
19

Support-Vector Machines and Kernel
Methods

While linear logistic regression has been the mainstay in biostatistics and
epidemiology, it has had a mixed reception in the machine-learning com-
munity. There the goal is often classification accuracy, rather than statistical
inference. Logistic regression builds a classifier in two steps: fit a condi-
tional probability model for Pr.Y D 1jX D x/, and then classify as a
one if bPr.Y D 1jX D x/ � 0:5. SVMs bypass the first step, and build a
classifier directly.

Another rather awkward issue with logistic regression is that it fails if
the training data are linearly separable! What this means is that, in the
feature space, one can separate the two classes by a linear boundary. In
cases such as this, maximum likelihood fails and some parameters march
off to infinity. While this might have seemed an unlikely scenario to the
early users of logistic regression, it becomes almost a certainty with mod-
ern wide genomics data. When p � n (more features than observations),
we can typically always find a separating hyperplane. Finding an optimal
separating hyperplane was in fact the launching point for SVMs. As we
will see, they have more than this to offer, and in fact live comfortably
alongside logistic regression.

SVMs pursued an age-old approach in statistics, of enriching the feature
space through nonlinear transformations and basis expansions; a classical
example being augmenting a linear regression with interaction terms. A
linear model in the enlarged space leads to a nonlinear model in the ambient
space. This is typically achieved via the “kernel trick,” which allows the
computations to be performed in the n-dimensional space for an arbitrary
number of predictors p. As the field matured, it became clear that in fact
this kernel trick amounted to estimation in a reproducing-kernel Hilbert
space.

Finally, we contrast the kernel approach in SVMs with the nonparame-
teric regression techniques known as kernel smoothing.

375

376 SVMs and Kernel Methods

19.1 Optimal Separating Hyperplane

Figure 19.1 shows a small sample of points in R2, each belonging to one of
two classes (blue or orange). Numerically we would score these classes as
+1 for say blue, and -1 for orange.1 We define a two-class linear classifier
via a function f .x/ D ˇ0 C x

0ˇ, with the convention that we classify a
point x0 as +1 if f .x0/ > 0, and as -1 if f .x0/ < 0 (on the fence we
flip a coin). Hence the classifier itself is C.x/ D signŒf .x/�. The decision

−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 19.1 Left panel: data in two classes in R2. Three potential
decision boundaries are shown; each separate the data perfectly.
Right panel: the optimal separating hyperplane (a line in R2)
creates the biggest margin between the two classes.

boundary is the set fx jf .x/ D 0g. We see three different classifiers in
the left panel of Figure 19.1, and they all classifier the points perfectly.
The optimal separating hyperplane is the linear classifier that creates the
largest margin between the two classes, and is shown in the right panel
(it is also known as an optimal-margin classifier). The underlying hope is
that, by making a big margin on the training data, it will also classify future
observations well.

Some elementary geometry� shows that the (signed) Euclidean distance�1
from a point x0 to the linear decision boundary defined by f is given by

1

kˇk2
f .x0/: (19.1)

With this in mind, for a separating hyperplane the quantity 1
kˇk2

yif .xi / is

1 In this chapter, the˙1 scoring leads to convenient notation.

19.1 Optimal Separating Hyperplane 377

the distance of xi from the decision boundary.2 This leads to an optimiza-
tion problem for creating the optimal margin classifier:

maximize
ˇ0; ˇ

M (19.2)

subject to
1

kˇk2
yi .ˇ0 C x

0ˇ/ �M; i D 1; : : : ; n:

A rescaling argument reduces this to the simpler form

minimize
ˇ0; ˇ

kˇk2 (19.3)

subject to yi .ˇ0 C x0ˇ/ � 1; i D 1; : : : ; n:

This is a quadratic program, which can be solved by standard techniques
in convex optimization.�One noteworthy property of the solution is that �2

