THE HACKER'S GUIDE

10

Contents

e

1 Starting your project
1.1 Pythonversions e
1.2 Projectlayout. e
1.3 Versionnumbering e
1.4 Codingstyle & automatedchecks

2 Modules and libraries
2.1 Theimportsystem i
2.2 Standardlibraries
2.3 Externallibraries e
24 Frameworkso i e e
2.5 Interview with DougHellmann
2.6 ManagingAPlchanges
2.7 Interview with ChristophedeVienne

3 Documentation

3.1 Getting started with SphinxandreST

11

11

16

18

21

22

31

35

40

CONTENTS i

3.2 Sphinxmodules 43

3.3 ExtendingSphinx 47

4 Distribution 50
4,1 Abitofhistory 50
4.2 Packagingwithpbr 53
43 TheWheelformat 55
44 Packageinstallation. 57
4.5 Sharingyour work withtheworld 59
4.6 InterviewwithNickCoghlan. 64

47 Entrypoints o e e e 66
4.7.1 \Visualisingentrypoints 67

4.7.2 Usingconsolescripts 68

4.7.3 Usingpluginsanddrivers. 71

5 Virtual environments 75
6 Unit testing 82
6.1 Thebasics e 82

6.2 Fixtures. e 91

6.3 MoCKing e 92

6.4 SCENArios 98

6.5 Teststreamingandparallelism 102

6.6 Coverage e e e e 107

6.7 Usingvirtualenvwithtox 111

CONTENTS
6.8 Testingpolicy e
6.9 Interview with RobertCollins

9

10

Methods and decorators

7.1 Creatingdecorators
7.2 How methodsworkinPython.
7.3 Staticmethods
74 Classmethod e
7.5 Abstractmethods
7.6 Mixing static, class, and abstract methods
7.7 Thetruthaboutsuper
Functional programming

8.1 Generators. i e e e e e e
8.2 Listcomprehensions
8.3 Functional functions functioning
The AST

0.1 Hy . o e e e
9.2 Interview with Paul Tagliamonte

Performances and optimizations
10.1 Datastructures i e e e e
10.2 Profiling o e

10.3 Ordered listand bisect

cee

116

117

121
121
128
131
132
133
135

138

143
144
150

151

161
165

167

173

CONTENTS iV

10.4 Namedtupleandslots 184
10.5 Memoization e 191
10.6 PYPY oot 193
10.7 Achieving zero copy with the buffer protocol 195
10.8 Interview with Victor Stinner 202
11 Scaling and architecture 205
11.1 Anoteon multi-threading 205
11.2 Multiprocessing vs multithreading 208
11.3 Asynchronous and event-driven architecture 210
11.4 Service-oriented architecture o L. 215
12 RDBMS and ORM 219
12.1 Streaming data with Flask and PostgreSQL 223
12.2 Interview with DimitriFontaine 230
13 Python 3 support strategies 241
13.1 Languageandstandardlibrary 243
13.2 Externallibraries 246
13.3 USINGSIX o v v vt e e e e e e e e e e e e e e e 247
14 Write less, code more 251
14.1 Singledispatcher. e 251

14.2 Contextmanagers i it i e 257

List of Figures

e

1.1

6.1

10.1

10.2

13.1

13.2

Standard packagedirectory L o 3
Coverage of ceilometer.publisher 110
KCacheGrindexample 177
Using slice on memoryview objects 198
Python2baseclasses 244

Python3baseclasses 245

List of Examples

e

1.1
1.2
2.1
2.2
2.3
2.4
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2
6.1
6.2
6.3

APep8run . . . e e e e e e e e e e e 8
Running pep8with--ignore 9
Hy moduleimporter e 13
AdocumentedAPIchange oL 32
A documented APl change withwarning 33
Running python -W error 34
Code from sphinxcontrib.pecanwsme.rest.setup 48
setup.pyusingdistutils e 50
setup.py usingsetuptools 51
Using setup.py sdist 59
Resultofepigrouplist. 67
Result of epi group show console_scripts 67
Result of epi ep show console_scripts coverage 68
A console script generated by setuptools 70
Runningpytimed. e 73
Automatic virtual environmentcreation 7
Boostrapingavenvenvironment L oL 78
Areally simpletestintest true.py 83
Failingatest. e 88

SKippingtests. i e 88

LIST OF EXAMPLES Vil

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
7.1
7.2
7.3
1.4
7.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

Using setUp withunittest. 90
Using fixtures.EnvironmentVariable 92
Basicmockusage 93
Checkingmethodcalls 94
Usingmock.patch 95
Using mock.patch to test a set of behaviour 95
testscenarios basicusage 99
Using testscenariostotestdrivers 101
Using subunit2pyunit 102
A .testr.conffile 105
Running testr run --parallel 106
Using nosetests --with-coverage 108
Using coverage with testrepository 111
A .travis.ymlexamplefile, 117
Aregisteringdecorator 122
Source code of functools.update wrapperinPython3.3 125
USing functools.wraps v v v vt v e et e e e e e e e e 126
Retrieving function arguments usinginspect 127
APython2method 128
APython3method 128
Callingunbound get_sizeinPython2 129
Callingunbound get_sizeinPython3 129
Callingboundget size 130
@staticmethodusage e 131
Implementing an abstractmethod 134
Implementing an abstract method usingabc 134
Mixing @classmethod and @abstractmethod 136

Using super() with abstractmethods 137

LIST OF EXAMPLES viii

8.1 wyieldreturningavalue 148
8.2 filterusageinPython3, 152
8.3 USINg first . ..ottt e e 156
8.4 Usingthe operator module with itertools.groupby 160
9.1 ParsingPythoncodetoAST 161
9.2 HelloworldusingPython AST, 163
9.3 Changingall binary operationto addition 164
10.1 UsingthecProfilemodule 175
10.2 Using KCacheGrind to visualize Python profilingdata 176
10.3 Afunction defined in a function, disassembled 180
10.4 Disassemblingaclosure 181
10.5 Usageofbisect e 182
10.6 Usageofbisect.insort, 183
10.7 ASortedListimplementation, 183
10.8 Aclassdeclarationusing slots 188
10.9 Memory usage of objectsusing slots 188
10.10Declaring a class using namedtuple 189
10.11Memory usage of a class built from collections.namedtuple 190
10.12A basic memoizationtechnique. o oL 191
10.13Using functools.lru cache. 192
11.1 Result of time pythonworker.py 209
11.2 Workerusing multiprocessingo v vt i it i . 209
11.3 Result of time pythonworker.py 209
11.4 Basicexampleofusingselect 211
11.5 Examplewithpyev 214
12.1 Creatingthemessagetable 223
12.2 Thenotify_on_insertfunction 224

12.3 Thetrigger fornotify_on_insert 225

LIST OF EXAMPLES iX

12.4 Receiving notificationsinPython. 225
12.5 Flask streamerapplication. 227
14.1 Simple implementation of a contextobject 257
14.2 Simplest usage of contextlib.contextmanager 258
14.3 Using a context manager on a pipelineobject 259
14.4 Openingtwo filesatthesametime 260

14.5 Opening two files at the same time with onewith statement 260

About this book
e

Version 1.0 released in March 2014.

If you’re reading this, odds are good you’ve been working with Python for some
time already. Maybe you learned it using some tutorials, delved into some existing
programs, or started from scratch, but whatever the case, you’ve hacked your way
into learning it. That’s exactly how | got familiar with Python up until | joined the

OpenStack team over two years ago.

Before then, | was building my own Python libraries and applications on a "garage
project" scale, but things change once you start working with hundreds of devel-
opers on software and libraries that thousands of users rely on. The OpenStack
platform represents over half a million lines of Python code, all of which needs to
be concise, efficient, and scalable to needs of whatever cloud computing applica-
tion its users require. And when you have a project this size, things like testing and

documentation absolutely require automation, or else they won’t get done at all.

| thought | knew a lot about Python when | first joined OpenStack, but I’'ve learned a
lot more these past two years working on projects the scale of which | could barely
even imagine when | got started. I've also had the opportunity to meet some of the
best Python hackers in the industry and learn from them - everything from general
architecture and design principles to various helpful tips and tricks. Through this
book, | hope to share the most important things I’'ve learned so that you can build

better Python programs - and build them more efficiently, too!

1 Starting your project
e

1.1 Python versions

One of the first questions you’re likely to ask is "which versions of Python should
my software support?". It’s well worth asking, since each new version of Python
introduces new features and deprecates old ones. Furthermore, there’s a huge gap
between Python 2.x and Python 3.x: there are enough changes between the two
branches of the language that it can be hard to keep code compatible with both,
as we’ll see in more detail later, and it can be hard to tell which version is more

appropriate when you’re starting a new project. Here are some short answers:

« Versions 2.5 and older are pretty much obsolete by now, so you don’t have to
worry about supporting them at all. If you’re intent on supporting these older ver-
sions anyway, be warned that you’ll have an even harder time ensuring that your
program supports Python 3.x as well. Though you might still run into Python 2.5

on some older systems; if that’s the case for you, sorry!

« Version 2.6 is still viable; you’ll find it in some older versions of operating systems
such as Red Hat Enterprise Linux. It’s not hard to support Python 2.6 as well as
newer versions, but if you don’t think your program will need to run on 2.6, don’t

stress yourself trying to accommodate it.

« Version 2.7 is and will remain the last version of Python 2.x. It’s a good idea to

1.2. PROJECT LAYOUT 2

make it your main target, or one of your main targets, since a lot of software, li-
braries, and developers still make use of it. Python 2.7 should continue to be sup-

ported until around 2016, so odds are it’s not going away anytime soon.

« Version 3.0, 3.1, and 3.2 were released in quick succession and as such haven’t
seen much adoption. If your code already supports 2.7, there’s not much pointin

supporting these versions as well.

« Version 3.3 and 3.4 are the most recent distributed editions of Python 3 and the
ones you should focus on supporting. Python 3.3 and 3.4 represent the future of
the language, so unless you’re focusing on compatibility with older versions, you

should make sure your code runs on these versions as well.

In summary: support 2.6 only if you have to (or are looking for a challenge), def-
initely support 2.7, and if you want to guarantee that your software will continue
to run for the foreseeable future, support 3.3 and above as well. You can safely ig-
nore other versions, though that’s not to say it’s impossible to support them all: the

CherryPy project supports all versions of Python from 2.3 onward.

Techniques for writing programs that support both Python 2.7 and 3.3 will be dis-
cussed in Chapter 13. You might spot some of these techniques in the sample code
as you read: all of the code that you’ll see in this book has been written to support

both major versions.

1.2 Project layout

Your project structure should be fairly simple. Use packages and hierarchy wisely:
a deep hierarchy can be a nightmare to navigate, while a flat hierarchy tends to

become bloated.

One common mistake is leaving unit tests outside the package directory. These

tests should definitely be included in a sub-package of your software so that:

1.2. PROJECT LAYOUT 3

« they don’t get automatically installed as a tests top-level module by setuptools

(or some other packaging library).

« they can be installed and eventually used by other packages to build their own

unit tests.

The following diagram illustrates what a standard file hierarchy should look like:

conf.py

quickstart.rst

docs

A

index.rst

__init__py

/

foobar » cli.py

// setup.py storage .py __init__.py
foobar /
[T g

\ README rst tests ——® test_slorage.py

requirements.txt test_cli.py

test-requirements.txt

Figure 1.1: Standard package directory

setup.py is the standard name for Python installation script. When run, it installs

your package using the Python distribution utilities (distutils). You can also pro-

1.2. PROJECT LAYOUT 4

vide important information to users in README. rst (or README . txt, or whatever file-
name suits your fancy). requirements.txt should list your Python package’s de-
pendencies - i.e., all of the packages that a tool such as pip should install to make
your package work. You can also include test-requirements. txt, which lists only
the dependencies required to run the test suite. Finally, the docs directory should
contain the package’s documentation in reStructuredText format, that will be con-

sumed by Sphinx (see Section 3.1).

Packages often have to provide extra data, such as images, shell scripts, and so
forth. Unfortunately, there’s no universally accepted standard for where these files

should be stored. Just put them wherever makes the most sense for your project.
The following top-level directories also frequently appear:

Most of the time, the following extra top level directories are used:

etc is for sample configuration files.

tools is for shell scripts or related tools.

bin is for binary scripts you’ve written that will be installed by setup. py.

data is for other kinds of data, such as media files.

A design issue | often encountered is to create files or modules based on the type
of code they will store. Having a functions.py or exceptions.py file is a terrible
approach. It doesn’t help anything at all with code organization and forces a reader
to jump between files for no good reason. Organize your code based on features,
not type.

Also, don’t create a directory and just an __init .py file init, e.g. don’t create
hooks/ init .py where hooks.py would have been enough. If you create a di-
rectory, it should contains several other Python files that belongs to the category/-

module the directory represents.

1.3. VERSION NUMBERING 5

1.3 Version numbering

As you might already know, there’s an ongoing effort to standardize package meta-

data in the Python ecosystem. One such piece of metadata is version number.

PEP 440 introduces a version format that every Python package, and ideally every
application, should follow. This way, other programs and packages will be able to

easily and reliably identify which versions of your package they require.

PEP 440 defines the following regular expression format for version numbering:

N[.N]+[{a|b|c|rc}N][.postN][.devN]

This allows for standard numbering like 1.2 or 1.2.3. But note:

« 1.2is equivalent to 1.2.0; 1.3.4 is equivalent to 1.3.4.0, and so forth.
« Versions matching N[.NJ+ are considered final releases.

« Date-based versions such as 2013.06.22 are considered invalid. Automated tools
designed to detect PEP 440-format version numbers will (or should) raise an error

if they detect a version number greater than or equal to 1980.
Final components can also use the following format:

« N[.NJ+aN (e.g. 1.2al) denotes an alpha release, a version that might be unstable

and missing features.

« NLNJ+bN (e.g. 2.3.1b2) denotes a beta release, a version that might be feature-
complete but still buggy.

« NL.NJ+cN or N[.NJ+rcN (e.g. 0.4rc1) denotes a (release) candidate, a version that
might be released as the final product unless significant bugs emerge. While the rc
and c suffixes have the same meaning, if both are used, rc releases are considered

to be newer than c releases.

1.3. VERSION NUMBERING 6

These suffixes can also be used:

« .postN (e.g. 1.4.post2) indicates a post release. These are typically used to ad-
dress minor errors in the publication process (e.g. mistakes in release notes). You
shouldn’t use .postN when releasing a bugfix version; instead, you should incre-

ment the minor version number.

« .devN (e.g. 2.3.4.dev3) indicates a developmental release. This suffix is discour-
aged because it is harder for humans to parse. It indicates a prerelease of the
version that it qualifies: e.g. 2.3.4.dev3 indicates the third developmental version

of the 2.3.4 release, prior to any alpha, beta, candidate or final release.

This scheme should be sufficient for most common use cases.

Note

You might have heard of Semantic Versioning, which provides its own guidelines for ver-
f sion numbering. This specification partially overlaps with PEP 440, but unfortunately,
they’re not entirely compatible. For example, Semantic Versioning’s recommendation for
prerelease versioning uses a scheme such as 1.0.0-alpha+001 that is not compliant with

PEP 440.

If you need to handle more advanced version numbers, you should note that PEP
426 defines source label, a field that you can use to carry any version string, and

then build a version number consistent with PEP requirements.

Many DVCS ' platforms, such as Git and Mercurial, are able to generate version num-
bers using an identifying hash >. Unfortunately, this system isn’t compatible with
the scheme defined by PEP 440: for one thing, identifying hashes aren’t orderable.
However, it’s possible to use a source label field to hold such a version number and

use it to build a PEP 440-compliant version number.

'Distributed Version Control System
*For Git, refer to git-describe(1).

1.4. CODING STYLE & AUTOMATED CHECKS 7

Tip
pbr 9, which will be discussed in Section 4.2, is able to automatically build version numbers

based on the Git revision of a project.

aPython Build Reasonableness

1.4 Coding style & automated checks

Yes, coding style is a touchy subject, but we still need to talk about it.

Python has an amazing quality ® that few other languages have: it uses indentation
to define blocks. At first glance, it seems to offer a solution to the age-old ques-
tion of "where should | put my curly braces?"; unfortunately, it introduces a new

guestion in the process: "how should | indent?"

And so the Python community, in their vast wisdom, came up with the PEP 8 * stan-

dard for writing Python code. The list of guidelines boils down to:

Use 4 spaces per indentation level.

Limit all lines to a maximum of 79 characters.

Separate top-level function and class definitions with two blank lines.

Encode files using ASCIl or UTF-8.

« One module import per import statement and per line, at the top of the file, after
comments and docstrings, grouped first by standard, then third-party, and finally

local library imports.

« No extraneous whitespaces between parentheses, brackets, or braces, or before

commas.

*Your mileage may vary.
*PEP 8 Style Guide for Python Code, 5th July 2001, Guido van Rossum, Barry Warsaw, Nick Coghlan

1.4. CODING STYLE & AUTOMATED CHECKS 8

« Nameclassesin CamelCase; suffix exceptionswith Error (ifapplicable); name func-
tions in lowercase with words separated by underscores;and use a leading un-

derscore for private attributes or methods.

These guidelines really aren’t hard to follow, and furthermore, they make a lot of
sense. Most Python programmers have no trouble sticking to them as they write

code.

However, errare humanum est, and it’s still a pain to look through your code to make
sure it fits the PEP 8 guidelines. That’s what the pep8 tool is there for: it can auto-

matically check any Python file you send its way.

Example 1.1 A pep8run

$ pep8 hello.py

hello.py:4:1: E302 expected 2 blank lines, found 1
$ echo $7

1

pep8 indicates which lines and columns do not conform to PEP 8 and reports each
issue with a code. Violations of MUST statements in the specification are reported
as errors (starting with E), while minor problems are reported as warnings (starting
with W). The three-digit code following the letter indicates the exact kind of error
or warning; you can tell the general category at a glance by looking at the hundreds
digit. For example, errors starting with E2 indicate issues with whitespace; errors
starting with E3 indicate issues with blank lines; and warnings starting with W6 in-

dicate deprecated features being used.

The community still debates whether validating against PEP 8 code thatis not part
of the standard library is a good practice. | advise you to consider it and run a PEP 8
validation tool against your source code on a regular basis. An easy way to do this
is to integrate it into your test suite. While it may seem a bit extreme, it’s a good

way to ensure that you continue to respect the PEP 8 guidelines in the long term.

1.4. CODING STYLE & AUTOMATED CHECKS 9

We’ll discuss in Section 6.7 how you can integrate pep8 with tox to automate these

checks.

The OpenStack project has enforced PEP 8 conformance through automatic checks
since the beginning. While it sometimes frustrates newcomers, it ensures that the
codebase - which has grown to over 1.67 million lines of code - always looks the
same in every part of the project. This is very important for a project of any size
where there are multiple developers with differing opinions on whitespace order-
ing.

It’s also possible to ignore certain kinds of errors and warnings by using the --ignore

option:

Example 1.2 Running pep8 with --ignore

$ pep8 --ignore=E3 hello.py
$ echo $7?
0

This allows you to effectively ignore parts of the PEP 8 standard that you don’t want
to follow. If you’re running pep8on a existing code base, it also allows you to ignore

certain kinds of problems so you can focus on fixing issues one category at a time.

f Note
If you write C code for Python (e.g. modules), the PEP 7 standard describes the coding

style that you should follow.

Other tools also exist that check for actual coding errors rather than style errors.

Some notable examples include:

« pyflakes, which supports plugins

« pylint, which also checks PEP 8 conformance, performs more checks by default,

and supports plugins

1.4. CODING STYLE & AUTOMATED CHECKS 10

These tools all make use of static analysis - that is, they parse the code and analyze

it rather than running it outright.

If you choose to use pyflakes, note that it doesn’t check PEP 8 conformance on its
own - you’ll still need to run pep8 as well. To simplify things, a project called flake8
combines pyflakes and pep8into a single command. It also adds some new features

such as skipping checks on lines containing #noqa and extensibility via entry points.

In its quest for beautiful and unified code, the OpenStack project chose flake8 for all
of its code checks. However, as time passed, the hackers took advantage of flake8's
extensibility to test for even more potential issues with submitted code. The end
result of all this is a flake8 extension called hacking. It checks for errors such as
odd usage of except, Python 2/3 portability issues, import style, dangerous string

formatting, and possible localization issues.

If you’re starting a new project, | strongly recommend you use one of these tools and
rely on it for automatic checking of your code quality and style. If you already have
a codebase, a good approachiis to run them with most of the warnings disabled and

fix issues one category at a time.

While none of these tools may be a perfect fit for your project or your preferences,
using flake8 and hacking together is a good way to improve the quality of your code

and make it more durable. If nothing else, it’s a good start toward that goal.

Tip

f Many text editors, including the famous GNU Emacs and vim, have plugins available (such
as Flymake) that can run tools such as pep8 or flake8 directly in your code buffer, inter-
actively highlighting any part of your code that isn’t PEP 8-compliant. This is a handy way

to fix most style errors as you write your code.

2 Modules and libraries
e

2.1 The import system

In order to use modules and libraries, you have to import them.

The Zen of Python

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

2.1. THE IMPORT SYSTEM 12

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

The import system is quite complex, but you probably already know the basics.

Here, I’ll show you some of the internals of this subsystem.

The sys module contains a lot of information about Python’s import system. First
of all, the list of modules currently imported is available through the sys.modules
variable. It’s a dictionary where the key is the module name and the value is the
module object.

>>> sys.modules['os"']

<module 'os' from '/usr/lib/python2.7/0s.pyc'>

Some modules are built-in; these are listed in sys.builtin module names. Built-
in modules can vary depending on the compilation options passed to the Python

build system.

When importing modules, Python relies on a list of paths. This list is stored in the
sys.path variable and tells Python where to look for modules to load. You can
change this list in code, adding or removing paths as necessary, or you can modify
the PYTHONPATH environment variable to add paths without writing Python code at
all. The following approaches are almost equivalent ':

>>> import sys

>>> sys.path.append('/foo/bar")

$ PYTHONPATH=/foo/bar python

>>> import sys

'Almost because the path will not be placed at the same level in the list, though it may not matter
depending on your use case.

bjpcjp

bjpcjp

bjpcjp

2.1. THE IMPORT SYSTEM 13

>>> '/foo/bar' in sys.path

True

The order in sys.path is important, since the list will be iterated over to find the

requested module.

It is also possible to extend the import mechanism using custom importers. This is
the technique that Hy * uses to teach Python how to import files other than standard

.py or .pyc files.

The import hook mechanism, as it is called, is defined by PEP 302 °. It allows you
to extend the standard import mechanism and apply preprocessing to it. You can

also add a custom module finder by appending a factory class to sys.path_hooks.

The modulefinder objectmusthavea find _module(fullname, path=None) method
that returns a loader object. The load object also must have a Load module(fulln

ame) responsible for loading the module from a source file.

To illustrate, here’s how Hy uses a custom importer to import source files ending
with . hy instead of . py:

Example 2.1 Hy module importer

class MetaImporter(object):
def find on path(self, fullname):
fls = ["%s/ init_ .hy", "%s.hy"]
dirpath = "/".join(fullname.split("."))

for pth in sys.path:
pth = os.path.abspath(pth)
for fp in fls:
composed path = fp % ("%s/%s" % (pth, dirpath))

if os.path.exists(composed path):

’Hy is a Lisp implementation on top of Python, discussed in Section 9.1
*New Import Hooks, implemented since Python 2.3

bjpcjp

bjpcjp

bjpcjp

2.1. THE IMPORT SYSTEM 14

return composed path

def find module(self, fullname, path=None):
path = self.find on path(fullname)
if path:
return MetalLoader(path)

sys.meta path.append(MetaImporter())

Once the path is determined to both be valid and point to a module, a MetaLoader

object is returned:

Hy module loader

class Metaloader(object):
def init (self, path):
self.path = path

def is package(self, fullname):
dirpath = "/".join(fullname.split("."))
for pth in sys.path:
pth = os.path.abspath(pth)
composed path = "%s/%s/ init .hy" % (pth, dirpath)
if os.path.exists(composed path):
return True

return False

def load module(self, fullname):
if fullname in sys.modules:

return sys.modules[fullname]

if not self.path:

2.1. THE IMPORT SYSTEM 15

return
sys.modules[fullname] = None
mod = import file to module(fullname,

self.path) @

ispkg = self.is package(fullname)

mod. file = self.path
mod. loader = self
mod. name = fullname
if ispkg:

mod. path = []

fullname

mod. package

else:

mod. package = fullname.rpartition('."')[0O]

sys.modules[fullname] = mod

return mod

® import file to modulereadsaHy source file, compilesit to Python code, and

returns a Python module object.

The uprefix module is another good example of this feature in action. Python 3.0
through 3.2 didn’t have the u prefix for denoting Unicode strings featured in Python 2
% this module ensures compatibility between 2.x and 3.x by removing the u prefix

from strings before compilation.

*It was added back in Python 3.3.

bjpcjp

2.2. STANDARD LIBRARIES 16

2.2 Standard libraries

Python comes with a huge standard library packed with tools and features for any
purpose you can think of. Newcomers to Python who are used to having to write
their own functions for basic tasks are often shocked to find that the language itself

ships with such functionality built in and ready for use.

Whenever you’re about to write your own function to handle a simple task, please
stop and look through the standard library first. My advice is to skim through the
whole thing at least once so that next time you need a function, you’ll already know

whether what you need already exists in the standard library.

We’ll talk about some of these modules in later sections, such as functools and
itertools, but here’s a few of the standard modules that you should definitely know

about:

atexit allows you to register functions to call when your program exits.

argparse provides functions for parsing command line arguments.

bisect provides bisection algorithms for sorting lists (see Section 10.3).

calendar provides a number of date-related functions.

codecs provides functions for encoding and decoding data.

collections provides a variety of useful data structures.

copy provides functions for copying data.

csv provides functions for reading and writing CSV files.

datetime provides classes for handling dates and times.

« fnmatch provides functions for matching Unix-style filename patterns.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

2.2. STANDARD LIBRARIES 17

glob provides functions for matching Unix-style path patterns.

io provides functions for handling I/0 streams. In Python 3, it also contains Strin-
glO (which is in the module of the same name in Python 2), which allows you to

treat strings as files.

« json provides functions for reading and writing data in JSON format.

logging provides access to Python’s own built-in logging functionality.

multiprocessing allows you to run multiple subprocesses from your application,

while providing an APl that makes them look like threads.

operator provides functions implementing the basic Python operators which you

can use instead of having to write your own lambda expressions (see Section 8.3).
os provides access to basic OS functions.

random provides functions for generating pseudo-random numbers.

re provides regular expression functionality.

select provides access to the select() and poll() functions for creating event loops.
shutil provides access to high-level file functions.

signal provides functions for handling POSIX signals.

tempfile provides functions for creating temporary files and directories.
threading provides access to high-level threading functionality.

urllib (and urllib2 and urlparse in Python 2.x) provides functions for handling

and parsing URLs.

uuid allows you to generate UUIDs (Universally Unique Identifiers).

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

2.3. EXTERNAL LIBRARIES 18

Use this list as a quick reference to help you keep track of which library modules do
what. If you can memorize even part of it, all the better. The less time you have to
spend looking up library modules, the more time you can spend writing the code

you actually need.

Tip

f The entire standard library is written in Python, so there’s nothing stopping you from look-
ing at the source code of its modules and functions. When in doubt, crack open the code
and see what it does for yourself. Even if the documentation has everything you need to

know, there’s always a chance you could learn something useful.

2.3 External libraries

Have you ever unwrapped an awesome birthday gift or Christmas present only to
find out that whoever gave it to you forgot to buy batteries for it? Python’s "bat-
teries included" philosophy is all about keeping that from happening to you as a
programmer: the idea is that, once you have Python installed, you have everything

you need to make anything you want.

Unfortunately, there’s no way the people behind Python can predict everything you
might want to make. And even if they could, most people won’t want to deal with
a multi-gigabyte download when all they want to do is write a quick script for re-
naming files. The bottom line is, even with all its extensive functionality, there are
some things the Python Standard Library just doesn’t cover. But that doesn’t mean
that there are things you simply can’t do with Python - it just means that there are

things you’ll have to do using external libraries.

The Python Standard Library is safe, well-charted territory: its modules are heavily
documented, and enough people use it on a regular basis that you can be sure it

won’t break messily when you try to use it - and in the unlikely event that it does,

bjpcjp

2.3. EXTERNAL LIBRARIES 19

you can be sure someone will fix it in short order. External libraries, on the other
hand, are the parts of the map labeled "here there be dragons": documentation
may be sparse, functionality may be buggy, and updates may be sporadic or even
nonexistent. Any serious project will likely need functionality that only external li-

braries can provide, but you need to be mindful of the risks involved in using them.

Here’s a tale from the trenches. OpenStack uses SQLAlchemy, a database toolkit for
Python; if you’re familiar with SQL, you know that database schemas can change
over time, so we also made use of sglalchemy-migrate to handle our schema migra-
tion needs. And it worked...until it didn’t. Bugs started piling up, and nothing was
getting done about them. Furthermore, OpenStack was getting interested in sup-
porting Python 3 at the time, but there was no sign that sqlalchemy-migrate was
going to support it as well. It was clear by that point that sqlalchemy-migrate was
effectively dead and we needed to switch to something else. At the time of this writ-
ing, OpenStack projects are migrating towards using Alembic instead; not without

some effort, but fortunately without much pain.

All of this builds up to one important question: "how can | be sure | won’t fall into
thissametrap?". Unfortunately, you can’t: programmers are people, too, and there’s
no way you can know for sure whether a library that’s zealously maintained today
will still be like that in a few months. However, here at OpenStack, we use the fol-
lowing checklist to help tip the odds in our favor (and | encourage you to do the

same!):

« Python 3 compatibility. Even if you’re not targeting Python 3 right now, odds are
good that you will somewhere down the line, so it’s a good idea to check that your

chosen libraryis already Python 3-compatible and committed to staying that way.

« Active development. GitHub and Ohloh usually provide enough information to

determine whether a given library is still being worked on by its maintainers.

« Active maintenance. Even if a library is "finished" (i.e. feature-complete), the

bjpcjp

bjpcjp

2.3. EXTERNAL LIBRARIES 20

maintainers should still be working on ensuring it remains bug-free. Check the

project’s tracking system to see how quickly the maintainers respond to bugs.

« Packaged with OS distributions. If a library is packaged with major Linux distri-
butions, that means other projects are depending on it - so if something goes
wrong, you won’t be the only one complaining. It’s also a good idea to check this
if you plan to release your software to the public: it’ll be easier to distribute if its

dependencies are already installed on the end user’s machine.

« APl compatibility commitment. Nothing’s worse than having your software sud-
denly break because a library itdepends on changed its entire API. You might want
to check whether your chosen library has had anything like this happen in the
past.

Applying this checklist to dependencies is also a good idea, though it might be a
huge undertaking. If you know your application is going to depend heavily on a
particular library, you should at least apply this checklist to each of that library’s

dependencies.

No matter what libraries you end up using, you need to treat them like you would
any other tools: as useful devices that could potentially do some serious damage.
It won’t always be the case, but ask yourself: if you had a hammer, would you carry
it through your entire house, possibly breaking your stuff by accident as you went
along? Or would you keep it in your tool shed or garage, away from your fragile

valuables and right where you actually need it?

It’s the same thing with external libraries: no matter how useful they are, you need
to be wary of letting them get their hooks into your actual source code. Otherwise,
if something goes wrong and you need to switch libraries, you might have to rewrite
huge swaths of your program. A betteridea is to write your own APl - a wrapper that
encapsulates your external libraries and keeps them out of your source code. Your

program never has to know what external librariesit’s using; only what functionality

2.4. FRAMEWORKS 21

your API provides. Need to use a different library? All you have to change is your
wrapper: as long as it still provides the same functionality, you won’t have to touch
your codebase at all. There might be exceptions, butthere shouldn’t be many: most
libraries are designed to solve a tightly focused range of problems and can therefore

be easily isolated.

