
610 17 . COMPUTATIONAL GEOMETRY

S

T

S

T

INPUT OUTPUT

17.14 Motion Planning

Input description: A polygonal-shaped robot starting in a given position s in a
room containing polygonal obstacles, and a goal position t.

Problem description: Find the shortest route taking s to t without intersecting
any obstacles.

Discussion: That motion planning is a complex problem is obvious to anyone
who has tried to move a large piece of furniture into a small apartment. It also
arises in systems for molecular docking. Many drugs are small molecules that act
by binding to a given target model. Identifying which binding sites are accessible
to a candidate drug is clearly an instance of motion planning. Plotting paths for
mobile robots is another canonical motion-planning application.

Finally, motion planning provides a tool for computer animation. Given the set
of object models and where they appear in scenes s1 and s2, a motion planning
algorithm can construct a short sequence of intermediate motions to transform s1

to s2. These motions can serve to fill in the intermediate scenes between s1 and s2,
with such scene interpolation greatly reducing the workload on the animator.

Many factors govern the complexity of motion planning problems:

• Is your robot a point? – For point robots, motion planning becomes finding
the shortest path from s to t around the obstacles. This is also known as ge-
ometric shortest path. The most readily implementable approach constructs
the visibility graph of the polygonal obstacles, plus the points s and t. This



17 .14 MOTION PLANNING 611

visibility graph has a vertex for each obstacle vertex and an edge between
two obstacle vertices iff they “see” each other without being blocked by some
obstacle edge.

The visibility graph can be constructed by testing each of the
(

n
2

)
vertex-pair

edge candidates for intersection against each of the n obstacle edges, although
faster algorithms are known. Assign each edge of this visibility graph with
weight equal to its length. Then the shortest path from s to t can be found
using Dijkstra’s shortest-path algorithm (see Section 15.4 (page 489)) in time
bounded by the time required to construct the visibility graph.

• What motions can your robot perform? – Motion planning becomes consid-
erably more difficult when the robot becomes a polygon instead of a point.
Now all of the corridors that we use must be wide enough to permit the robot
to pass through.

The algorithmic complexity depends upon the number of degrees of freedom
that the robot can use to move. Is it free to rotate as well as to translate?
Does the robot have links that are free to bend or to rotate independently, as
in an arm with a hand? Each degree of freedom corresponds to a dimension in
the search space of possible configurations. Additional freedom makes it more
likely that a short path exists from start to goal, although it also becomes
harder to find this path.

• Can you simplify the shape of your robot? – Motion planning algorithms
tend to be complex and time-consuming. Anything you can do to simplify
your environment is a win. In particular, consider replacing your robot in an
enclosing disk. If there is a start-to-goal path for this disk, it defines such
a path for the robot inside of it. Furthermore, any orientation of a disk is
equivalent to any other orientation, so rotation provides no help in finding a
path. All movements can thus be limited to the simpler case of translation.

• Are motions limited to translation only? – When rotation is not allowed, the
expanded obstacles approach can be used to reduce the problem of polygonal
motion planning to the previously-resolved case of a point robot. Pick a
reference point on the robot, and replace each obstacle by its Minkowski sum
with the robot polygon (see Section 17.16 (page 617)). This creates a larger,
fatter obstacle, defined by the shadow traced as the robot walks a loop around
the object while maintaining contact with it. Finding a path from the initial
reference position to the goal amidst these fattened obstacles defines a legal
path for the polygonal robot in the original environment.

• Are the obstacles known in advance? – We have assumed that the robot
starts out with a map of its environment. But this can’t be true, say, in
applications where the obstacles move. There are two approaches to solving
motion-planning problems without a map. The first approach explores the



612 17 . COMPUTATIONAL GEOMETRY

environment, building a map of what has been seen, and then uses this map
to plan a path to the goal. A simpler strategy proceeds like a sightless man
with a compass. Walk in the direction towards the goal until progress is
blocked by an obstacle, and then trace a path along the obstacle until the
robot is again free to proceed directly towards the goal. Unfortunately, this
will fail in environments of sufficient complexity.