Ǒ D

X
i2S
Ǫ ixi ; (19.4)

where S is the support set. We can see in Figure 19.1 that the margin
touches three points (vectors); in this case there are jSj D 3 support vec-
tors, and clearly the orientation of Ǒ is determined by them. However, we
still have to solve the optimization problem to identify the three points
in S , and their coefficients ˛i ; i 2 S . Figure 19.2 shows an optimal-
margin classifier fit to wide data, that is data where p � n. These are
gene-expression measurements on p D 3571 genes measured on blood
samples from n D 72 leukemia patients (first seen in Chapter 1). They
were classified into two classes, 47 acute lymphoblastic leukemia (ALL)
and 25 myeloid leukemia (AML). In cases like this, we are typically guar-
anteed a separating hyperplane3. In this case 42 of the 72 points are support
points. One might be justified in thinking that this solution is overfit to this
small amount of data. Indeed, when broken into a training and test set, we
see that the test data encroaches well into the margin region, but in this
case none are misclassified. Such classifiers are very popular in the wide-
data world of genomics, largely because they seem to work very well. They
offer a simple alternative to logistic regression, in a situation where the lat-
ter fails. However, sometimes the solution is overfit, and a modification is
called for. This same modification takes care of nonseparable situations as
well.
2 Since all the points are correctly classified, the sign of f .xi / agrees with yi , hence this

quantity is always positive.
3 If n � pC 1 we can always find a separating hyperplane, unless there are exact feature

ties across the class barrier!

378 SVMs and Kernel Methods

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Leukemia: All Data

SVM Projection

P
C

A
 5

 P
ro

je
ct

io
n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Leukemia: Train and Test

SVM Projection

P
C

A
 5

 P
ro

je
ct

io
n

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Figure 19.2 Left panel: optimal margin classifier fit to
leukemia data. There are 72 observations from two
classes—47 ALL and 25 AML—and 3571 gene-expression
variables. Of the 72 observations, 42 are support vectors, sitting
on the margin. The points are plotted against their fitted classifier
function Of .x/, labeled SVM projection, and the fifth principal
component of the data (chosen for display purposes, since it has
low correlation with the former). Right panel: here the optimal
margin classifier was fit to a random subset of 50 of the 72
observations, and then used to classify the remaining 22 (shown
in color). Although these points fall on the wrong sides of their
respective margins, they are all correctly classified.

19.2 Soft-Margin Classifier

Figure 19.3 shows data in R2 that are not separable. The generalization to
a soft margin allows points to violate their margin. Each of the violators
has a line segment connecting it to its margin, showing the extent of the
violation. The soft-margin classifier solves

minimize
ˇ0; ˇ

kˇk2

subject to yi .ˇ0 C x0iˇ/ � 1 � �i ;

�i � 0; i D 1; : : : ; n; and
nX
iD1

�i � B:

(19.5)

Here B is the budget for the total amount of overlap. Once again, the solu-
tion has the form (19.4), except now the support set S includes any vectors
on the margin as well as those that violate the margin. The bigger B , the

19.3 SVM Criterion as Loss Plus Penalty 379

−2 −1 0 1 2 3 4

−
1

0
1

2
3

4

X1

X
2

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

−2 −1 0 1 2 3 4

−
1

0
1

2
3

4

X1

X
2

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

Figure 19.3 For data that are not separable, such as here, the
soft-margin classifier allows margin violations. The budget B for
the total measure of violation becomes a tuning parameter. The
bigger the budget, the wider the soft margin and the more support
points there are involved in the fit.

bigger the support set, and hence the more points that have a say in the
solution. Hence bigger B means more stability and lower variance. In fact,
even for separable data, allowing margin violations via B lets us regularize
the solution by tuning B .

19.3 SVM Criterion as Loss Plus Penalty

It turns out that one can reformulate (19.5) and (19.3) in more traditional
terms as the minimization of a loss plus a penalty:

minimize
ˇ0; ˇ

nX
iD1

Œ1 � yi .ˇ0 C x
0
iˇ/�C C �kˇk

2
2: (19.6)

Here the hinge loss LH .y; f .x// D Œ1 � yf .x/�C operates on the margin
quantity yf .x/, and is piecewise linear as in Figure 19.4.�The same margin �3
quantity came up in boosting in Section 17.4. The quantity Œ1 � yi .ˇ0 C
x0iˇ/�C is the cost for xi being on the wrong side of its margin (the cost
is zero if it’s on the correct side). The correspondence between (19.6) and
(19.5) is exact; large � corresponds to large B , and this formulation makes
explicit the form of regularization. For separable data, the optimal separat-
ing hyperplane solution (19.3) corresponds to the limiting minimum-norm
solution as � # 0. One can show that the population minimizer of the