Later, in Section 4.7.3, we’ll also look at how you can use entry points to build driver
systems that will allow you to treat parts of your projects as modules that can be

switched out at will.

2.4 Frameworks

There are various Python frameworks available for various kinds of Python appli-
cations: if you’re writing a Web application, you could use Django, Pylons, Turbo-
Gears, Tornado, Zope, or Plone; if you’re looking for an event-driven framework,

you could use Twisted or Circuits; and so on.

The main difference between frameworks and external libraries is that applications
make use of frameworks by building on top of them: your code will extend the
framework rather than vice versa. Unlike a library, which is basically an add-on you
can bring in to give your code some extra oomph, a framework forms the chassis of
your code: everything you do is going to build on that chassis in some way, which
can be a double-edged sword. There are plenty of upsides to using frameworks,
such as rapid prototyping and development, but there are also some noteworthy
downsides, such as lock-in. You need to take these considerations into account

when you decide whether to use a framework.

The recommended method for choosing a framework for a Python application is
largely the same as the one described earlier for external libraries - which only makes
sense, as frameworks are distributed as bundles of Python libraries. Sometimes

they also include tools for creating, running, and deploying applications, but that

bjpcjp

2.5. INTERVIEW WITH DOUG HELLMANN 22

doesn’t change the criteria you should apply. We’ve already established that re-
placing an external library after you’ve already written code that makes use of it is
a pain, but replacing a framework is a thousand times worse, usually requiring a

complete rewrite of your program from the ground up.

Justto give an example, the Twisted framework mentioned earlier still doesn’t have
full Python 3 support: if you wrote a program using Twisted a few years back and
want to update it to run on Python 3, you’re out of luck unless either you rewrite
your entire program to use a different framework or someone finally gets around to

upgrading it with full Python 3 support.

Some frameworks are lighter than others. For one comparison, Django has its own
built-in ORM functionality; Flask, on the other hand, has nothing of the sort. The
less a framework tries to do for you, the fewer problems you’ll have with it in the fu-
ture; however, each feature a framework lacks is another problem for your to solve,
either by writing your own code or going through the hassle of hand-picking an-
other library to handle it. It’s your choice which scenario you’d rather deal with,
but choose wisely: migrating away from a framework when things go sour can be a
Herculean task, and even with all its other features, there’s nothing in Python that
can help you with that.

2.5 Interview with Doug Hellmann

I’'ve had the chance to work with Doug Hellmann these past few months. He’s a se-
nior developer at DreamHost and a fellow contributor to the OpenStack project. He
launched the website Python Module of the Week a while back, and he’s also writ-
ten an excellent book called The Python Standard Library By Example. He is also a
Python core developer. I’'ve asked Doug a few questions about the Standard Library

and designing libraries and applications around it.

2.5. INTERVIEW WITH DOUG HELLMANN

When you start writing a Python application from scratch, what’s your

first move? Is it different from hacking an existing application?

The steps are similar in the abstract, but the details change. There tend
to be more differences between my approach to working on applications

and libraries than there are for new versus existing projects.

When | want to change existing code, especially when it has been created
by someone else, | start by digging in to figure out how it works and where
my change would need to go. | may add logging or print statements, or
use pdb, and run the app with test data to make sure | understand what
it is doing. | usually make the change and test it by hand, then add any

automated tests before contributing a patch.

| take the same exploratory approach when | create a new application. |
create some code and run it by hand, then write tests to make sure I've
covered all of the edge cases after | have the basic aspect of a feature
working. Creating the tests may also lead to some refactoring to make
the code easier to work with.

That was definitely the case with smiley. | started by experimenting with
Python’s trace APl using some throw-away scripts, before building the real
application. My original vision for smiley included one piece toinstrument
and collect data from another running application, and a second piece to
collect the data sent over the network and save it. In the course of adding
a couple of different reporting features, | realized that the processing for

replaying the data that had been collected was almost identical to the

23

bjpcjp

2.5. INTERVIEW WITH DOUG HELLMANN

processing for collecting it in the first place. | refactored a few classes,
and was able to create a base class for the data collection, database ac-
cess, and report generator. Making those classes conform to the same API
allowed me to easily create a version of the data collection app that wrote

directly to the database instead of sending information over the network.

While designing an app, | think about how the user interface works, but
for libraries, | focus on how a developer will use the API. Thinking about
how to write programs with the new library can be made easier by writing
the tests first, instead of after the library code. | usually create a series of
example programs in the form of tests, and then build the library to work

that way.

| have also found that writing the documentation for a library before writ-
ing any code at all gives me a way to think through the features and work-
flows for using it without committing to the implementation details. It
also lets me record the choices | made in the design so the reader under-
stands not just how to use the library but the expectations | had while

creating it. That was the approach | took with stevedore.

| knew | wanted stevedore to provide a set of classes for managing plu-
gins for applications. During the design phase, | spent some time think-
ing about common patterns | had seen for consuming plugins and wrote
a few pages of rough documentation describing how the classes would
be used. | realized that if | put most of the complex arguments into the
class constructors, the map () methods could be almost interchangeable.
Those design notes fed directly into the introduction for stevedore’s of-
ficial documentation, explaining the various patterns and guidelines for

using plugins in an application.

What’s the process for getting a module into the Python Standard Li-
brary?

24

bjpcjp

2.5. INTERVIEW WITH DOUG HELLMANN

The full process and guidelines can be found in the Python Developer’s
Guide.

Before a module can be added to the Python Standard Library, it needs
to be proven to be stable and widely useful. The module should provide
somethingthatiseither hard toimplement correctly or so useful that many
developers have created theirown variations. The APl should be clearand
the implementation should not have dependencies on modules outside
the Standard Library.

The first step to proposing a new module is bringing it up within the com-
munity via the python-ideas list to informally gauge the level of interest.
Assuming the response is positive, the next step is to create a Python En-
hancement Proposal (PEP), which includes the motivation for adding the
module and some implementation details of how the transition will hap-

pen.

Because package management and discovery tools have become so reli-
able, especially pip and the Python Package Index (PyPl), it may be more
practical to maintain a new library outside of the Python Standard Library.
A separate release allows for more frequent updates with new features
and bugfixes, which can be especially important for libraries addressing

new technologies or APIs.

What are the top three modules from the Standard Library that you

wish people knew more about and would start using?

I’'ve been doing a lot of work with dynamically loaded extensions for ap-
plications recently. | use the abc module to define the APIs for those ex-
tensions as abstract base classes to help extension authors understand
which methods of the API are required and which are optional. Abstract
base classes are built into some other OOP languages, but I've found a lot

of Python programmers don’t know we have them as well.

bjpcjp

2.5. INTERVIEW WITH DOUG HELLMANN

The binary search algorithm in the bisect module is a good example of
a feature that is widely useful and often implemented incorrectly, which
makes it a great fit for the Standard Library. | especially like the fact that
it can search sparse lists where the search value may not be included in
the data.

There are some useful data structuresin the collections module thataren’t
used as often as they could be. | like to use namedtuple for creating small
class-like data structures that just need to hold data but don’t have any
associated logic. It’s very easy to convert from a namedtuple to a regular
class if logic does need to be added later, since namedtuple supports ac-
cessing attributes by name. Another interesting data structure is Chain-
Map, which makes a good stackable namespace. ChainMap can be used
to create contexts for rendering templates or managing configuration set-

tings from different sources with clearly defined precedence.

A lot of projects, including OpenStack, or external libraries, roll their
own abstractions on top of the Standard Library. I’m particularly think-
ing about things like date/time handling, for example. What would
be your advice on that? Should programmers stick to the Standard
Library, roll their own functions, switch to some external library, or

start sending patches to Python?

All of the above! I prefer to avoid reinventing the wheel, so | advocate
strongly for contributing fixes and enhancements upstream to projects
thatcanbe used asdependencies. Ontheotherhand, sometimesit makes
sense to create another abstraction and maintain that code separately,

either within an application or as a new library.

The example you raise, the timeutils module in OpenStack, is a fairly thin
wrapper around Python’s datetime module. Most of the functions are

short and simple, but by creating a module with the most common oper-

26

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

2.5. INTERVIEW WITH DOUG HELLMANN

ations, we can ensure they are handled consistently throughout all Open-
Stack projects. Because a lot of the functions are application-specific, in
the sense that they enforce decisions about things like timestamp format
strings or what "now" means, they are not good candidates for patches to
Python’s library orto be released as a general purpose library and adopted

by other projects.

In contrast, | have been working to move the API services in OpenStack
away from the WSGI framework created in the early days of the project
and onto a third-party web development framework. There are alot of op-
tions for creating WSGI applications in Python, and while we may need to
enhance one to make it completely suitable for OpenStack’s API servers,
contributing those reusable changes upstream is preferable to maintain-

ing a "private" framework.

Do you have any particular recommendations on what to do when im-
porting and using a lot of modules, from the Standard Library or else-

where?

| don’t have a hard limit, but if | have more than a handful of imports, |
reconsider the design of the module and think about splitting it up into a
package. The split may happen sooner for a lower level module than for
a high-level or application module, since at a higher level | expect to be

joining more pieces together.

Regarding Python 3, what are the modules that are worth mentioning

and might make developers more interested in looking into it?

The number of third-party libraries supporting Python 3 has reached crit-
ical mass. It’s easier than ever to build new libraries and applications for
Python 3, and maintaining support for Python 2.7 is also easier thanks to
the compatibility features added to 3.3. The major Linux distributions are

working on shipping releases with Python 3 installed by default. Anyone

27

2.5. INTERVIEW WITH DOUG HELLMANN

starting a new project in Python should look seriously at Python 3 unless
they have a dependency that hasn’t been ported. At this point, though, li-
braries that don’t run on Python 3 could almost be classified as "unmain-

tained."

Many developers write all their code into an application, but there are
cases where it would be worth the effort to branch their code out into
a Python library. In term of design, planning ahead, migration, etc.,

what are the best ways to do this?

Applications are collections of "glue code" holding libraries together for
a specific purpose. Designing based on implementing those features as a
library first and then building the application ensures that code is prop-
erly organized into logical units, which in turn makes testing simpler. It
also means the features of an application are accessible through the li-
brary and can be remixed to create other applications. Failing to take this
approach means the features of the application are tightly bound to the

user interface, which makes them harder to modify and reuse.

What advice would you give to people planning to start their own Python
libraries?

| always recommend designing libraries and APIs from the top down, ap-
plying design criteria such as the Single Responsibility Principle (SRP) at
each layer. Think about what the caller will want to do with the library,
and create an API that supports those features. Think about what values
can be stored in an instance and used by the methods versus what needs
to be passed to each method every time. Finally, think about the imple-
mentation and whether the underlying code should be organized differ-

ently from the public API.

SQLAlchemy is an excellent example of applying those guidelines. The

declarative ORM, data mapping, and expression generation layers are all

2.5. INTERVIEW WITH DOUG HELLMANN

separate. Adeveloper can decide theright level of abstraction forentering
the APl and using the library based on their needs rather than constraints

imposed by the library’s design.

What are the most common programming errors that you encounter

while reading random Python developers' code?

A big area where Python’s idioms are different from other languages is
looping and iteration. For example, one of the most common anti-patterns
| see is using a for loop to filter one list by appending items to a new list
and then processing the resultin a second loop (possibly after passing the
list as an argument to a function). | almost always suggest converting fil-
tering loops like that to generator expressions because they are more ef-
ficient and easier to understand. It’s also common to see lists being com-
bined so their contents can be processed together in some way, rather

than using itertools.chain().

There are also some more subtle things | suggest in code reviews, like us-
ingadict() as alookup tableinstead of along if:then:else block; mak-
ing sure functions always return the same type of object (e.g., an empty
list instead of None); reducing the number of arguments to a function by
combining related values into an object with either a tuple or a new class;
and defining classes to use in public APIs instead of relying on dictionar-

ies.

Do you have a concrete example, something you’ve either done or wit-
nessed, of picking up a "wrong" dependency?

Recently, | had a case in which a new release of pyparsing dropped Python
2 support and caused me a little trouble with a library maintain. The up-
date to pyparsing was a major revision, and was clearly labeled as such,
but because | had not constrained the version of the dependency in the

settings for cliff, the new release of pyparsing caused issues for some of

29

2.5. INTERVIEW WITH DOUG HELLMANN

cliff's consumers. The solution was to provide different version bounds
for Python 2 and Python 3 in the dependency list for cliff. This situation
highlighted the importance of both understanding dependency manage-
ment and ensuring proper test configurations for continuous integration

testing.
What’s your take on frameworks?

Frameworks are like any other kind of tool. They can help, but you need
to take care when choosing one to make sure that it’s right for the job at
hand.

By pulling out the common parts into a framework, you can focus your
development efforts on the unique aspects of an application. They also
help you bring an application to a useful state more quickly than if you
started from scratch by providing a lot of bootstrapping code for doing
things like running in development mode and writing a test suite. They
also encourage you to be consistent in the way you implement the appli-
cation, which means you end up with code that is easier to understand

and more reusable.

There are some potential pitfalls to watch out for when working with frame-
works, though. The decision to use a particular framework usually im-
plies something about the design of the application itself. Selecting the
wrong framework can make an application harder to implement if those
design constraints do not align naturally with the application’s require-
ments. You may end up fighting with the framework if you try to use dif-

ferent patterns or idioms than it recommends.

30

2.6. MANAGING API CHANGES 31

2.6 Managing API changes

When building an AP, it’s rare to get everything right the first try. Your APl will have

to evolve, adding, removing, or changing the features it provides.

In the following paragraphs, we will discuss how to manage public APl changes.
Public APIs are the APIs that you expose to users of your library or application; in-
ternal APIs are another concern, and since they’re internal (i.e. your users will never
have to deal with them), you can do whatever you want with them: break them,

twist them, or generally abuse them as you see fit.

The two types of API can be easily distinguished from each other. The Python con-
vention is to prefix private APl symbols with an underscore: foo is public, but bar

is private.

When building an API, the worst thing you can do is to break it abruptly. Linus Tor-
valds is (among other things) famous for having a zero tolerance policy on public
API breakage for the Linux kernel. Considering how many people rely on Linux, it’s

safe to say he made a wise choice.

Unix platforms have a complex management system for libraries, relying on son-
ame[http://en.wikipedia.org/wiki/Soname] and fine-grained version identifiers. Python
doesn’t provide such a system, nor an equivalent convention. It’s up to maintain-
ers to pick the right version numbers and policies. However, you can still take the
Unix system as inspiration for how to version your own libraries or applications.
Generally, your version numbering should reflect changes in the API that will im-
pact users; most developers use major version increments to denote such changes,
but depending on how you number your versions, you can also use minor version

increments as well.

Whatever else you decide to do, the first thing and most important step when mod-

ifying an APl is to heavily document the change. This includes:

bjpcjp

bjpcjp

2.6. MANAGING API CHANGES 32

« documenting the new interface
« documenting that the old interface is deprecated

« documenting how to migrate to the new interface

You shouldn’t remove the old interface right away; in fact, you should try to keep
the old interface for as long as possible. New users won’t use it since it’s explicitly
marked as deprecated. You should only remove the old interface when it’s too much

trouble to keep.

Example 2.2 A documented API change

class Car(object):
def turn left(self):

"""Turn the car left.

. deprecated:: 1.1

Use :func: turn’ instead with the direction argument set to left

self.turn(direction="'1left"')

def turn(self, direction):

"""Turn the car in some direction.

:param direction: The direction to turn to.

:type direction: str

Write actual code here instead

pass

It’s a good idea to use Sphinx markup to highlight changes. When building the doc-

umentation, it will be clear to users that the function should not be used, and direct

2.6. MANAGING API CHANGES 33

access to the new function will be provided along with an explanation of how to mi-
grate old code. The downside of this approach is that you can’t rely on developers
to read your changelog or documentation when they upgrade to a newer version of

your Python package.

Python provides an interesting module called warnings that can help in this regard.
This module allows your code to issue various kinds of warnings, such as Pending
DeprecationWarning and DeprecationWarning. These warnings can be used to in-
form the developer that a function they’re calling is either deprecated or going to
be deprecated. This way, developers will be able to see that they’re using an old

interface and should do something about it. °

To go back to the previous example, we can make use of this and warn the user:

Example 2.3 A documented API change with warning

import warnings

class Car(object):
def turn left(self):

"""Turn the car left.

. deprecated:: 1.1
Use :func: turn® instead with the direction argument set to " «
left".
warnings.warn("turn_left is deprecated, use turn instead",
DeprecationWarning)

self.turn(direction="'1left")

def turn(self, direction):

°For those who work with C, this is a handy counterpart to the _attribute ((deprecated))
GCC extension.

bjpcjp

2.6. MANAGING API CHANGES 34

"""Turn the car in some direction.

:param direction: The direction to turn to.

:type direction: str

Write actual code here instead

pass

Should any code call the deprecated turn_1left function, a warning will be raised:

>>> Car().turn_left()

~_main_ :8: DeprecationWarning: turn left is deprecated, use turn instead

Note
Since Python 2.7, DeprecationWarning are not displayed by default. To disable this
filter, you need to call python with the -W all option. See the python manual page for

more information on the possible values for -W.

Having your code tell developers that their programs are using something that will
stop working eventuallyis a goodidea becauseit can also be automated. When run-
ning their test suites, developers can run python with the -W error option, which
transforms warnings into exceptions. That meansthatevery time an obsolete func-
tion is called, an error will be raised, and it will be easy for developers using your

library to know exactly where their code needs to be fixed.

Example 2.4 Running python -W error

>>> import warnings
>>> warnings.warn("This is deprecated", DeprecationWarning)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

DeprecationWarning: This is deprecated

bjpcjp

2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE 35

2.7 Interview with Christophe de Vienne

Christopheis a Python developer and the author of WSME, Web Services Made Easy.
Thisframework allows developers to define web servicesin a Pythonic way and sup-
ports a wide variety of APIs, allowing it to be plugged into many other web frame-

works.

What are the mistakes developers often make when designing a Python
API?

There are a few mistakes | try not to make when designing a Python API:

« Making it too complicated. As the saying goes, "Keep It Simple." (Some
people would say "Keep It Simple Stupid,” but | don’t think "simple" and
"stupid" are compatible.) Complicated APIs are hard to understand and
hard to document. You don’t have to make the actual library function-
ality simple as well, but it’s a smart idea. A good example is the Re-
quests library: compared to the various standard urllib libraries, the Re-
quests APl is very simple and natural, but it does complex things behind
the scenes. The urllib API, by contrast, is almost as complicated as the

things it does.

« Doing (visible) magic. When your API does things that your documen-
tation doesn’t explain, your end users are going to want to crack open
your code and see what’s going on under the hood. It’s okay if you’ve got
some magic happening behind the scenes, but your end users should

never see anything unnatural happening up front.

2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE

« Forgettingyour use cases. When writing code down in the depths of your
library, it’s easy to forget how your library will actually be used. Coming

up with good use cases makes it easier to design an API.

« Not writing unit tests. TDD is a very efficient way to write libraries, es-
pecially in Python. It forces the developer to assume the role of the end
user from the very beginning and maintain compatibility between ver-
sions. It’s also the only approach | know of that allows you to completely
rewrite a library. Even if it’s not always necessary, it’s good to have that

option.

Considering the variety of frameworks WSME can sit on top of, what
kinds of API does it have to support?

There actually aren’t that many, since the frameworks it sits on are similar
in a lot of ways. They use decorators to expose functions and methods to
the outside world; they’re based on the WSG/ standard (so their request
objects look very similar); and they’ve all more or less used each other as
a source of inspiration. That said, we haven’t yet attempted to plugitinto

an asynchronous web framework such as Twisted.

The biggest difference I’'ve had to deal with is the way contextual informa-
tion is accessed. In a web framework, the context is mainly the request
and what can be deduced from or attached to it (identity, session data,
data connection, etc.), as well as a few global things like the global con-
figuration, connection pool, and so forth. Most web frameworks assume
they’re running on a multi-threaded server and treat all this information
as TSD (Thread-Specific Data). This allows them to access the current
request by simply importing a request proxy object from a module and
working with it. While it’s pretty straightforward to use, it implies a little

magic and makes global objects out of context-specific data.

36

2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE

The Pyramid framework doesn’t work like this, for example. Instead, the
context is explicitly injected into the code pieces that work with it. This is
why the views takes a "request" parameter, which wraps the WSGI envi-

ronment and gives access to the global context of the application.
What are their pros and cons?

An API style like the one used in Pyramid has the big advantage that it
allows a single program to run several completely distinct environments
in a very natural way. The downside is that its learning curve is a little

steeper.
How does Python make it easier or harder to design a library API?

The lack of a built-in way to define which parts are public and which parts

aren’tis both a (slight) problem and an advantage.

It’s a problem when it means developers don’t think as much as they should
about which parts are their APl and which parts aren’t. But with a little
discipline, documentation, and (if needed) tools like zope.interface, it

doesn’t stay a problem for long.

It’s an advantage when it makes it quicker and easier to refactor APIs while

keeping compatibility with previous versions.

What’s your rule of thumb about APl evolution, deprecation, removal,

etc.?

There are several criteria | weigh when making a decision:

« How difficult will it be for users of the library to adapt their code?
Considering that there are people relying on your API, any change you
make has to be worth the effort needed to adopt it. This ruleisintended
to prevent non-compatible changes to the parts of the API that are in
common use. That said, one of the advantages of Python is that it’s rel-

atively easy to refactor code to adopt an API change.

37

2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE

 Will maintenance be easier with the change? Simplifying the imple-
mentation, cleaning up the codebase, making the APl easier to use, hav-
ing more complete unit tests, making the API easier to understand at
first glance... all of these things will make your life as a maintainer eas-

ier.

« How much more (or less) consistent will my API be after the change?
If all of the API’s functions follow a similar pattern (such as requiring the
same parameter in the first position), it’s important to make sure that
new functions follow that pattern as well. Also, doing too many things
atonce is a great way to end up doing none of them right: keep your API

focused on what it’s meant to do.

« How will users benefit from this change? Last but not least, always

consider the users' point of view.

What advice do you have regarding APl documentation in Python?

Documentation makes it easy for newcomers to adopt your library. Ne-
glecting it will drive away a lot of potential users; not just beginners, ei-
ther. The problem is, documenting is difficult, so it gets neglected all the

time!

Document early and include your documentation build in continuous in-
tegration. Now that we have Read the Docs, there’s no excuse for not
having documentation built and published (at least for open-source soft-

ware).

Use docstrings to document classes and functions in your API. Follow the
PEP 257° guidelines so that developers won’t have to read your source
to understand what your APl does. Generate HTML documentation from

your docstrings, and don’t limit it to the API reference.

®Docstring Conventions, David Goodger, Guido van Rossum, 29 May 2001

2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE

Give practical examples throughout. Have at least one "startup guide"
that will show newcomers how to build a working example. The first page
of the documentation should give a quick overview of your API’s basic and

representative use case.

Document the evolution of your APl in detail, version by version. (VCS logs

are not enough!)

Make your documentation accessible and, if possible, comfortable to read:

your users need to be able to find it easily and get the information they
need without feeling like they’re being tortured. Publishing your docu-
mentation through PyPI is one way to achieve this; publishing on Read
the Docs is also a good idea, since users will expect to find your documen-
tation there.

Finally, choose a theme that is both efficient and attractive. | chose the
"Cloud" Sphinx theme for WSME, but there are plenty of other themes out
there to choose from. You don’t have to be a web expert to produce nice-

looking documentation.

39

3 Documentation

As I've already touched upon, documentation is one of the most important parts
of writing software. Unfortunately, there are still a lot of projects out there that
doesn’t provide proper documentation. Writing documentation is seen as a com-
plicated and daunting task, but it doesn’t have to be: with the tools that are avail-
able to Python programmers, documenting your code can be just as easy as writing

itin the first place.

One of the biggest culprits behind why documentation is either sparse or nonexis-
tent is that many people assume that the only way to document code is by hand.
Even if you have multiple people working on the same project, this means that one
or more of them is going to end up having to juggle contributing code with main-
taining documentation - and if you ask any developer which job they’d prefer, you
can be sure they’ll tell you they’d rather write software than write about software.
Sometimes the documentation processis even completely separate from the devel-
opment process, meaning that the documentation is written by people who have
never written so much as a line of the actual code. Furthermore, any documenta-
tion produced this way is likely to be out-of-date: whether the documentation is
handled by the programmers themselves or by dedicated writers, it’s almost im-

possible for manual documentation to keep up with the pace of development.

The bottom lineis, the more degrees of separation there are between your code and

your documentation, the harder it will be to keep the latter properly maintained.

bjpcjp

CHAPTER 3. DOCUMENTATION 41

So why keep your code and documentation separate at all? It’s not only possible
to put your documentation directly in your code itself, but it’s also easy to convert

that documentation into easy-to-read HTML and PDF files.

The de facto standard documentation format for Python is reStructuredText, or reST
for short. It’s a lightweight markup language (like the famous Markdown) that’s as
easy to read and write for humans as it is for computers. Sphinx is the most com-
monly used tool for working with this format: it can read reST-formatted content

and output documentation in a variety of other formats.

Your project documentation should include:

« The problem your project is intended to solve, in one or two sentences.

« The license your project is distributed under. If your software is open source, you
should also include this information in a header in each code file: just because
you’ve uploaded your code to the Internet doesn’t mean that people will know

what they’re allowed to do with it.
« Asmall example of how it works.
« Installation instructions.
« Links to community support, mailing list, IRC, forums, etc.
« Alink to your bug tracker system.

« Alink to your source code so that developers can download and start delving into

it right away.

You should also include aREADME. rst file that explains what your project does. This
README will be displayed on your GitHub or PyPI project page; both sites know how
to handle reST formatting.

3.1. GETTING STARTED WITH SPHINX AND REST 42

Tip
If you're using GitHub, you can also add a CONTRIBUTING. rst file that will be displayed
when someone creates a pull request. It should provide a checklist for them to follow

before they submit the request, e.g. follow PEP 8 or don’t forget to run the unit tests.

Tip

Read The Docs allows you to build and publish your documentation online automatically.
Signing up and configuring a project is a straightforward process: it searches for your
Sphinx configuration file, builds your documentation, and makes it available for your users

to access. It's a great companion to code hosting sites.

3.1 Getting started with Sphinx and reST

First of all, you should run sphinx-quickstart in your project’s top-level directory.
This will create the directory structure Sphinx expects to find, along with two files
in the doc/source folder: conf.py, which contains Sphinx's configuration settings
(and is absolutely required for Sphinx to work), and index. rst, which will serve as

the front page of your documentation.

You can then build your documentation in HTML format by calling sphinx-build

with your source directory and output directory as arguments:

$ sphinx-build doc/source doc/build
import pkg resources
Running Sphinx v1.2bl
loading pickled environment... done
No builder selected, using default: html
building [html]: targets for 1 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

bjpcjp

3.2. SPHINX MODULES 43

preparing documents... done

writing output... [100%] index

writing additional files... genindex search
copying static files... done

dumping search index... done

dumping object inventory... done

build succeeded.

Now you can open doc/build/index.html in your favorite browser and read your

documentation.

Tip

If you are using setuptools or pbr (see Section 4.2) for packaging, Sphinx extends them
to support the command setup.py build sphinx, which will run sphinx-build
automatically. The pbr integration of Sphinx has some saner defaults, such as outputting

the documentation in the doc subdirectory.

index.rst is where your documentation begins, but it doesn’t have to end there:
reST supports includes, so there’s nothing stopping you from dividing your docu-
mentation up into multiple files. Don’t worry too much about syntax and semantics
to start with: it’s true that reST offers a lot of formatting possibilities, but you’ll have
plenty of time to dive into the reference later. The complete reference explains how

to create titles, bulleted lists, tables, and more.

3.2 Sphinx modules

Sphinx is highly extensible: its basic functionality only supports manual documen-
tation, but it comes with a number of useful modules which enable automatic doc-
umentation and other features. For example, sphinx.ext.autodoc extracts reST-

formatted docstrings from your modules and generates . rst files for inclusion. sph

bjpcjp

3.2. SPHINX MODULES 44

inx-quickstart will ask you if you want to activate this module when you run it -

alternately, you can edit your conf.py file and add it as an extension:

extensions = ['sphinx.ext.autodoc']

Note that autodoc will not automatically recognize and include your modules. You
need to explicitly indicate which modules you want to be documented by adding
something like this to one of your . rst files:
. automodule:: foobar
:members: @
:undoc-members: @

:show-inheritance: ©

® Request that all documented members be printed (optional)
® Request that all undocumented members be printed (optional)

©® Show inheritance (optional)

Also note:

« Ifyou don’tinclude any directives, Sphinx won’t generate any output.

« Ifyouonly specify :members:,undocumented nodes on your module/class/method
tree will be skipped, even if all their members are documented. For example, if
you document the methods of a class but not the class itself, :members: will ex-
clude both the class and its methods entirely. To keep this from happening, you’d

either have to write a docstring for the class or specify :undoc-members: as well.

« Your module needs to be where Python can importit. Adding ., ..,and/or ../..

to sys.path can help with this.

bjpcjp

3.2. SPHINX MODULES 45

autodoc gives you the power to include most of your documentation in your actual
source code. You can even pick and choose which modules and methods to doc-
ument - it’s not an "all-or-nothing" solution. By maintaining your documentation

directly alongside your source code, you can easily ensure it stays up-to-date.

If you’re writing a Python library, you’ll usually want to format your APl documen-
tation with a table of contents containing links to individual pages for each module.
The sphinx.ext.autogen module was created specifically to handle this common
use case. First, you need to enableitin conf.py:

extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary']

Now you can add something like the following to an . rst file to automatically gen-
erate a TOC for the specified modules:

. autosummary::

mymodule

mymodule. submodule

This will create files called generated/mymodule. rst and generated/mymodule. sub
module. rst containing the autodoc directives described earlier. Using this same
format, you can specify which parts of your module APl you want included in your

documentation.

Tip

f In large projects, it can be tedious to add modules to this list by hand. Just remember
that conf. py is an ordinary Python source file: there’s nothing stopping you from writing
your own code in it, including code that automatically builds . rst files indicating which

modules to document.

Another useful feature of Sphinx is the ability to run doctest on your examples auto-

matically when you build your documentation. doctest is a standard Python mod-

3.2. SPHINX MODULES 46

ule which searches your documentation for code snippets and runs them to test
whether they accurately reflect what your code actually does. Every paragraph
starting with >>> (i.e. the primary prompt) is treated as a code snippet to test:

To print something to the standard output, use the :py:func: print’ <+

function.

>>> print("foobar")

foobar

It’s easy to end up leaving your examples unchanged as your API evolves; doctest
helps you make sure this doesn’t happen. If your documentation includes a step-
by-step tutorial, doctest will help you keep it up-to-date throughout development.
You can also use doctest for Documentation-Driven Development (DDD): write your
documentation and examples first, and then write your code to match your docu-

mentation.

Taking advantage of this feature is as simple as running sphinx-build with the spe-
cial doctest builder:

$ sphinx-build -b doctest doc/source doc/build

Running Sphinx v1.2bl

loading pickled environment... done

building [doctest]: targets for 1 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

running tests...

Document: index
1 items passed all tests:
1 tests in default

1 tests in 1 items.

3.3. EXTENDING SPHINX 47

1 passed and 0 failed.

Test passed.

Doctest summary

1 test

0 failures in tests

0 failures in setup code

0 failures in cleanup code

build succeeded.

