4. Softmax Regression 113

Softmax and Derivatives

Since the softmax and the corresponding loss are so common, it is worth while understanding a
bit better how it is computed. Plugging o into the definition of the loss l and using the definition
of the softmax we obtain:

l = −
∑
j

yj log ŷj =
∑
j

yj log
∑
k

exp(ok)−
∑
j

yjoj = log
∑
k

exp(ok)−
∑
j

yjoj . (3.4.8)

To understand a bit better what is going on, consider the derivative with respect to o. We get

∂oj l =
exp(oj)∑
k exp(ok)

− yj = softmax(o)j − yj = P (y = j | x)− yj . (3.4.9)

In other words, the gradient is the difference between the probability assigned to the true class
by our model, as expressed by the probability P (y | x), and what actually happened, as expressed
by y. In this sense, it is very similar to what we saw in regression, where the gradient was the
difference between the observation y and estimate ŷ. This is not coincidence. In any exponential
family55 model, the gradients of the log-likelihood are given by precisely this term. This fact makes
computing gradients easy in practice.

Cross-Entropy Loss

Now consider the case where we observe not just a single outcome but an entire distribution over
outcomes. We can use the same representation as before for y. The only difference is that rather
than a vector containing only binary entries, say (0, 0, 1), we now have a generic probability vector,
say (0.1, 0.2, 0.7). The math that we used previously to define the loss l still works out fine, just that
the interpretation is slightly more general. It is the expected value of the loss for a distribution
over labels.

l(y, ŷ) = −
∑
j

yj log ŷj . (3.4.10)

This loss is called the cross-entropy loss and it is one of the most commonly used losses for multi-
class classification. We can demystify the name by introducing the basics of information theory.

3.4.3 Information Theory Basics

Information theory deals with the problem of encoding, decoding, transmitting and manipulating
information (also known as data) in as concise form as possible.

Entropy

The central idea in information theory is to quantify the information content in data. This quantity
places a hard limit on our ability to compress the data. In information theory, this quantity is
called the entropy56 of a distribution p, and it is captured by the following equation:

H[p] =
∑
j

−p(j) log p(j). (3.4.11)

55 https://en.wikipedia.org/wiki/Exponential_family
56 https://en.wikipedia.org/wiki/Entropy

114 Chapter 3. Linear Neural Networks

https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Entropy

One of the fundamental theorems of information theory states that in order to encode data drawn
randomly from the distribution p, we need at least H[p] “nats” to encode it. If you wonder what a
“nat” is, it is the equivalent of bit but when using a code with base e rather than one with base 2.
One nat is 1

log(2) ≈ 1.44 bit. H[p]/2 is often also called the binary entropy.

Surprisal

You might be wondering what compression has to do with prediction. Imagine that we have a
stream of data that we want to compress. If it is always easy for us to predict the next token,
then this data is easy to compress! Take the extreme example where every token in the stream
always takes the same value. That is a very boring data stream! And not only is it boring, but it is
easy to predict. Because they are always the same, we do not have to transmit any information to
communicate the contents of the stream. Easy to predict, easy to compress.

However if we cannot perfectly predict every event, then we might some times be surprised. Our
surprise is greater when we assigned an event lower probability. For reasons that we will elaborate
in the appendix, Claude Shannon settled on log(1/p(j)) = − log p(j) to quantify one s̓ surprisal at
observing an event j having assigned it a (subjective) probability p(j). The entropy is then the
expected surprisal when one assigned the correct probabilities (that truly match the data-generating
process). The entropy of the data is then the least surprised that one can ever be (in expectation).

Cross-Entropy Revisited

So if entropy is level of surprise experienced by someone who knows the true probability, then
you might be wondering, what is cross-entropy? The cross-entropy from :math:`p` to :math:`q`, de-
noted H(p, q), is the expected surprisal of an observer with subjective probabilities q upon seeing
data that was actually generated according to probabilities p. The lowest possible cross-entropy
is achieved when p = q. In this case, the cross-entropy from p to q is H(p, p) = H(p). Relating
this back to our classification objective, even if we get the best possible predictions, if the best
possible possible, then we will never be perfect. Our loss is lower-bounded by the entropy given
by the actual conditional distributions P (y | x).