380 SVMs and Kernel Methods

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

yf(x)

Lo
ss

Binomial
SVM

Figure 19.4 The hinge loss penalizes observation margins yf .x/
less thanC1 linearly, and is indifferent to margins greater than
C1. The negative binomial log-likelihood (deviance) has the
same asymptotes, but operates in a smoother fashion near the
elbow at yf .x/ D 1.

hinge loss is in fact the Bayes classifier.4 This shows that the SVM is in
fact directly estimating the classifier C.x/ 2 f�1;C1g.��4

The red curve in Figure 19.4 is (half) the binomial deviance for logistic
regression (i.e. f .x/ D ˇ0 C x0ˇ is now modeling logit Pr.Y D C1jX D
x/). With Y D ˙1, the deviance can also be written in terms of the margin,
and the ridged logistic regression corresponding to (19.6) has the form

minimize
ˇ0; ˇ

nX
iD1

logŒ1C e�yi .ˇ0Cx
0
i
ˇ/�C �kˇk22: (19.7)

Logistic regression is discussed in Section 8.1, as well as Sections 16.5 and
17.4. This form of the binomial deviance is derived in (17.13) on page 343.
These loss functions have some features in common, as can be seen in the
figure. The binomial loss asymptotes to zero for large positive margins, and
to a linear loss for large negative margins, matching the hinge loss in this
regard. The main difference is that the hinge has a sharp elbow at +1, while
the binomial bends smoothly. A consequence of this is that the binomial
solution involves all the data, via weights pi .1 � pi / that fade smoothly
with distance from the decision boundary, as apposed to the binary nature
4 The Bayes classifier C.x/ for a two-class problem using equal costs for

misclassification errors assigns x to the class for which Pr.yjx/ is largest.

19.4 Computations and the Kernel Trick 381

of support points. Also, as seen in Section 17.4 as well, the population
minimizer of the binomial deviance is the logit of the class probability

�.x/ D log
�

Pr.y D C1jx/
Pr.y D �1jx/

�
; (19.8)

while that of the hinge loss is its sign C.x/ D signŒ�.x/�. Interestingly,
as � # 0 the solution direction Ǒ to the ridged logistic regression prob-
lem (19.7) converges to that of the SVM.� �5

These forms immediately suggest other generalizations of the linear
SVM. In particular, we can replace the ridge penalty kˇk22 by the sparsity-
inducing lasso penalty kˇk1, which will set some coefficients to zero and
hence perform feature selection. Publicly available software (e.g. package
liblineaR in R) is available for fitting such lasso-regularized support-
vector classifiers.

19.4 Computations and the Kernel Trick

The form of the solution Ǒ D
P
i2S Ǫ ixi for the optimal- and soft-margin

classifier has some important consequences. For starters, we can write the
fitted function evaluated at a point x as

Of .x/ D Ǒ0 C x
0 Ǒ

D Ǒ0 C

X
i2S
Ǫ i hx; xi i;

(19.9)

where we have deliberately replaced the transpose notation with the more
suggestive inner product. Furthermore, we show in (19.23) in Section 19.9
that the Lagrange dual involves the data only through the n2 pairwise inner
products hxi ; xj i (the elements of the n�n gram matrixXX 0). This means
that the computations for computing the SVM solution scale linearly with
p, although potentially cubic5 in n. With very large p (in the tens of thou-
sands and even millions as we will see), this can be convenient.