Sphinx also provides a bevy of other features, either out-of-the-box or through ex-

tension modules, including:

Link between projects using

HTML themes

Diagrams and formulas

Output to Texinfo and EPUB format

Linking to external documentation

You might not need all this functionality right away, but if you ever need it in the

future, it’s good to know in advance that there are modules that can provide it.

3.3 Extending Sphinx

Sometimes the off-the-shelf solutions just aren’t enough. It’s one thing if you’re
writing an API that’s going to be used from within Python, but what if you’re writ-

ing, say, an HTTP REST API? Sphinx will only document the Python side of your API,

3.3. EXTENDING SPHINX 48

forcing you to write your REST APl documentation by hand with all the problems

that entails.

The creators of WSME had other ideas. They developed a Sphinx extension called

sphinxcontrib-pecanwsme which analyzes docstrings and actual Python code to gen
erate REST API documentation automatically. You can do the same thing for your
own projects: if you can extract information from your code that could be useful in

your documentation, it only makes sense to automate the process.

You can use sphinxcontrib.httpdomain for other HTTP frameworks such as Flask, Bottle,

and Tornado.

My point here is that whenever you know that you could extract information from
your code that could help to build documentation, you should really do that and
automatize it. It is better than trying to maintain a manually written documenta-
tion, especially when you can leverage it with auto-publication tools like Read The

Docs.

To write a Sphinx extension, first you need to write a module, preferably as a sub-
module of sphinxcontrib (as long as your module is generic enough), and pick a
name for it. Sphinx expects this module to have one predefined function called
setup(app). The app object will contain the methods you’ll use to connect your
code to Sphinx events and directives. The full list of methods is available in the

Sphinx extension API.

For example, sphinxcontrib-pecanwsme adds a single directive called rest-contr
oller using the setup(app) function. This added directive needs a fully qualified

WSME controller class name to generate documentation for.

Example 3.1 Code from sphinxcontrib.pecanwsme.rest.setup

bjpcjp

bjpcjp

3.3. EXTENDING SPHINX 49

def setup(app):

app.add directive('rest-controller', RESTControllerDirective)

RESTControllerDirective is a directive class which has to have certain properties
and methods as described in the Sphinx extension APIl. The main method, run(),

will do the actual work of extracting documentation from your code.

The sphinx-contrib repository has a bunch of small modules that can help you de-

velop your own.

Note
Even though Sphinx is written in Python and targets it by default, there are extensions
available that allow it to support other languages as well. You can use Sphinx to document

your project in full even if it uses multiple languages at once.

bjpcjp

4 Distribution

It’s a safe bet you’ll want to distribute your software at some point. As tempted as
you might be to just zip up your code and upload it to the Internet, Python provides
tools to help you make sure your end users will have no trouble getting your soft-
ware to work. You should already be familiar with using setup. py to install Python
applications and libraries, but you’ve probably never delved into how it actually

works behind the scenes, or how to make a setup.py of your own.

4.1 A bit of history

distutils has been part of the standard Python library since 1998. It was originally
developed by Greg Ward, who sought to create an easy way for developers to auto-

mate the installation process for their end users:

Example 4.1 setup.py using distutils

#!/usr/bin/python

from distutils.core import setup

setup(name="rebuildd",
description="Debian packages rebuild tool",
author="Julien Danjou",

author email="acid@debian.org",

4.1. ABIT OF HISTORY 51

url="http://julien.danjou.info/software/rebuildd.html",

packages=["'rebuildd'])

And that’s it. All users have to do to build or install your software is run setup. py
with the appropriate command. If your distribution includes C modules in addition

to native Python ones, it can even handle those automatically as well.

Developmenton distutils was abandoned in 2000; since then, other developers picked
up where it left off, building their own tools based on it. One of the most notable
successors to distutils is the packaging library known as setuptools, which offered
more frequent updates and advanced features such as automatic dependency han-
dling, the Egg distribution format, and the easy install command. Since distutils
was still the canonical means of packaging software included with the Python Stan-

dard Library, setuptools also provided a degree of backwards compatibility with it.

Example 4.2 setup.py using setuptools

#!/usr/bin/env python

import setuptools

setuptools.setup(
name="pymunincli",
version="0.2",
author="Julien Danjou",
author _email="julien@danjou.info",
description="munin client library",
license="GPL",
url="http://julien.danjou.info/software/pymunincli/",
packages=['munin'],
classifiers=|[

"Development Status :: 2 - Pre-Alpha",

"Intended Audience :: Developers",

4.1. ABIT OF HISTORY 52

"Intended Audience :: Information Technology",
"License :: 0OSI Approved :: GNU General Public License (GPL)",
"Operating System :: 0S Independent",

“Programming Language :: Python"

Eventually, development on setuptools slowed down, and people began to consider
it a dead project like the original distutils. It wasn’t long before another group of
developers forked it to create a new library called distribute, which offered several
advantagesover setuptools, including fewer bugs and Python 3 support. All the best
stories have a twist ending, though, and this one’s no different: in March 2013, the
teams behind setuptools and distribute decided to merge their code bases under
the aegis of the original setuptools project. So distribute is now deprecated, and

setuptoolsis once more the canonical way to handle advanced Python installations.

While all this was happening, another project known as distutils2 was developed
with theintention of replacing distutils in the Python Standard Library outright. One
of its most notable differences from both distutils and setuptools was that it stored
package metadata in a plain text file, setup.cfg, which was both easier for devel-
opers to write and easier for external tools to read. However, it also retained some
of the failings of distutils, such as its obtuse command-based design, and lacked
support for things like entry points and native script execution on Windows - both
features provided by setuptools. For these and other reasons, plans to include dis-
tutils2 in the Python 3.3 Standard Library as packaging fell through, and the project
was abandoned in 2012.

However, packaging still has a chance to rise from the ashes through distlib, an up-
and-coming effort to replace distutils which - hopefully - will become part of the
Standard Library in 3.4. It includes the best features from packaging and imple-

ments the basic groundwork described in the packaging-related PEPs.

4.2. PACKAGING WITH PBR 53

So, to recap:

« distutils is part of the Python standard library and can handle simple package in-

stallations.

« setuptools, the standard for advanced package installations, was at first depre-

cated but is now back in active development.
« distribute has been merged back into setuptools as of version 0.7.
« distutils2 (a.k.a. packaging) has been abandoned.

« distlib might replace distutils in the future.

There are other packaging libraries out there, though these five are the ones you’ll
encounterthe mostin practice. Be careful when looking up information about them
on the Internet: there’s plenty of documentation out there that’s outdated due to
the complicated history outlined above. The official documentation is, at least, up
to date.

The short version of all this is, setuptools is the distribution library to use for the

time being, but keep an eye out for distlib in the future.

4.2 Packaging with pbr

Now that I’ve spent some pages making your head confused with a lot of distribu-

tion tools, let’s talk, about another tool and alternative, called pbr.

You probably already have written some package and tried to write a setup. py, ei-
ther by copying one from some other project, or by skimming through the docu-
mentation. It isn’t an obvious task, as the various problem we discussed earlier
about which tool to use are usually a first obstacle. In this section | want to intro-
duce you to pbr, a tool you should use to write your next setup.py so you’ll never

have to lose your time on that part again.

4.2. PACKAGING WITH PBR 54

pbr stands for Python Build Reasonableness. The project has been started inside
OpenStack as a set of tools around setuptools to facilitate installation and deploy-
ment of packages. It takes inspiration from distutils2, using a setup. cfg file to de-

scribe the packager’s intents.

This is how a setup.py using pbr looks like:

import setuptools

setuptools.setup(setup requires=['pbr'], pbr=True)

Two lines of code - it’s that simple. The actual metadata that the setup requires is
stored in setup.cfg:

[metadata]

name = foobar

author = Dave Null

author-email = foobar@example.org

summary = Package doing nifty stuff

MIT

license
description-file =
README. rst
home-page = http://pypi.python.org/pypi/foobar
requires-python = >=2.6
classifier =
Development Status :: 4 - Beta
Environment :: Console
Intended Audience :: Developers
Intended Audience :: Information Technology
License :: 0SI Approved :: Apache Software License
Operating System :: 0S Independent

Programming Language :: Python

bjpcjp

4.3. THE WHEEL FORMAT 55

[files]
packages =

foobar

Sound familiar? That’s right - this particular way of doing things was directly in-

spired by distutils2.

pbr also offers other features such as:

automatic dependency installation based on requirements. txt

automatic documentation using Sphinx

automatic generation of AUTHORS and ChangeLog files based on git history

automatic creation of file lists for git

version management based on git tags

And all this with little to no effort on your part. pbr is well-maintained and in very
active development, so if you have any plans to distribute your software, you should

seriously consider including pbr in those plans.

4.3 The Wheel format

For most of Python’s existence, there’s been no official standard distribution for-
mat. While different distribution tools still generally use some kind of common
archive format - even the Egg formatintroduced by setuptools is just a zip file with a
different extension - their metadata and package structures are incompatible with
each other. This problem was compounded when an official installation standard

was finally defined in PEP 376, which was also incompatible with existing formats.

4.3. THE WHEEL FORMAT 56

To solve these problems, PEP 427 was written to define a new standard for Python
distribution packages called Wheel. The reference implementation of this format is

available as a tool, also called wheel.

Wheel is supported by pip starting with version 1.4. If you’re using setuptools and
have the wheel package installed, it is automatically integrated as a command:

python setup.py bdist wheel

This will create a .wh1 file in the dist directory. Like with the Egg format, a Wheel
archive is just a zip file with a different extension, except Wheel archives don’t re-
quire installation - you can load and run your code just by adding a slash followed

by the name of your module:

$ python wheel-0.21.0-py2.py3-none-any.whl/wheel -h

usage: wheel [-h]

{keygen,sign,unsign,verify,unpack,install,install-scripts, <«

convert,help}

positional arguments:

[...]

You might be surprised to learn this isn’t a feature introduced by the Wheel format.
Python can also run regular zip files as well, just like with Java’s . jar files:

python foobar.zip

This is equivalent to:

PYTHONPATH=foobar.zip python -m main

In other words, the _main__ module for your program will automatically be im-

ported from main_ .py. It’s also possible toimport main_ from a module you

4.4. PACKAGE INSTALLATION 57

specify by appending a slash followed by its name, just like with Wheel:

python foobar.zip/mymod

This is equivalent to:

PYTHONPATH=foobar.zip python -m mymod. main

One of the advantages of Wheel is that its naming conventions allow you to specify
whether your distribution is intended for a specific architecture and/or Python im-
plementation (CPython, PyPy, Jython, etc.). This is particularly useful if you need
to distribute modules written in C.

4.4 Package installation

setuptoolsintroduced the first useful command forinstalling packages, easy_install.
It allows you to install Python modules from Egg archives with a single command,;
unfortunately, easy_install has suffered a bad reputation from the beginning due to
some of its more questionable behaviors, such asignoring best practices for system

administration and its lack of uninstall functionality.

The pip project offers a much better way to handle package installations. It’s ac-
tively developed, well-maintained, and will be included with Python starting in 3.4
'. Itcaninstall or uninstall packages from PyPI, a tarball, or a Wheel (see Section 4.3)

archive.

Its usage is simple:

$ pip install --user voluptuous
Downloading/unpacking voluptuous
Downloading voluptuous-0.8.3.tar.gz
Storing download in cache at ./.cache/pip/https%3A%2F%2Fpypi.python.org%2 <«

Fpackages%2Fsource%s2Fvs2Fvoluptuous%s2Fvoluptuous-0.8.3.tar.gz

'See PEP 453 and the ensurepip module

4.4. PACKAGE INSTALLATION 58

Running setup.py egg info for package voluptuous

WARNING: Could not locate pandoc, using Markdown long description.

Requirement already satisfied (use --upgrade to upgrade): distribute in / «
usr/lib/python2.7/dist-packages (from voluptuous)
Installing collected packages: voluptuous
Running setup.py install for voluptuous

WARNING: Could not locate pandoc, using Markdown long description.

Successfully installed voluptuous

Cleaning up...

You can also provide a --user option that makes pip install the package in your
home directory. This avoids polluting your operating system directories with pack-

ages installed system-wide.

Tip

If you're using pip to install the same packages over and over, you can make it use a
local cache instead of downloading the packages each time. Just set the environment
variable PIP DOWNLOAD CACHE to a directory: pip will then use it to store downloaded
tarballs and will check that location for packages before downloading them. This is very
useful when using tox (see Section 6.7), which needs to download packages to build virtual
environments. You can also add the download-cache option to your ~/.pip/pip.

conf file.

You can list the packages that are currently installed by using the pip freeze com-
mand:

$ pip freeze

Babel==1.3

Jinja2==2.7.1

4.5. SHARING YOUR WORK WITH THE WORLD 59

commando=0.3.4

All other installation tools are being deprecated in favor of pip, so you shouldn’t
have any trouble if you treat it as your one-stop shop for all your package manage-

ment needs.

4.5 Sharing your work with the world

Once you have a proper setup. py file, it’s easy to build a source tarball that you can

distribute. Just use the sdist command:

Example 4.3 Using setup.py sdist

$ python setup.py sdist

running sdist

[pbr] Writing Changelog

[pbr] Generating AUTHORS

running egg info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top level.txt

writing dependency links to ceilometer.egg-info/dependency links.txt

writing entry points to ceilometer.egg-info/entry points.txt

[pbr] Processing SOURCES.txt

[pbr] In git context, generating filelist from git

warning: no previously-included files matching '*.pyc' found anywhere in <
distribution

writing manifest file 'ceilometer.egg-info/SOURCES. txt'

running check

copying setup.cfg -> ceilometer-2014.1.a6.g9772ela7

4.5. SHARING YOUR WORK WITH THE WORLD 60

Writing ceilometer-2014.1.a6.9772ela7/setup.cfg

[..]

Creating tar archive

removing ‘'ceilometer-2014.1.a6.g772ela7' (and everything under it)

This will create a tarball under the dist directory of your source tree that contains
all your packages and can be used to install your software. As seen in Section 4.3,

you can also build Wheel archives using the bdist_wheel command.

The final step is to make things easy on your end users by setting things up where

your package can be installed using pip. This means publishing your project to PyPlI.

Since you’ll probably make mistakes if this is your first time, it pays to test out the
publishing process in a safe sandbox rather than on the production server. You can
use the PyPI staging server for this purpose: it replicates all the functionality of the

main index, but it’s used solely for testing purposes.

The first step is to register your project on the test server. Start by opening your ~/
.pypirc file and adding these lines:

[distutils]

index-servers =

testpypi

[testpypi]

username <your username>

password

<your password>

repository = https://testpypi.python.org/pypi

Now you can register your project in the index:

$ python setup.py register -r testpypi

4.5. SHARING YOUR WORK WITH THE WORLD

running register

running egg info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top level.txt

writing dependency links to ceilometer.egg-info/dependency links.txt
writing entry points to ceilometer.egg-info/entry points.txt

[pbr] Reusing existing SOURCES.txt

running check

Registering ceilometer to https://testpypi.python.org/pypi

Server response (200): OK

Finally, you can upload a source distribution tarball:

% python setup.py sdist upload -r testpypi

running sdist

[pbr] Writing Changelog

[pbr] Generating AUTHORS

running egg info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top level.txt

writing dependency links to ceilometer.egg-info/dependency links.txt

writing entry points to ceilometer.egg-info/entry points.txt

[pbr] Processing SOURCES.txt

[pbr] In git context, generating filelist from git

warning: no previously-included files matching '*.pyc' found anywhere in
distribution

writing manifest file 'ceilometer.egg-info/SOURCES. txt'

running check

creating ceilometer-2014.1.a6.g772ela7

61

<+

4.5. SHARING YOUR WORK WITH THE WORLD 62

[..]

copying setup.cfg -> ceilometer-2014.1.a6.9772ela7

Writing ceilometer-2014.1.a6.9772ela7/setup.cfg

Creating tar archive

removing 'ceilometer-2014.1.a6.g772ela7' (and everything under it)

running upload

Submitting dist/ceilometer-2014.1.a6.9772ela7.tar.gz to https://testpypi. «
python.org/pypi

Server response (200): OK

As well as a Wheel archive:

$ python setup.py bdist wheel upload -r testpypi

running bdist wheel

running build

running build py

running egg info

writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top level.txt
writing dependency links to ceilometer.egg-info/dependency links.txt
writing entry points to ceilometer.egg-info/entry points.txt
[pbr] Reusing existing SOURCES.txt

installing to build/bdist.linux-x86 64/wheel

running install

running install lib

creating build/bdist.linux-x86 64/wheel

[..]

4.5. SHARING YOUR WORK WITH THE WORLD 63

creating build/bdist.linux-x86 64/wheel/ceilometer-2014.1.a6.g9772ela7.dist- «
info/WHEEL

running upload

Submitting /home/jd/Source/ceilometer/dist/ceilometer-2014.1.a6.9772ela7- <+
py27-none-any.whl to https://testpypi.python.org/pypi

Server response (200): OK

You should now be able to search for your package on the PyPi staging server and
see whether it uploaded properly. You can also try installing it using pip, specifying

the test server using the -i option:

$ pip install -i https://testpypi.python.org/pypi ceilometer

If everything checks out, you can continue to the next step: uploading your project
to the main PyPl server. Just add your credentials and the details for the server to
your ~/.pypirc file:

[distutils]

index-servers =

pypi

testpypi
[pypi]
username = <your username>
password = <your password>
[testpypi]

repository = https://testpypi.python.org/pypi
username = <your username>

password

<your password>

4.6. INTERVIEW WITH NICK COGHLAN 64
Running register and upload with the - r pypi switch will now upload your package
to PyPI proper.

4.6 Interview with Nick Coghlan

Nick is a Python core developer working at Red Hat. He has written several PEP
proposals, including PEP 426 (Metadata for Python Software Packages 2.0) for which
he is acting as BDFL > delegate.

The number of packaging solutions (distutils, setuptools, distutils2,
distlib, bento, pbr, etc.) for Python is quite impressive. In your opin-
ion, what are the (possibly historical) reasons for such fragmentation
and divergence?

The short answer is that software publication, distribution, and integra-
tion is a complex problem with plenty of room for multiple solutions tai-
lored for different use cases. The long answer can be found in the Python
Packaging User Guide. In my recent talks on this, | have noted that the
problem is mainly one of age and the aforementioned tools being born in

a somewhat different era of software distribution.

setuptools is the de facto standard for Python distributions nowadays.
Is there anything you think users should be aware of when using it (or
not)?

setuptoolsis quite reasonable as a build system, especially for pure Python

>"Benevolent Dictator For Life," title given to Guido van Rossum, author of Python

bjpcjp

bjpcjp

4.6. INTERVIEW WITH NICK COGHLAN

projects, or those with only simple C extensions. It also offers a powerful

system for plugin registration and good cross-platform script generation.

While effective, the multi-version support in pkg_resources is also a bit
quirky and tricky to use properly. Unless there’s a really compelling rea-
son to have conflicting versions in the same environment, it’s much easier

to just use virtualenv or zc.buildout.

PEP 426, which defines a new metadata format for Python packages,
is still fairly recent and not yet approved. Is it on good track? What
motivated itin the first place, how do you think it’ll tackle the current

problems?

PEP 426 originally started as part of the Wheel format definition, but Daniel
Holth eventually realized that Wheel could work with the existing meta-
data format defined by setuptools. PEP 426 is thus a consolidation of the
existing setuptools metadata with some of the ideas from distutils2 and
other packaging systems (like RPM and npm), and also addresses some of
the frustrations encountered with existing tools (like cleanly separating

different kinds of dependencies).

If PEP 426 is accepted, what kinds of tools would you to see built to

take advantage of what it offers?

The main gains will be a REST APl on PyPI offering full metadata access,
as well as (hopefully) the ability to automatically generate distribution

policy-compliant packages from upstream metadata.

The Wheel format is fairly recent and not widely used yet, but it seems
promising. Is there any reason it isn’t part of the Standard Library, or

are there already plans to include it?

It turns out the Standard Library isn’t really a suitable place for packaging

standards: it evolves too slowly, and an addition to a later version of the

65

4.7. ENTRY POINTS 66

Standard Library can’t be used with earlier versions of Python. So, at the
Python language summit earlier this year, we tweaked the PEP process to
allow distutils-sig to manage the full approval cycle for packaging-related
PEPs. python-dev will only be involved for proposals that involve chang-

ing CPython directly (like pip bootstrapping).

What kind of future do you envision that would push developers to
build and distribute Wheel packages?

pip is adopting it at as an alternative to the Egg format, allowing local
caching of builds for fast virtual environment creation, and PyPI allows
uploads of Wheel archives for Windows and Mac OS X. We still have some

tweaks to make before it will be suitable for use on Linux.

4.7 Entry points

You may have already used setuptools entry points without knowing anything about
them. If you haven’t yet decided to use setuptools (or pbr, see Section 4.2) to pro-
vide a setup. py file with your software, here are a few features that might help you

make up your mind.

Software distributed using setuptoolsincludesimportant metadata describing things
such as its required dependencies and - more relevantly to this topic - a list of "en-
try points." These entry points can be used by other Python programs to dynami-

cally discover features that a package provides.

In the following sections, we will discuss how we can use entry points to add exten-

sibility to our software.

4.7. ENTRY POINTS 67

4.7.1 Visualising entry points

The easiest way to visualize the entry points available in a package is to use a pack-

age called entry_point_inspector.

When installed, it provides a command called epi that you can run from your ter-

minal to interactively discover the entry points provided by installed packages:

Example 4.4 Result of epi group list

| console scripts |
| distutils.commands |
| distutils.setup keywords |
| egg info.writers |
| epi.commands |
| flake8.extension |
| setuptools.file finders |

| setuptools.installation |

Example 4.4 shows that we have many different packages that provide entry points.

You’llalso notice this listincludes console_scripts, which we’ll discussin Section 4.7.2.

Example 4.5 Result of epi group show console_scripts

Fom o R tommm - - R +ommm - - +
| Name | Module | Member | Distribution | Error |
Fomm oo R tommm - R R +o-me - +
| coverage | coverage | main | coverage 3.4 | |

P P S e S +

4.7. ENTRY POINTS 68

Example 4.5 shows us that an entry point named coverage refers to the member
main of the module coverage. This entry point is provided by the package coverage

3.4. We can obtain more information by using epi ep show:

Example 4.6 Result of epi ep show console_scripts coverage

Fomm e e T T T T +
| Field | Value |
Fomm e R e +
Module | coverage
Member | main

| |
| |
Distribution	coverage 3.4
Path	/usr/lib/python2.7/dist-packages
Error	

Fommemmmeeaaa '~ +

The tool we’re using here is just a thin layer on top of a more complete Python li-
brary which can help us discover entry points for any Python library or program.
Entry points are useful for various things, including console scripts and dynamic

code discovery, as we’re going to see in the next few sections.

4.7.2 Using console scripts

When writing a Python application, you almost always have to provide alaunchable
program — a Python script that the end user can actually run. This program needs

to be installed inside a directory somewhere in the system path.

Most projects will have something along the lines of this:
#!/usr/bin/python
import sys

import mysoftware

4.7. ENTRY POINTS 69

mysoftware.SomeClass(sys.argv).run()

This is actually a best-case scenario: many projects have a much longer script in-

stalled in the system path. But using such scripts has some major issues:

« There’s no way they can know where the Python interpreter is or which version it

will be.
« They leak binary code that can’t be imported by software or unit tests.
« There’s no easy way to define where to install them.

« It’s not obvious how to install this in a portable way (Unix vs Windows for exam-

ple).

setuptools has a feature that helps us circumvent these problems: console_scripts.
console_scripts is an entry point that can be used to make setuptools install a tiny
program in the system path which then calls a specific function in one of your mod-

ules.

Let’s imagine a foobar program that consists of a client and a server. Each part is

written in its own module - foobar.client and foobar.server, respectively:

foobar/client.py

def main():

print("Client started")

foobar/server.py

def main():

print("Server started")

Of course, our program doesn’t really do much of anything - our client and server
don’t even talk to each other. For the purposes of our example, though, all they

need to do is print a message letting us know they’ve started successfully.

4.7. ENTRY POINTS 70

We can now write the following setup. py file in the root directory:

setup.py

from setuptools import setup

setup(
name="foobar",
version="1",
description="Foo!",
author="Julien Danjou",
author _email="julien@danjou.info",
packages=["foobar"],
entry points={
"console scripts": [
"foobard = foobar.server:main",

"foobar = foobar.client:main",

We define our entry points using the format package. subpackage: function.

When you run python setup.py install, setuptools will create a script that will
look like this:

Example 4.7 A console script generated by setuptools

#!/usr/bin/python

EASY-INSTALL-ENTRY-SCRIPT: 'foobar==1"', 'console scripts', 'foobar’
__requires = 'foobar==1"

import sys

from pkg resources import load entry point

if name == "' main_ "':

4.7. ENTRY POINTS 71

sys.exit(

load entry point('foobar==1', 'console scripts', 'foobar')()

This code scans the entry points of the foobar package and retrieves the foobar
key from the console scripts category, which is used to locate and run the corre-

sponding function.

Using this technique will ensure that your code stays in your Python package and

can be imported (and tested) by other programs.

Tip
If you're using pbr on top of setuptools, the generated script is simpler (and therefore
faster) than the default one built by setuptools as it will call the function you wrote in the

entry point without having to search the entry point list dynamically at runtime.

4.7.3 Using plugins and drivers

Entry points make it easy to discover and dynamically load code deployed by other
packages. You can use pkg_resources to discover and load entry point files from
within your Python programs. (You might notice that this is the same package used

in the console script that setuptools creates, as seen in Example 4.7.)

In this section, we’re going to create a cron-style daemon that will allow any Python
program to register a command to be run once every few seconds by registering an
entry pointin the group pytimed. The attribute this entry point points to should be

an object that returns number of seconds, callable.

Here’s ourimplementation of pycrond using pkg_resources to discover entry points:

pytimed.py

import pkg resources

4.7. ENTRY POINTS 72

import time

def main():
seconds passed = 0
while True:
for entry point in pkg resources.iter entry points('pytimed"'):
try:
seconds, callable = entry point.load() ()
except:
Ignore failure
pass
else:
if seconds passed % seconds ==
callable()
time.sleep(1)

seconds passed += 1

This is a very simple and naive implementation, but it’s sufficient for our example.
Now we can write another Python program that needs one of its functions called
on a periodic basis:

hello.py

def print hello():
print("Hello, world!")

def say hello():

return 2, print _hello

We register the function using the appropriate entry points:

setup.py

from setuptools import setup

4.7. ENTRY POINTS 73

setup (

name="hello",

version="1",

packages=["hello"],

entry points={
"pytimed": [

"hello = hello:say hello",
1,
})

And now if we run our pytimed script, we’ll see "Hello, world!" printed on the screen

every 2 seconds:

Example 4.8 Running pytimed

% python3

Python 3.3.2+ (default, Aug 4 2013, 15:50:24)

[GCC 4.8.1] on linux

Type "help", "copyright", "credits" or "license" for more <«
information.

>>> import pytimed

>>> pytimed.main()

Hello, world!

Hello, world!

Hello, world!

The possibilities this mechanism offers are huge: it allows you to build driver sys-
tems, hook systems, and extensions in an easy and generic way. Implementing this
mechanism by hand in every program you make would be tedious, but fortunately,

there’s a Python library that can take care of the boring parts for us.

4.7. ENTRY POINTS 74

stevedore provides support for dynamic plugins based on the exact same mech-
anism demonstrated in our previous examples. Our use case in this example isn’t

very complicated, but we can still simplify it a bit using stevedore:

pytimed_stevedore.py

from stevedore.extension import ExtensionManager

import time

def main():
seconds passed = 0
while True:
for extension in ExtensionManager('pytimed', invoke on load=True):
try:
seconds, callable = extension.obj
except:
Ignore failure
pass
else:
if seconds passed % seconds ==
callable()
time.sleep(1)

seconds passed += 1

Our example is still very simple, but if you look through the stevedore documenta-
tion, you’ll see that ExtensionManager has a variety of subclasses that can handle
different situations, such as loading specific extensions based on their names or the

result of a function.

bjpcjp

5 Virtual environments

When dealing with Python applications, there’s always a time where you’ll have
to deploy, use and/or test your application. But doing that can be really painful,
because of the external dependencies. There’s a lot of reasons for which that may

fail to deploy or operate on your operation system, such as:

« Your system does not have the library you need packaged.
« Your system does not have the right version of the library you need packaged.

« You need two different versions of the same library for two different applications.

This can happen right at the time you deploy your application, or later on while
running. Upgrading a Python library installed via your system manager might break

your application in a snap without warning you.

The solution to this problem is to use a library directory per application, containing
its dependencies. This directory will be used rather than the system installed ones

to load the needed Python modules.

Thetoolvirtualenv handlesthese directories automatically foryou. Onceinstalled,
you just need to run it with a destination directory as argument.

$ virtualenv myvenv

Using base prefix '/usr'

New python executable in myvenv/bin/python3

bjpcjp

CHAPTER 5. VIRTUAL ENVIRONMENTS 76

Also creating executable in myvenv/bin/python
Installing Setuptools.............. ..ot done.
Installing Pip......cciiiiiiii it e e n done.

Once ran, virtualenv creates a lib/pythonX.Y directory and uses it to install setu

ptools and pip, that will be necessary to install further Python packages.

You can now activate the virtualenv by "sourcing" the activate command:

$ source myvenv/bin/activate

Once you do that, your shell prompt will be prefixed by the name of your virtual en-
vironment. Calling python will call the Python that has been copied into the virtual
environment. You can check that its working by reading the sys.path variable; it

will have your virtual environment directory as its first component.

You can stop and leave the virtual environment at any time by calling the deactiv
ate command:

$ deactivate

That’s it.

Also not that you’re notforcetorunactivateif you wantto use the Python installed
in your virtual environment just once. Calling the python binary will also work:

$ myvenv/bin/python

Now, while we’re in our activated virtual environment, we don’t have access to any
of the module installed and available on the system. That’s good, but we probably
need to install them. To do that, you just have to use the standard pip command,
and that will install the packages in the right place, without changing anything to
your system:

$ source myvenv/bin/activate

(myvenv) $ pip install six

bjpcjp

bjpcjp

CHAPTER 5. VIRTUAL ENVIRONMENTS 7

Downloading/unpacking six
Downloading six-1.4.1.tar.gz

Running setup.py egg info for package six

Installing collected packages: six

Running setup.py install for six

Successfully installed six

Cleaning up...

And voila. We caninstall all the libraries we need and then run our application from
this virtual environment, without breaking our system. It’s then easily imaginable
to script this to automatize the installation of a virtual environment based on a list

of a dependency with something along these lines:

Example 5.1 Automatic virtual environment creation

virtualenv myappvenv
source myappvenv/bin/activate
pip install -r requirements.txt

deactivate

In certain situation, it’s still useful to have access to your system installed packages.
You can enable them when creating your virtual environment by passing the - -sys

tem-site-packages flag to the virtualenv command.

As you might guess, virtual environments are utterly useful for automated run of
unit test suite. This is a really common pattern, so common that a special tool has

been built to solve it, called tox (discussed in Section 6.7).

More recently, the PEP 405 " which defines a virtual environment mechanism has

been accepted and implemented in Python 3.3. Indeed, the usage of virtual envi-

'Python Virtual Environments, 13th June 2011, Carl Meyer

bjpcjp

CHAPTER 5. VIRTUAL ENVIRONMENTS 78

ronment became so popular that it is now part of the standard Python library.