Kullback Leibler Divergence

Perhaps the most common way to measure the distance between two distributions is to calculate
the Kullback Leibler divergence D(p∥q). This is simply the difference between the cross-entropy
and the entropy, i.e., the additional cross-entropy incurred over the irreducible minimum value it
could take:

D(p∥q) = H(p, q)−H[p] =
∑
j

p(j) log
p(j)

q(j)
. (3.4.12)

Note that in classification, we do not know the true p, so we cannot compute the entropy directly.
However, because the entropy is out of our control, minimizing D(p∥q) with respect to q is equiv-
alent to minimizing the cross-entropy loss.

In short, we can think of the cross-entropy classification objective in two ways: (i) as maximizing
the likelihood of the observed data; and (ii) as minimizing our surprise (and thus the number of
bits) required to communicate the labels.

3.4. Softmax Regression 115

3.4.4 Model Prediction and Evaluation

After training the softmax regression model, given any example features, we can predict the prob-
ability of each output category. Normally, we use the category with the highest predicted proba-
bility as the output category. The prediction is correct if it is consistent with the actual category
(label). In the next part of the experiment, we will use accuracy to evaluate the model s̓ perfor-
mance. This is equal to the ratio between the number of correct predictions a nd the total number
of predictions.

Summary

• We introduced the softmax operation which takes a vector maps it into probabilities.

• Softmax regression applies to classification problems. It uses the probability distribution of
the output category in the softmax operation.

• cross-entropy is a good measure of the difference between two probability distributions. It
measures the number of bits needed to encode the data given our model.

Exercises

1. Show that the Kullback-Leibler divergence D(p∥q) is nonnegative for all distributions p and
q. Hint: use Jensens̓ inequality, i.e., use the fact that − logx is a convex function.

2. Show that log
∑

j exp(oj) is a convex function in o.

3. We can explore the connection between exponential families and the softmax in some more
depth

• Compute the second derivative of the cross-entropy loss l(y, ŷ) for the softmax.

• Compute the variance of the distribution given by softmax(o) and show that it matches
the second derivative computed above.

4. Assume that we three classes which occur with equal probability, i.e., the probability vector
is (13 ,

1
3 ,

1
3).

• What is the problem if we try to design a binary code for it? Can we match the entropy
lower bound on the number of bits?

• Can you design a better code. Hint: what happens if we try to encode two independent
observations? What if we encode n observations jointly?

5. Softmax is a misnomer for the mapping introduced above (but everyone in deep learning
uses it). The real softmax is defined as RealSoftMax(a, b) = log(exp(a) + exp(b)).

• Prove that RealSoftMax(a, b) > max(a, b).

• Prove that this holds for λ−1RealSoftMax(λa, λb), provided that λ > 0.

• Show that for λ→∞ we have λ−1RealSoftMax(λa, λb)→ max(a, b).

• What does the soft-min look like?

• Extend this to more than two numbers.

116 Chapter 3. Linear Neural Networks

3.5 The Image Classification Dataset (Fashion-MNIST)

In Section 17.8, we trained a naive Bayes classifier, using the MNIST dataset introduced in 1998
(LeCun et al., 1998). While MNIST had a good run as a benchmark dataset, even simple models by
today s̓ standards achieve classification accuracy over 95%. making it unsuitable for distinguish-
ing between stronger models and weaker ones. Today, MNIST serves as more of sanity checks
than as a benchmark. To up the ante just a bit, we will focus our discussion in the coming sections
on the qualitatively similar, but comparatively complex Fashion-MNIST dataset (Xiao et al., 2017),
which was released in 2017.

%matplotlib inline
import d2l
from mxnet import gluon
import sys

d2l.use_svg_display()

3.5.1 Getting the Dataset

Just as with MNIST, Gluon makes it easy to download and load the FashionMNIST dataset into
memory via the FashionMNIST class contained in gluon.data.vision. We briefly work through the
mechanics of loading and exploring the dataset below. Please refer to Section 17.8 for more details
on loading data.

mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)

FashionMNIST consists of images from 10 categories, each represented by 6k images in the train-
ing set and by 1k in the test set. Consequently the training set and the test set contain 60k and 10k
images, respectively.

len(mnist_train), len(mnist_test)

(60000, 10000)

The images in Fashion-MNIST are associated with the following categories: t-shirt, trousers,
pullover, dress, coat, sandal, shirt, sneaker, bag and ankle boot. The following function converts
between numeric label indices and their names in text.