It turns out that all ridge-regularized linear models with wide data can
be reparametrized in this way. Take ridge regression, for example:

minimize
ˇ

ky �Xˇk22 C �kˇk
2
2: (19.10)

This has solution Ǒ D .X 0X C �Ip/
�1X 0y , and with p large requires

inversion of a p � p matrix. However, it can be shown that Ǒ D X 0 Ǫ D

5 In practiceO.n2jSj/, and, with modern approximate solutions, much faster than that.

382 SVMs and Kernel MethodsPn
iD1 Ǫ ixi , with Ǫ D .XX 0 C �In/

�1y , which means the solution can
be obtained in O.n2p/ rather than O.np2/ computations. Again the gram
matrix has played a role, and Ǒ has the same form as for the SVM.��6

We now imagine expanding the p-dimensional feature vector x into a
potentially much larger set h.x/ D Œh1.x/; h2.x/; : : : ; hm.x/�; for an ex-
ample to latch onto, think polynomial basis of total degree d . As long as we
have an efficient way to compute the inner products hh.x/; h.xj /i for any
x, we can compute the SVM solution in this enlarged space just as easily
as in the original. It turns out that convenient kernel functions exist that do
just that. For example Kd .x; z/ D .1C hx; zi/d creates a basis expansion
hd of polynomials of total degree d , and Kd .x; z/ D hhd .x/; hd .z/i.��7

The polynomial kernels are mainly useful as existence proofs; in practice
other more useful kernels are used. Probably the most popular is the radial
kernel

K.x; z/ D e�
kx�zk
2
2 : (19.11)

This is a positive definite function, and can be thought of as computing an
inner product in some feature space. Here the feature space is in principle
infinite-dimensional, but of course effectively finite.6 Now one can think
of the representation (19.9) in a different light;

Of .x/ D Ǫ0 C
X
i2S
Ǫ iK.x; xi /; (19.12)

an expansion of radial basis functions, each centered on one of the train-
ing examples. Figure 19.5 illustrates such an expansion in R1. Using such
nonlinear kernels expands the scope of SVMs considerably, allowing one
to fit classifiers with nonlinear decision boundaries.

One may ask what objective is being optimized when we move to this
kernel representation. This is covered in the next section, but as a sneak
preview we present the criterion

minimize
˛0; ˛

nX
jD1

"
1 � yj

˛0 C

nX
iD1

˛iK.xj ; xi /

!#
C

C �˛0K˛; (19.13)

where the n � n matrix K has entries K.xj ; xi /.
As an illustrative example in R2 (so we can visualize the nonlinear

boundaries), we generated the data in Figure 19.6. We show two SVM
6 A bivariate functionK.x; z/ (Rp � Rp 7! R1) is positive-definite if, for every q,

every q � q matrixK D fK.xi ; xj /g formed using distinct entries x1; x2; : : : ; xq is
positive definite. The feature space is defined in terms of the eigen-functions of the
kernel.

19.4 Computations and the Kernel Trick 383

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

−2 −1 0 1 2

−
0
.4

0
.0

0
.2

0
.4

Radial Basis Functions

f
(x
)

K
(x
,x

j
)

f(x) = α0 +
∑

j αjK(x, xj)

xx

Figure 19.5 Radial basis functions in R1. The left panel shows a
collection of radial basis functions, each centered on one of the
seven observations. The right panel shows a function obtained
from a particular linear expansion of these basis functions.

solutions, both using a radial kernel. In the left panel, some margin errors
are committed, but the solution looks reasonable. However, with the flex-
ibility of the enlarged feature space, by decreasing the budget B we can
typically overfit the training data, as is the case in the right panel. A sepa-
rate little blue island was created to accommodate the one blue point in a
sea of brown.

−4 −2 0 2 4

−
4

−
2

0
2

4

X1

X
2

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●

●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

X1

X
2

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

Figure 19.6 Simulated data in two classes in R2, with SVM
classifiers computed using the radial kernel (19.11). The left
panel uses a larger value of B than the right. The solid lines are
the decision boundaries in the original space (linear boundaries in
the expanded feature space). The dashed lines are the projected
margins in both cases.

384 SVMs and Kernel Methods

19.5 Function Fitting Using Kernels

The analysis in the previous section is heuristic—replacing inner products
by kernels that compute inner products in some (implicit) feature space.
Indeed, this is how kernels were first introduced in the SVM world. There
is however a rich literature behind such approaches, which goes by the
name function fitting in reproducing-kernel Hilbert spaces (RKHSs). We
give a very brief overview here. One starts with a bivariate positive-definite
kernel K W Rp � Rp ! R1, and we consider a space HK of functions
f W Rp ! R1 generated by the kernel: f 2 spanfK.�; z/; z 2 Rpg7 The
kernel also induces a norm on the space kf kHK

,�which can be thought of�8
as a roughness measure.