The venv module is now part of Python 3.3 and above, and allows to handle virtual
environment without using the virtualenv package or any other one. You can call
it using the -m flag of Python, which loads a module:

$ python3.3 -m venv

usage: venv [-h] [--system-site-packages] [--symlinks] [--clear] [--upgrade <«

]
ENV_DIR [ENV DIR ...]

venv: error: the following arguments are required: ENV DIR

Building virtual environment is then really simple:

$ python3.3 -m venv myvenv

And that’s it. Inside myvenv, you will find a pyvenv.cfg, the configuration file for
this environment. It doesn’t have a lot of configuration option by default. You’ll
recognize include-system-site-package, whose purpose is the same as the - -sys

tem-site-packages of virtualenv that we described earlier.

The mechanism to activate the virtual environmentis the same as described earlier,
"sourcing" the activate script:

$ source myvenv/bin/activate

(myvenv) $

Also here, you can call deactivate to leave the virtual environment.

The downside of this venv module is that it doesn’t install setuptools nor pip by
default. We will have to bootstrap the environment by ourself, contrary to virtual

env that does that for us.

Example 5.2 Boostraping a venv environment

(myvenv) $ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ <«
ez setup.py -0 - | python

bjpcjp

bjpcjp

bjpcjp

CHAPTER 5. VIRTUAL ENVIRONMENTS 79

-2013-09-02 22:26:07-- https://bitbucket.org/pypa/setuptools/raw/bootstrap «+
/ez_setup.py
Resolving bitbucket.org (bitbucket.org)... 131.103.20.168, 131.103.20.167

Connecting to bitbucket.org (bitbucket.org)|131.103.20.168|:443... <«
connected.
HTTP request sent, awaiting response... 200 OK

Length: 11835 (12K) [text/plain]
Saving to: ‘STDOUT’

100%(>] 11,835 --.-K/s ¢J

in 0Os

2013-09-02 22:26:08 (184 MB/s) - written to stdout [11835/11835]

Downloading https://pypi.python.org/packages/source/s/setuptools/setuptools «+
-1.1.tar.gz

Extracting in /tmp/tmp228fqgm

Now working in /tmp/tmp228fqm/setuptools-1.1

Installing Setuptools

running install

running bdist egg

running egg info

writing dependency links to setuptools.egg-i

[..]

Adding setuptools 1.1 to easy-install.pth file

Installing easy install script to /home/jd/myvenv/bin

Installing easy install-3.3 script to /home/jd/myvenv/bin

Installed /home/jd/myvenv/lib/python3.3/site-packages/setuptools-1.1-py3.3. «
€99

CHAPTER 5. VIRTUAL ENVIRONMENTS 80

Processing dependencies for setuptools==1.1

Finished processing dependencies for setuptools==1.1

We can then install pip via easy install:

(myvenv) $ easy install pip

Searching for pip

Reading https://pypi.python.org/simple/pip/

Best match: pip 1.4.1

Downloading https://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.gz# «
md5=6afbb46aeb48abac658d4df742bff714

Processing pip-1.4.1.tar.gz

Writing /tmp/easy install-hxo3b0/pip-1.4.1/setup.cfg

Running pip-1.4.1/setup.py -q bdist egg --dist-dir /tmp/easy install-hxo3b0 «
/pip-1.4.1/egg-dist-tmp-efgi80

warning: no files found matching '*.html' under directory 'docs’

warning: no previously-included files matching '*.rst' found under <
directory 'docs/ build'

no previously-included directories found matching 'docs/ build/ sources'

Adding pip 1.4.1 to easy-install.pth file

Installing pip script to /home/jd/myvenv/bin

Installing pip-3.3 script to /home/jd/myvenv/bin

Installed /home/jd/myvenv/lib/python3.3/site-packages/pip-1.4.1-py3.3.eqg
Processing dependencies for pip

Finished processing dependencies for pip

We can then use pip to install any further package we would need.

So while Python 3.3 includes venv by default, one has to admit that it has this little
drawback to not come with what you would expect by default. It’s easy enough to

write a tool using the venv library that would mimic the default behaviour of virtu

CHAPTER 5. VIRTUAL ENVIRONMENTS 81

alenv, but on the other side, there’s little point working on that unless you are only
targeting Python 3.3 and above. On the other hand, the pip bootstrapping code has
been merged into Python 3.4, meaning that this bootstrap problem is solved by the
latest Python version.

Anyway, since like most projects, you probably target Python 2 and Python 3, re-
lying only on the venv module isn’t really an option. Sticking with virtualenv for
now is probably the best solution. Considering that they both function in an iden-

tical manner, this shouldn’t be a problem.

6 Unit testing

Breaking news! It’s 2013 and there are still people who don’t have a policy of test-
ing their projects. Now, the purpose of this book is not to convince you to jump in
and start unit testing. If you need to be convinced, | suggest you start by reading
about the benefits of test-driven development. Writing code that is not tested is

essentially useless, as there’s no way to conclusively prove that it works.

This section will cover the Python tools you can use to construct a great suite of
tests. We’ll talk about how you can utilise them to enhance your software, making

it rock-solid and regression free!

6.1 The basics

Contrary to what you may believe, the writing and running of unit tests is really
simplein Python. It’s notintrusive or disruptive, and it’s going to help you and other

developers a lot in maintaining your software.

Your tests should be stored inside a tests submodule of your application or library.
This allows you to ship the tests as part of your module, so that they can be run or
reused by anyone - even once your software is installed - without necessarily using
the source package. This also prevents them from being installed by mistake in a

top-level tests module.

6.1. THE BASICS 83

It’s usually simpler to use a hierarchy in your test tree that mimics the hierarchy you
have in your module tree. This means that the tests covering the code of mylib/foo
bar.py should be inside mylib/tests/test foobar.py; this makes things simpler

when looking for the tests relating to a particular file.

Example 6.1 A really simple test in test_true.py

def test true():

assert True

This is the most simple unit test that can be written. To run it, you simply need to

load the test_true.py file and run the test true function defined within.

Obviously, following these steps for all of your test files and functions would be a
pain. This is where the nose package comes to the rescue - once installed, it pro-
videsthe nosetests command, which loads every file whose name starts with test

and then executes all functions within that start with test .

Therefore, with the test_true.pyfilein oursourcetree, running nosetests will give

us the following output:

$ nosetests -v

test true.test true ... ok

Ran 1 test in 0.003s

0K

On the other hand, as soon as a test fails, the output changes to indicate the failure,
accompanied by the whole traceback.

% nhosetests -v

test true.test true ... ok

test true.test false ... FAIL

6.1. THE BASICS 84

FAIL: test true.test false

Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in <«
runTest
self.test(*self.arg)
File "/home/jd/test true.py", line 5, in test false
assert False

AssertionError

Ran 2 tests in 0.003s

FAILED (failures=1)

A test fails as soon as an AssertionError exception is raised; assert does indeed
raise an AssertionError as soon as its argument is evaluated to something false

(False, None, 0...). If any other exception is raised, the test also errors out.

Simple, isn’t it? While simplistic, this approach is used by a lot of small projects,
and works very well. They don’t require tools or libraries other than than nose, and

relying on assert is good enough.

However, as you start to write more sophisticated tests, you’ll start to become frus-
trated by things like the use of assert. Consider the following test:

def test key():

a = [Ial’ |b|]
b=1['b']
assert a ==

When running nosetests, it gives the following output:

6.1. THE BASICS 85

$ nosetests -v

test complicated.test key ... FAIL

FAIL: test complicated.test key
Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in <«
runTest
self.test(*self.arg)
File "/home/jd/test complicated.py", line 4, in test key
assert a ==

AssertionError

Ran 1 test in 0.001s

FAILED (failures=1)

Alright, so a and b are different and this test doesn’t pass. But how are they differ-
ent? assert doesn’t give us this information, just states that the assertion is wrong

- not particularly useful.

Also, with such a basic zero framework approach, advanced usage such as skipping

tests or executing actions before or after running every test can become painful.

Thisis where the unittest package comes in handy. It provides tools that will help
covering all of that - and good news is that unittest is part of the Python standard

library.

6.1. THE BASICS 86

Warning
unittest has been largely improved starting with Python 2.7, so if you are supporting
earlier version of Python you may want to use its backport named unittest2. If you
need to support Python 2.6, you can then use the following snippet to import the correct
module for any Python versions at runtime:
try:

import unittest2 as unittest

except ImportError:

import unittest

If we rewrite the previous example using unittest, this is what it will look like:

import unittest

class TestKey(unittest.TestCase):
def test key(self):
a=1['a', 'b'l]
b=1['b"l]
self.assertEqual(a, b)

As you can see, the implementation isn’t much more complicated. All you have to
do is create a class that inherits from unittest.TestCase, and write a method that
runs a test. Instead of using assert, we rely on a method provided by unittest.
TestCase that provides an equality tester. When run, it outputs the following:

$ nosetests -v

test key (test complicated.TestKey) ... FAIL

FAIL: test key (test complicated.TestKey)

Traceback (most recent call last):

6.1. THE BASICS 87

File "/home/jd/Source/python-book/test complicated.py", line 7, in <«
test key
self.assertEqual(a, b)

AssertionError: Lists differ: ['a', 'b'] '= ['b']

First differing element 0:
a

b

First list contains 1 additional elements.
First extra element 1:

b

- [Ial’ Ibl]
+ ['b']

Ran 1 test in 0.001s

FAILED (failures=1)

As you can see, the output is much more useful. An assertion error is still raised,
and the test is still being failed, but at least we have real information about why it’s
failing, which can help us to fix the problem. This is why you should definitely never
use assert when writing test cases. Anyone who tries to hack your code and ends
up failing a test will definitely thank you for having not used assert, and having

thereby providing him/her with debugging information right away.

unittest provides a few test functions that you can use to specialize your tests,
suchas: assertDictEqual,assertEqual,assertTrue,assertFalse,assertGreater,

assertGreaterEqual, assertIn, assertls, assertIsIntance, assertIsNone, asser

6.1. THE BASICS 88

tIsNot, assertIsNotNone, assertItemsEqual, assertlLess, assertLessEqual, asse
rtListEqual,assertMultiLineEqual,assertNotAlmostEqual,assertNotEqual,ass
ertTupleEqual, assertRaises, assertRaisesRegexp, assertRegexpMatches, etc. It

would be a good idea to go through pydoc unittest and discover them all.

It’s also possible to deliberately fail a test right away using the fail(msg) method.
This can be convenient when you know that a particular part of your code will def-

initely raise an error if executed, but there isn’t a particular assertion to check for.

Example 6.2 Failing a test

import unittest

class TestFail(unittest.TestCase):
def test range(self):
for x in range(5):
if x > 4:

self.fail("Range returned a too big value: %d" % x)

It’s sometimes useful skip a test if it can’t be run - for example, you may wish to
run a test conditionally based on the presence or absence of a particular library. To
that end, you can raise the unittest.SkipTest exception. When the test is raised,
itis simply marked as having been skipped. The convenient method unittest.Tes
tCase.skipTest() can be used rather than raising the exception manually, as can

the unittest.skip decorator:

Example 6.3 Skipping tests

import unittest

try:
import mylib
except ImportError:

mylib = None

6.1. THE BASICS

class TestSkipped(unittest.TestCase):
@unittest.skip("Do not run this")
def test fail(self):

self.fail("This should not be run")

@unittest.skipIf(mylib is None, "mylib is not available")
def test mylib(self):
self.assertEqual(mylib.foobar(), 42)

def test skip at runtime(self):
if True:

self.skipTest("Finally I don't want to run it")

When executed, this test file will output the following:

$ python -m unittest -v test skip

test fail (test skip.TestSkipped) ... skipped 'Do not run this'
test mylib (test skip.TestSkipped) ... skipped 'mylib is not available'
test skip at runtime (test skip.TestSkipped) ... skipped "Finally I don't

want to run it"

Ran 3 tests in 0.000s

0K (skipped=3)

89

6.1. THE BASICS 90

Tip

As you may have noticed in Example 6.3, the unittest module provides a way to ex-
ecute a Python module that contains tests. It is less convenient than using nosetests,
as it does not discover test files on its own, but it can still be useful for running a particular

test module.

In many cases, there’s a need to execute a set of common actions before and after
running a test. unittest provides two particular methods called setUp and tearD
own that are executed each time one of the test methods of a class is about to, or

has been, called.

Example 6.4 Using setUp with unittest

import unittest

class TestMe(unittest.TestCase):
def setUp(self):
self.list = [1, 2, 3]

def test length(self):
self.list.append(4)
self.assertEqual(len(self.list), 4)

def test has one(self):
self.assertEqual(len(self.list), 3)
self.assertIn(l, self.list)

In this case, setUp is called before running test length and before running test
has_one. It can be really handy to create objects that are worked with during each
test; butyou need to be sure that they get recreated in a clean state before each test

method is called. This is really useful for creating test environments, often referred

6.2. FIXTURES 91

to as "fixtures" (see Section 6.2).

Tip

When using nosetests, you often might want to run only one particular test.
You can select which test you want to run by passing it as an argument — the
syntax is: path.to.your.module:ClassOfYourTest.test_ method. Be sure that there’s
a colon between the module path and the class name. You can also specify
path.to.your.module:ClassOfYourTest to execute an entire class, or path.to.your.module

to execute an entire module.

Tip
It's possible to run tests in parallel to speed things up. Simply add the - -processes=N
option to your nosetests invocation to spawn several nosetests processes. However,

testrepository is a better alternative — this is discussed in Section 6.5.

6.2 Fixtures

In unit testing, fixtures represent components that are set up before a test, and
cleaned up after the test is done. It’s usually a good idea to build a special kind
of component for them, as they are reused in a lot of different places. For exam-
ple, if you need an object which represents the configuration state of your applica-
tion, there’s a chance you may want it to be initialized before each test, and reset
to its default values when the test is done. Relying on temporary file creation also
requires that the file is created before the test starts, and deleted once the test is

done.

unittest only providesthe setUp and tearDown functions we already evoked. How-
ever,a mechanism exists to hook into these. The fixtures Python module (not part
of the standard library) provides an easy mechanism for creating fixture classes and

objects, such as the useFixture method.

6.3. MOCKING 92

The fixtures modules provides a few built-in fixtures, like fixtures.Environment
Variable - useful for adding or changing a variable in os.environ that will be reset

upon test exit.

Example 6.5 Using fixtures.EnvironmentVariable

import fixtures

import os

class TestEnviron(fixtures.TestWithFixtures):
def test environ(self):
fixture = self.useFixture(
fixtures.EnvironmentVariable("FOOBAR", "42"))
self.assertEqual(os.environ.get("FOOBAR"), "42")

def test environ no fixture(self):

self.assertEqual(os.environ.get("FOOBAR"), None)

When you can identify common patterns like these, it’s a good idea to create a fix-
ture that you can reuse over all your test cases. This greatly simplifies the logic, and

shows exactly what you are testing and in what manner.

Note
If you're wondering why the base class unittest.TestCase isn't used in the examples

in this section, it's because fixtures.TestWithFixtures inherits from it.

6.3 Mocking

Mock objects are simulated objects that mimic the behaviour of real application

objects, but in particular and controlled ways. These are especially useful in creat-

6.3. MOCKING 93

ing environments that describe precisely the conditions for which you would like to

test code.

If you are writing an HTTP client, it’s likely impossible (or at least extremely compli-
cated) to spawn the HTTP server and test it through all scenarios, making it return

every possible value. It’s especially difficult to test for all failure scenarios.

A much simpler option is to build a set of mock objects that model these particular

scenarios, and to use them as environment for testing your code.

The standard library for creating mock objects in Python is mock. Starting with
Python 3.3, it has been merged into the Python standard library as unittest.mock.
You can therefore use a snippet like:
try:

from unittest import mock
except ImportError:

import mock

To maintain backward compatibility between Python 3.3 and earlier versions.

Mock is pretty simple to use:

Example 6.6 Basic mock usage

>>> import mock
>>> m = mock.Mock()
>>> m.some_method.return value = 42
>>> m.some _method()
42
>>> def print hello():
print("hello world!")

>>> m.some _method.side effect = print hello

>>> m.some_method()

6.3. MOCKING 94

hello world!
>>> def print hello():
print("hello world!")

return 43

>>> m.some _method.side effect = print hello
>>> m.some_method()

hello world!

43

>>> m.some _method.call count

3

Even using just this set of features, you should be able to mimic a lot of yourinternal

objects in order to fake various data scenarios.

Mock uses the action/assertion pattern: this means that once your test has run, you

will have to check that the actions you are mocking were correctly executed.

Example 6.7 Checking method calls

>>> import mock
>>> m = mock.Mock()
>>> m.some _method('foo', 'bar"')
<Mock name='mock.some method()' id='26144272"'>
>>> m.some _method.assert called once with('foo', 'bar')
>>> m.some_method.assert called once with('foo', mock.ANY)
>>> m.some_method.assert called once with('foo', 'baz"')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/dist-packages/mock.py", line 846, in <«
assert called once with
return self.assert called with(*args, **kwargs)

File "/usr/lib/python2.7/dist-packages/mock.py", line 835, in <«

6.3. MOCKING 95

assert called with
raise AssertionError(msg)
AssertionError: Expected call: some method('foo', 'baz')

Actual call: some method('foo', 'bar')

As you can see, it’s easy enough to pass a mock object to any part of your code, and
to check later if the code has been called with whatever argument it was supposed
to have. If you don’t know what arguments may have been passed, you can use

mock.ANY as a value; that will match any argument passed to your mock method.

Sometimes you may need to a some function, method or object from an external

module. mock provides a set of patching functions to that end.

Example 6.8 Using mock.patch

>>> import mock
>>> import os
>>> def fake os unlink(path):

raise IOError("Testing!")

>>> with mock.patch('os.unlink', fake os unlink):

os.unlink('foobar")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "<stdin>", line 2, in fake os unlink

IOError: Testing!

With the mock.patch method, it’s possible to change any part of an external piece
of code - making it behave in the required way in order to test all conditions in your

software.

Example 6.9 Using mock. patch to test a set of behaviour

6.3. MOCKING

import requests
import unittest

import mock

class WhereIsPythonError(Exception):

pass

def is python still a programming language():
try:
r = requests.get("http://python.org")
except IOError:
pass
else:
if r.status code == 200:
return 'Python is a programming language' in r.content

raise WhereIsPythonError("Something bad happened")

def get fake get(status code, content):
m = mock.Mock()
m.status code = status code
m.content = content
def fake get(url):
return m

return fake get

def raise get(url):

raise IOError("Unable to fetch url %s" % url)

class TestPython(unittest.TestCase):
@mock.patch('requests.get', get fake get(

6.3. MOCKING o7

200, 'Python is a programming language for sure'))
def test python is(self):

self.assertTrue(is python still a programming language())

@mock.patch('requests.get', get fake get(
200, 'Python is no more a programming language'))
def test python is not(self):

self.assertFalse(is python still a programming language())

@mock.patch('requests.get', get fake get(
404, 'Whatever'))

def test bad status code(self):
self.assertRaises(WhereIsPythonError,

is python still a programming language)

@mock.patch('requests.get', raise get)
def test ioerror(self):
self.assertRaises(WherelIsPythonError,

is python still a programming language)

Example 6.9 uses the decorator version of mock. patch, this does not change its be-
haviour, but is easier to use when you need to use mocking within the context of an

entire test function.

By using mocking we can simulate any problem - such as a Web server returning
a 404 error, or network issues arising. We can make sure that our code returns the
correct values, or raises the correct exception in every case - ensuring that our code

always behaves as expected.

6.4. SCENARIOS 98

6.4 Scenarios

When unit testing, itis common to require that a set of tests be run against different
versions of an object. You may want to run the same error-handling test with a
bunch of different objects that trigger that error; or you may want to run an entire

test suite against different drivers.

This last case is one that we heavily relied on in Ceilometer. Ceilometer provides
an abstract class that we call the storage API. Any driver can implement this base
abstract class and register itself to become a driver. The software loads the config-
ured storage driver when required, and uses the implemented storage API to store
or retrieve data. In this case, what need is a class of unit tests that runs against each
driver - meaning against each implementation of this storage API - to be sure that

they conform to what the callers expect.

The natural way of doing this is to use mixin classes; on one side, you would have
a class with unit tests, and on the other side a class with the specific driver usage
setup.

import unittest

class MongoDBBaseTest(unittest.TestCase):
def setUp(self):

self.connection = connect to mongodb()

class MySQLBaseTest(unittest.TestCase):
def setUp(self):

self.connection = connect to mysql()

class TestDatabase(unittest.TestCase):
def test connected(self):

self.assertTrue(self.connection.is connected())

bjpcjp

bjpcjp

6.4. SCENARIOS 99

class TestMongoDB(TestDatabase, MongoDBBaseTest):

pass

class TestMySQL(TestDatabase, MySQLBaseTest):

pass

Unfortunately, in the long run this method is far from convenient or scalable.

A better technique does exist, using the testscenarios package. This package pro-
vides an easy way to run a class test against a different set of scenarios generated
atrun-time. Using testscenarios, | have rewritten part of Example 6.9 to illustrate

mocking as covered in Section 6.3.

Example 6.10 testscenarios basic usage

import mock
import requests

import testscenarios

class WhereIsPythonError(Exception):

pass

def is python still a programming language():
r = requests.get("http://python.org")
if r.status code == 200:
return 'Python is a programming language' in r.content

raise WherelIsPythonError("Something bad happened")

def get fake get(status code, content):
m = mock.Mock()

m.status code = status code

bjpcjp

6.4. SCENARIOS 100

m.content = content
def fake get(url):
return m

return fake get

class TestPythonErrorCode(testscenarios.TestWithScenarios):
scenarios = [
('Not found', dict(status=404)),
('Client error', dict(status=400)),

('Server error', dict(status=500)),

def test python status code handling(self):
with mock.patch('requests.get’,
get fake get(
self.status,
'Python is a programming language for sure')):

self.assertRaises(WhereIsPythonError,

is python still a programming language)

Even though only one test seems to be defined, testscenarios runs the test three
times - because we have defined three scenarios.

% python -m unittest -v test scenario

test python status code handling (test scenario.TestPythonErrorCode) ... <«
ok

test python status code handling (test scenario.TestPythonErrorCode) ... <«
ok

test python status code handling (test scenario.TestPythonErrorCode) ... <+

ok

6.4. SCENARIOS 101

Ran 3 tests in 0.001s

OK

As can see, all we need to construct the scenario list is a tuple list that consists of
the scenario name as first argument, and as a second argument the dictionary of

attributes to be added to the test class for this scenario.

It is easy enough to imagine another use: where instead of storing a single value as
an attribute for each test, you could instantiate a particular driver and run all the

tests of the class against it.

Example 6.11 Using testscenarios to test drivers

import testscenarios

from myapp import storage

class TestPythonErrorCode(testscenarios.TestWithScenarios):
scenarios = [
('MongoDB', dict(driver=storage.MongoDBStorage())),
('SQL', dict(driver=storage.SQLStorage())),

('File', dict(driver=storage.FileStorage())),

def test storage(self):

self.assertTrue(self.driver.store({'foo': 'bar'}))

def test fetch(self):

self.assertEqual(self.driver.fetch('foo'), 'bar')

6.5. TEST STREAMING AND PARALLELISM 102

Note
If you wonder why there is no need to use the base class unittest.TestCase in the
previous examples, it's because testscenarios.TestWithScenarios inherits from

it.

6.5 Test streaming and parallelism

When performing a lot of tests, it can be useful to analyze them as they are run. The
default behaviour of tools like nosetests is to output the result to stdout - which is

not really convenient to parse or analyze.

subunit is a Python module that provides a streaming protocol for test results. It
allows for a number of interesting things, such as aggregating test results ' or to

record and archive test runs, etc.

Running a test using subunit is simple enough:

$ python -m subunit.run test scenario

The output of this command is binary data, so unless you have the ability to sight-
read the subunit protocol, itwouldn’t be interesting to reproduce it’s output directly
here. However, subunit also comes with a set of tools to transform this binary

stream into something smoother:

Example 6.12 Using subunit2pyunit

$ python -m subunit.run test scenario | subunit2pyunit

test scenario.TestPythonErrorCode.test python status code handling(Not <«
found)

test scenario.TestPythonErrorCode.test python status code handling(Not <«

found) ... ok

'Even from different source programs or languages

6.5. TEST STREAMING AND PARALLELISM 103

test scenario.TestPythonErrorCode.test python status code handling(Client <«
error)

test scenario.TestPythonErrorCode.test python status code handling(Client «+«
error) ... ok

test scenario.TestPythonErrorCode.test python status code handling(Server <«
error)

test scenario.TestPythonErrorCode.test python status code handling(Server <«

error) ... ok

Ran 3 tests in 0.061s

0K

Now this is something that we can understand - you should recognize the test suite
with scenarios from Section 6.4. Other tools worth mentioning include subunit2

csv, subunit2gtk and subunit2junitxml.

subunit is also able to automatically discover which test to run, when it is passed

the discover argument.

$ python -m subunit.run discover | subunit2pyunit

test scenario.TestPythonErrorCode.test python status code handling(Not <«
found)

test scenario.TestPythonErrorCode.test python status code handling(Not <«
found) ... ok

test scenario.TestPythonErrorCode.test python status code handling(Client <«
error)

test scenario.TestPythonErrorCode.test python status code handling(Client <«
error) ... ok

test scenario.TestPythonErrorCode.test python status code handling(Server <«

error)

6.5. TEST STREAMING AND PARALLELISM 104

test scenario.TestPythonErrorCode.test python status code handling(Server <«

error) ... ok

Ran 3 tests in 0.061s

0K

You can list tests, rather than running them, by passing the argument --1list. To
view the results, you can use subunit-1s:

$ python -m subunit.run discover --list | subunit-1ls --exists
test request.TestPython.test bad status code

test request.TestPython.test ioerror

test request.TestPython.test python is

test request.TestPython.test python is not

test scenario.TestPythonErrorCode.test python status code handling

Tip
You can also load a list of tests that you want to run — rather than running all tests — by

using the - - load-list option.

In large applications the number of tests can be overwhelming, so having programs
to handle the stream of results is very useful. The testrepository package is in-
tended to do just that; it provides the testr program, which you can use to handle
a database of your test run.

$ testr init

$ touch .testr.conf

% python -m subunit.run test scenario | testr load

Ran 4 tests in 0.001s

6.5. TEST STREAMING AND PARALLELISM 105

PASSED (1d=0)

$ testr failing
PASSED (1d=0)

$ testr last

Ran 3 tests in 0.001s
PASSED (id=0)

$ testr slowest

Test id Runtime (s)

test python status code handling(Not found) 0.000
test python status code handling(Server error) 0.000
test python status code handling(Client error) 0.000
$ testr stats

runs=1

Once the subunit stream of tests has been run and loaded inside testrepository, it is

possible to manipulate it easily using the testr command.

Obviously, this is tedious to do by hand each time you want to run tests. Instead,
you should teach testr how it should run your tests, so that it can load the results
itself. This can be accomplished by editing the .testr.conf file at the root of your

project.

Example 6.13 A . testr.conf file

[DEFAULT]

test command=python -m subunit.run discover . $LISTOPT $IDOPTION @
test id option=--load-list $IDFILE @

test list option=--list ©

® Command torunwhen calling testr run

® Command torunto load a test list

6.5. TEST STREAMING AND PARALLELISM 106
©® Command torun to list tests

Thefirstline, test command, is the one that is the most interesting. Now, all that we

need to do to load tests into testrepository and perform them is to run testr run.

Note
If you're accustomed to running nosetests, testr run is now the equivalent com-

mand.

Two other options enable us to run the tests in parallel. This is simple enough to do
- all you need to do is add the - -parallel switch to testr run. Runningyour tests

in parallel can speed up the process considerably.

Example 6.14 Running testr run --parallel

$ testr run --parallel

running=python -m subunit.run discover . --list

running=python -m subunit.run discover . --load-list /tmp/tmpiMqg5Q1l
running=python -m subunit.run discover . --load-list /tmp/tmp7hYEkP
running=python -m subunit.run discover . --load-list /tmp/tmpP_9zBc

running=python -m subunit.run discover .

Ran 26 (+10) tests in 0.029s (-0.001s)

-load-list /tmp/tmpTejc5]

PASSED (id=7, skips=3)

Under the hood, testrruns the test listing operation, splits the test list into several
sublists, and creates a separate Python process to run each sublist of test. By de-
fault, the number of sublists is equal to the number of CPUs in the machine being
used. You can override the number of processes that by adding the - -concurrency
flag.

$ testr run --parallel --concurrency=2

6.6. COVERAGE 107

As you can imagine, there’s a lot of possibilities opened up by tools such as subunit
and testrepository that have only be skimmed through in this section. | believe
it’s worth being familiar with them, because testing can greatly influence the quality
of the software you will produce and release. Having powerful tools like these can

save a lot of time.

testrepository also integrates with setuptools and deploys a testr command for it.
This provides easier integration with setup.py-based workflows - you can, for ex-
ample, document your entire project around setup.py. The command setup.py
testr accepts a few options, such as - -testr-args - which adds more options to

the testrrun, or - -coverage, which will be covered in the next section.

6.6 Coverage

Code coverage is a tool which complements unit testing. It uses code analysis tools
and tracing hooks to determine which lines of your code have been executed; when
used during a unit test run, it can show you which parts of your code base have been

crossed over and which parts have not.

Writing tests is useful; but having a way to know what part of your code you may

have missed is the cherry on the cake.

Obviously, the first thing to do is to install the coverage Python module on your
system. Once this is done you will have access to the coverage program command

from your shell.?

Using coverage in standalone mode is straightforward, and can be useful- it could
lead you to part of your programs that are never run, and which might be "dead
code". In addition, using it while your unit tests are running provides an obvious

benefit: you’ll know which parts of the code are not being tested. The test tools

*The command may also be named python-coverage, if you install coverage through your oper-
ating system installation software. That is the case on Debian, for example.

bjpcjp

bjpcjp

6.6. COVERAGE

we’ve talked about so far are all integrated with coverage.

108

When using nose, you only need to add a few option switches to generate a nice

code coverage output:

Example 6.15 Using nosetests --with-coverage

$ nosetests --cover-package=ceilometer --with-coverage tests/test pipeline «

Py

Name
ceilometer

ceilometer.pipeline

127-128, 188-192, 275-280, 350-362

ceilometer.publisher
ceilometer.sample
ceilometer.transformer
ceilometer.transformer.accumulator

ceilometer.transformer.conversions

TOTAL

Ran 46 tests in 0.170s

OK

12
31
15
17
59

888

o o W ~ W

393

Missing

49, 59, 113, <+«

32-34

81-84
26-32, 35

Adding the - -cover-package option is important, since otherwise you will see ev-

ery Python package used, including standard library or third-party modules. The

output includes the lines of code that are were not run - and which therefore have

no tests. All you need to do now is spawn your favorite text editor and start writing

some.

6.6. COVERAGE 109

But you can do better, and make coverage generate nice HTML reports. Simply add
the --cover-html flag, and the cover directory from which you ran the command
will be populated with HTML pages. Each page will show you which parts of your

source code were or were not run.

6.6. COVERAGE 110

Coverage for ceilometer.publisher : 75%
12 statements 9 run |3 missing |CI excluded

1 & -*. encoding: utrf-8 -*.
2 #
» & Copyright © 2013 Intel Corp.
a4 # Copyright © 2013 eNovance
= #
Author: Yunhong Jiang =vunhong, jiang@intel.com=
. F Julien Danjou =julien@daniolr, info=
-]
Licensed under the Apache License, Version 2.0 (the "License"); wvou may
not use this file except in compliance with the License. You may obtain
1 & a copy of the License at
11
L g http: Awww. apache, orgslicenses/ LICENSE-Z.0
12 #
W # Unless required by applicable law or agreed to in writing, software
15 & distributed under the License is distributed on an "45 IS" BASIS, WITHOUT
16 # WARRANTIES OR CONDITIONS OF ANY KIND, elither express or implied. See the
17 # License for the specific language governing permissions and limitations
12 # under the License.
19

from stevedore Lmport driver

-n | import abc
from ceilometer.openstack.common Import network_utils

Tf| def get_publisher{url, namespace='ceilometer.puhlisher')}:
- ""'"get publisher driver and load it.