Saved in the d2l package for later use
def get_fashion_mnist_labels(labels):

text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',

(continues on next page)

3.5. The Image Classification Dataset (Fashion-MNIST) 117

(continued from previous page)

'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]

We can now create a function to visualize these examples.

Saved in the d2l package for later use
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):

"""Plot a list of images."""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):

ax.imshow(img.asnumpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:

ax.set_title(titles[i])
return axes

Here are the images and their corresponding labels (in text) for the first few examples in the train-
ing dataset.

X, y = mnist_train[:18]
show_images(X.squeeze(axis=-1), 2, 9, titles=get_fashion_mnist_labels(y));

3.5.2 Reading a Minibatch

To make our life easier when reading from the training and test sets, we use a DataLoader rather
than creating one from scratch, as we did in Section 3.2. Recall that at each iteration, a DataLoader
reads a minibatch of data with size batch_size each time.

During training, reading data can be a significant performance bottleneck, especially when our
model is simple or when our computer is fast. A handy feature of Gluons̓ DataLoader is the ability
to use multiple processes to speed up data reading. For instance, we can set aside 4 processes to
read the data (via num_workers). Because this feature is not currently supported on Windows the
following code checks the platform to make sure that we do not saddle our Windows-using friends
with error messages later on.

Saved in the d2l package for later use
def get_dataloader_workers(num_workers=4):

(continues on next page)

118 Chapter 3. Linear Neural Networks

(continued from previous page)

0 means no additional process is used to speed up the reading of data.
if sys.platform.startswith('win'):

return 0
else:

return num_workers

Below, we convert the image data from uint8 to 32-bit floating point numbers using the ToTensor
class. Additionally, the transformer will divide all numbers by 255 so that all pixels have values
between 0 and 1. The ToTensor class also moves the image channel from the last dimension to
the first dimension to facilitate the convolutional neural network calculations introduced later.
Through the transform_first function of the dataset, we apply the transformation of ToTensor to
the first element of each instance (image and label).

batch_size = 256
transformer = gluon.data.vision.transforms.ToTensor()
train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer),

batch_size, shuffle=True,
num_workers=get_dataloader_workers())

Let s̓ look at the time it takes to read the training data.

timer = d2l.Timer()
for X, y in train_iter:

continue
'%.2f sec' % timer.stop()

'1.65 sec'

3.5.3 Putting All Things Together

Now we define the load_data_fashion_mnist function that obtains and reads the Fashion-MNIST
dataset. It returns the data iterators for both the training set and validation set. In addition, it
accepts an optional argument to resize images to another shape.

Saved in the d2l package for later use
def load_data_fashion_mnist(batch_size, resize=None):

"""Download the Fashion-MNIST dataset and then load into memory."""
dataset = gluon.data.vision
trans = [dataset.transforms.Resize(resize)] if resize else []
trans.append(dataset.transforms.ToTensor())
trans = dataset.transforms.Compose(trans)
mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)
mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)
return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True,

num_workers=get_dataloader_workers()),
gluon.data.DataLoader(mnist_test, batch_size, shuffle=False,

num_workers=get_dataloader_workers()))

Below, we verify that image resizing works.

3.5. The Image Classification Dataset (Fashion-MNIST) 119

train_iter, test_iter = load_data_fashion_mnist(32, (64, 64))
for X, y in train_iter:

print(X.shape)
break

(32, 1, 64, 64)

We are now ready to work with the FashionMNIST dataset in the sections that follow.

Summary

• Fashion-MNIST is an apparel classification dataset consisting of images representing 10 cat-
egories.

• We will use this dataset in subsequent sections and chapters to evaluate various classification
algorithms.

• We store the shape of each image with height h width w pixels as h× w or (h, w).

• Data iterators are a key component for efficient performance. Rely on well-implemented
iterators that exploit multi-threading to avoid slowing down your training loop.