We can now state a very general optimization problem for fitting a func-
tion to data, when restricted to this class;

minimize
f 2HK

(
nX
iD1

L.yi ; ˛0 C f .xi //C �kf k
2
HK

)
; (19.14)

a search over a possibly infinite-dimensional function space. Here L is an
arbitrary loss function. The “magic” of these spaces in the context of this
problem is that one can show that the solution is finite-dimensional:

Of .x/ D

nX
iD1

Ǫ iK.x; xi /; (19.15)

a linear basis expansion with basis functions ki .x/ D K.x; xi / anchored
at each of the observed “vectors” xi in the training data. Moreover, using
the “reproducing” property of the kernel in this space, one can show that
the penalty reduces to

k Of k2HK
D

nX
iD1

nX
jD1

Ǫ i ǪjK.xi ; xj / D Ǫ
0K Ǫ : (19.16)

HereK is the n� n gram matrix of evaluations of the kernel, equivalent to
the XX 0 matrix for the linear case.

Hence the abstract problem (19.14) reduces to the generalized ridge
problem

minimize
˛2Rn

8<: nX
iD1

L

0@yi ; ˛0 C nX
jD1

˛iK.xi ; xj /

1AC �˛0K˛
9=; : (19.17)

7 Here kz D K.�; z/ is considered a function of the first argument, and the second
argument is a parameter.

19.6 Example: String Kernels for Protein Classification 385

Indeed, if L is the hinge loss as in (19.6), this is the equivalent “loss plus
penalty” criterion being fit by the kernel SVM. Alternatively, if L is the bi-
nomial deviance loss as in (19.7), this would fit a kernel version of logistic
regression. Hence most fitting methods can be generalized to accommodate
kernels.

This formalization opens the door to a wide variety of applications, de-
pending on the kernel function used. Alternatively, as long as we can com-
pute suitable similarities between objects, we can build sophisticated clas-
sifiers and other models for making predictions about other attributes of
the objects.8 In the next section we consider a particular example.

19.6 Example: String Kernels for Protein Classification

One of the important problems in computational biology is to classify pro-
teins into functional and structural classes based on their sequence simi-
larities. Protein molecules can be thought of as strings of amino acids, and
differ in terms of length and composition. In the example we consider, the
lengths vary between 75 and 160 amino-acid molecules, each of which can
be one of 20 different types, labeled using the letters of the alphabet.

Here follow two protein examples x1 and x2, of length 110 and 153
respectively:

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV

ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA

RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK

LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

We treat the proteins x as documents consisting of letters, with a dictio-
nary of size 20. Our feature vector hm.x/ will consist of the counts for all
m-grams in the protein—that is, distinct sequences of consecutive letters of
length m. As an illustration, we use m D 3, which results in 203 D8,000
possible sub-sequences; hence h3.x/ will be a vector of length 8,000, with
each element the number of times that particular sub-sequence occurs in
the protein x. In our example, the sub-sequence LQE occurs once in the
first, and twice in the second protein, so h3LQE.x1/ D 1 and h3LQE.x2/ D 2.

The number of possible sequences of lengthm is 20m, which can be very
8 As long as the similarities behave like inner products; i.e. they form positive

semi-definite matrices.

386 SVMs and Kernel Methods

large for moderate m. Also the vast majority of the sub-sequences do not
match the strings in our training set, which means hm.x/ will be sparse. It
turns out that we can compute the n�n inner product matrix or string kernel
Km.x1; x2/ D hh

m.x1/; h
m.x2/i efficiently using tree structures, without

actually computing the individual vectors. � Armed with the kernel, we�9

Protein Classification

False-positive rate

Tr
ue

-p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC
SVM 0.84
KLR 0.78

Figure 19.7 ROC curves for two classifiers fit to the protein data.
The ROC curves were computed using 10-fold cross-validation,
and trace the trade-off between false-positive and true-positive
error rates as the classifier threshold is varied. The area under the
curve (AUC) summarizes the overall performance of each
classifier. Here the SVM is slightly superior to kernel logistic
regression.

can now use it to fit a regularized SVM or logistic regression model, as
outlined in the previous section. The data consist of 1708 proteins in two
classes—negative (1663) and positive (45). We fit both the kernel SVM
and kernel logistic regression models. For both methods, cross-validation
suggested a very small value for �. Figure 19.7 shows the ROC trade-off
curve for each, using 10-fold cross-validation. Here the SVM outperforms
logistic regression.