2 ‘param URL: URL for the publisher

28 Jparam namespace: Hamespace to use to look for drivers.

nmnn

parse_result = network_utils.urlsplitiurl)

loaded_driver = driver.DriverManager({namespace, parse_result.scheme)
return loaded_driver.driver(parse_result)

34
a5 |class FPublisherBase(object):
""'Base class for plugins that publish the sampler, """

| __metaclass__ = abc.ABCMeta

def __init_ (self, parsed_url):

pass
41
44| i@abc.abstractmethod
4z def publish_samples(self, context, samples):
44 "Publish samples into final conduit."
a5

Figure 6.1: Coverage of ceilometer.publisher

If you want to be that guy, you can use the option --cover-min-percentage=COVE

6.7. USING VIRTUALENV WITH TOX 111

R _MIN PERCENTAGE, which will make the test suite fail if a minimum percentage of

the code is not executed when the test suite is run.

Warning

A code coverage score of 100% doesn’t necessarily mean that the code is entirely tested
and that you can rest. It only proves that your whole code path has been run; there is
no indication that every possible condition has been tested. So while being a respectable

goal, it doesn’t indicate anything conclusive.

When using testrepository, coverage can be run using setuptools integration.

Example 6.16 Using coverage with testrepository

$ python setup.py testr --coverage

This will automatically run your test suite with coverage and generate an HTML re-

port in the cover directory.

You should then use this information to consolidate your test suite and add tests for
any code thatis currently not being run. This is important; it facilitates later project

maintenance, and increases your code’s overall quality.

6.7 Using virtualenv with tox

In Chapter 5, the use of virtual environments is presented and discussed. One of
their main uses s to provide a clean environment for running unit tests. It would be
really sad if you thought that your tests were working, when in fact you were not,

for example, respecting the dependency list.

You could write a script to deploy a virtual environment, install setuptools, and
then install all of the dependencies required for both your application/library run-
time and unit tests. But this is such a common use case that an application dedi-

cated to this task has already been built: tox.

bjpcjp

6.7. USING VIRTUALENV WITH TOX 112

Tox aims to automate and standardize how tests are run in Python. To that end,
it provides everything needed to run an entire test suite in a clean virtual environ-

ment, while alsoinstalling your application to check that the installation works fine.

Before using tox, you need to provide a configuration file. This file is named tox.
ini and should be placed in the root directory of your project, beside your setup.
py file.

$ touch tox.ini

You can now run tox successfully:

% tox

GLOB sdist-make: /home/jd/project/setup.py

python create: /home/jd/project/.tox/python

python inst: /home/jd/project/.tox/dist/project-1.zip

summary

python: commands succeeded

congratulations :)

Obviously this alone is not very useful. In this instance, tox creates a virtual envi-
ronment in .tox/python using its default Python version, uses setup.py to create a
distribution of your package and then installs it inside this virtual environment. No

commands are then run, because we didn’t specify any in the configuration file.

We can change this default behaviour by adding a command that will be run inside
our test environment. Editing tox.ini to include the following:

[testenv]

commands=nosetests

will run the command nosetests will likely fail, since we don’t have nosetests in-
stalled in the virtual environment. We need to list it as part of the dependencies to

be installed.

6.7. USING VIRTUALENV WITH TOX 113

[testenv]
deps=nose

commands=nosetests

When run, tox will now recreate the environment, install the new dependency and
run the command nosetests, which will execute all of our unit tests. Obviously, we
might want to add more dependencies - you can list them in the deps configuration
option, but you can also use the -rfile syntax to read from a file. If you’re using
pbr to manage your setup.py file, you know that it reads the dependencies from a
file called requirements.txt. It is therefore a good idea to tell tox to use that file
too:

[testenv]

deps=nose

-rrequirements.txt

commands=nosetests

The [testenv] section of the file defines the parameters for all virtual environments
managed by tox. But as mentioned previously, tox can manage multiple Python
virtual environments - indeed, it’s possible to run our tests under a Python version
other than the default one by passing the -e flag to tox:

% tox -e py26

GLOB sdist-make: /home/jd/project/setup.py

py26 create: /home/jd/project/.tox/py26

py26 installdeps: nose

py26 inst: /home/jd/project/.tox/dist/rebuildd-1.zip

py26 runtests: commands[0] | nosetests

6.7. USING VIRTUALENV WITH TOX 114

Ran 7 tests in 0.029s

0K

summary

py26: commands succeeded

congratulations :)

By default, tox can simulate many environments: py24, py25, py26, py27, py30, py31,
py32, py33, jython and pypy! You can even add your own. To add an environment or
to create a new one, you just need to add another section named [testenv: envn
ame_1]. If we want to run a different command for one of the environments, it’s easy
with the following tox. ini file:

[testenv]

deps=nose

commands=nosetests

[testenv:py27]

commands=pytest

This only overrides the commands for the py27 environment; so nose will still be
installed as part of the dependencies when running tox -e py27, butthe command

pytest will be run instead.

We can create a new environment with an unsupported version of Python right
away:

[testenv]

deps=nose

commands=nosetests

[testenv:py21]
basepython=python2.1

6.7. USING VIRTUALENV WITH TOX 115

We can now (attempt to) use Python 2.1 to run our test suite - although | don’t think

it will work.

Now, it is likely that you will want to support multiple Python versions. So it would
be great to have tox run all the tests for all the Python versions you want to support
by default. This can be done by specifying the environment list you want to use
when tox is run without arguments:

[tox]

envlist=py26,py27,py33,pypy

[testenv]
deps=nose

commands=nosetests

When tox is launched without any further arguments, all four environments listed
will be created, populated with the dependencies and the application, and then the

command nosetests will be run.

We can also use tox to integrate other tests like flake8, as discussed in Section 1.4.

[tox]

envlist=py26,py27,py33,pypy,peps

[testenv]
deps=nose

commands=nosetests

[testenv:pep8]
deps=flake8

commands=flake8

In this case, the pep8 environment will be run using the default version of Python,

6.8. TESTING POLICY 116

which is probably fine.?

Tip

When running tox, you will spot that all of the environments are built and run in sequence.
f This can often make the process very long. Since the virtual environments are isolated,
nothing prevents you from running tox commands in parallel. This is exactly what the
detox package does, by providing a detox command which runs all of the default envi-

ronments from envlist in parallel. You should pip install it!

6.8 Testing policy

Having testing code embedded in your project is wonderful, but how you run it is
also extremely important. There are too many projects that have test code which

lays around, but which fails to be run for some reason.

While this topic is not strictly limited to Python, | consider it important enough to
emphasize here: you should have a zero tolerance policy on untested code. No code

should be merged unless there is a proper set of unit tests to cover it.

The minimum that you should aim for is to be sure that each of the commits you

push pass all the tests. Having an automated way to do that is even better.

For example, OpenStack relies on a specific workflow based on Gerrit, Jenkins and
Zuul. Each commit pushed goes through the code review system provided by Gerrit,
and Zuulisin charge of running a set of testing jobs against it using Jenkins. Jenkins
runs the unit testing, and various higher-level functional tests for each project. This
ensures that the submitted patches pass all tests. Code reviewing by a couple of

developers makes sure that all code that is committed has associated unit tests.

If you are using the popular GitHub hosting service, Travis Cl provides awaytoruna

test after each push or merge, or against pull requests that are submitted. Whileitis

*You can still specify the basepython option if you want to change that

bjpcjp

bjpcjp

bjpcjp

6.9. INTERVIEW WITH ROBERT COLLINS 117

unfortunate that this done post-push, it’s still a fantastic way to track regressions.
Travis supports all significant Python versions out of the box, and it’s possible to
customize it to a high degree. Once you’ve activated Travis on your project via their

Web interface, adding a file is simple: . travis.yml does the job for you.

Example 6.17 A . travis.yml example file

language: python
python:
- "2.7"
- "3.3"
command to install dependencies
install: "pip install -r requirements.txt --use-mirrors"
command to run tests

script: nosetests

Wherever your code is hosted, these days it is always possible to aim for some sort
of automatic testing of your software, and to make sure that you are going forward

with your project - not going backward by adding more bugs.

6.9 Interview with Robert Collins

You may have already used one of Robert’s programs, without knowing - he is,
among other things, the original author of the Bazaar distributed version control
system. Today, he is a Distinguished Technologist at HP Cloud Services, where he
works on OpenStack. Robert has written a lot of the Python tools described in this

book, such as fixtures, testscenarios, testrespository and even python-subunit.

bjpcjp

6.9. INTERVIEW WITH ROBERT COLLINS 118

What kind of testing policy would you advise using? When is it accept-
able not to test code?

| think it’s an engineering trade-off - considering the likelihood of fail-
ure slipping through to production undetected, the cost of an undetected
failure of that component, the size and cohesion of the team doing the
work... Take OpenStack - 1600 contributors — a nuanced policy is very
hard to work with there, as so many people have opinions. Generally
speaking, there should be some automated check as part of landing in
trunk that the code will do what it is intended to do and that what it is in-
tended to do is what is needed. Often that speaks to requiring functional
tests that might be in different code bases. Unit tests are great for speed
and pinning down corner cases. | thinkit’s ok to vary the balance between

styles of testing, as long as there is testing.

Where the cost of testing is very high and the returns are very low, | think
it’s fine to make an informed decision not to test, but that’s a relatively
rare situation: most things can be tested fairly cheaply, and the benefit of

catching errors early is usually quite high.

What are the best strategies to put in place when writing Python code

in order to make testing easier, and improve its quality?

Separate out concerns - don’t do multiple things in one place; this makes
reuse easier, and that makes it easier to put test doubles in place. Take a
pure functional approachwhenyou can (e.g. in asingle method either cal-

culate something, or change some state, but where possible avoid doing

bjpcjp

bjpcjp

6.9. INTERVIEW WITH ROBERT COLLINS 119

both). That way you can test all of the calculating behaviour without deal-
ing with state changes - such as writing to a database, talking to an HTTP
server, etc. The benefit works the other way around too - you can replace
the calculation logic for tests to provoke corner case behaviour and detect
via mocks / test doubles that the expected state propagation happens as
desired. The most heinous stuff to test IME is deeply layered stacks with
complex cross-layer behavioural dependencies. There you want to evolve
the code so that the contract between layers is simple, predictable, and

most usefully for testing - replaceable.

In your opinion, what’s the best way to organize unit tests in source

code?

Having a hierarchy like $R00T/$PACKAGE/tests - but | do just one for a
whole source tree (vs e.g. $RO0T/$PACKAGE/$SUBPACKAGE/tests).

Within tests, | often mirror the structure of the rest of the source tree:
$RO0T/$PACKAGE/foo.py would be tested in $RO0T/$PACKAGE/tests/tes
t foo.py.

There should be no imports from tests by the rest of the tree except per-
haps a test_suite/load_tests function in the top level init . This per-

mits easily detaching the tests for small footprint installations.

What are the tools that can be employed to build functional tests in
Python?

| just use whichever flavour of unittest is in use in the project: it’s suf-
ficiently flexible (particularly with things like testresources and parallel

runners) to cater for most needs.

How do you envision the future of unit testing libraries and frame-

works in Python?

The big challenges | see are:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

6.9.

INTERVIEW WITH ROBERT COLLINS

« the continued expansion of parallel capabilities in new machines - 4
CPU phones now. Existing unit test internal APIs aren’t optimised for

parallel workloads. My StreamResult work is aimed directly at this;

« more complexscheduling support - aless ugly solution forthe problems

that class and module scoped setup aim at;

« findingsome way to consolidate the large variety of frameworks we have
today: itwould be greatto be able to get a consolidated view across mul-
tiple projects - for integration testing - that have different test runners

in use.

120

7 Methods and decorators

Python provides decorators as a handy way to modify functions. They were first
introduced with classmethod() and staticmethod() in Python 2.2, but were over-
hauled through PEP 318 into something more flexible and readable. Python pro-
vides a few decorators (including the two mentioned above) right out of the box,
but it seems that most developers don’t understand how they actually work behind

the scenes. This chapter aims to change that.

7.1 Creating decorators

A decorator is essentially a function that takes another function as an argument
and replaces it with a new, modified function. Odds are good you’ve already used
decorators to make your own wrapper functions. The simplest possible decorator
is the identity function, which does nothing except return the original function:

def identity(f):

return f

You can then use your decorator like this:

@identity
def foo():

return 'bar'

bjpcjp

7.1. CREATING DECORATORS 122

Which is the same as:

def foo():

return 'bar'

foo = identity(foo)

This decorator is useless, but it works. It just does nothing.

Example 7.1 A registering decorator

_functions = {}

def register(f):
global functions
_functions[f. name] = f

return f

@register def foo(): return bar

In this example, we register and store functions in a dictionary so we can retrieve

them by their name later from that dictionary.

In the following sections, I’'ll explain the standard decorators that Python provides

and how (and when) to use them.

The primary use case for decorators is factoring common code that needs to be
called before, after, or around multiple function. If you ever wrote Emacs Lisp code
you may have used defadvice that allows you to define code called around a func-
tion. Same things apply for developers having used the fabulous method combina-
tions brought by CLOS .

Consider a set of functions that are called and need to check that the user name
that they receive as argument:

class Store(object):

def get food(self, username, food):

'The Common Lisp Object System

bjpcjp

7.1. CREATING DECORATORS 123

if username !'= 'admin':
raise Exception("This user is not allowed to get food")

return self.storage.get(food)

def put food(self, username, food):
if username != 'admin':
raise Exception("This user is not allowed to get food")

self.storage.put(food)

The obvious first step here is to factor the checking code:
def check is admin(username):
if username != ‘admin':

raise Exception("This user is not allowed to get food")

class Store(object):
def get food(self, username, food):
check is admin(username)

return self.storage.get(food)

def put food(self, username, food):
check is admin(username)

self.storage.put(food)

Now our code looks a bit cleaner. But we can do even better if we use a decorator:
def check is admin(f):
def wrapper(*args, **kwargs):
if kwargs.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)

return wrapper

7.1. CREATING DECORATORS 124

class Store(object):
@check is admin
def get food(self, username, food):

return self.storage.get(food)

@check is admin
def put food(self, username, food):

self.storage.put(food)

Using decorators like this makes it easier to manage common functionality. This is
probably old hat to you if you have any serious Python experience, but what you
might not realize is that this naive approach to implementing decorators has some

major drawbacks.

As mentioned before, a decorator replaces the original function with a new one built
on-the-fly. However, this new function lacks many of the attributes of the original
function, such as its docstring and its name:
>>> def is admin(f):
def wrapper(*args, **kwargs):
if kwargs.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)

return wrapper

>>> def foobar(username="someone"):
"""Do crazy stuff."""

pass

>>> foobar.func_doc
‘Do crazy stuff.'

>>> foobar. name

bjpcjp

bjpcjp

7.1. CREATING DECORATORS 125

‘foobar'
>>> @is_admin
. def foobar(username="someone"):
“""Do crazy stuff."""

pass

>>> foobar. doc
>>> foobar. name

'wrapper'

Fortunately, the functools module included in Python solves this problem with the
update wrapper function, which copies these attributes to the wrapper itself. The

source code of update wrapper is self-explanatory:

Example 7.2 Source code of functools.update wrapper in Python 3.3

WRAPPER ASSIGNMENTS = (' module ', ' name ', ' qualname ', ' doc ',
' _annotations ')
WRAPPER UPDATES = (' dict ',)
def update wrapper(wrapper,
wrapped,
assigned = WRAPPER ASSIGNMENTS,
updated = WRAPPER UPDATES):
wrapper. wrapped = wrapped
for attr in assigned:
try:
value = getattr(wrapped, attr)
except AttributeError:
pass
else:
setattr(wrapper, attr, value)

for attr in updated:

bjpcjp

bjpcjp

7.1. CREATING DECORATORS 126

getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
Return the wrapper so this can be used as a decorator via partial()

return wrapper

If we take our previous example and use this function to update our wrapper, things

work much more nicely:

>>> def foobar(username="someone"):
n IIIIDO CraZy Stuff." mn

pass

>>> foobar = functools.update wrapper(is admin, foobar)
>>> foobar. name

‘foobar'

>>> foobar. doc

‘Do crazy stuff.'

It can get tedious to use update wrapper manually when creating decorators, so

functools provides a decorator for decorators called wraps:

Example 7.3 Using functools.wraps

import functools

def check is admin(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
if kwargs.get('username') !'= 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)

return wrapper

class Store(object):

bjpcjp

7.1. CREATING DECORATORS 127

@check is admin
def get food(self, username, food):

return self.storage.get(food)

In our examples so far, we’ve always assumed that the decorated function would
have a username passed to it as a keyword argument, but that might not always
be the case. With this in mind, it’s a better idea to build a smarter version of our
decorator that can look at the decorated function’s arguments and pull out what it

needs.

To that end, the inspect module allows us to retrieve a function’s signature and

operate on it:

Example 7.4 Retrieving function arguments using inspect

import functools

import inspect

def check is admin(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
func args = inspect.getcallargs(f, *args, **kwargs)
if func args.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)

return wrapper

@check is admin
def get food(username, type='chocolate'):

return type + nom nom nom!"

The function that does the heavy lifting hereis inspect.getcallargs, which returns

a dictionary containing the names and values of the arguments as key-value pairs.

bjpcjp

bjpcjp

7.2. HOWMETHODS WORK IN PYTHON 128

In our example, this function returns {'username':'admin', 'type':'chocolat
e'}. Thismeansthat ourdecorator doesn’t have to checkiif the username parameter

is a positional or a keyword argument: all it has to do is look for it in the dictionary.

7.2 How methods work in Python

You’ve probably written dozens of methods and thought nothing of them before
now, but to understand what certain decorators do, you need to know how methods

work behind the scenes.

A method is a function that is stored as a class attribute. Let’s have a look at what

happens when we try to access such an attribute directly:

Example 7.5 A Python 2 method

>>> class Pizza(object):
def init (self, size):
self.size = size
def get size(self):

return self.size

>>> Pizza.get size

<unbound method Pizza.get size>

Python 2tellsusthattheget sizeattribute ofthePizzaclassisanunbound method.

Example 7.6 A Python 3 method

>>> class Pizza(object):
def init (self, size):
self.size = size
def get size(self):

return self.size

bjpcjp

7.2. HOWMETHODS WORK IN PYTHON 129

>>> Pizza.get size

<function Pizza.get size at 0x7fdbfdla8b90>

In Python 3, the concept of unbound method has been removed entirely, and we’re

told get sizeis afunction.

The principleis the samein both cases: get _sizeisafunctionthatis nottiedtoany

particular object, and Python will raise an error if we try to call it:

Example 7.7 Calling unbound get_size in Python 2

>>> Pizza.get size()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unbound method get size() must be called with Pizza instance as +«

first argument (got nothing instead)

Example 7.8 Calling unbound get_size in Python 3

>>> Pizza.get size()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: get size() missing 1 required positional argument: 'self’

Python 2 rejects the method call because it’s unbound; Python 3 permits the call,
but complains that we haven’t provided the necessary self argument. This makes
Python 3 a bit more flexible: not only can we pass an arbitrary instance of the class
to the method if we want to, but we can pass any object as long as it has the prop-
erties that the method expects to find:

>>> Pizza.get size(Pizza(42))

42

And it works, just as promised, though it’s not very convenient: we have to refer to

the class every time we want to call one of its methods.

bjpcjp

7.2. HOWMETHODS WORK IN PYTHON 130

So Python goes the extra mile for us by binding a class’s methods to its instances.
In other words, we can access get size from anyPizza, and better still, Python will

automatically pass the object itself to the method’s self parameter:

Example 7.9 Calling bound get size

>>> Pizza(42).get size
<bound method Pizza.get size of < main_ .Pizza object at 0x7f3138827910>>
>>> Pizza(42).get size()

42

As expected, we don’t have to provide any argument to get size, sinceit’s a bound
method: its self argumentis automatically set to our Pizza instance. Here’s a even
better example:

>>> m = Pizza(42).get size

>>> m()

42

You don’t even have to keep a reference to your Pizza object as long as you have a
reference to the bound method. And if you have a reference to a method but you
want to find out which object it’s bound to, you can just check the method’s _ sel
f __ property:

>>> m = Pizza(42).get size

>>> m. self

< main_ .Pizza object at 0x7f3138827910>

>>>m == m. self .get size

True

Obviously, we still have a reference to our object, and we can find it back if we want.

7.3. STATIC METHODS 131

7.3 Static methods

Static methods are methods which belong to a class, but don’t actually operate on

class instances. For example:

Example 7.10 @staticmethod usage

class Pizza(object):
@staticmethod
def mix ingredients(x, y):

return x + vy

def cook(self):

return self.mix ingredients(self.cheese, self.vegetables)

You could write mix_ingredients as a non-static method if you wanted to, but it
would take a self argument that would never actually be used. The @staticmethod

decorator gives us several things:

« Python doesn’t have to instantiate a bound method for each Pizza object we cre-
ate. Bound methods are objects, too, and creating them has a cost. Using a static

method lets us avoid that:

>>> Pizza().cook is Pizza().cook

False

>>> Pizza().mix_ingredients is Pizza.mix ingredients
True

>>> Pizza().mix_ingredients 1is Pizza().mix ingredients

True

« It improves the readability of the code: when we see @staticmethod, we know

that the method does not depend on the state of the object.

7.4. CLASS METHOD 132

« We can override our static methods in subclasses. If we used a mix_ingredie
nts function defined at the top level of our module, a class inheriting from Pizza
wouldn’t be able to change the way we mix ingredients for our pizza without over-

riding the cook method itself.

7.4 Class method

Class methods are methods that are bound directly to a class rather than its in-

stances:

>>> class Pizza(object):
radius = 42
@classmethod
def get radius(cls):

return cls.radius

>>> Pizza.get radius

<bound method type.get radius of <class ' main .Pizza'>>
>>> Pizza().get radius

<bound method type.get radius of <class ' main .Pizza'>>
>>> Pizza.get radius is Pizza().get radius

True

>>> Pizza.get radius()

42

However you choose to access this method, it will be always bound to the class it
is attached to, and its first argument will be the class itself (remember, classes are

objects too!)

Class methods are mostly useful for creating factory methods - methods which in-

stantiate objectsin a specific fashion. If we used a@staticmethod instead, we would

7.5. ABSTRACT METHODS 133

have to hard-code the Pizza class name in our method, making any class inheriting
from Pizza unable to use our factory for its own purposes.
class Pizza(object):

def init (self, ingredients):

self.ingredients = ingredients

@classmethod
def from fridge(cls, fridge):

return cls(fridge.get cheese() + fridge.get vegetables())

In this case, we provide a from fridge factory method that we can pass a Fridge
object to. If we call this method with something like Pizza.from fridge(myfrid
ge), it will return a brand-new Pizza with ingredients taken from what’s available

inmyfridge.

7.5 Abstract methods

An abstract method is a method defined in a base class which may or may not ac-
tually provide any implementation. The simplest way to write an abstract method
in Python is:
class Pizza(object):

@staticmethod

def get radius():

raise NotImplementedError

Any classinheriting from Pizza should implementand overridetheget radius method;

otherwise, calling the method will raise an exception.

This particular way of implementing abstract methods has a drawback: if you write
a class that inherits from Pizza and forget to implement get radius, the error will

only be raised if you try to use that method at runtime.

7.5. ABSTRACT METHODS 134

Example 7.11 Implementing an abstract method

>>> Pizza()
< main_ .Pizza object at 0x7fb747353d90>
>>> Pizza().get radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in get radius

NotImplementedError

If youimplementyour abstract methods using Python’s built-in abc module instead,

you’ll get an early warning if you try to instantiate an object with abstract methods:

Example 7.12 Implementing an abstract method using abc

import abc

class BasePizza(object):

~_metaclass = abc.ABCMeta

@abc.abstractmethod
def get radius(self):

"""Method that should do something."""

When you use abc and its special class, if you try to instantiate a BasePizza or a

class inheriting from it that doesn’t override get radius, you’ll get a TypeError:

>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class BasePizza with abstract methods <«

get radius

7.6. MIXING STATIC, CLASS, AND ABSTRACT METHODS 135

f Note
The metaclass declaration changed between Python 2 and Python 3. The previous ex-

amples only work with Python 2 for this reason.

7.6 Mixing static, class, and abstract methods

Each of these decorators is useful on its own, but the time may come when you’ll

have to use them together. Here are some tips that will help you with that.

An abstract method’s prototype isn’t set in stone. When you actually implement
the method, there’s nothing stopping you from extending the argument list as you

see fit:

import abc

class BasePizza(object):

__metaclass = abc.ABCMeta

@abc.abstractmethod
def get ingredients(self):

"""Returns the ingredient list."""

class Calzone(BasePizza):
def get ingredients(self, with egg=False):
egg = Egg() if with egg else None

return self.ingredients + [egg]

We can define Calzone's methods any way we like, as long as they still support the
interface we define in the BasePizza class. This includes implementing them as

class or static methods:

7.6. MIXING STATIC, CLASS, AND ABSTRACT METHODS

import abc

class BasePizza(object):

__metaclass = abc.ABCMeta

@abc.abstractmethod
def get ingredients(self):

"""Returns the ingredient list."""

class DietPizza(BasePizza):
@staticmethod
def get ingredients():

return None

136

Even though our static get ingredients method doesn’t return a result based on

the object’s state, it still supports our abstract BasePizza class’s interface, so it’s

still valid.

Starting with Python 3 (this won’t work as expected in Python 2; see issue 5867),

it’s also possible to use the @staticmethod and @classmethod decorators on top of

@abstractmethod:

Example 7.13 Mixing @classmethod and @abstractmethod

import abc

class BasePizza(object):

__metaclass = abc.ABCMeta

ingredients = ['cheese']

@classmethod

7.6. MIXING STATIC, CLASS, AND ABSTRACT METHODS 137

@abc.abstractmethod
def get ingredients(cls):
"""Returns the ingredient list."""

return cls.ingredients

Notethatdefiningget ingredientsasaclass methodinBasePizza likethisdoesn’t
force its subclasses to define it as a class method as well. The same would apply if
we’d defined it as a static method: there’s no way to force subclasses to implement

abstract methods as a specific kind of method.

But wait - here we have an implementation in an abstract method. Can we do that?
Yep - Python doesn’t have a problem with it! Unlike Java, you can put code in your

abstract methods and call it using super():

Example 7.14 Using super() with abstract methods

import abc

class BasePizza(object):

__metaclass = abc.ABCMeta

default ingredients = ['cheese']

@classmethod
@abc.abstractmethod
def get ingredients(cls):
"""Returns the default ingredient list."""

return cls.default ingredients

class DietPizza(BasePizza):
def get ingredients(self):

return [Egg()] + super(DietPizza, self).get ingredients()

7.7. THE TRUTHABOUT SUPER 138

In this example, every Pizza you make that inherits from BasePizza will have to
override the get ingredients method, but it will have access to the base class’s

default mechanism for getting the ingredients list.

7.7 The truth about super

From the earliest days of Python, developers have been able to use both single and
multiple inheritance to extend their classes. However, many developers don’t seem
to understand how these mechanisms actually work, and the associated super()

method that is associated with it.

Thereis pros and cons of single and multiple inheritance, composition or even duck
typing would be out of topic for this book, though if you are not familiar with these
notions | suggest that you read about them to have a view - and build your own

opinion.

Multiple inheritance is still used in many places, and especially in code where the
mixin pattern is involved. That’s why it’s still important to know about it, and be-

cause it is part of Python’s core.

t Note
A mixin is a class that inherits from two or more other classes, combining their features

together.

As you should know by now, classes are objects in Python. The construct used to
create a class is a special statement that you should be well familiar with: class

classname(expression of inheritance).

The part in parentheses is a Python expression that returns the list of class objects
to be used as the class’s parents. Normally you’d specify them directly, but you

could also write something like:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

7.7. THE TRUTHABOUT SUPER 139

>>> def parent():

return object

>>> class A(parent()):

pass

>>> A.mro()

[<class ' main .A'>, <type 'object'>]

And it works as expected: class Ais defined with object asits parent class. The class
method mro () returns the method resolution order used to resolve attributes. The
current MRO system was first implemented in Python 2.3, and its internal workings

are described in the Python 2.3 release notes.

You already know that the canonical way to call a method in a parent class is by
using the super() function, but what you probably don’t know is that super() is
actually a constructor, and you instantiate a super object each time you call it. It
takes either one or two arguments: the first argument is a class, and the second

argument is either a subclass or an instance of the first argument.

The object returned by the constructor functions as a proxy for the parent classes
of the first argument. It has its own getattribute method that iterates over
the classes in the MRO list and returns the first matching attribute it finds:
>>> class A(object):

bar = 42

def foo(self):

pass

>>> class B(object):

bar = 0

bjpcjp

bjpcjp

7.7. THE TRUTHABOUT SUPER 140

>>> class C(A, B):

xXyz = 'abc

>>> C.mro()

[<class ' main_.C'>, <class ' main_.A'>, <class ' main_.B'>, <type ' «
object'>]

>>> super(C, C()).bar

42

>>> super(C, C()).foo

<bound method C.foo of < main .C object at 0x7f0299255a90>>

>>> super(B). self

>>> super(B, B()). self

< main_.B object at

When requesting an attribute of the super object of aninstance of C, it walks through

the MRO list and return the attribute from the first class having it.

In the previous example, we used a bound super object; i.e., we called super with
two arguments. If we call super() with only one argument, it returns an unbound

super object instead:

>>> super(C)

<super: <class 'C'>, NULL>

Since this object is unbound, you can’t use it to access class attributes:

>>> super(C).foo
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'super' object has no attribute 'foo'
>>> super(C).bar
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

7.7. THE TRUTHABOUT SUPER 141

AttributeError: 'super' object has no attribute 'bar’
>>> super(C).xyz
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'super' object has no attribute 'xyz'

At first glance, it might seem like this kind of super object is useless, but the su-
per class implements the descriptor protocol (i.e. get) in a way that makes
unbound super objects useful as class attributes:

>>> class D(C):

sup = super(C)

>>> D().sup

<super: <class 'C'>, <D object>>

>>> D().sup.foo

<bound method D.foo of < main .D object at 0x7f0299255bd0>>
>>> D().sup.bar

42

The unbound super object’s get method is called using the instance and the
attribute name as arguments (super(C). get (D(), 'foo')), allowingitto find

and resolve foo.

Note

Even if you've never heard of the descriptor protocol, you've probably used it through
the @property decorator without knowing it. It's the mechanism in Python that allows
an object that's stored as an attribute to return something other than itself. This protocol
isn’t covered in this book, but you can find out more about it in the Python data model

documentation.

There are plenty of situations where using super can be tricky, such as handling

bjpcjp

7.7. THE TRUTHABOUT SUPER 142

different method signatures along the inheritance chain. Unfortunately, there’s no
silver bullet for that, apart from using tricks like having all your methods accept

their arguments using *args, **kwargs.

In Python 3, super () picked up a little bit of magic: it can now be called from within
a method without any arguments. When no arguments are passed to super(), it
automatically searches the stack frame for them:
class B(A):

def foo(self):

super().foo()

super is the standard way of accessing parent attributes in subclasses, and you
should always use it. It allows cooperative calls of parent methods without any sur-
prises, such as parent methods not being called or being called twice when using

multiple inheritance.

bjpcjp

8 Functional programming
e

Functional programming might not be the first thing you think of when you think of
Python, but the support is there, and it’s quite extensive. Many Python developers
don’tseem to realize this, though, whichis a shame: with few exceptions, functional

programming allows you to write more concise and efficient code.