Exercises

1. Does reducing the batch_size (for instance, to 1) affect read performance?

2. For non-Windows users, try modifying num_workers to see how it affects read performance.
Plot the performance against the number of works employed.

3. Use the MXNet documentation to see which other datasets are available in mxnet.gluon.
data.vision.

4. Use the MXNet documentation to see which other transformations are available in mxnet.
gluon.data.vision.transforms.

3.6 Implementation of Softmax Regression from Scratch

Just as we implemented linear regression from scratch, we believe that multiclass logistic (soft-
max) regression is similarly fundamental and you ought to know the gory details of how to imple-
ment it yourself. As with linear regression, after doing things by hand we will breeze through an
implementation in Gluon for comparison. To begin, let s̓ import the familiar packages.

120 Chapter 3. Linear Neural Networks

import d2l
from mxnet import autograd, np, npx, gluon
from IPython import display
npx.set_np()

We will work with the Fashion-MNIST dataset, just introduced in Section 3.5, setting up an iterator
with batch size 256.

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

3.6.1 Initializing Model Parameters

As in our linear regression example, each example here will be represented by a fixed-length vec-
tor. Each example in the raw data is a 28 × 28 image. In this section, we will flatten each image,
treating them as 784 1D vectors. In the future, we will talk about more sophisticated strategies for
exploiting the spatial structure in images, but for now we treat each pixel location as just another
feature.

Recall that in softmax regression, we have as many outputs as there are categories. Because our
dataset has 10 categories, our network will have an output dimension of 10. Consequently, our
weights will constitute a 784 × 10 matrix and the biases will constitute a 1 × 10 vector. As with
linear regression, we will initialize our weights W with Gaussian noise and our biases to take the
initial value 0.

num_inputs = 784
num_outputs = 10

W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)

Recall that we need to attach gradients to the model parameters. More literally, we are allocat-
ing memory for future gradients to be stored and notifiying MXNet that we will want to calculate
gradients with respect to these parameters in the future.

W.attach_grad()
b.attach_grad()

3.6.2 The Softmax

Before implementing the softmax regression model, let s̓ briefly review how operators such as
sum work along specific dimensions in an ndarray. Given a matrix X we can sum over all elements
(default) or only over elements in the same axis, i.e., the column (axis=0) or the same row (axis=1).
Note that if X is an array with shape (2, 3) and we sum over the columns (X.sum(axis=0), the result
will be a (1D) vector with shape (3,). If we want to keep the number of axes in the original array
(resulting in a 2D array with shape (1, 3)), rather than collapsing out the dimension that we
summed over we can specify keepdims=True when invoking sum.

3.6. Implementation of Softmax Regression from Scratch 121

X = np.array([[1, 2, 3], [4, 5, 6]])
print(X.sum(axis=0, keepdims=True), '\n', X.sum(axis=1, keepdims=True))

[[5. 7. 9.]]
[[6.]
[15.]]

We are now ready to implement the softmax function. Recall that softmax consists of two steps:
First, we exponentiate each term (using exp). Then, we sum over each row (we have one row per
example in the batch) to get the normalization constants for each example. Finally, we divide each
row by its normalization constant, ensuring that the result sums to 1. Before looking at the code,
let s̓ recall what this looks expressed as an equation:

softmax(X)ij =
exp(Xij)∑
k exp(Xik)

. (3.6.1)

The denominator, or normalization constant, is also sometimes called the partition function
(and its logarithm is called the log-partition function). The origins of that name are in statisti-
cal physics59 where a related equation models the distribution over an ensemble of particles).

def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(axis=1, keepdims=True)
return X_exp / partition # The broadcast mechanism is applied here

As you can see, for any random input, we turn each element into a non-negative number. More-
over, each row sums up to 1, as is required for a probability. Note that while this looks correct
mathematically, we were a bit sloppy in our implementation because failed to take precautions
against numerical overflow or underflow due to large (or very small) elements of the matrix, as
we did in Section 17.8.