19.7 SVMs: Concluding Remarks 387

19.7 SVMs: Concluding Remarks

SVMs have been wildly successful, and are one of the “must have” tools in
any machine-learning toolbox. They have been extended to cover many dif-
ferent scenarios, other than two-class classification, with some awkward-
ness in cases. The extension to nonlinear function-fitting via kernels (in-
spiring the “machine” in the name) generated a mini industry. Kernels are
parametrized, learned from data, with special problem-specific structure,
and so on.

On the other hand, we know that fitting high-dimensional nonlinear
functions is intrinsically difficult (the “curse of dimensionality”), and SVMs
are not immune. The quadratic penalty implicit in kernel methodology
means all features are included in the model, and hence sparsity is gen-
erally not an option. Why then this unbridled enthusiasm? Classifiers are
far less sensitive to bias–variance tradeoffs, and SVMs are mostly popular
for their classification performance. The ability to define a kernel for mea-
suring similarities between abstract objects, and then train a classifier, is a
novelty added by these approaches that was missed in the past.

19.8 Kernel Smoothing and Local Regression

The phrase “kernel methodology” might mean something a little different
to statisticians trained in the 1970–90 period. Kernel smoothing represents
a broad range of tools for performing non- and semi-parametric regres-
sion. Figure 19.8 shows a Gaussian kernel smooth fit to some artificial data
fxi ; yig

n
1 . It computes at each point x0 a weighted average of the y-values

of neighboring points, with weights given by the height of the kernel. In its
simplest form, this estimate can be written as

Of .x0/ D

nX
iD1

yiK
 .x0; xi /; (19.18)

where K
 .x0; xi / represents the radial kernel with width parameter
 .9

Notice the similarity to (19.15); here the Ǫ i D yi , and the complexity of
the model is controlled by
 . Despite this similarity, and the use of the
same kernel, these methodologies are rather different.

The focus here is on local estimation, and the kernel does the local-
izing. Expression (19.18) is almost a weighted average—almost because

9 HereK
 .x;�/ is the normalized Gaussian density with mean � and variance 1=
 .

388 SVMs and Kernel Methods

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Gaussian Kernel

X

Y
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

x0

Figure 19.8 A Gaussian kernel smooth of simulated data. The
points come from the blue curve with added random errors. The
kernel smoother fits a weighted mean of the observations, with
the weighting kernel centered at the target point, x0 in this case.
The points shaded orange contribute to the fit at x0. As x0 moves
across the domain, the smoother traces out the green curve. The
width of the kernel is a tuning parameter. We have depicted the
Gaussian weighting kernel in this figure for illustration; in fact its
vertical coordinates are all positive and integrate to one.

Pn
iD1K
 .x0; xi /� 1. In fact, the Nadaraya–Watson estimator is more ex-

plicit:

OfNW .x0/ D

Pn
iD1 yiK
 .x0; xi /Pn
iD1K
 .x0; xi /

: (19.19)

Although Figure 19.8 is one-dimensional, the same formulation applies to
x in higher dimensions.

Weighting kernels other than the Gaussian are typically favored; in par-
ticular, near-neighbor kernels with compact support. For example, the tricube
kernel used by the lowess smoother in R is defined as follows:
1 Define di D kx0 � xik2; i D 1; : : : ; n, and let d.m/ be the mth smallest

(the distance of the mth nearest neighbor to x0). Let ui D di=d.m/; i D
1; : : : ; n.