When you write code using functional style, your functions are designed not to have
side effects: they take an input and produce an output without keeping state or
modifying anything not reflected in the return value. Functions thatfollow thisideal

are referred to as purely functional.

A non-pure function
def remove last item(mylist):
"""Removes the last item from a list."""

mylist.pop(-1) # This modifies mylist

A pure function

def butlast(mylist):
"""Like butlast in Lisp; returns the list without the last element."""

return mylist[:-1] # This returns a copy of mylist

The practical advantages of functional programming include:

- Formal provability; admittedly, this is a pure theoretical advantages, nobody is

going to mathematically prove a Python program.

8.1. GENERATORS 144

« Modularity; writing functionally forces a certain degree of separation in solving
your problems and eases reuse in other contexts.

« Brevity. Functional programming is often less verbose than other paradigms.

« Concurrency. Purely functional functions are thread-safe and can run concur-
rently. While it’s not yet the case in Python, some functional languages do this

automatically, which can be a big help if you ever need to scale your application.

- Testability. It’s a simple matter to test a functional program: all you need is a set

of inputs and an expected set of outputs. They are idempotent.

Tip

If you want to get serious about functional programming, take my advice: take a break
from Python and learn Lisp. | know it might sound strange to talk about Lisp in a Python
book, but playing with Lisp for several years is what taught me how to "think functional.”
You simply won’t develop the thought processes necessary to make full use of functional
programming if all your experience comes from imperative and object-oriented program-
ming. Lisp isn’t purely functional itself, but there’s more focus on functional programming

than you'll find in Python.

8.1 Generators

A generatoris an object that returns a value on each call of its next () method until it
raises StopIteration. They were first introduced in PEP 255 and offer an easy way

to create objects that implement the iterator protocol.

Allyou have to do to create a generator is write a normal Python function that con-
tains a yield statement. Python will detect the use of yield and tag the function as
a generator. When the function’s execution reaches a yield statement, it returns a

value as with a return statement, but with one notable difference: the interpreter

8.1. GENERATORS 145

will save a stack reference, which will be used to resume the function’s execution

the next time next is called.

Creating a generator

>> def mygenerator():
yield 1
yield 2
yield 'a’

>>> mygenerator()

<generator object mygenerator at 0x10d77fa50>
>>> g = mygenerator()

>>> next(q)

1

>>> next(g)

2

>>> next(g)

a
>>> next(g)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

You can check whether a function is a generator or not yourself by using inspect.
isgeneratorfunction:
>>> import inspect

>>> def mygenerator():

yield 1

>>> inspect.isgeneratorfunction(mygenerator)

True

bjpcjp

8.1. GENERATORS 146

>>> inspect.isgeneratorfunction(sum)

False

Reading the source code of inspect.isgeneratorfunction gives us some insight

into the tagging mentioned earlier:

Source code of inspect.isgeneratorfunction

def isgeneratorfunction(object):

"""Return true if the object is a user-defined generator function.
Generator function objects provides same attributes as functions.

See help(isfunction) for attributes listing."""
return bool((isfunction(object) or ismethod(object)) and

object.func code.co flags & CO GENERATOR)

Python 3 provides another useful function, inspect.getgeneratorstate:

>>> import inspect
>>> def mygenerator():

yield 1

>>> gen = mygenerator()

>>> gen

<generator object mygenerator at 0x7f94b44fec30>
>>> inspect.getgeneratorstate(gen)

'GEN CREATED'

>>> next(gen)

1

>>> inspect.getgeneratorstate(gen)
"GEN_SUSPENDED'

>>> next(gen)

bjpcjp

bjpcjp

8.1. GENERATORS 147

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

>>> inspect.getgeneratorstate(gen)

"GEN_CLOSED'

This function gives us the current state of a generator, allowing us to determine
whether it’s waiting to be run for the first time (GEN_CREATED), currently being exe-
cuted by the interpreter (GEN_RUNNING), waiting to be resumed by a call to next ()
(GEN_SUSPENDED), or finished running (GEN_CLOSED).

In Python, generators are built by keeping a reference of the stack when a function
yield something, resuming this stack when needed, i.e. when a call to next() is

executed again.

When you iterate over any kind of data, the obvious approach is to build the entire
list first, which is often wasteful in terms of memory consumption. Say we want to
find the first number between 1 and 10,000,000 that’s equal to 50,000. Sounds easy,
doesn’t it? Let’s make this a challenge. We’ll run Python with a memory constraint
of 128 MB:

$ ulimit -v 131072

$ python
>>> a = list(range(10000000))

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

MemoryError

Uh-oh. Turns out we can’t build a list of ten million items with only 128 MB of mem-

ory!

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

8.1. GENERATORS 148

f Warning
In Python 3, range() returns a generator; to get a generator in Python 2, you have to

use xrange () instead. (This function doesn't exist in Python 3, since it's redundant.)

Let’s try using a generator instead:

$ python
>>> for value in xrange(10000000):

if value == 50000:
print("Found it")

break

Found it

This time, our program executes without issue. The range() function returns an
iterable object that dynamically generates our list of integers. Better still, since we
were only interested in the 50,000th number, the generator only had to generate
50,000 numbers.

Generators allow you to handle large data sets with minimal consumption of mem-
ory and processing cycles by generating values on-the-fly. Whenever you need to
work with a huge number of values, generators can help ensure you handle them

efficiently.

yield also has a less commonly used feature: it can return a value like a function

call. This allows us to pass a value to a generator by calling its send () method:

Example 8.1 yield returning a value

def shorten(string list):
length = len(string list[0])
for s in string list:

length = yield s[:length]

bjpcjp

bjpcjp

8.1. GENERATORS 149

mystringlist = ['loremipsum', 'dolorsit', 'ametfoobar']
shortstringlist = shorten(mystringlist)
result = []
try:
s = next(shortstringlist)
result.append(s)
while True:
number of vowels = len(filter(lambda letter: letter in ‘'aeiou', s))
Truncate the next string depending
on the number of vowels in the previous one
s = shortstringlist.send(number of vowels)
result.append(s)
except StopIteration:

pass

In this example, we’ve written a function called shorten that takes a list of strings
and returns a list consisting of those same strings, only truncated. The length of
each string is determined by the number of vowels in the previous string: "loremip-
sum" has four vowels, so the second value returned by the generator will be the
first four letters of "dolorsit"; "dolo" has only two vowels, so "ametfoobar" will
be truncated to its first two letters ("am"). The generator then stops and raises
StopIteration. Our generator thus returns:

['loremipsum', ‘'dolo', 'am']

Using yield and send() in this fashion allows Python generators to function like
coroutines seen in Lua and other languages.

8.2. LIST COMPREHENSIONS 150

Tip
PEP 289 introduced generator expressions, making it possible to build one-line generators
using a syntax similar to list comprehension:
f >>> (x.upper() for x in ['hello', 'world'])
<generator object <genexpr> at 0x7ffab3832fa0>
>>> gen = (x.upper() for x in ['hello', 'world'])

>>> list(gen)

['HELLO', 'WORLD']

8.2 List comprehensions

List comprehension, or listcomp for short, allows you to define a list’s contents in-
line with its declaration:

Without list comprehension
>>> X = []
>>> for i in (1, 2, 3):

X.append(1i)

>>> X

(1, 2, 3]

With list comprehension

>>> x = [i for i in (1, 2, 3)]
>>> X

[1, 2, 3]

You can use multiple for statements together and use if statements to filter out

items:

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 151

x = [word.capitalize()
for line in ("hello world?", "world!", "or not")
for word in line.split()
if not word.startswith("or")]

>>> X

['Hello', 'World?', 'World!', 'Not']

Using list comprehension rather than for loops is a neat way to quickly define lists.
Since we’re still talking about functional programming, it’s worth noting that lists
built through list comprehension can’t rely on the program’s state. ' This generally
makes them more concise and easier to read than lists made without list compre-
hension.

Note

There’s also syntax for building dictionaries or sets in the same fashion:

>>> {x:x.upper() for x in ['hello', 'world']}
{'world': 'WORLD', 'hello': 'HELLO'}

>>> {x.upper() for x in ['hello', 'world']}

set(['WORLD', 'HELLO'])

Note that this only works in Python 2.7 and onward.

8.3 Functional functions functioning

Python includes a number of tools for functional programming. These built-in func-

tions cover the basics:

« map(function, iterable) applies functiontoeachiteminiterable andreturns

either a list in Python 2 or an iterable map object in Python 3:

'Technically they can, but that’s really not how they’re supposed to work.

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 152

map usage in Python 3

>>> map(lambda x: x + "bzz!", ["I think", "I'm good"])

<map object at O0x7fe710labddo>

>>> list(map(lambda x: x + "bzz!", ["I think", "I'm good"]))
['I thinkbzz!', "I'm goodbzz!"]

o filter(function or None, iterable) filters the items in iterable based on
the result returned by function, and returns either a list in Python 2, or better, an

iterable filter object in Python 3:

Example 8.2 filter usage in Python 3

>>> filter(lambda x: x.startswith("I "), ["I think", "I'm good"])
<filter object at 0x7f9a0d636dd0o>

>>> list(filter(lambda x: x.startswith("I "), ["I think", "I'm good"]))
['I think']

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 153

Tip

You can write a function equivalent to filter or map using generators and list compre-
hension:

Equivalent of map using list comprehension

>>> (X + "bzz!" for x in ["I think", "I'm good"])

<generator object <genexpr> at 0x7f9a0d697dcO>

>>> [x + "bzz!" for x in ["I think", "I'm good"]]

['I thinkbzz!', "I'm goodbzz!"]

Equivalent of filter using list comprehension

>>> (x for x in ["I think", "I'm good"] if x.startswith("I "))
<generator object <genexpr> at 0x7f9a0d697dc0O>
>>> [x for x in ["I think", "I'm good"] if x.startswith("I ")]

['T think']

Using generators like this in Python 2 will give you an iterable object rather than a list, just

like the map and filter functions in Python 3.

« enumerate(iterable[, start]) returnsan iterable enumerate object that yields
a sequence of tuples, each consisting of an integer index (starting with start, if
provided) and the corresponding item in iterable. It’s useful when you need to
write code that refers to array indexes. For example, instead of writing this:

i=0

while i < len(mylist):

print("Item %d: %s" % (i, mylist[i]))

i+=1

You could write this:

for i, item in enumerate(mylist):

print("Item %d: %s" % (i, item))

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 154

« sorted(iterable, key=None, reverse=False) returns a sorted version of itera
ble. The key argument allows you to provide a function that returns the value to

sort on.

« any(iterable) and all(iterable) both return a boolean depending on the val-

ues returned by iterable. These functions are equivalent to:

def all(iterable):
for x in iterable:
if not x:
return False

return True

def any(iterable):
for x in iterable:
if x:
return True

return False

These functions are useful for checking whether any or all of the valuesin aniterable
satisfy a given condition:
mylist = [0, 1, 3, -1]
if all(map(lambda x: x > 0, mylist)):
print("All items are greater than 0")
if any(map(lambda x: x > 0, mylist)):

print("At least one item is greater than 0")

e zip(iterl [,iter2 [...1]) takes multiple sequences and combines them into
tuples. It’s useful when you need to combine a list of keys and a list of values into
a dict. Like the other functions described above, it returns a list in Python 2 and

an iterable in Python 3:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING

>>> keys = ["foobar", "barzz", "ba!"]

>>> map(len, keys)

<map object at 0x7fcl1l686100d0>

>>> zip(keys, map(len, keys))

<zip object at 0x7fcl6860d440>

>>> list(zip(keys, map(len, keys)))
[('foobar', 6), ('barzz', 5), ('ba'!', 3)]
>>> dict(zip(keys, map(len, keys)))
{'foobar': 6, 'barzz': 5, 'ba!': 3}

155

You might have noticed by now how the return types differ between Python 2 and

Python 3. Most of Python’s purely functional built-in functions return a list rather

than an iterable in Python 2, making them less memory-efficient than their Python

3.xequivalents. If you’re planning to write code using these functions, keep in mind

that you’ll get the most benefit out of them in Python 3. If you’re stuck to Python 2,

don’t despair yet: the itertools module from the standard library provides an it-

erator based version of many of these functions (itertools.izip, itertoolz. imap,

itertools.ifilter, etc).

There’s still one important tool missing from this list, however. One common task

when working with lists is finding the first item that satisfies a specific condition.

This is usually accomplished with a function like this:

def first positive number(numbers):
for n in numbers:
if n > 0:

return n

We can also write this in functional style:

def first(predicate, items):

for item in items:

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 156

if predicate(item):

return item

first(lambda x: x >0, [-1, 0, 1, 2])

Or more concisely:

Less efficient

list(filter(lambda x: x > 0, [-1, 0, 1, 2]))[0] @

Efficient but for Python 3

next(filter(lambda x: x >0, [-1, 0, 1, 2]))

Efficient but for Python 2
next(itertools.ifilter(lambda x: x > 0, [-1, 0, 1, 2]))

® Note that this may raise an IndexError if no items satisfy the condition, causing

list(filter()) toreturn an empty list.

Instead of writing this same function in every program you make, you can include

the small but very useful Python package first:

Example 8.3 Using first

>>> from first import first

>>> first([0, False, None, [], (), 421])
42

>>> first([-1, 0, 1, 2])

>>> first([-1, 0, 1, 2], key=lambda x: x > 0)

The key argument can be used to provide a function which receives each item as an

argument and returns a boolean indicating whether it satisfies the condition.

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 157

You’ll notice that we’ve used lambda in a good portion of the examples so far in this
chapter. lambda was actually added to Python in the first place to facilitate func-
tional programming functions such asmap () and filter(), which otherwise would
have required writing an entirely new function every time you wanted to check a
different condition:

import operator

from first import first

def greater than zero(number):

return number > 0

first([-1, O, 1, 2], key=greater than zero)

This code works identically to the previous example, butit’s a good deal more cum-
bersome: if we wanted to get the first number in the sequence that’s greater than,
say, 42, then we’d need to def an appropriate function rather than definingitin-line
with our call to first.

But despite its usefulness in helping us avoid situations like this, lambda still has
its problems. First and most obviously, we can’t pass a key function using lambda
if it would require more than a single line of code. In this event, we’re back to the
cumbersome pattern of writing new function definitions for each key we need. Or

are we?

functools.partial is our first step towards replacing lambda with a more flexible
alternative. Itallows usto create awrapperfunction with a twist: rather than chang-
ing the behavior of a function, it instead changes the arguments it receives:

from functools import partial

from first import first

def greater than(number, min=0):

bjpcjp

bjpcjp

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 158

return number > min

first([-1, 0, 1, 2], key=partial(greater than, min=42))

Our new greater than function works just like the old greater than zero by de-
fault, but now we can specify the value we want to compare our numbers to. In this
case, we pass functools.partial our function and the value we want for min, and
we get back a new function that has min set to 42, just like we want. In other words,
we can write a function and use functools.partial to customize what it does to

our needs in any given situation.

This is still a couple lines more than we strictly need in this case, though. All we’re
doing in this example is comparing two numbers; what if Python had built-in func-
tions for these kinds of comparisons? As it turns out, the operator module has just
what we’re looking for:

import operator

from functools import partial

from first import first

first([-1, 0, 1, 2], key=partial(operator.le, 0))

Here we see that functools.partial also works with positional arguments. In this
case, operator.le(a, b) takestwo numbers and returns whether the first is less
than or equal to the second: the 0 we pass to functools.partial gets sentto a, and
the argument passed to the function returned by functools.partial gets sent to
b. So this works identically to our initial example, without using lambda or defining

any additional functions.

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 159

Note

functools.partial is typically useful in replacement of lambda, and is to be consid-
ered as a superior alternative. lambda is to be considered an anomaly in Python lan-
guage 9, due to its limited body size of one line long single expression. On the other hand,

functools.partial is built as a nice wrapper around the original function.

9And was once even planned to be removed in Python 3, but finally escaped from its fate.

The itertools module in the Python Standard Library also provides a bunch of use-
ful functions that you’ll want to keep in mind. I’'ve seen too many programmers end
up writing their own versions of these functions even though Python itself provides

them out-of-the-box:

« chain(*iterables) iterates over multiple iterables one after each other without

building an intermediate list of all items.

« combinations(iterable, r) generatesall combination of length r fromthe given

iterable.

« compress(data, selectors) appliesaboolean mask from selectorstodataand
returns only the values from data where the corresponding element of selectors

is true.

« count(start, step) generatesanendlesssequence ofvalues, startingfromstart

and incrementing by step with each call.
« cycle(iterable) loops repeatedly over the valuesin iterable.

« dropwhile(predicate, iterable) filterselementsofaniterablestarting fromthe

beginning until predicate is false.

« groupby(iterable, keyfunc) creates an iterator groupingitems by the result re-
turned by the keyfunc function.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 160

« permutations(iterable[, rl) returns successive r-length permutations of the

itemsin iterable.

 product(*iterables) returns an iterable of the cartesian product of iterables

without using a nested for loop.

« takewhile(predicate, iterable) returns elements of an iterable starting from

the beginning until predicate is false.

These functions are particularly useful in conjunction with the operator module.
When used together, itertools and operator can handle most situations that pro-

grammers typically rely on lambda for:

Example 8.4 Using the operator module with itertools.groupby

>>> import itertools

>>> a = [{'foo': 'bar'}, {'foo': 'bar', 'x': 42}, {'foo': 'baz', 'y': 43}]

>>> import operator

>>> list(itertools.groupby(a, operator.itemgetter('foo')))

[('bar', <itertools. grouper object at 0xb000d0>), ('baz', <itertools. <«
_grouper object at 0xb00110>)]

>>> [(key, list(group)) for key, group in list(itertools.groupby(a, <«
operator.itemgetter('foo')))]

[(‘bar', [1), ('baz', [{'y': 43, 'foo': 'baz'}])]

In this case, we could have also written lambda x:x['foo'], butusingoperator lets

us avoid having to use lambda at all.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

9 The AST
e

AST stands for Abstract Syntax Tree. It is a tree representation of the abstract struc-
ture of the source code of any programming language, including Python. Python as

its own AST that is built upon parsing a Python source file.

This area of Python is not heavily documented, and not easy to deal with at first
glance. Still, its is very interesting to know and understand some deeper construc-

tion of Python as a programming language to masterize its usage.

The easiest way to have aview of what the Python AST looks like is to parse a Python
code and dumps the generated AST. To do that, the Python ast module provides

everything you need for.

Example 9.1 Parsing Python code to AST

>>> import ast

>>> ast.parse

<function parse at 0x7f062731d950>

>>> ast.parse("x = 42")

< ast.Module object at 0x7f0628a5ad10>

>>> ast.dump(ast.parse("x = 42"))

"Module(body=[Assign(targets=[Name(id='x"', ctx=Store())], value=Num(n=42)) <«
1"

The ast.parse function returns a _ast.Module object that is the root of the tree.

bjpcjp

CHAPTER 9. THE AST 162

The tree can be entirely dumped using the ast.dump module, and in this case is the

following:
Num
Module -
Assign n [——m 42
body > =

targets | value

Name
id | ctx —w Store

An AST construction always starts with a root element, which is usually an ast.
Module object. This object contains a list of statements or expressions to evaluate

in its body attribute. It usually represents the content of a file.

As you can guess, the ast.Assign object represents an assignment, that is mapped
to the = sign in the Python syntax. Assign has a list of targets, and a value it assig-
nates to it. The list of target in this case consists of one object, ast.Name, which

represents a variable named x. The value is a number with value being 42.

This AST can be passed to Python to be compiled and then evaluated. The compile
function provided as a Python built-in allows that.

>>> compile(ast.parse("x = 42"), '<input>',6 'exec')

<code object <module> at 0x111b3b0O, file "<input>", line 1>

>>> eval(compile(ast.parse("x = 42"), '<input>', 'exec'))

>>> X

42

An abstract syntax tree can be built manually using the classes provided in the ast

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

CHAPTER 9. THE AST 163

module. Obviously, this is a very long way to write Python code, not a method |

would recommend! But it’s still interesting to use.

Let’s write a good old "Hello world!" in Python using the AST.

Example 9.2 Hello world using Python AST

>>> hello world = ast.Str(s="'hello world!', lineno=1, col offset=1)

>>> print call = ast.Print(values=[hello world], lineno=1, col offset=1l, nl «
=True)

>>> module = ast.Module(body=[print call])

>>> code = compile(module, '', 'exec')

>>> eval (code)

hello world!

Note

lineno and col offset represents the line number and column offset of the source
code that has been used to generate the AST. This doesn’t have much sense to setthemiin
this context since we are not parsing any source file, but it's useful to find back the position
of the code that generated this AST. It's for example used by Python when generating
backtraces. Anyway, Python refused to compile any AST object that doesn’t provide this
information, this is why we pass it fake values of 1 here. The ast.fix missing loc
ations () function can fix it for you by setting the missing values to the ones set on the

parent node.

The whole list of objects that are available in the AST is easily available by reading

the ast module documentation (note the underscore).

The first two categories you should consider are statement and expressions. State-
ments cover types like assert, assign (=), augmented assigned (+=, /=, etc), global,
def, if, return, for, class, pass, import, etc. They all inherit from ast.stmt. Expres-
sions cover types like lambda, number, yield, name (variable), compare or call. They

all inherit from ast.expr.

bjpcjp

CHAPTER 9. THE AST 164

There’s also a few other categories, such as ast.operator defining standard oper-
ator such as add (+), div (/), right shift (>>), etc, or ast.cmpop defining comparisons

operator.

You can easily imagine that it is then possible to leverage this AST to construct a
compiler that would parse strings and generate code by building a Python AST. This

is exactly what led to the Hy project discussed in Section 9.1.

In case you need to walk through your tree, the ast.walk function will help you
with that. But the ast module also provides NodeTransformer, a class that can be
subclassed to walk an AST to modify some nodes. It’s therefore easy to use it to

change code dynamically.

Example 9.3 Changing all binary operation to addition

import ast

class ReplaceBinOp(ast.NodeTransformer):
"""Replace operation by addition in binary operation"""
def visit BinOp(self, node):
return ast.BinOp(left=node.left,
op=ast.Add(),
right=node.right)

tree = ast.parse("x = 1/3")
ast.fix missing locations(tree)
eval(compile(tree, '', 'exec'))
print(ast.dump(tree))

print(x)

tree = ReplaceBinOp().visit(tree)
ast.fix missing locations(tree)
print(ast.dump(tree))

eval(compile(tree, '', 'exec'))

bjpcjp

bjpcjp

bjpcjp

9.1. HY 165

print(x)

Which executes to the following:

Module(body=[Assign(targets=[Name(id='x"', ctx=Store())],
value=BinOp(left=Num(n=1), op=Div(), right=Num(n=3)))])

0.3333333333333333

Module(body=[Assign(targets=[Name(id='x"', ctx=Store())],
value=BinOp(left=Num(n=1), op=Add(), right=Num(n=3)))])

Tip
If you need to evaluate a string of Python that should return a simple data type, you can
use ast.literal eval. Contrary to eval, it disallows the input string to execute any

code. It's a safer alternative to eval.

9.1 Hy

Now that you know about the AST, you can easily dream of creating a new syntax for
Python that you would parse and compile down to a standard Python AST. The Hy
programming language is doing exactly that. Itis a Lisp dialect that parses a Lisp
like language and converts it to regular Python AST. It is therefore fully compatible
with the Python ecosystem. You could compare it to what Clojure is to Java. Hy

could deserve a book for itself, so we will only fly over it in this section.

If you already wrote Lisp ', the Hy syntax will really look familiar. Once installed,
launching the hy interpreter will give you a standard REPL prompt where you can

start interact with the interpreter.

'If not, you should consider it.

bjpcjp

9.1. HY 166

% hy

hy 0.9.10
= (+11)
2

For those not familiar with the Lisp syntax, the parentheses denote a list, the first
element is a function, and the rest of the list are the arguments. Here the code is

equivalent to Python1 + 1.

Most constructs are mapped from Python directly, such as function definition. Set-
ting a variable relies on the setv function.
=> (defn hello [name]
(print "Hello world!")
(print (% "Nice to meet you %s" name)))
=> (hello "jd")
Hello world!

Nice to meet you jd

Internally, Hy parses the code that is provided and compiles it down to Python AST.
Luckily, Lisp is an easy to parse tree, as each pair of parentheses represents a node
of the list tree. All is needed to be done is to convert this Lisp tree to a Python ab-

stract syntax tree.

Class definition is supported through the defclass construct, that is inspired from
CLOS 2.
(defclass A [object]
[[x 42]
[y (fn [self valuel

(+ self.x value))ll)

*Common Lisp Object System

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 167

This defines a class named A, inheriting from object, with a class attribute x whose
value is 42 and a method y that returns the x attribute plus the value passed as

argument.

What'’s really wonderful, is that you can import any Python library directly into Hy
and use it with no penalty.

=> (import uuid)

=> (uuid.uuid4)

UUID('f823a749-a65a-4a62-b853-2687c69d0ele’)

=> (str (uuid.uuid4))

'4efab0f2-23a4-4fcl-8134-00f5c271f809'

Hy also has more advanced construct and macros. If you ever wanted to have a case
or switch statement in Python, admire what cond can do for you:

(cond

((> somevar 50)

(print "That variable is too big!"))
((< somevar 10)

(print "That variable is too small!"))
(true

(print "That variable is jusssst right!")))

Hy is a very nice project that allows you to jump into Lisp world without leaving your
comfort zone too far behind you, as you are still writing Python. The hy2py tool can

even show you what your Hy code would look like once translated into Python °.

9.2 Interview with Paul Tagliamonte

Paul is a Debian developer, who’s working at Sunlight Foundation. He created Hy

in 2013 and, as a Lisp lover, | joined him in this fabulous adventure some time later.

*Though it has some restrictions.

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 168

Why did you create Hy in the first place?

Initially, | created Hy following a conversation about how someone should
write a Lisp that compiles to Python rather than Java’s JVM (Clojure). A
few short days later, and | had the first version of Hy - something which
resembled a lisp, and even worked like a proper lisp, but it was slow. |
mean, really slow. It took about an order of magnitude slower than native

Python, since the Lisp runtime itself was implemented in Python.

Frustrated, | almost gave up, only to be pushed forward by a coworker
the promise of using AST to implement the runtime, rather than imple-
ment the runtime in Python. This insane idea started to really spark the
entire project. This set in shortly before the holidays in 2012, leading me
to spend my entire break from work hacking on Hy. A week or so later, and
| ended up with something that resembled the current Hy codebase quite

closely - most Hy devs would even know their way around the compiler.

Just after getting enough working to implement a basic Flask app, | gave a
talk at Boston Python about this project, and the reception was incredibly
warm - so warm, in fact, that I’d started to view Hy as a good way to teach
people about Python internals, such as how the REPL works *, PEP 302
import hooks, and Python AST - a good introduction to the concept of

code that writes code.

After the talk, | was a bitdisappointedin afew sections, so | rewrote chunks
of the compiler to fix some philosophical issues in the process, leading us

to the current iteration of the codebase - which has stood up quite well!

“*code.InteractiveConsole

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 169

In addition, Hy (the Language) is a good way to get people to understand
how to read Lisp, since they can get comfortable with s-expressionsin an
environment they know (even using libraries they have lying around), eas-
ing the transition to other (“real”) Lisps, such as Common Lisp, Scheme or
Clojure, as well as experiment with new ideas (such as macro systems, ho-

moiconicity, and working without the concept of a statement).

How did you find out about using the AST correctly? What are the tips

and tricks, advice you can give to people looking at it?

Python’s AST is quite interesting. It’s not quite private (in fact, it’s ex-
plicitly not private), but it’s also not a public interface either. No stabil-
ity is guaranteed from version to version - in fact, there are some rather
annoying differences between Python 2 and 3, and even within different
Python 3 releases. In addition, different implementations may interpret
the AST differently, or even have a unique AST. Nothing says Jython, PyPy,
or CPython must deal with Python AST in the same way.

For instance, CPython can deal with slightly out of order AST entries (by
the lineno and col_offset), whereas PyPy will throw an assertion error. While
sometimes annoying, the AST is generally sane. It’snotimpossible to build
AST that works on a vast number of Python instances. With a conditional
or two, it’s only mildly annoying to create AST that works on CPython 2.6
through 3.3 and PyPy, making this tool quite handy.

The AST is extremely under-documented, so most knowledge comes from
reverse engineering generated AST. By writing up simple Python scripts,
one can use something similar to import ast;ast.dump(ast.parse("pri
nt foo")) to generate equivalent AST to help with the task. With a bit of
guesswork, and some persistence, it’s not untenable to build up a basic

understanding this way.

At some point, I'll take on the task of documenting my understanding of

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 170

the AST module, but | find writing code is the best way to learn the AST.
What’s the current status, and future goals of Hy?

Hy is currently in development. It has a few subtle issues that need to
be addressed, and fixing the bugs to make Hy virtually indistinguishable
from any other LISP-1 variant. Thisis a monumental task, but it’s one that

it’s ripe for hacking.
I’m also interested in keeping Hy efficient, in so far as it can be.

| hope, in the long run, that Hy will become a sort of teaching tool - one
way to explain some of the concepts that are quite foreign to even expe-
rienced Pythonistas. | hope it also proves interesting enough to Python-
istas that they take an interest in these tools at our disposal, and continue

pushing the bounds of what | think Hy is.

My hope is that people see Hy for what it is - an amazing teaching tool. A
way to get people interested in Common Lisp, Clojure or Scheme. | want
people to go home and read about why Lisp variants do things the way

they do, and how they can borrow this philosophy in their day-to-day cod-
ing.

How interoperable with Python is Hy? What about code distribution
and packaging?

Amazingly interoperable. Stunningly interoperable, really. Sowell, in fact,
that pdb can properly debug Hy without any changes at all. To really drive
this point home, I’'ve written Flask apps, Django apps and modules of all
sorts. Python canimport Python, Hy canimport Hy, Hy can import Python
and Python can import Hy. This is what really makes Hy unique - even
variants like Clojure can’t do this, the interop is purely unidirectional (Clo-
jure can import Java, but Java has one hell of a time importing Clojure).

This was done to really bring home how powerful these tools we have are.

bjpcjp

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 171

Hy works by translating Hy code (in s-expressions) into Python AST almost
directly. This compilation step means the generated bytecode is fairly
sane stuff (so much so that debugging Hy by looking at Python source gen-
erated from Python AST is a good way of tracking down pesky AST errors),
which means Python has a very hard time of even telling the module isn’t

written in Python at all.

Common Lisp-isms, such as *earmuffs* or using-dashes are fully sup-
ported by translating them to a Python equivalent (in this case, *earmuf
fs* becomes EARMUFFS, and using-dashes becomesusing dashes), which

means Python doesn’t have a hard time of using them at all.

Ensuring that we have really good interoperability is one of our highest

priorities, so if you see any bugs - file them!
What are the upside and downside of choosing Hy over Python?

This is an interesting question. I’m quite partial, so take this with a grain

of salt!

Hy outshines Python in a few special ways because we’ve taken a bit of
effort to smooth behavior over Python versions to allow the new Python 3
future happen sooner. This was done by doing things like using future
division in Python 2, and ensuring the syntax is normalized between the

two versions.

In addition, Hy has something Python has a very hard time with (even with
the outstanding AST module), which is a full macro system. Macros are
very special functions that alter the code during it’s compile step - not
unlike having ast.NodeVisitor as a first-class function of the language.
This leads to easy creation of new domain-specific languages, which is
composed of the base language (in this case, Hy / Python), with the addi-

tion of many macros which allow uniquely expressive and succinct code.

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 172

Often times, clever DSLs can replace languages designed to perform this

role, such as Lua.

As for downsides, what gives Hy it’s power can also hurt it. Not techni-
cally, but socially. Hy, by virtue of being a Lisp written in s-expressions,
suffers from the stigma of being hard to learn, read or maintain. People
might be averse to working on projects using Hy due to the fear of Hy being

extremely complex.