X = np.random.normal(size=(2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(axis=1)

(array([[0.22376052, 0.06659239, 0.06583703, 0.29964197, 0.3441681],
[0.63209665, 0.03179282, 0.194987 , 0.09209415, 0.04902935]]),

array([1. , 0.99999994]))

3.6.3 The Model

Now that we have defined the softmax operation, we can implement the softmax regression model.
The below code defines the forward pass through the network. Note that we flatten each original
image in the batch into a vector with length num_inputs with the reshape function before passing
the data through our model.

def net(X):
return softmax(np.dot(X.reshape(-1, num_inputs), W) + b)

59 https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)

122 Chapter 3. Linear Neural Networks

https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)

3.6.4 The Loss Function

Next, we need to implement the cross-entropy loss function, introduced in Section 3.4. This may
be the most common loss function in all of deep learning because, at the moment, classification
problems far outnumber regression problems.

Recall that cross-entropy takes the negative log likelihood of the predicted probability assigned
to the true label − logP (y | x). Rather than iterating over the predictions with a Python for loop
(which tends to be inefficient), we can use the pick function which allows us to easily select the
appropriate terms from the matrix of softmax entries. Below, we illustrate the pick function on a
toy example, with 3 categories and 2 examples.

y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], [0, 2]]

array([0.1, 0.5])

Now we can implement the cross-entropy loss function efficiently with just one line of code.

def cross_entropy(y_hat, y):
return - np.log(y_hat[range(len(y_hat)), y])

3.6.5 Classification Accuracy

Given the predicted probability distribution y_hat, we typically choose the class with highest pre-
dicted probability whenever we must output a hard prediction. Indeed, many applications require
that we make a choice. Gmail must categorize an email into Primary, Social, Updates, or Forums.
It might estimate probabilities internally, but at the end of the day it has to choose one among the
categories.

When predictions are consistent with the actual category y, they are correct. The classification
accuracy is the fraction of all predictions that are correct. Although it can be difficult optimize
accuracy directly (it is not differentiable), it is often the performance metric that we care most
about, and we will nearly always report it when training classifiers.

To compute accuracy we do the following: First, we execute y_hat.argmax(axis=1) to gather the
predicted classes (given by the indices for the largest entires each row). The result has the same
shape as the variable y. Now we just need to check how frequently the two match. Since the
equality operator == is datatype-sensitive (e.g., an int and a float32 are never equal), we also need
to convert both to the same type (we pick float32). The result is an ndarray containing entries of
0 (false) and 1 (true). Taking the mean yields the desired result.

Saved in the d2l package for later use
def accuracy(y_hat, y):

if y_hat.shape[1] > 1:
return float((y_hat.argmax(axis=1) == y.astype('float32')).sum())

else:
return float((y_hat.astype('int32') == y.astype('int32')).sum())

We will continue to use the variables y_hat and y defined in the pick function, as the predicted
probability distribution and label, respectively. We can see that the first example s̓ prediction cat-
egory is 2 (the largest element of the row is 0.6 with an index of 2), which is inconsistent with the

3.6. Implementation of Softmax Regression from Scratch 123

actual label, 0. The second example s̓ prediction category is 2 (the largest element of the row is
0.5 with an index of 2), which is consistent with the actual label, 2. Therefore, the classification
accuracy rate for these two examples is 0.5.

y = np.array([0, 2])
accuracy(y_hat, y) / len(y)

0.5

Similarly, we can evaluate the accuracy for model net on the dataset (accessed via data_iter).

Saved in the d2l package for later use
def evaluate_accuracy(net, data_iter):

metric = Accumulator(2) # num_corrected_examples, num_examples
for X, y in data_iter:

metric.add(accuracy(net(X), y), y.size)
return metric[0] / metric[1]

Here Accumulator is a utility class to accumulated sum over multiple numbers.

Saved in the d2l package for later use
class Accumulator(object):

"""Sum a list of numbers over time"""

def __init__(self, n):
self.data = [0.0] * n

def add(self, *args):
self.data = [a+b for a, b in zip(self.data, args)]

def reset(self):
self.data = [0] * len(self.data)

def __getitem__(self, i):
return self.data[i]

Because we initialized the net model with random weights, the accuracy of this model should be
close to random guessing, i.e., 0.1 for 10 classes.

evaluate_accuracy(net, test_iter)

0.0811

124 Chapter 3. Linear Neural Networks

3.6.6 Model Training

The training loop for softmax regression should look strikingly familiar if you read through our
implementation of linear regression in Section 3.2. Here we refactor the implementation to make
it reusable. First, we define a function to train for one data epoch. Note that updater is general
function to update the model parameters, which accepts the batch size as an argument. It can be
either a wrapper of d2l.sgd or a Gluon trainer.