19.8 Kernel Smoothing and Local Regression 389

2 The tricube kernel is given by

Ks.x0; xi / D

(�
1 � u3i

�3 if ui � 1;
0 otherwise,

(19.20)

where s D m=n, the span of the kernel. Near-neighbor kernels such as
this adapt naturally to the local density of the xi ; wider in low-density
regions, narrower in high-density regions. A tricube kernel is illustrated
in Figure 19.9.

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Local Regression (tricube)

X

Y

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

x0

Figure 19.9 Local regression fit to the simulated data. At each
point x0, we fit a locally weighted linear least-squares model, and
use the fitted value to estimate OfLR.x0/. Here we use the tricube
kernel (19.20), with a span of 25%. The orange points are in the
weighting neighborhood, and we see the orange linear fit
computed by kernel weighted least squares. The green dot is the
fitted value at x0 from this local linear fit.

Weighted means suffer from boundary bias—we can see in Figure 19.8 that
the estimate appears biased upwards at both boundaries. The reason is that,
for example on the left, the estimate for the function on the boundary aver-
ages points always to the right, and since the function is locally increasing,
there is an upward bias. Local linear regression is a natural generalization
that fixes such problems. At each point x0 we solve the following weighted

390 SVMs and Kernel Methods

least-squares problem

. Ǒ0.x0/; Ǒ.x0// D arg min
ˇ0;ˇ

nX
iD1

Ks.x0; xi /.yi � ˇ0 � xiˇ/
2: (19.21)

Then OfLR.x0/ D Ǒ
0.x0/ C x0 Ǒ.x0/. One can show that, to first order,

OfLR.x0/ removes the boundary bias exactly.��10

Figure 19.9 illustrates the procedure on our simulated data, using the
tricube kernel with a span of 25% of the data. In practice, the width of the
kernel (the span here) has to be selected by some means; typically we use
cross-validation.

Local regression works in any dimension; that is, we can fit two- or
higher-dimensional surfaces using exactly the same technique. Here the
ability to remove boundary bias really pays off, since the boundaries can
be complex. These are referred to as memory-based methods, since there
is no fitted model. We have to save all the training data, and recompute the
local fit every time we make a prediction.

Like kernel SVMs and their relatives, kernel smoothing and local regres-
sion break down in high dimensions. Here the near neighborhoods become
so wide that they are no longer local.

19.9 Notes and Details

In the late 1980s and early 1990s, machine-learning research was largely
driven by prediction problems, and the neural-network community at AT&T
Bell laboratories was amongst the leaders. The problem of the day was
the US Post-Office handwritten zip-code OCR challenge—a 10-class im-
age classification problem. Vladimir Vapnik was part of this team, and
along with colleagues invented a more direct approach to classification, the
support-vector machine. This started with the seminal paper by Boser et al.
(1992), which introduced the optimal margin classifier (optimal separating
hyperplane); see also Vapnik (1996). The ideas took off quite rapidly, at-
tracting a large cohort of researchers, and evolved into the more general
class of “kernel” methods—that is, models framed in reproducing-kernel
Hilbert spaces. A good general reference is Schölkopf and Smola (2001).

�1 [p. 376] Geometry of separating hyperplanes. Let f .x/ D ˇ0x C ˇ0 de-
fine a linear decision boundary fx jf .x/ D 0g in Rp (an affine set of co-
dimension one). The unit vector normal to the boundary is ˇ=kˇk2, where
k � k2 denotes the `2 or Euclidean norm. How should one compute the dis-
tance from a point x to this boundary? If x0 is any point on the boundary

19.9 Notes and Details 391

(i.e. f .x0/ D 0), we can project x � x0 onto the normal, giving us

ˇ0.x � x0/

kˇk2
D

1

kˇk2
f .x/;

as claimed in (19.1). Note that this is the signed distance, since f .x/ will
be positive or negative depending on what side of the boundary it lies on.

