
14 .2 SEARCHING 441

H

D L

B

A C

F

E G

 J N

 I K M O

G ?

H

D L

B

A C

F

E G

 J N

 I K M O

G

INPUT OUTPUT

14.2 Searching

Input description: A set of n keys S, and a query key q.

Problem description: Where is q in S?

Discussion: “Searching” is a word that means different things to different people.
Searching for the global maximum or minimum of a function is the problem of
unconstrained optimization and is discussed in Section 13.5 (page 407). Chess-
playing programs select the best move to make via an exhaustive search of possible
moves using a variation of backtracking (see Section 7.1 (page 231)).

Here we consider the task of searching for a key in a list, array, or tree. Dictio-
nary data structures maintain efficient access to sets of keys under insertion and
deletion and are discussed in Section 12.1 (page 367). Typical dictionaries include
binary trees and hash tables.

We treat searching as a problem distinct from dictionaries because simpler
and more efficient solutions emerge when our primary interest is static searching
without insertion/deletion. These little data structures can yield large performance
improvements when properly employed in an innermost loop. Also, ideas such as
binary search and self-organization apply to other problems and well justify our
attention.

Our two basic approaches are sequential search and binary search. Both are
simple, yet have interesting and subtle variations. In sequential search, we start
from the front of our list/array of keys and compare each successive item against
the key until we find a match or reach the end. In binary search, we start with a
sorted array of keys. To search for key q, we compare q to the middle key Sn/2. If q
is before Sn/2, it must reside in the top half of our set; if not, it must reside in the

442 14 . COMBINATORIAL PROBLEMS

bottom half of our set. By repeating this process on the correct half, we find the
key using �lg n� comparisons. This is a big win over the n/2 comparisons we expect
with sequential search. See Section 4.9 (page 132) for more on binary search.

A sequential search is the simplest algorithm, and likely to be fastest on up to
about 20 elements. Beyond (say) 100 elements, binary search will clearly be more
efficient than sequential search, easily justifying the cost of sorting if there will be
multiple queries. Other issues come into play, however, in identifying the proper
variant of the algorithm:

• How much time can you spend programming? – A binary search is a noto-
riously tricky algorithm to program correctly. It took seventeen years after
its invention until the first correct version of a binary search was published!
Don’t be afraid to start from one of the implementations described below.
Test it completely by writing a driver that searches for every key in the set
S as well as between the keys.

• Are certain items accessed more often than other ones? – Certain English
words (such as “the”) are much more likely to occur than others (such as
“defenestrate”). We can reduce the number of comparisons in a sequential
search by putting the most popular words on the top of the list and the
least popular ones at the bottom. Nonuniform access is usually the rule, not
the exception. Many real-world distributions are governed by power laws. A
classic example is word use in English, which is fairly accurately modeled by
Zipf’s law. Under Zipf’s law, the ith most frequently accessed key is selected
with probability (i− 1)/i times the probability of the (i− 1)st most popular
key, for all 1 ≤ i ≤ n.

Knowledge of access frequencies is easy to exploit with sequential search.
But the issue is more complicated with binary trees. We want popular keys
close to the root (so we hit them quickly) but not at the expense of losing
balance and degenerating into sequential search. The answer is to employ a
dynamic programming algorithm to find the optimal binary search tree. The
key observation is that each possible root node i partitions the space of keys
into those to the left of i and those to the right; each of which should be
represented by an optimal binary search tree on a smaller subrange of keys.
The root of the optimal tree is selected to minimize the expected search costs
of the resulting partition.

• Might access frequencies change over time? – Preordering a list or tree to ex-
ploit a skewed access pattern requires knowing the access pattern in advance.
For many applications, it can be difficult to obtain such information. Better
are self-organizing lists, where the order of the keys changes in response to the
queries. The best self-organizing scheme is move-to-front; that is, we move
the most recently searched-for key from its current position to the front of
the list. Popular keys keep getting boosted to the front, while unsearched-for

14 .2 SEARCHING 443

keys drift towards the back of the list. There is no need to keep track of the
frequency of access; just move the keys on demand. Self-organizing lists also
exploit locality of reference, since accesses to a given key are likely to occur
in clusters. A hot key will be maintained near the top of the list during a
cluster of accesses, even if other keys have proven more popular in the past.