The most practical approach to general motion planning involves randomly
sampling the configuration space of the robot. The configuration space defines the
set of legal positions for the robot using one dimension for each degree of freedom.
A planar robot capable of translation and rotation has three degrees of freedom,
namely the x- and y-coordinates of a reference point on the robot and the angle θ
relative to this point. Certain points in this space represent legal positions, while
others intersect obstacles.

Construct a set of legal configuration-space points by random sampling. For
each pair of points p1 and p2, decide whether there exists a direct, nonintersecting
path between them. This defines a graph with vertices for each legal point and
edges for each such traversable pair. Motion planning now reduces to finding a
direct path from the initial/final position to some vertex in the graph, and then
solving a shortest-path problem between the two vertices.

There are many ways to enhance this basic technique, such as adding additional
vertices to regions of particular interest. Building such a road map provides a nice,
clean approach to solving problems that would otherwise get very messy.

Implementations: The Motion Planning Toolkit (MPK) is a C++ library
and toolkit for developing single- and multi-robot motion planners. It includes
SBL, a fast single-query probabilistic roadmap path planner, and is available at
http://robotics.stanford.edu/∼mitul/mpk/.

The University of North Carolina GAMMA group has produced several
efficient collision detection libraries (not really motion planning) of which
SWIFT++ [EL01] is the most recent member of this family. It can detect in-
tersection, compute approximate/exact distances between objects, and deter-
mine object-pair contacts in scenes composed of rigid polyhedral models. See
http://www.cs.unc.edu/∼geom/collide/ for pointers to all of these libraries.

The computational geometry library CGAL (www.cgal.org) contains many al-
gorithms related to motion planning including visibility graph construction and
Minkowski sums. O’Rourke [O’R01] gives a toy implementation of an algorithm to
plot motion for a two-jointed robot arm in the plane. See Section 19.1.10 (page
662).

Notes: Latombe’s book [Lat91] describes practical approaches to motion planning, in-
cluding the random sampling method described above. Two other worthy books on motion
planning are available freely on line, by LaValle [LaV06] (http://planning.cs.uiuc.edu/)
and Laumond [Lau98] (http://www.laas.fr/∼jpl/book.html).



17 .14 MOTION PLANNING 613

Motion planning was originally studied by Schwartz and Sharir as the “piano mover’s
problem.” Their solution constructs the complete free space of robot positions that do
not intersect obstacles, and then finds the shortest path within the proper connected
component. These free space descriptions are very complicated, involving arrangements
of higher-degree algebraic surfaces. The fundamental papers on the piano mover’s problem
appear in [HSS87], with [Sha04] a survey of current results.

The best general result for this free-space approach to motion planning is due to
Canny [Can87], who showed that any problem with d degrees of freedom can be solved
in O(nd lg n), although faster algorithms exist for special cases of the general motion-
planning problem. The expanded obstacle approach to motion planning is due to Lozano-
Perez and Wesley [LPW79]. The heuristic, sightless man’s approach to motion planning
discussed previously has been studied by Lumelski [LS87].

The time complexity of algorithms based on the free-space approach to motion plan-
ning depends intimately on the combinatorial complexity of the arrangement of surfaces
defining the free space. Algorithms for maintaining arrangements are presented in Sec-
tion 17.15 (page 614). Davenport-Schinzel sequences often arise in the analysis of such ar-
rangements. Sharir and Agarwal [SA95] provide a comprehensive treatment of Davenport-
Schinzel sequences and their relevance to motion planning.

The visibility graph of n line segments with E pairs of visible vertices can be con-
structed in O(n lg n + E) time [GM91, PV96], which is optimal. Hershberger and Suri
[HS99] have an O(n lg n) algorithm for finding shortest paths for point-robots with polyg-
onal obstacles. Chew [Che85] provides an O(n2 lg n) for finding shortest paths for a disk-
robot in such a scene.

Related Problems: Shortest path (see page 489), Minkowski sum (see page 617).