�2 [p. 377] The “support” in SVM. The Lagrange primal problem correspond-
ing to (19.3) can be written as

minimize
ˇ0; ˇ

(
1

2
ˇ0ˇ C

nX
iD1

i Œ1 � yi .ˇ0 C x
0
iˇ/�

)
; (19.22)

where
i � 0 are the Lagrange multipliers. On differentiating we find that
ˇ D

Pn
iD1
iyixi and

Pn
iD1 yi
i D 0. With ˛i D yi
i , we get (19.4), and

note that the positivity constraint on
i will lead to some of the ˛i being
zero. Plugging into (19.22) we obtain the Lagrange dual problem

maximize
f
i g

n
1

(
nX
iD1

i �
1

2

nX
iD1

nX
jD1

i
jyiyjx
0
ixj

9=;
subject to
i � 0;

nX
iD1

yi
i D 0:

(19.23)

�3 [p. 379] The SVM loss function. The constraint in (19.5) can be succinctly
captured via the expression

nX
iD1

Œ1 � yi .ˇ0 C x
0
iˇ/�C � B: (19.24)

We only require a (positive) �i if our margin is less than 1, and we get
charged for the sum of these �i . We now use a Lagrange multiplier to en-
force the constraint, leading to

minimize
ˇ0; ˇ

kˇk22 C

nX
iD1

Œ1 � yi .ˇ0 C x
0
iˇ/�C: (19.25)

Multiplying by � D 1=
 gives us (19.6).
�4 [p. 380] The SVM estimates a classifier. The following derivation is due to

Wahba et al. (2000). Consider

minimize
f .x/

EY jXDx fŒ1 � Yf .x/�Cg : (19.26)

392 SVMs and Kernel Methods

Dropping the dependence on x, the objective can be written as PCŒ1 �
f �CCP�Œ1Cf �C, where PC D Pr.Y D C1jX D x/, and P� D Pr.Y D
�1jX D x/ D 1 � PC. From this we see that

f D

�
C1 if PC > 1

2

�1 if P� < 1
2
:

(19.27)

�5 [p. 381] SVM and ridged logistic regression. Rosset et al. (2004) show
that the limiting solution as � # 0 to (19.7) for separable data coincides
with that of the SVM, in the sense that Ǒ=k Ǒk2 converges to the same
quantity for the SVM. However, because of the required normalization
for logistic regression, the SVM solution is preferable. On the other hand,
for overlapped situations, the logistic-regression solution has some advan-
tages, since its target is the logit of the class probabilities.

�6 [p. 382] The kernel trick. The trick here is to observe that from the score
equations we have �X 0.y � Xˇ/ C �ˇ D 0, which means we can write
Ǒ D X 0˛ for some ˛. We now plug this into the score equations, and

some simple manipulation gives the result. A similar result holds for ridged
logistic regression, and in fact any linear model with a ridge penalty on the
coefficients (Hastie and Tibshirani, 2004).

�7 [p. 382] Polynomial kernels. Consider K2.x; z/ D .1 C hx; zi/2, for x
(and z) in R2. Expanding we get

K2.x; z/ D 1C 2x1z1 C 2x2z2 C 2x1x2z1z2 C x
2
1z
2
1 C x

2
2z
2
2 :

This corresponds to hh2.x/; h2.z/i with

h2.x/ D .1;
p
2x1;
p
2x2;
p
2x1x2; x

2
1 ; x

2
2/:

The same is true for p > 2 and for degree d > 2.
�8 [p. 384] Reproducing kernel Hilbert spaces. Suppose K has eigen expan-

sion K.x; z/ D
P1
iD1
i�i .x/�i .z/, with
i � 0 and

P1
iD1
i <1. Then

we say f 2 HK if f .x/ D
P1
iD1 ci�i .x/, with

kf k2HK
�

1X
iD1

c2i

i
<1: (19.28)

Often kf kHK
behaves like a roughness penalty, in that it penalizes unlikely

members in the span ofK.�; z/ (assuming that these correspond to “rough”
functions). If f has some high loadings cj on functions �j with small
eigenvalues
j (i.e. not prominent members of the span), the norm becomes
large. Smoothing splines and their generalizations correspond to function
fitting in a RKHS (Wahba, 1990).

19.9 Notes and Details 393

�9 [p. 386] This methodology and the data we use in our example come from
Leslie et al. (2003).

�10 [p. 390] Local regression and bias reduction. By expanding the unknown
true f .x/ in a first-order Taylor expansion about the target point x0, one
can show that E OfLR.x0/ � f .x0/ (Hastie and Loader, 1993).