Self-organization can extend the useful size range of sequential search. How-
ever, you should switch to binary search beyond 100 elements. But consider
using splay trees. which are self-organizing binary search trees that rotate
each searched-for node to the root. They offer excellent amortized perfor-
mance guarantees.

• Is the key close by? – Suppose we know that the target key is to the right
of position p, and we think it is nearby. A sequential search is fast if we are
correct, but we will be punished severely when we guess wrong. A better idea
is to test repeatedly at larger intervals (p + 1, p + 2, p + 4, p + 8, p + 16, . . .)
to the right until we find a key to the right of our target. Now we have a
window containing the target and we can proceed with binary search.

Such a one-sided binary search finds the target at position p+ l using at most
2�lg l� comparisons, so it is faster than binary search when l << n, yet it
can never be much worse. One-sided binary search is particularly useful in
unbounded search problems, such as in numerical root finding.

• Is my data structure sitting on external memory? – Once the number of keys
grows too large, a binary search loses its status as the best search technique.
A binary search jumps wildly around the set of keys looking for midpoints to
compare, and so each comparison requires reading a new page in from external
memory. Much better are data structures such as B-trees (see Section 12.1
(page 367)) or Emde Boas trees (see notes below), which cluster the keys into
pages to minimize the number of disk accesses per search.

• Can I guess where the key should be? – In interpolation search, we exploit
our understanding of the distribution of keys to guess where to look next. An
interpolation search is probably a more accurate description of how we use
a telephone book than binary search. Suppose we are searching for Wash-
ington, George in a sorted telephone book. We would be safe making our
first comparison three-fourths of the way down the list, essentially doing two
comparisons for the price of one.

Although an interpolation search is an appealing idea, we caution against it
for three reasons: First, you have to work very hard to optimize your search
algorithm before you can hope for a speedup over binary search. Second, even
if you do beat a binary search, it is unlikely to be by enough to have justified
the exercise. Finally, your program will be much less robust and efficient when
the distribution changes, such as when your application gets ported to work
on French words instead of English.

444 14 . COMBINATORIAL PROBLEMS

Implementations: The basic sequential and binary search algorithms are sim-
ple enough that you may consider implementing them yourself. That said,
the C standard library contains bsearch, a generic implementation of (pre-
sumably) a binary search. The C++ Standard Template Library (STL) pro-
vides find (sequential search) and binary search iterators. Java Collections
(JC), provides binarySearch in the java.util package of Java standard edition
(http://java.sun.com/javase/).

Many data structure textbooks provide extensive and illustrative imple-
mentations. Sedgewick (http://www.cs.princeton.edu/∼rs/) [Sed98] and Weiss
(http://www.cs.fiu.edu/∼weiss/) [Wei06] provide implementation of splay trees and
other search structures in both C++ and Java.

Notes: The Handbook of Data Structures and Applications [MS05] provides up-to-date
surveys on all aspects of dictionary data structures. Other surveys include Mehlhorn and
Tsakalidis [MT90b] and Gonnet and Baeza-Yates [GBY91]. Knuth [Knu97a] provides a
detailed analysis and exposition on all fundamental search algorithms and dictionary data
structures, but omits such modern data structures as red-black and splay trees.

The next position probed in linear interpolation search on an array of sorted numbers
is given by

next = (low − 1) + � q − S[low − 1]

S[high + 1] − S[low − 1]
× (high − low + 1)

where q is the query numerical key and S the sorted numerical array. If the keys are
drawn independently from a uniform distribution, the expected search time is O(lg lg n)
[DJP04, PIA78].

Nonuniform access patterns can be exploited in binary search trees by structuring
them so that popular keys are located near the root, thus minimizing search time. Dynamic
programming can be used to construct such optimal search trees in O(n lg n) time [Knu98].
Stout and Warren [SW86b] provide a slick algorithm to efficiently transform a binary tree
to a minimum height (optimally balanced) tree using rotations.

The Van Emde Boas layout of a binary tree (or sorted array) offers better external

memory performance than conventional binary search, at a cost of greater implementation

complexity. See the survey of Arge, et al. [ABF05] for more on this and other cache-

oblivious data structures.

Related Problems: Dictionaries (see page 367), sorting (see page 436).