Saved in the d2l package for later use
def train_epoch_ch3(net, train_iter, loss, updater):

metric = Accumulator(3) # train_loss_sum, train_acc_sum, num_examples
if isinstance(updater, gluon.Trainer):

updater = updater.step
for X, y in train_iter:

Compute gradients and update parameters
with autograd.record():

y_hat = net(X)
l = loss(y_hat, y)

l.backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.size)

Return training loss and training accuracy
return metric[0]/metric[2], metric[1]/metric[2]

Before showing the implementation of the training function, we define a utility class that draw
data in animation. Again, it aims to simplify the codes in later chapters.

Saved in the d2l package for later use
class Animator(object):

def __init__(self, xlabel=None, ylabel=None, legend=[], xlim=None,
ylim=None, xscale='linear', yscale='linear', fmts=None,
nrows=1, ncols=1, figsize=(3.5, 2.5)):

"""Incrementally plot multiple lines."""
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:

self.axes = [self.axes,]
Use a lambda to capture arguments
self.config_axes = lambda: d2l.set_axes(

self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts

def add(self, x, y):
"""Add multiple data points into the figure."""
if not hasattr(y, "__len__"):

y = [y]
n = len(y)
if not hasattr(x, "__len__"):

x = [x] * n
if not self.X:

self.X = [[] for _ in range(n)]
if not self.Y:

self.Y = [[] for _ in range(n)]
if not self.fmts:

self.fmts = ['-'] * n

(continues on next page)

3.6. Implementation of Softmax Regression from Scratch 125

(continued from previous page)

for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:

self.X[i].append(a)
self.Y[i].append(b)

self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):

self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)

The training function then runs multiple epochs and visualize the training progress.

Saved in the d2l package for later use
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):

animator = Animator(xlabel='epoch', xlim=[1, num_epochs],
ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'])

for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch+1, train_metrics+(test_acc,))

Again, we use the minibatch stochastic gradient descent to optimize the loss function of the model.
Note that the number of epochs (num_epochs), and learning rate (lr) are both adjustable hyper-
parameters. By changing their values, we may be able to increase the classification accuracy of
the model. In practice we will want to split our data three ways into training, validation, and test
data, using the validation data to choose the best values of our hyperparameters.

num_epochs, lr = 10, 0.1

def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)

train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

126 Chapter 3. Linear Neural Networks

3.6.7 Prediction

Now that training is complete, our model is ready to classify some images. Given a series of im-
ages, we will compare their actual labels (first line of text output) and the model predictions (sec-
ond line of text output).

Saved in the d2l package for later use
def predict_ch3(net, test_iter, n=6):

for X, y in test_iter:
break

trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true+'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape(n, 28, 28), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

Summary

With softmax regression, we can train models for multi-category classification. The training loop
is very similar to that in linear regression: retrieve and read data, define models and loss functions,
then train models using optimization algorithms. As you will soon find out, most common deep
learning models have similar training procedures.

Exercises

1. In this section, we directly implemented the softmax function based on the mathematical
definition of the softmax operation. What problems might this cause (hint: try to calculate
the size of exp(50))?

2. The function cross_entropy in this section is implemented according to the definition of
the cross-entropy loss function. What could be the problem with this implementation (hint:
consider the domain of the logarithm)?

3. What solutions you can think of to fix the two problems above?

4. Is it always a good idea to return the most likely label. E.g. would you do this for medical
diagnosis?

5. Assume that we want to use softmax regression to predict the next word based on some
features. What are some problems that might arise from a large vocabulary?

3.6. Implementation of Softmax Regression from Scratch 127

3.7 Concise Implementation of Softmax Regression

Just as Gluon made it much easier to implement linear regression in Section 3.3, we will find it
similarly (or possibly more) convenient for implementing classification models. Again, we begin
with our import ritual.

import d2l
from mxnet import gluon, init, npx
from mxnet.gluon import nn
npx.set_np()

Let s̓ stick with the Fashion-MNIST dataset and keep the batch size at 256 as in the last section.