Hy is the Lisp everyone loves to hate - Python folks tend to not enjoy
its syntax, and Lispers tend to avoid Hy due to, well, being Python. Hy
uses Python objects directly, so the behavior of fundamental objects can

sometimes be surprising to the seasoned Lisper.

Hopefully people will look pastit’s syntax and consider using it for a project

to expand one’s horizons, and explore parts of Python previously untouched.

10 Performances and optimizations

e ———

Premature optimization is the root of all evil.

--- Donald Knuth Structured Programming with go to Statements

10.1 Data structures

Most computer problems can be solved in an elegant and simple manner, provided
that you use the right data structures - and Python provides many data structures

to choose from.

Often, there is a temptation to code your own custom data structures - this is invari-
ably avain, useless, doomed idea. Python almost always has better data structures

and code to offer — learn to use them.

For example, everybody uses dict, but how many times have you seen code like
this:
def get fruits(basket, fruit):
A variation is to use "if fruit in basket:"
try:
return basket[fruit]

except KeyError:

10.1. DATA STRUCTURES 174

return set()

It’s much more easy to use the get method already provided by the dict structure:

def get fruits(basket, fruit):

return basket.get(fruit, set())

It’s not uncommon for people to use basic Python data structures without being
aware of all the methods they provide. This is also true for sets - for example:
def has invalid fields(fields):
for field in fields:
if field not in ['foo', 'bar']:
return True

return False

This can be written without a loop:

def has invalid fields(fields):
return bool(set(fields) - set(['foo', 'bar']l))

The set data structures have methods which can solve many problems that would

otherwise need to be addressed by writing nested for/if blocks.

There are also more advanced data structures that can greatly reduce the burden
of code maintenance. For example, take a look at the following code:
def add animal in family(species, animal, family):
if family not in species:
species[family] = set()

species[family].add(animal)

species = {}

add animal in family(species, ‘'cat', 'felidea')

10.2. PROFILING 175

Sure, this code is perfectly valid, but how many times will your program require a

variation of the above? Tens? Hundreds?

Python provides the collections.defaultdict structure, which solves the prob-

lem in an elegant way.

import collections

def add animal in family(species, animal, family):

species[family].add(animal)

species = collections.defaultdict(set)

add animal in family(species, 'cat', 'felidea')

Each time that you try to access a non-existent item from your dict, the defaultdict
will use the function that was passed as argument to its constructor to build a new
value - instead thanraisingaKeyError. In this case, the set functionis used to build

a new set each time we need it.

By the way, the collections module offers a few useful data structures that can

solve other kinds of problems, such as OrderedDict or Counter.

It’s really important to look for the right data structure in Python, as the correct

choice will save you time, and lessen code maintenance.

10.2 Profiling

Python provides a few tools to profile your program. The standard one is cProfile

and is easy enough to use.

Example 10.1 Using the cProfile module

$ python -m cProfile myscript.py
343 function calls (342 primitive calls) in 0.000 seconds

10.2. PROFILING 176

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.000 0.000 :0(getframe)

1 0.000 0.000 0.000 0.000 :0(len)
104 0.000 0.000 0.000 0.000 :0(setattr)
1 0.000 0.000 0.000 0.000 :0(setprofile)
1 0.000 0.000 0.000 0.000 :0(startswith)
2/1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 StringIO.py:30(<module>)
1 0.000 0.000 0.000 0.000 StringIO.py:42(StringIO)

The results list indicates the number of calls each function was called, and the time
spenton its execution. You can use the -s option to sort by other fields; e.g. -s time

will sort by internal time.

If you’ve coded in C, as | did years ago, you probably already know the fantastic
Valgrind tool, that - among other things - is able to provide profiling data for C
programs. The data that it provides can then be visualized by another great tool
named KCacheGrind.

You’ll be happy to know that the profiling information generated by cProfile can eas-
ily be converted to a call tree that can be read by KCacheGrind. The cProfile mod-
ule has a -o option that allows you to save the profiling data, and pyprof2calltree

can convert from one format to the other.

Example 10.2 Using KCacheGrind to visualize Python profiling data

$ python -m cProfile -o myscript.cprof myscript.py
$ pyprof2calltree -k -i myscript.cprof

10.2. PROFILING 177

File View Go Settings Help

% Open | ﬁ Back v BB Forward ~ * Up ~ | m Cycle Detection t{-ﬁ Relative to Parent <> Shorten Templates | Ticks |
Flat Profile ® <module> bin/ceil send 121

Search: | [iNo Grouping) A |ﬁ| Callers ‘m Callee Map m

Incl, Self Called Function Locatio s f

=== 168.31 0,70 (0) © <module> bin/ceilometer...
mm 100.00 1.41 (0) ® <__import__> (unknoy
100.00 0.00 25 M <__import__> (unknoy
92.25 0.00 (0) ® <module> /home/jd/Sour... (unknoy
92.25 0.00 1 M <module> /home/jd/Sour... (unkno
91.55 0.00 1 M <module> Jusr/lib/python... (unknoy
88.73 0.00 (0) ® <module> Jusr/lib/python... (unknoy - f
60.56 0.00 1 M <module> ceilometer/pip... (unknoy <module> /home/jd/Seurce/oslo.... (92.25 %)

<module> bin/ceilometer-send-c... (168.31 %)

unknoy

59.86 0.00 (0) M <lambda> usr/lib/python...
59.86 0.00 221 M <lambda> fusr/lib/python...
59.86 0.00 221 ® activate fusr/lib/pythonZ....
59.86 0.00 (0) M subscribe fusr/lib/python...
59,86 0.00 1 M subscribe /usr/lib/python...
59.15 0.00 (0) ® <module> ceilometer/pip...
58.45 0.00 (0) Hl activate /usr/lib/python2....
44.37 0.00 1 ® <module> ceilometer/op...
42,96 0.70 (0) ® <module> ceilometerfop...

38.03 0.00 940 M _handle_ns /usr/lib/pyth... (unknoy

36.62 0.70 (0) B _compile fusrflib/python... (unknoy H 60.56 1 M <module> ceilometer/pipeline.py:19

36,62 0.00 1250 M _compile /usr/lib/python... (unkno 65 1 8 prepare_service ceilometer/service.py:80

35.92 0.00 (0) = compile fusrlib/pythonZ.... (unknov 283 1 B <module> ceilometer/sample.py:25

35,92 0.00 77 ® compile fusr/lib/python2.... (unknoy 211 1 = <module> /home/jd/Source/oslo. config/oslo/config/cfg.py:261

3451 0.00 (0) ® complle fusrflib/pythonZ.... 1.41 1 B <module> /usr/lib/python2.7/logging/__init__.py:24

30.28 0.00 457 M <map>
29,58 1.41 (0) M <map>
29.58 0.00 933 d find_module fusr/lib/pyth...
29,58 0.00 221 o fixup_namespace_packag...
29.58 0.00 1198 M realpath /usr/lib/python2...

~umllllnnlllll.ﬂllllll!ﬂllllll

(
(i
(i
(i
(i
(
(
(
(i
(i
37.32 1.41 (0) M _handle_ns /usr/lib/pyth... (unknoy
(i
(i
(i
(i
(i
(
(
(i
(
(

unknovs | Parts | Callees | Call Graph | All Callees | Caller Map | Machine Code
2 = A = |

pyprof2calltreeEfzHmo.log [1] - Total Ticks Cost: 142

Figure 10.1: KCacheGrind example

This provides a lot of information that will allow you to determine what part of your

program might be consuming too much resources.

While this clearly works well for a macroscopic view of your program, it sometimes
helps to have a microscopic view of some part of the code. In such a context, | find
it better to rely on the dis module to find out what’s going on behind the scenes.
The dis module is a disassembler of Python byte code. It’s simple enough to use:

>>> def x():

. return 42

>>> import dis
>>> dis.dis(x)

2 O LOAD CONST 1 (42)

10.2. PROFILING 178

3 RETURN_VALUE

The dis.dis function disassembles the function that you passed as a parameter,
and prints the list of bytecode instructions that are run by the function. It can be
useful to understand what’s really behind each line of code that you write, in order

to be able to properly optimize your code.

The following code defines two functions, each of which does the same thing - con-

catenates three letters:

abc = ('a', 'b'",

c')

def concat a 1():
for letter in abc:

abc[0] + letter

def concat a 2():
a = abc[0]
for letter in abc:

a + letter

Both appear to do exactly the same thing, but if we disassemble them, we’ll see

that the generated bytecode is a bit different:

>>> dis.dis(concat a 1)

2 0 SETUP_LOOP 26 (to 29)
3 LOAD GLOBAL 0 (abc)
6 GET ITER
>> 7 FOR ITER 18 (to 28)
10 STORE_FAST 0 (letter)
3 13 LOAD GLOBAL 0 (abc)

16 LOAD CONST 1 (0)

10.2. PROFILING

>>

>>

19
20
23
24
25
28
29
32

BINARY SUBSCR
LOAD FAST
BINARY ADD
POP_TOP
JUMP_ABSOLUTE
POP_BLOCK
LOAD CONST
RETURN_VALUE

>>> dis.dis(concat a 2)

2

>>

>>

>>

0
3
6
7

10
13
16
17
20

23
26
29
30
31
34
35
38

LOAD GLOBAL
LOAD CONST
BINARY SUBSCR
STORE_FAST

SETUP_LOOP
LOAD_GLOBAL
GET ITER
FOR_ITER
STORE FAST

LOAD FAST
LOAD FAST
BINARY ADD
POP_TOP
JUMP_ABSOLUTE
POP_BLOCK
LOAD CONST
RETURN_VALUE

22

14

17

(letter)

(None)

(abc)
(0)

(a)

(to 35)
(abc)

(to 34)
(letter)

(a)
(letter)

(None)

179

As you can see, in the second version we store abc[0] in a temporary variable be-

10.2. PROFILING 180

fore running the loop. This makes the bytecode executed inside the loop a little
smaller, as we avoid having to do the abc[0] lookup for each iteration. Measured
using timeit, the second version is 10% faster than the first one; it takes a whole
microsecond less to execute! Obviously this microsecond is not worth the optimiza-
tion unless you call this function millions of times - but this is kind of insight that

the dis module can provide.

Whether you should need to rely on such "tricks" as storing the value outside the
loop is debatable - ultimately, it should be the compiler’s work to optimize this kind
of thing. On the other hand, as the language is heavily dynamic, it’s difficult for the
compiler to be sure that optimization wouldn’t result in negative side effects. So be

careful when writing your code!

Another wrong habit I’'ve often encountered when reviewing code is the defining of
functions inside functions for no reason. This has a cost - as the function is going

to be redefined over and over for no reason.

Example 10.3 A function defined in a function, disassembled

>> import dis
>>> def x():

return 42

>>> dis.dis(x)
2 0 LOAD CONST 1 (42)
3 RETURN_VALUE
>>> def x():
def y():
return 42

return y()

>>> dis.dis(x)

2 0 LOAD CONST 1 (<code object y at 0x100ce7e30, <+

10.2. PROFILING

file "<stdin>", line 2>)

3 MAKE_FUNCTION

6 STORE_ FAST

4 9 LOAD_ FAST

12 CALL FUNCTION

15 RETURN VALUE

181

We can see here that it is needlessly complicated, calling MAKE_FUNCTION, STORE F
AST, LOAD_FAST and CALL_FUNCTION instead of just LOAD CONST. That requires many

more opcodes for no good reason - and function calling in Python is already ineffi-

cient.

The only case in which it is required to define a function within a function is when

building a function closure, and this is a perfectly identified use case in Python’s

opcodes.

Example 10.4 Disassembling a closure

>>> def x():

a = 42
def y():
return a
return y()
>>> dis.dis(x)
2 0 LOAD CONST

3 STORE_DEREF

3 6 LOAD_CLOSURE
9 BUILD TUPLE
12 LOAD CONST

=

N

(42)
(a)

(a)

(<code object y at 0x100d139b0,

<o

10.3. ORDERED LIST AND BISECT 182

file "<stdin>", line 3>)

15 MAKE_CLOSURE 0

18 STORE_FAST 0 (y)
5 21 LOAD FAST 0 (y)

24 CALL FUNCTION 0

27 RETURN_VALUE

10.3 Ordered list and bisect

When manipulating large lists, the use of sorted lists has a few advantages over

non-sorted lists - for example, sorted lists have a retrieve time of O(log n).

A couple of times, however, I've seen people trying to implement their own data
structures and algorithms to handle such cases. This is a bad idea - you shouldn’t

spend time on problems already solved.

Firstly, Python provides a bisect module which contains a bisection algorithm. It’s

easy enough to use:

Example 10.5 Usage of bisect

>>> farm = sorted(['haystack', 'needle', 'cow', 'pig'l])
>>> bisect.bisect(farm, 'needle')
3

>>> bisect.bisect left(farm, 'needle')

>>> pisect.bisect(farm, 'chicken')

>>> bisect.bisect left(farm, 'chicken')

>>> bisect.bisect(farm, 'eggs')

10.3. ORDERED LIST AND BISECT 183

1
>>> bisect.bisect left(farm, 'eggs')

1

Thebisect function allowsyou to retrieve theindex where a new list element should

be inserted, while keeping the list sorted.

If you wish to insert the element immediately, the bisect module provides the ins

ort left and insort right functions that do exactly that.

Example 10.6 Usage of bisect.insort

>>> farm

['cow', 'haystack', 'needle', 'pig'l]

>>> pisect.insort(farm, 'eggs')

>>> farm

['cow', 'eggs', 'haystack', 'needle', 'pig']
>>> bisect.insort(farm, 'turkey')

>>> farm

['cow', 'eggs', 'haystack', 'needle', 'pig', 'turkey']

You can then use these functions to create a list that is always sorted:

Example 10.7 A SortedList implementation

import bisect

class SortedList(list):
def init (self, iterable):

super(SortedList, self). 1init (sorted(iterable))

def insort(self, item):

bisect.insort(self, item)

10.4. NAMEDTUPLE AND SLOTS 184

def index(self, value, start=None, stop=None):
place = bisect.bisect left(self[start:stop], value)
if start:
place += start
end = stop or len(self)
if place < end and self[place] == value:
return place

raise ValueError("%s is not in list" % value)

Obviously, one shouldn’t use the direct functions append or extend on this list - or

the list will no longer be sorted.

Many Python libraries exist which implement various versions of the above code -
and many more data types, such as binary or red-black tree structures. The blist
and bintree Python packages contain code that you can be use for these purposes,

rather than implementing and debugging your own version.

10.4 Namedtuple and slots

Sometimes it’s useful to have the ability to create very simple objects which only
possess a few fixed attributes. A simple implementation would be something along
these lines:
class Point(object):
def init (self, x, y):
self.x = x

self.y =y

This definitely gets the job done - however, there is a downside to this approach: it
creates a class which inherits from object. In using this Point class, you be instanti-

ating objects.

10.4. NAMEDTUPLE AND SLOTS 185

One property of such objects in Python, is that they store all of their attributes inside
a dictionary; this dictionary is itself stored in the dict attribute:

>>> p = Point(1l, 2)

>>> p. dict

{'y': 2, 'x': 1}

>>> p.z = 42

>>> p.z

42

>>> p. dict

{'y': 2, 'x':1, 'z': 42}

The advantage is that you can add as many attributes as you want to an object.
The drawback, however, is that using a dictionary to store these attributes is quite
expensive in terms of memory - you need to store the object, the keys, the value
references, etc. It’s slow to create and slow to manipulate, with a high memory
cost. Consider the following simple class:
[source,python]
class Foobar(object):

def init (self, x):

self.x = x

Let’s check the memory usage using the memory profiler Python package:

$ python -m memory profiler object.py

Filename: object.py

Line # Mem usage Increment Line Contents

5 @profile
6 9.879 MB 0.000 MB def main():

10.4. NAMEDTUPLE AND SLOTS 186

7 50.289 MB 40.410 MB f = [Foobar(42) for i in range <«
(100000)]

Therefore, it exists a way to use objects without this default behaviour. Classes in
Python can define a slots attribute that will list the only attributes allowed
for instances of this class. The power of this is that instead of allocating a whole
dictionary object to store all of the object attributes, they can now be stored in a
list object. If you go through the CPython source code and take a look at the Obje
cts/typeobject.cfile,itis quite easy to understand what Python does in this case.
Here is a cut down version of the function which handles this:
static PyObject *
type new(PyTypeObject *metatype, PyObject *args, PyObject *kwds)
{
[..]
/* Check for a slots sequence variable in dict, and count it */
slots = PyDict GetItemId(dict, &PyId slots);
nslots = 0;
if (slots == NULL) {
if (may add dict)
add dict++;
if (may add weak)

add weak++;

else {
/* Have slots */
/* Make it into a tuple */
if (PyUnicode Check(slots))

slots

PyTuple Pack(1l, slots);
else

slots

PySequence Tuple(slots);

10.4. NAMEDTUPLE AND SLOTS 187

/* Are slots allowed? */
nslots = PyTuple GET SIZE(slots);
if (nslots > 0 && base->tp itemsize != 0) {
PyErr Format(PyExc TypeError,
"nonempty slots "
"not supported for subtype of '%s'",
base->tp name);
goto error;
}
/* Copy slots into a list, mangle names and sort them.
Sorted names are needed for class assignment.
Convert them back to tuple at the end.a
*/
newslots = PyList New(nslots - add dict - add weak);
if (newslots == NULL)
goto error;

if (PyList Sort(newslots) == -1) {
Py DECREF(newslots);
goto error;

}

slots = PyList AsTuple(newslots);

Py DECREF(newslots);

if (slots == NULL)

goto error;
}
/* Allocate the type object */
type = (PyTypeObject *)metatype->tp alloc(metatype, nslots);
[..]
/* Keep name and slots alive in the extended type object */

et = (PyHeapTypeObject *)type;

10.4. NAMEDTUPLE AND SLOTS 188

Py INCREF(name);
et->ht name = name;
et->ht slots = slots;
slots = NULL;

[..]
return (PyObject *)type;

As you can see, Python converts the content of slots into atuple, thena list
that it builds and sorts, before converting it back into a tuple to use and store it
in the class. This way, Python can retrieve the values quickly, without having to

allocate and use an entire dictionary.

It’s easy enough to declare such a class:

Example 10.8 A class declaration using slots

class Foobar(object):

__slots = 'x'

def init (self, x):

self.x = x

We can easily compare the memory usage of the two approaches using the memory
_profiler Python package:

Example 10.9 Memory usage of objects using slots

% python -m memory profiler slots.py

Filename: slots.py

Line # Mem usage Increment Line Contents

7 @profile
8 9.879 MB 0.000 MB def main():

10.4. NAMEDTUPLE AND SLOTS 189

9 21.609 MB 11.730 MB f = [Foobar(42) for i in range <«
(100000)]

So it seems that by using the slots attribute of Python classes, we can halve
our memory usage - this means that when creating a large amount of simple ob-
jects,the slots attributeisan effective and efficient choice. However, the tech-
nique shouldn’t be misused in order to perform static typing or the like. Thisisn’t

in the spirit of Python programs.

Due to the fixed nature of the attribute list, it’s easy enough to imagine classes
where the attributes listed would always have a value, and where the fields would

always be sorted in some way.

That’s exactly the nature of the namedtuple class from the collection module. It al-
lows us to dynamically create a class that will inherit from tuptle, therefore sharing
its characteristics - such as being immutable, and having a fixed number of entries.
What namedtuple provides is the ability to retrieve the tuple elements by referenc-

ing a named attribute, rather than just referencing by index.

Example 10.10 Declaring a class using namedtuple

>>> import collections
>>> Foobar = collections.namedtuple('Foobar', ['x"'])
>>> Foobar = collections.namedtuple('Foobar', ['x"', 'y'])
>>> Foobar(42, 43)
Foobar(x=42, y=43)
>>> Foobar (42, 43).x
42
>>> Foobar(42, 43).x = 44
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

>>> Foobar(42, 43).z = 0

10.4. NAMEDTUPLE AND SLOTS 190

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'Foobar' object has no attribute 'z’
>>> list(Foobar (42, 43))

[42, 43]

Since a class like this would inherit from tuple, we can easily convert it to a list. We
can’t change or add any attributes on objects of this class, because on one hand it
inherits from tuple, and also because the slots valueis set to an empty tuple
- thereby avoiding the creating of the dict .

Example 10.11 Memory usage of a class built from collections.namedtuple

% python -m memory profiler namedtuple.py

Filename: namedtuple.py

Line # Mem usage Increment Line Contents
4 @profile
5 9.895 MB 0.000 MB def main():
6 23.184 MB 13.289 MB f = [Foobar(42) for i in range <«
(100000)]

Therefore, usage of the namedtuple class factory is as almost as efficient as using an
objectwith slots ,theonlydifference beingthatitis compatible withthe tuple
class. It can therefore be passed to many native Python functions and libraries that
expect an iterable type as an argument. It also enjoys the various optimizations
that exist for tuples .

namedtuple also provides a few extra methods that, even if prefixed by an under-

score, are actually intended to be public. _asdict can convert the namedtuple to

'For example, tuples smaller than PyTuple MAXSAVESIZE (20 by default) will use a faster memory
allocator in CPython

10.5. MEMOIZATION 191

a dict instance, make allows us to convert an existing iterable object to this class,

and replace returns a new instance of the object with some fields replaced.

10.5 Memoization

Memoization is a technique used to speed up function calls by caching their result.
The results can be cached only if the function is pure - meaning that it has no side

effects or outputs, and that it does not depend on any global state.

A trivial function that can be memoized is the sine function sin.

Example 10.12 A basic memoization technique

>>> import math
>>> SIN MEMOIZED VALUES = {}
>>> def memoized sin(x):
if x not in SIN MEMOIZED VALUES:
_SIN MEMOIZED VALUES[x] = math.sin(x)
return SIN MEMOIZED VALUES[X]
>>> memoized sin(1)
0.8414709848078965
>>> SIN MEMOIZED VALUES
{1: 0.8414709848078965}
>>> memoized sin(2)
0.9092974268256817
>>> memoized sin(2)
0.9092974268256817
>>> SIN MEMOIZED VALUES
{1: 0.8414709848078965, 2: 0.9092974268256817}
>>> memoized sin(1)
0.8414709848078965
>>> SIN MEMOIZED VALUES

bjpcjp

10.5. MEMOIZATION 192

{1: 0.8414709848078965, 2: 0.9092974268256817}

The first time that memoized siniscalled with an argument thatis notstoredin SI
N_MEMOIZED VALUES,the value will be computed and stored in this dictionary. Later
on, if we call the function with the same value again, the result will be retrieved from
the dictionary rather than computed again. While sinis a function which computes
very quickly, this may not be true of some advanced functions which involve more

complicated computations.

If you’ve already read about decorators (if not, go to Section 7.1), you must be think-
ing that there is a perfect opportunity to use them here - and you’d be right. PyPI
lists a few implementations of memoization through decorators, from very simple

cases to the most complex and complete.

Starting with Python 3.3, the functools module provides a LRU (Least-Recently-
Used) cache decorator. This provides the same functionality as the memoization
described here, but with the benefit that it limits the number of entries in the cache,

removing the least recently used one when the cache size reachesits maximum size.

The module also provides statistics on cache hits, misses, etc. In my opinion, these
are a must-haves when implementing such a cache. There’s no pointin using mem-
oization - or any caching technique - if you are unable to meter its usage and use-

fulness.

Here’s an example of the memoized sin function above, using functools.lru ca

che:

Example 10.13 Using functools.lru_ cache

>>> import functools

>>> import math

>>> @functools.lru cache(maxsize=2)
. def memoized sin(x):

return math.sin(x)

10.6. PYPY 193

>>> memoized sin(2)

0.9092974268256817

>>> memoized sin.cache info()

CacheInfo(hits=0, misses=1, maxsize=2, currsize=1)
>>> memoized sin(2)

0.9092974268256817

>>> memoized sin.cache info()

CacheInfo(hits=1, misses=1, maxsize=2, currsize=1)
>>> memoized sin(3)

0.1411200080598672

>>> memoized sin.cache info()

CacheInfo(hits=1, misses=2, maxsize=2, currsize=2)
>>> memoized sin(4)

-0.7568024953079282

>>> memoized sin.cache info()

CacheInfo(hits=1, misses=3, maxsize=2, currsize=2)
>>> memoized sin(3)

0.1411200080598672

>>> memoized sin.cache _info()

CacheInfo(hits=2, misses=3, maxsize=2, currsize=2)
>>> memoized sin.cache clear()

>>> memoized sin.cache info()

CacheInfo(hits=0, misses=0, maxsize=2, currsize=0)

10.6 PyPy

PyPy is an efficient implementation of the Python language which complies with

standards. Indeed, the canonical implementation of Python, CPython - so called

bjpcjp

10.6. PYPY 194

because it’s written in C - can be very slow. The idea behind PyPy was to write
a Python interpreter in Python itself. In time it evolved to be written in RPython,

which is a restricted subset of the Python language.

RPython places constraints on the Python language in such a way that a variable’s
type can be inferred at compile time. The RPython code is translated to C code that
iscompiled to build the interpreter - RPython could of course be used to implement

other languages than Python.

What’s interesting in PyPy, besides the technical challenge, is that it is now at a
stage where it can act as a faster replacement for CPython. PyPy has a JIT (Just-
In-Time) compiler built-in - long story short, it allows the code to be run in a faster

way by combining the speed of compiled code with the flexibility of interpretation.

How fast? That depends, but for pure algorithmic code it is much faster. For more
general code, PyPy claims to achieve 3 times the speed, most of the time. Though
don’t start dreaming too much about it yet - PyPy also has some of the CPython

limitations, such as the hated GIL. 2

While not being a strict optimization technique, targeting PyPy as one of your sup-
ported Python implementations is probably a good idea. Achieving this goal re-
quires the same kind of coding policy that is required for support of other Python
versions - basically, you need to make sure that you are testing your software un-
der PyPy like you do under CPython. tox (see Section 6.7) supports the building of
virtual environments using PyPy, just as it does for CPython 2 or CPython 3, so it

should be pretty straightforward to put this in place.

Doing so at the beginning of the project will make sure that there’s not too much

work to do at a later stage if you wish to be able to run your software with PyPy.

*Global Interpreter Lock

bjpcjp

bjpcjp

10.7. ACHIEVING ZERO COPY WITH THE BUFFER PROTOCOL 195

Note

For the Hy project, we successfully adopted such a strategy from the beginning. Hy always
f has supported PyPy and all CPython versions without much trouble. On the other hand,
we failed to do so in all of our OpenStack projects, and we are now blocked by various
code paths and dependencies that don’t work on PyPy for various reasons, as they weren’t

fully tested in the early stages.

PyPy is compatible with Python 2.7, and its JIT compiler works on 32- and 64-bit,
x86 and ARM architectures, and under various operating systems (Linux, Windows,

Mac OS X...). Support for Python 3 is underway.

10.7 Achieving zero copy with the buffer protocol

Often programs have to deal with a huge amount of data in the form of large arrays
of bytes. Handling such a large amount of data in strings can be very ineffective

once you start manipulating it by copying, slicing, and modifying them.

Let’s consider a small program which reads a large file of binary data, and copies
it partially into another file. To examine out our memory usage, we will use mem-
ory_profiler, a nice Python package that allows us to see the memory usage of a

program line by line.

@profile
def read random():
with open("/dev/urandom", "rb") as source:
content = source.read(1024 * 10000)
content to write = content[1024:]
print("Content length: %d, content to write length %d" %
(len(content), len(content to write)))

with open("/dev/null", "wb") as target:

bjpcjp

bjpcjp

10.7. ACHIEVING ZERO COPY WITH THE BUFFER PROTOCOL 196

target.write(content to write)

if name == "' main_ ':

read random()

We then run the above program using memory_profiler:

$ python -m memory profiler memoryview/copy.py
Content length: 10240000, content to write length 10238976

Filename: memoryview/copy.py

Mem usage Increment Line Contents
@profile

9.883 MB 0.000 MB def read random():

9.887 MB 0.004 MB with open("/dev/urandom", "rb") as source:
19.656 MB 9.770 MB content = source.read(1024 * 10000) @
29.422 MB 9.766 MB content to write = content[1024:] @
29.422 MB 0.000 MB print("Content length: %d, content to write <

length %d" %
29.434 MB 0.012 MB (len(content), len(content to write)))
29.434 MB 0.000 MB with open("/dev/null", "wb") as target:
29.434 MB 0.000 MB target.write(content to write)

® We arereading 10 MB from /dev/urandom and not doing much with it. Python

needs to allocate around 10 MB of memory to store this data as a string.

® We copy the entire block of data minus the first KB - because we won’t be writ-
ing to that first KB to the target file.

What’s interesting in this example is that, as you can see, the memory usage of the

program is increased by about 10 MB when building the variable content_to_write.

10.7. ACHIEVING ZERO COPY WITH THE BUFFER PROTOCOL 197

In fact, the slice operator is copying the entirety of content, minus the first KB, into

a new string object.

When dealing with large data, performing this kind of operation on large byte arrays
is going to be a disaster. If you happen to have written C code already, you know
that using memcpy() has a significant cost, both in term of memory usage and in

terms of general performance: copying memory is slow.

But as a C programmer you’ll also know that strings are arrays of characters, and
that nothing stops you from looking at only part of this array without copying it,

through the use of basic pointer arithmetic >,

This is possible in Python using objects which implement the buffer protocol. The
buffer protocolis defined in PEP 3118, which explains the C APl used to provide this

protocol to various types, such as strings.

When an object implements this protocol, you can use the memoryview class con-
structor on it to build a new memoryview object that will reference the original ob-

ject memory.

Here’s an example:

>>> s = b"abcdefgh"

>>> view = memoryview(s)
>>> view[1]

98 ©

>>> limited = view[1:3]
<memory at 0x7fcal8b8d460>
>>> bytes(view[1l:3])

b'bc'

® Thisisthe ASCII code for the letter b.

*Assuming that the entire string is in a contiguous memory area.

10.7. ACHIEVING ZERO COPY WITH THE BUFFER PROTOCOL 198

N 5
a|b

limited —~a_ 4

L
e
L
—,
f =
=

Figure 10.2: Using slice on memoryview objects

In this case, we are going to make use of the fact that the memoryview object’s slice
operator itself returns a memoryview object. That means it does not copy any data,

but merely references a particular slice of it.

With this in mind, we now can rewrite the program, this time referencing the data

we want to write using a memoryview object.

@profile
def read random():
with open("/dev/urandom", "rb") as source:
content = source.read (1024 * 10000)
content to write = memoryview(content)[1024:]
print("Content length: %d, content to write length %d" %
(len(content), len(content to write)))
with open("/dev/null", "wb") as target:
target.write(content to write)
if name == "' main ':

read random()

And this program will have half the memory usage of the first version:

$ python -m memory profiler memoryview/copy-memoryview.py
Content length: 10240000, content to write length 10238976

Filename: memoryview/copy-memoryview.py

10.7. ACHIEVING ZERO COPY WITH THE BUFFER PROTOCOL 199

with open("/dev/urandom", "rb") as source:
content = source.read(1024 * 10000) ©

content to write = memoryview(content) «

print("Content length: %d, content to write <«

(len(content), len(content to write)))

with open("/dev/null", "wb") as target:

Mem usage Increment Line Contents
@profile
9.887 MB 0.000 MB def read random():
9.891 MB 0.004 MB
19.660 MB 9.770 MB
19.660 MB 0.000 MB
[1024:] ©
19.660 MB 0.000 MB
length %d" %
19.672 MB 0.012 MB
19.672 MB 0.000 MB
19.672 MB 0.000 MB

target.write(content to write)

® We arereading 10 MB from /dev/urandom and not doing much with it. Python

needs to allocate around 10 MB of memory to store this data as a string.

