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INPUT OUTPUT

15.6 Matching

Input description: A (weighted) graph G = (V,E).

Problem description: Find the largest set of edges E′ from E such that each
vertex in V is incident to at most one edge of E′.

Discussion: Suppose we manage a group of workers, each of whom is capable of
performing a subset of the tasks needed to complete a job. Construct a graph with
vertices representing both the set of workers and the set of tasks. Edges link workers
to the tasks they can perform. We must assign each task to a different worker so
that no worker is overloaded. The desired assignment is the largest possible set of
edges where no employee or job is repeated—i.e. , a matching.

Matching is a very powerful piece of algorithmic magic, so powerful that it is
surprising that optimal matchings can be found efficiently. Applications arise often
once you know to look for them.

Marrying off a set of boys to a set of girls such that each couple is happy is
another bipartite matching problem, on a graph with an edge between any compat-
ible boy and girl. For a synthetic biology application [MPC+06], I need to shuffle
the characters in a string S to maximize the number of characters that move. For
example, aaabc can be shuffled to bcaaa so that only one character stays fixed. This
is yet another bipartite matching problem, where the boys represent the multiset
of alphabet symbols and the girls are the positions in the string (1 to |S|). Edges
link symbols to all the string positions that originally contained a different symbol.

This basic matching framework can be enhanced in several ways, while remain-
ing essentially the same assignment problem:
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• Is your graph bipartite? – Most matching problems involve bipartite graphs,
as in the classic assignment problem of jobs to workers. This is fortunate
because faster and simpler algorithms exist for bipartite matching.

• What if certain employees can be given multiple jobs? – Natural generaliza-
tions of the assignment problem include assigning certain employees more
than one task to do, or (equivalently) seeking multiple workers for a given
job. Here, we do not seek a matching so much as a covering with small “stars.”
Such desires can be modeled by replicating an employee vertex by as many
times as we want her to be matched. Indeed, we employed this trick in the
string permutation example above.

• Is your graph weighted or unweighted? – Many matching applications are
based on unweighted graphs. Perhaps we seek to maximize the total number
of tasks performed, where one task is as good as another. Here we seek a max-
imum cardinality matching—ideally a perfect matching where every vertex is
matched to another in the matching.

For other applications, however, we need to augment each edge with a weight,
perhaps reflecting the suitability of an employee for a given task. The problem
now becomes constructing a maximum weight matching—i.e. , the set of
independent edges of maximum total cost.

Efficient algorithms for constructing matchings work by constructing augment-
ing paths in graphs. Given a (partial) matching M in a graph G, an augmenting
path is a path of edges P that alternate (out-of-M , in-M , . . . , out-of-M). We can
enlarge the matching by one edge given such an augmenting path, replacing the
even-numbered edges of P from M with the odd-numbered edges of P . Berge’s
theorem states that a matching is maximum if and only if it does not contain any
augmenting path. Therefore, we can construct maximum-cardinality matchings by
searching for augmenting paths and stopping when none exist.

General graphs prove trickier because it is possible to have augmenting paths
that are odd-length cycles (i.e. , the first and last vertices are the same). Such
cycles (or blossoms) are impossible in bipartite graphs, which by definition do not
contain odd-length cycles.

The standard algorithms for bipartite matching are based on network flow,
using a simple transformation to convert a bipartite graph into an equivalent flow
graph. Indeed, an implementation of this is given in Section 6.5 (page 217).

Be warned that different approaches are needed to solve weighted matching
problems, most notably the matrix-oriented “Hungarian algorithm.”

Implementations: High-performance codes for both weighted and unweighted
bipartite matching have been developed by Andrew Goldberg and his collabo-
rators. CSA is a weighted bipartite matching code in C based on cost-scaling
network flow, developed by Goldberg and Kennedy [GK95]. BIM is a faster un-
weighted bipartite matching code based on augmenting path methods, developed
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by Cherkassky, et al. [CGM+98]. Both are available for noncommercial use from
http://www.avglab.com/andrew/soft.html.

The First DIMACS Implementation Challenge [JM93] focused on network flows
and matching. Several instance generators and implementations for maximum
weight and maximum cardinality matching were collected, and can be obtained by
anonymous FTP from dimacs.rutgers.edu in the directory pub/netflow/matching.
These include

• A maximum-cardinality matching solver in Fortran 77 by R. Bruce Mattingly
and Nathan P. Ritchey.

• A maximum-cardinality matching solver in C by Edward Rothberg, that im-
plements Gabow’s O(n3) algorithm.

• A maximum-weighted matching solver in C by Edward Rothberg. This is
slower but more general than his unweighted solver just described.

GOBLIN (http://www.math.uni-augsburg.de/∼fremuth/goblin.html) is an ex-
tensive C++ library dealing with all of the standard graph optimization prob-
lems, including weighted bipartite matching. LEDA (see Section 19.1.1 (page 658))
provides efficient implementations in C++ for both maximum-cardinality and
maximum-weighted matching, on both bipartite and general graphs.

Blossum IV [CR99] is an efficient code in C for minimum-weight per-
fect matching available at http://www2.isye.gatech.edu/∼wcook/software.html. An
O(mnα(m,n)) implementation of maximum-cardinality matching in general graphs
(http://www.cs.arizona.edu/∼kece/Research/software.html) is due to Kececioglu
and Pecqueur [KP98].

The Stanford GraphBase (see Section 19.1.8 (page 660)) contains an imple-
mentation of the Hungarian algorithm for bipartite matching. To provide readily
visualized weighted bipartite graphs, Knuth uses a digitized version of the Mona
Lisa and seeks row/column disjoint pixels of maximum brightness. Matching is also
used to construct clever, resampled “domino portraits”.

Notes: Lovász and Plummer [LP86] is the definitive reference on matching theory and
algorithms. Survey articles on matching algorithms include [Gal86]. Good expositions on
network flow algorithms for bipartite matching include [CLRS01, Eve79a, Man89], and
those on the Hungarian method include [Law76, PS98]. The best algorithm for maxi-
mum bipartite matching, due to Hopcroft and Karp [HK73], repeatedly finds the shortest
augmenting paths instead of using network flow, and runs in O(

√
nm). The Hungarian

algorithm runs in O(n(m + n log n)) time.
Edmond’s algorithm [Edm65] for maximum-cardinality matching is of great histori-

cal interest for provoking questions on what problems can be solved in polynomial time.
Expositions on Edmond’s algorithm include [Law76, PS98, Tar83]. Gabow’s [Gab76] im-
plementation of Edmond’s algorithm runs in O(n3) time. The best algorithm known for
general matching runs in O(

√
nm) [MV80].

Consider a matching of boys to girls containing edges (B1, G1) and (B2, G2), where
B1 and G2 in fact prefer each other to their own spouses. In real life, these two would
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run off with each other, breaking the marriages. A marriage without any such couples is
said to be stable. The theory of stable matching is thoroughly treated in [GI89]. It is a
surprising fact that no matter how the boys and girls rate each other, there is always at
least one stable marriage. Further, such a marriage can be found in O(n2) time [GS62].
An important application of stable marriage occurs in the annual matching of medical
residents to hospitals.

The maximum matching is equal in size to the minimum vertex cover in bipartite
graphs. This implies that both the minimum vertex cover problem and maximum inde-
pendent set problems can be solved in polynomial time on bipartite graphs.

Related Problems: Eulerian cycle (see page 502), network flow (see page 509).