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

3.7.1 Initializing Model Parameters

As mentioned in Section 3.4, the output layer of softmax regression is a fully-connected (Dense)
layer. Therefore, to implement our model, we just need to add one Dense layer with 10 outputs to
our Sequential. Again, here, the Sequential is not really necessary, but we might as well form the
habit since it will be ubiquitous when implementing deep models. Again, we initialize the weights
at random with zero mean and standard deviation 0.01.

net = nn.Sequential()
net.add(nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

3.7.2 The Softmax

In the previous example, we calculated our model s̓ output and then ran this output through the
cross-entropy loss. Mathematically, that is a perfectly reasonable thing to do. However, from a
computational perspective, exponentiation can be a source of numerical stability issues (as dis-
cussed in Section 17.8). Recall that the softmax function calculates ŷj = ezj∑n

i=1 e
zi

, where ŷj is the
jth element of yhat and zj is the jth element of the input y_linear variable, as computed by the
softmax.

If some of the zi are very large (i.e., very positive), then ezi might be larger than the largest number
we can have for certain types of float (i.e., overflow). This would make the denominator (and/or
numerator) inf and we wind up encountering either 0, inf, or nan for ŷj. In these situations we
do not get a well-defined return value for cross_entropy. One trick to get around this is to first

128 Chapter 3. Linear Neural Networks

subtract max(zi) from all zi before proceeding with the softmax calculation. You can verify that
this shifting of each zi by constant factor does not change the return value of softmax.

After the subtraction and normalization step, it might be that possible that some zj have large
negative values and thus that the corresponding ezj will take values close to zero. These might
be rounded to zero due to finite precision (i.e underflow), making ŷj zero and giving us -inf for
log(ŷj). A few steps down the road in backpropagation, we might find ourselves faced with a
screenful of the dreaded not-a-number (nan) results.

Fortunately, we are saved by the fact that even though we are computing exponential functions,
we ultimately intend to take their log (when calculating the cross-entropy loss). By combining
these two operators (softmax and cross_entropy) together, we can escape the numerical stability
issues that might otherwise plague us during backpropagation. As shown in the equation below,
we avoided calculating ezj and can instead zj directly due to the canceling in log(exp(·)).

log (ŷj) = log
(

ezj∑n
i=1 e

zi

)
= log (ezj)− log

(
n∑

i=1

ezi

)

= zj − log

(
n∑

i=1

ezi

)
.

(3.7.1)

We will want to keep the conventional softmax function handy in case we ever want to evaluate
the probabilities output by our model. But instead of passing softmax probabilities into our new
loss function, we will just pass the logits and compute the softmax and its log all at once inside the
softmax_cross_entropy loss function, which does smart things like the log-sum-exp trick (see on
Wikipedia61).

loss = gluon.loss.SoftmaxCrossEntropyLoss()

3.7.3 Optimization Algorithm

Here, we use minibatch stochastic gradient descent with a learning rate of 0.1 as the optimiza-
tion algorithm. Note that this is the same as we applied in the linear regression example and it
illustrates the general applicability of the optimizers.

trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})

3.7.4 Training

Next we call the training function defined in the last section to train a model.

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

61 https://en.wikipedia.org/wiki/LogSumExp

3.7. Concise Implementation of Softmax Regression 129

https://en.wikipedia.org/wiki/LogSumExp
https://en.wikipedia.org/wiki/LogSumExp

As before, this algorithm converges to a solution that achieves an accuracy of 83.7%, albeit this
time with fewer lines of code than before. Note that in many cases, Gluon takes additional pre-
cautions beyond these most well-known tricks to ensure numerical stability, saving us from even
more pitfalls that we would encounter if we tried to code all of our models from scratch in practice.

Exercises

1. Try adjusting the hyper-parameters, such as batch size, epoch, and learning rate, to see what
the results are.

2. Why might the test accuracy decrease again after a while? How could we fix this?

130 Chapter 3. Linear Neural Networks