® We reference the entire block of data minus the first KB - because we won’t

be writing to that first KB to the target file. No copying means that no more

memory is used!

This kind of trick is especially useful when dealing with sockets. As you may know,

when data is sent over a socket, it might not send all the data in a single call. A

simple implementation would be to write:

import socket

s = socket.socket(..)

s.connect(..)

data = b"a" * (1024 * 100000) @

while data:

10.7. ACHIEVING ZERO COPY WITH THE BUFFER PROTOCOL 200

sent s.send(data)

data = data[sent:] ©

® Build a bytes object with more than 100 millions times the letter a.

® Remove the first sent bytes sent.

Obviously, using such a mechanism, you are going to copy the data over and over
until the socket has sent everything. Using memoryview, we can achieve the same
functionality without copying data - hence, zero copy:
import socket
s = socket.socket(..)
s.connect(..)
data = b"a" * (1024 * 100000) @
mv = memoryview(data)
while mv:
sent = s.send(mv)

mv = mv[sent:] ©

® Build a bytes object with more than 100 millions times the letter a.

® Build anew memoryview object pointing to the data which remains to be sent.

Thiswon’t copy anything, and won’t use any more memory than the 100 MB initially

needed for our data variable.

We’ve now seen memoryview objects used to write data efficiently, but the same
method can also be used to read data. Most 1/0 operations in Python know how to
deal with objects implementing the buffer protocol. They can read fromit, but also
write to it. In this case, we don’t need memoryview objects - we can just ask an 1/0

function to write into our pre-allocated object:

10.7. ACHIEVING ZERO COPY WITH THE BUFFER PROTOCOL 201

>>> ba = bytearray(8)

>>> ba
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00")
>>> with open("/dev/urandom", "rb") as source:

source.readinto(ba)

8

>>> ba

bytearray(b' m.z\x8d\x0fp\xal')

With such techniques, it’s easy to pre-allocate a buffer (as you would do in C to mit-
igate the number of calls to malloc()) and fill it at your convenience. Using memo-
ryview, you can even place data at any point in the memory area:

>>> ba = bytearray(8)

>>> ba at 4 = memoryview(ba)[4:] @

>>> with open("/dev/urandom"”, "rb") as source:

source.readinto(ba at 4) @

4
>>> ba

bytearray(b'\x00\x00\x00\x00\x0b\x19\xae\xb2")

® We reference the bytearray from offset 4 to its end.

® Wewrite the content of /dev/urandom from offset 4 to the end of the bytearray,

effectively reading 4 bytes only.

Tip
Both the objects in the array module and the functions in the struct module can handle the

buffer protocol correctly, and can therefore perform efficiently when targeting zero copy.

10.8. INTERVIEW WITH VICTOR STINNER 202

10.8 Interview with Victor Stinner

Victor is a long time Python hacker, a core contributor and the author of many
Python modules. He recently authored PEP 454, which proposes a new tracemal
loc module to trace memory block allocation inside Python, and also wrote a sim-

ple AST optimizer.

What’s a good starting strategy to optimize Python code?

Well, the strategy is the same in Python as in other languages. First you
need a well-defined use case, in order to get a stable and reproducible
benchmark. Without a reliable benchmark, trying different optimizations
may result in a wasting time and premature optimizations. Useless op-
timizations may make the code worse, less readable, or even slower. A

useful optimization must speed the program up by at least 5%.

If a specific part of the code is identified as being "slow", a benchmark
should be prepared on this code. Abenchmark on a short function is usu-
ally called a "micro-benchmark". The speedup should be at least 20%,

maybe 25%, to justify an optimization on a micro-benchmark.

It may be interesting to run a benchmark on different computers, differ-
ent operating systems, different compilers. For example, performances
of realloc() may vary between Linux and Windows. Even if it should be

avoided, sometimes, the implementation may depend on the platform.

There’s a lot of different tools around for profiling or optimizing Python

code; what are your weapons of choice?

bjpcjp

bjpcjp

10.8. INTERVIEW WITH VICTOR STINNER 203

Python 3.3 has anew time.perf counter() function to measure elapsed

time for a benchmark. It has the best resolution available.

A test should be run more than once; 3 times is a minimum, 5 may be
enough. Repeating a test fills disk cache and CPU caches. | prefer to keep

the minimum timing, other developers prefer the geometric mean.

For micro-benchmarks, the timeit module is easy to use and gives results
quickly, but the results are not reliable using default parameters. Tests

should be repeated manually to get stable results.

Optimizing can take a lot of time, so it’s better to focus on functions which
use the most CPU power. To find these functions, Python has cProfile
and profile modules which record the amount of time spent in each func-

tion.

What are the interesting Python tricks to know that could improve

performance?

The standard library should be reused as much as possible - it’s well tested,
and also usually efficient. Python built-in types are implemented in C and
have good performance. Use the correct container to get the best per-
formance; Python provides many different kind of containers - dict, list,

deque, set, etc.

There are some hacks to optimize Python, but they should be avoided
because they make the code less readable in exchange for only a minor

speed-up.
The Zen of Python (PEP 20) says "There should be one - and preferably

only one - obvious way to do it." In practice, there are different ways to
write Python code, and performances are not the same. Only trust bench-

marks on your use case.

In which areas does Python have poor performance? Which areas should

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

10.8. INTERVIEW WITH VICTOR STINNER 204

be used with care?

In general, | prefer not to worry about performance while developing a
new application. Premature optimization is the root of all evil. When
slow functions are identified, the algorithm should be changed. If the al-
gorithm and the container types are well chosen, it’s possible to rewrite

short functions in C to get best performances.

A bottleneckin CPython is the Global Interpreter Lock known as the "GIL".
Two threads cannot execute Python bytecode at the same time. However,
this limitation only mattersif two threads are executing pure Python code.
If most processing time is spent in function calls, and these functions re-
lease the GIL, then the GIL is not the bottleneck. For example, most I/O

functions release the GIL.

The multiprocessing module can easily be used to workaround the GIL.
Another option, more complex to implement, is to write asynchronous
code. Twisted, Tornado and Tulip projects, which are network-oriented

libraries, make use of this technique.

What "mistakes" that contribute to poor performance do you see most

often?

When Python is not well understood, inefficient code can be written. For
example, | have seen copy.deepcopy() misused, when no copy was re-

quired.

Another performance-killer is an inefficient data structure. With less than
one hundred items, the container type has no impact on performance.
With more items, the complexity of each operation (add, get, delete) and

it’s effects must be known.

bjpcjp

bjpcjp

bjpcjp

11 Scaling and architecture
g

Nowadays all the hype is about resiliency and scalability, so | assume this is some-
thing that your development process is going to have to take into account sooner or
later. Many sides of the issue are not particularly tied to Python itself, while some

are only relevant to its main implementation, CPython.

The scalability, concurrency and parallelism of an application largely depend on the
choices made about itsinitial architecture and design. As you’ll see, there are some
paradigms - like multi-threading - that don’t apply correctly to Python, whereas

other techniques, such as service oriented architecture, work better.

11.1 A note on multi-threading

What is multi-threading? It’s the ability to run code on separate processors ' inside
a single Python process. This means that different parts of your code will be run in

parallel.

Why is this needed? The most common cases are:

1. You need to run background tasks without stopping your main thread’s exe-
cution, e.g. in the case of a graphical user interface where the main loop is

waiting for events.

'0r sequentially on one, if multiple CPUs aren’t present

11.1. ANOTE ON MULTI-THREADING 206

2. You need to spread your work-load across several CPUs.

So at first, it may seem that multi-threading looks like a good way to scale and par-
allelize your application, solving these problems. When you want to spread a work-
load, you start a new thread for each new request instead of handling them one at

a time.
Wonderful. Job done. We can move on.

No - sorry! First, if you’ve been in the Python world for a long time, you’ve probably
encountered the word GIL, and know how hated it is. The GIL is the Python Global
Interpreter Lock, a lock that must be acquired each time CPython > needs to execute
byte-code. Unfortunately, this means that if you try to scale your application by

making it run multiple threads, you’ll always be limited by this global lock.

So while using threads seems like the ideal solution, in fact most applications I've
seen running requests in multiple threads struggle to attain 150% CPU usage - i.e.
1.5 cores used. With computing nodes nowadays not usually having less than 2 or

4 cores, it’s a shame. Blame the GIL.

There isn’t currently any work being done to remove the GIL in CPython, because
nobody thinks the solution is worth the difficulty of implementing and maintaining
it.

However, CPython is just one * of the available Python implementations. Jython,
for example, doesn’t have a global interpreter lock, which means that it can run
multiple threads in parallel efficiently. Unfortunately, these projects by their very

nature lag behind CPython, and so are not really useful targets.

*The reference implementation of Python written in C that you run by typing python in your shell.
*although the most commonly used.

11.1. ANOTE ON MULTI-THREADING 207

Note

PyPy is another Python implementation, but is written in Python (see Section 10.6). PyPy
has a GIL too, but very interesting work is happening right now to replace it with a STM
(Software Transactional Memory)-based implementation. This is something very exciting
that’s going to change how we build and run multi-threading software in the future. Hard-
ware support is starting to appear in some processors, and Linux kernel developers are

looking at ways to suppress kernel locks too. These are good signs.

So are we back to our initial use cases, with no good solutions on offer? Not true -

there’s (at least) two solutions you can use:

1. If you need to run background tasks, the easiest way to do that is to build your
application around an event loop. There’s a lot of different Python modules
which provide for this, even a standard one called asyncore, which is an ef-
fort to standardize this functionality as part of PEP 3156. Some frameworks
such as Twisted are built around this concept. The most advanced ones should
give you access to events based on signals, timers and file descriptors activity
—we’ll talk about this in Section 11.3.

2. If you need to spread the work-load, using multiple processes is going to be

more efficient and easier. See Section 11.2.

For us developers, mere mortals, it all means that we should think twice before us-
ing multi-threading. I’'ve used multi-threading to dispatch jobs in rebuildd, a De-
bian build daemon | wrote a few years ago. While it seemed handy to have a thread
to control each running build job, | very quickly fell into the concurrency trap. If |
had the chance to begin again, I’d build something based on asynchronous events

handling or multi-processing, and not have to worry about this problem.

Getting multi-threaded applications right is hard. The level of complexity means

that it is a larger source of bugs than most others - and considering the little to be

11.2. MULTIPROCESSING VS MULTITHREADING 208

gained generally, it’s better not to waste too much effort on it.

11.2 Multiprocessing vs multithreading

As explained earlier, multi-threading is not a good scalability solution because of
the GIL. Abettersolution is the multiprocessing package thatis provided with Python.
It provides the same kind of interface that you would have using the multithread-
ing module, except that it starts new processes (via fork(2)) rather than new system
threads.

The below program is a simple example, which sums one million random integers

8 times, spread across 8 threads at the same time.

Worker using multithreading
import random

import threading

results []
def compute():
results.append(sum(

[random.randint (1, 100) for i in range(1000000)]))

workers = [threading.Thread(target=compute) for x in range(8)]
for worker in workers:

worker.start()
for worker in workers:

worker.join()

print("Results: %s" % results)

Running this program returns the following:

11.2. MULTIPROCESSING VS MULTITHREADING 209

Example 11.1 Result of time python worker.py

$ time python worker.py

Results: [50517927, 50496846, 50494093, 50503078, 50512047, <«
50482863, 50543387, 50511493]

python worker.py 13.04s user 2.11s system 129% cpu 11.662 total

This has beenrunonanidle4 cores CPU, which means that Python could have used
up to 400% CPU power. Butit was clearly unable to do that, even with 8 threads run-

ning in parallel - it stuck at 129%, which is just 32% of the hardware’s capabilities.

Now, let’s rewrite this implementation using multiprocessing. For a simple case
like this, it’s pretty straightforward:

Example 11.2 Worker using multiprocessing

import multiprocessing

import random

def compute(n):
return sum(

[random.randint (1, 100) for i in range(1000000)])

Start 8 workers
pool = multiprocessing.Pool(8)

print("Results: %s" % pool.map(compute, range(8)))

Running this program under the exact same conditions gives the following result:

Example 11.3 Result of time python worker.py

$ time python workermp.py
Results: [50495989, 50566997, 50474532, 50531418, 50522470, <+
50488087, 50498016, 50537899]

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 210

python workermp.py 16.53s user 0.12s system 363% cpu 4.581 total

The execution time has been reduced by 60%; this time, we have been able to con-
sume up to 363% of CPU power, which is more than 90% of the computer’s CPU

capacity.

A further note - the multithreading module is not only able to efficiently spread a
work-loads over several local processors, but can also do so over a network, through
its multithreading.managers objects. It also provides bi-directional communica-

tion transports so your processes can exchange information with each other.

Each time you think that you can parallelize some work for a certain amount of
time, it’s much better to rely on multi-processing and to fork your jobs, in order to

spread the workload among several CPU cores.

11.3 Asynchronous and event-driven architecture

Event-driven programming is a good solution to organize program flow in a way

which listens for various events at once, without using a multi-threaded approach.

Consider an application that wants to listen for connection on a socket and then
process the connection it receives. There are basically three ways to approach the

problem:

1. Forka new process each time anew connectionis established, relying on some-

thing like the multiprocessing module.

2. Startanew thread each time a new connectionis established, relying on some-

thing like the threading module.

3. Add this new connection to your event loop, and react to the event it will gen-

erate when it occurs.

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 211

It is (now) well known that listening to hundreds of event sources is going to scale
much better when using an event-driven approach than, say, a thread-per-event
approach . This doesn’t mean that the two techniques are not compatible, but it
does mean that you can usually get rid of multiple threads by using an event-driven

mechanism.

We’ve already covered the pros and cons of the first options; in this section, only

the event-driven mechanism will be discussed.

The technique behind event-driven architecture is the building of an event loop.
Your program calls a function that blocks until an eventis received. Theidea behind
this is that your program can be kept busy while waiting for inputs and outputs to
complete; the most basic events are "l have data ready to be read" or "l can now

write data without blocking".

In Unix, the standard functions used to build such an event loop are the system calls
select(2) orpoll(2). They expect a few file descriptors to listen for, and will react

when one of them is ready to be read from or written to.

In Python, these system calls are exposed through the select module. It’s easy

enough to build an event-driven system with them, though it can be tedious.

Example 11.4 Basic example of using select

import select

import socket

server = socket.socket(socket.AF INET,
socket.SOCK STREAM)
Never block on read/write operations

server.setblocking(0)

Bind the socket to the port

*For further reading on this, take a look at the C10K problem.

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 212

server.bind(('localhost', 10000))

server.listen(8)

while True:

select() returns 3 arrays containing the object (sockets, files..) <«
that
are ready to be read, written to or raised an error
inputs, outputs, excepts = select.select(
[server], []1, [server])
if server in inputs:
connection, client address = server.accept()

connection.send("hello!\n")

A wrapper around these low-level interfaces was added to Python in the early days,

called asyncore. Itis not widely used, and hasn’t evolved much.

Alternatively, there are many frameworks which provide this kind of functionality in
a more integrated manner, such as Twisted or Tornado. Twisted has been almost a
de-facto standard for years in this regard. C libraries that export Python interfaces,

such as libevent, libev or libuv, also provides very efficient event loops.

While they all solve the same problem, the downside is that nowadays there are
too many choices, and most of them are not interoperable. Also, most of them are
callback based - which means that the program flow is not really clear when reading

the code.

What about gevent or Greenlet? They avoid the use of callback, but the imple-
mentation details are scary, and include CPython x86 specific code and monkey-
patching of standard functions. Not something you want to use and maintain on

the long term, really.

Recently, Guido Van Rossum started to work on a solution code-named tulip, which

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 213

is documented under PEP 3156.° The goal of this package is to provide a standard
event loop interface. In the future, all frameworks and libraries would be compati-

ble with it and would be able to interoperate.

tulip has been renamed and merged into Python 3.4 as the asyncio package. If you
don’t plan to depend on Python 3.4, it’s also possible to install it for Python 3.3 us-
ing the version provided on PyPI - simply running pip install asyncio will do
the job. Victor Stinner started a backport of tulip named trollius, which aims to be

compatible with Python 2.6 and superior versions.

Now that you’ve got all the cards in your hand, no doubt you’re wondering: but

what should | use to build an event loop in my event-driven application?

At this point in Python’s development, it’s a really tough question. The language is
stillin a transition phase. As of the time of this writing, nothing yet uses the asyncio

module. That means that using is going to be a real challenge.

Here are my recommendations at this point:

« If you target Python 2 only, asyncio is out of reach for you. For me, the next best

choice would be something based on libev, like pyev.

« If you target both major Python versions - 2 and 3 - you’d better use something
that is compatible with both, such as pyev. However, | would strongly advise you
to keep in mind that you might have to transition later to asyncio. It may be useful
to have a minimal abstraction layer, and not to spread the internal guts of your
eventing-dependency over the entire program. If you’re adventurous, trying to

mix asyncio/trollius can be a nice solution too.

« If you only target version 3, go ahead with asyncio. It’ll be a pain to start with, as
there are still not a lot of examples or documentation, but it’s a safe bet. You’ll be

a pioneer.

SAsynchronous 10 Support Rebooted: the "asyncio" Module, Guido van Rossum, 2012

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 214

Example 11.5 Example with pyev

import pyev

import socket

server = socket.socket(socket.AF INET,
socket.SOCK STREAM)
Never block on read/write operations

server.setblocking(0)

Bind the socket to the port
server.bind(('localhost', 10000))

server.listen(8)

def server activity(watcher, revents):
connection, client address = server.accept()
connection.send("hello!\n")

connection.close()

loop = pyev.default loop()
watcher = pyev.Io(server, pyev.EV READ, loop, server activity)
watcher.start()

loop.start()

As you can see here, the pyev interface is pretty easy to grasp. Via its libev usage,
it supports an Io object for input/output, but also the tracking of child processes,
timers, signals and even callbacks to call when idle. libev also automatically relies

on the best interface for polling - epol1(2) on Linux or kqueue (2) on BSD.

11.4. SERVICE-ORIENTED ARCHITECTURE 215

11.4 Service-oriented architecture

Considering the previously stated problems and solutions, the shortcomings of Python
in terms of scalability and usage in large, complex applications can seem tricky to
circumvent. Howeverit appearsthat Pythonisreally good atimplementing Service-
Oriented Architecture (SOA) - if you’re not yet familiar with this, there’s plenty of

documentation and opinions that you can read online.

SOAis the architecture type used by OpenStackin all its components. Components
use HTTP REST to communicate with external clients (end-users) and an abstracted
RPC mechanism that can support several wire protocols, the most commonly used
one being AMQP.

In your own case, the choice of which communication channels to use between

those blocks is mainly a matter of knowing with whom you will be communicating,.

When exposing an API to the outside world, the preferred channel nowadays is
HTTP, and especially stateless designs such as REST ° style architectures. These

kinds of architectures are easy to implement, scale, deploy and comprehend.

However, when exposing and using your APl internally, using HTTP may be not the
best protocol. A large panel of communication protocols for applications exist, and

a full description of any of them would likely fill an entire book.

In Python, there’s plenty of libraries to build RPC " systems. Kombu - among others
- isinteresting because it provides an RPC mechanism on top of a lot of back-ends;
AMQ protocol being the main one. But support for Redis, MongoDB, BeanStalk,

Amazon SQS, CouchDB, or ZooKeeper are also provided.

In the end, there’s a huge amount to be gained indirectly from using such loosely

coupled architecture. If we consider that each module provides and exposes an API,

®Representational state transfer
"Remote Procedure Call

11.4. SERVICE-ORIENTED ARCHITECTURE 216

we can run multiple daemons exposing this API. For example, Apache httpd would
create a new worker using a new system process that handles new connections;
we can then dispatch our connection to a different worker running on the same
compute node. All we need to haveis a system of dispatching the work between our
workers, which provides this API. Each block will be a different Python process, and
as we’ve seen above, this is better than multi-threading to spread your work-load.
You’ll be able to start multiple workers on each computing node you have. Even if
not strictly necessary, using stateless blocks should be favored any time you have
the choice.

ZeroMQ is a socket library that can act as a concurrency framework. The follow-
ing example implements the same worker seen in the previous examples, but uses

ZeroMQ as a way to dispatch and communicate.

Workers using ZeroMQ

import multiprocessing
import random

import zmq

def compute():
return sum(

[random.randint (1, 100) for i in range(1000000)])

def worker():
context = zmqg.Context()
work receiver = context.socket(zmq.PULL)
work receiver.connect("tcp://0.0.0.0:5555")
result sender = context.socket(zmq.PUSH)
result sender.connect("tcp://0.0.0.0:5556")
poller = zmqg.Poller()

poller.register(work receiver, zmq.POLLIN)

11.4. SERVICE-ORIENTED ARCHITECTURE

while True:

socks = dict(poller.poll())

if socks.get(work receiver) == zmq.POLLIN:

obj = work receiver.recv pyobj()

result sender.send pyobj(obj())

context = zmq.Context()
Build a channel to send work to be done
work sender = context.socket(zmqg.PUSH)
work sender.bind("tcp://0.0.0.0:5555")
Build a channel to receive computed results
result receiver = context.socket(zmqg.PULL)
result receiver.bind("tcp://0.0.0.0:5556")
Start 8 workers
processes = []
for x in range(8):
p = multiprocessing.Process(target=worker)
p.start()
processes.append(p)
Start 8 jobs
for x in range(8):
work sender.send pyobj(compute)
Read 8 results
results = []
for x in range(8):
results.append(result receiver.recv_pyobj())
Terminate all processes
for p in processes:

p.terminate()

217

11.4. SERVICE-ORIENTED ARCHITECTURE 218

print("Results: %s" % results)

As you can see, ZeroMQ provides an easy way to build communication channels.
I’'ve chosen the TCP transport layer here to illustrate the fact that we could run this
over a network. It should be noted that ZeroMQ also provides a inproc communi-
cation channel that works by using Unix sockets. Obviously the communication
protocol built upon ZeroMQ in this example is very simplistic — in order to keep this
book’s examples clear and concise; but it shouldn’t be hard to imagine building a

more sophisticated communication layer on top of it.

With such a protocol, it’s easy to imagine building a entirely distributed application

communication with a network message bus - ZeroMQ, AMQP, or something else.

Note also that protocols like HTTP, ZeroMQ or AMQP are language agnostic; you
can use different languages and platforms to implement each part of your system.
While we all agree that Python is a good language, other teams might have other
preferences; or another language might be a better solution for some part of a prob-

lem.

In the end, using a transport bus to decouple your application is a good option. It
allows you to build both synchronous and asynchronous APIs that can be spread
from one computer to several thousand. It doesn’t tie you to a particular technol-
ogy or language - and these days, there’s no longer a reason not to be ready to

distribute your software, or to be constrained by any particular language.

12 RDBMS and ORM
g

RDBMSs ' and ORM ? are touchy subjects, but there’s no way to avoid having to deal
with them sooner or later. Many applications have to store data of some kind, and
developers often choose to do so using relational databases. And when a developer
chooses to use a relational database, the tool they almost always choose to use for

itis an ORM library of some kind.

Note
This chapter will be a little less Python-centric than others; bear with me. I'll only be talking

about relational databases here, but many of the things we’ll cover here can also apply to

other kinds of databases.

RDBMSs are about storing relational data using normal form, while SQL is about
dealing with relational algebra. Together, they allow you to store data and an-
swer questions about that data. However, there are a number of common difficul-
ties with using ORM in object-oriented programs, known collectively as the object-
relationalimpedance mismatch. The bottom lineis, relational databases and object-
oriented programs have different representations of data which don’t map properly
to one another: mapping SQL tables to Python classes won’t give you optimal re-

sults, no matter what you do.

'Relational database management systems
*Object-relational mapping

CHAPTER 12. RDBMS AND ORM 220

ORM is supposed to make database systems easier to access: these tools abstract
the process of creating queries, generating SQL so you don’t have to. Unfortunately,
more likely sooner than later, you’ll want to do something with your database only
to discover that the abstraction layer simply won’t allow it. To make the most ef-
ficient use of your database, you absolutely have to have an understanding of SQL
and RDBMSs so that you can write your own queries directly without having to rely

on the abstraction layer for everything.

But that’s not to say you should avoid ORM entirely. ORM libraries can help with
rapid prototyping of your application model, and some even provide useful tools
such asschemaupgrades/downgrades. The important thingisthatyou understand
thatit’s not a substitute for a proper grasp of RDBMSs: many developers try to solve
problems in the language of their choice rather than using their model API, and the

solutions they come up with are inelegant at best.

Imagine a SQL table for keeping track of messages. It has a single column named

"id," which is the primary key, and a string containing the message:

CREATE TABLE message (
id serial PRIMARY KEY,

content text

);

We wantto avoid duplicates when receiving a message, so a typical developer would

write something like this:

if message table.select by id(message.id):
We already have the message, it's a duplicate, ignore and raise
raise DuplicateMessage(message)

else:
Insert the message

message table.insert(message)

CHAPTER 12. RDBMS AND ORM 221

This would definitely work in most cases, but it has some major drawbacks:

« Itimplements a constraint already expressed in the SQL schema, so it is a sort of

code duplication.

« It execute 2 SQL queries; executing SQL query might be long and requires round-

trip to the SQL server, introducing extraneous delay.

« It doesn’t take into account the possibility of someone else inserting a duplicate
message after we call select_by_id but before we call insert, which would cause

the program to raise an exception.

There’s a much better way to write this code, but it requires cooperation with the
RDBMS server rather than treating it like dumb storage:
try:
Insert the message
message table.insert(message)
except UniqueViolationError:
Duplicate

raise DuplicateMessage(message)

This achieves the exact same effect in a more efficient fashion and without any race
condition. Thisis a very simple pattern, and it doesn’t conflict with ORM in any way.
The problem is that developers tend to treat SQL databases as dumb storage and
duplicate the constraints they wrote (or could write) in SQL in their controller code

rather than in their model.

Treating your SQL backend as a model APl is good way to make efficient use of it.
You can manipulate the data stored in your RDBMS with simple function calls pro-

grammed in its own procedural language.

Another point that needs to be raised about ORM is support for multiple database

backends. Many ORM libraries tout it as a feature, but it’s really a trap waiting to

CHAPTER 12. RDBMS AND ORM 222

ensnare unsuspecting developers. No ORM library provides a complete abstraction
of all RDBMS features, so you’ll have to dumb down your code to the most basic
RDBMS available (or that you want to put up with), and you’ll be unable to use any

advanced RDBMS functions without breaking the abstraction layer.

Simple things that aren’t standardized in SQL, such as handling timestamp oper-
ations, are a pain to deal with when using an ORM; even more so if your code is
written to be RDBMS-agnostic. With this in mind, be sure to choose an RDBMS that

suits your application well °.

A good way to mitigate the problems with ORM libraries is to isolate them as pre-
scribed in Section 2.3. This approach not only allows you to easily swap your ORM
library for a different one should the need arise, but it also allows you to optimize
your SQL usage by identifying places with inefficient usage of queries, bypassing
most of the ORM boilerplate.

An easy way to build such isolation is to for example only use your ORM in a module
of your application, for example myapp.storage. This module should only exports
functions and methods that allow you to manipulate the data at a high level of ab-
straction. The ORM should be only used from that module. At any point later, you

will be able todropinany module providing the same APl to replacemyapp . storage.

In the end, this section’s goal isn’t to take a side in the debate over whether to use
ORM; there’s already plenty of discussion on the Internet arguing over the pros and
cons. The point of this sectionis to help you understand how importantitis to know
enough about SQL and RDBMS to make use of their full potential in your applica-

tion.

The most commonly used ORM library in Python (and arguably the de facto stan-
dard) is SQLAlchemy. It supports a huge number of different backends and pro-
vides abstraction for most common operations. Schema upgrades can be handled

by third-party packages such as alembic.

*When in doubt, pick PostgreSQL.

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 223

Some frameworks, such as Django, provide their own ORM libraries. If you choose
to use aframework, it’'sa smartidea to use the built-in library, which will (obviously)

have better integration with the framework than an external one.

Warning

The MVC 9 architecture that most frameworks rely on can be easily misused. They imple-
ment (or make it easy to implement) ORM in their model directly, but without abstracting
enough of it: any code you have in your view and controllers that uses the model will also
be using ORM directly. This is something that you need to avoid. You should write a
data model that includes the ORM library rather than consists of it: this will provide better
testability and better isolation, as well as make it easier to swap out with another storage

technology should the need arise.

9Model View Controller

12.1 Streaming data with Flask and PostgreSQL

In the previous section, we talked about how important it can be to masterize your
data storage system. Here, I’ll show you how you can use one of PostgreSQL's ad-

vanced features to build an HTTP event streaming system.

The purpose of this micro-application is to store messages in a SQL table and pro-
vide access to those messages via an HTTP REST API. Each message consists of a
channel number, a source string, and a content string. The code that creates this

table is quite simple:

Example 12.1 Creating the message table

CREATE TABLE message (
id SERIAL PRIMARY KEY,
channel INTEGER NOT NULL,
source TEXT NOT NULL,

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 224

content TEXT NOT NULL
);

What we also wantto dois stream these messages to the clientso thatit can process
them in real time. To do this, we’re going to use the LISTEN and NOTIFY features of
PostgreSQL. These features allow us to listen for messages sent by a function we

provide that PostgreSQL will execute:

Example 12.2 The notify_on_insert function

CREATE OR REPLACE FUNCTION notify on insert() RETURNS trigger AS $$
BEGIN
PERFORM pg notify('channel ' || NEW.channel,
CAST(row to json(NEW) AS TEXT));
RETURN NULL;
END;
$$ LANGUAGE plpgsql;

This creates a trigger function written in pl/pgsql, a language that only PostgreSQL
understands. Note that we could also write this function in other languages, such
as Python itself, as PostgreSQL provides a pl/python language by embedding the
Python interpreter.

This function performs a call to pg_notify. This is the function that actually sends
the notification. The first argument is a string that represents a channel, while the
second is a string carrying the actual payload. We define the channel dynamically
based on the value of the channel column in the row. In this case, the payload will
be the entire row in JSON format. Yes, PostgreSQL knows how to convert a row to
JSON natively!

We want to send a notification message on each INSERT performed in the message

table, so we need to trigger this function on such events:

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 225

Example 12.3 The trigger for notify_on_insert

CREATE TRIGGER notify on message insert AFTER INSERT ON message
FOR EACH ROW EXECUTE PROCEDURE notify on insert();

And we’re done: the function is now plugged in and will be executed upon each

successful INSERT performed in the message table.

We can check that it works by using the LISTEN operation in psql:
$ psql

psql (9.3rcl)

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

Type "help" for help.

mydatabase=> LISTEN channel 1;

LISTEN

mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'hello world');

INSERT 0 1

Asynchronous notification "channel 1" with payload
“{"id":1,"channel":1,"source":"jd","content":"hello world"}"

received from server process with PID 26393.

As soon as the row is inserted, the notification is sent and we’re able to receive it
through the PostgreSQL client. Now all we have to do is build the Python applica-
tion that streams this event:

Example 12.4 Receiving notifications in Python

import psycopg2
import psycopg2.extensions

import select

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 226

conn = psycopg2.connect(database="'mydatabase', user='myuser',

password="'idkfa', host='localhost"')

conn.set isolation level(

psycopg2.extensions.ISOLATION LEVEL AUTOCOMMIT)

curs = conn.cursor()

curs.execute("LISTEN channel 1;")

while True:
select.select([conn], [], [])
conn.poll()
while conn.notifies:
notify = conn.notifies.pop()

print("Got NOTIFY:", notify.pid, notify.channel, notify.payload)

The above code connects to PostgreSQL using the psycopg? library. We could have
used a library that provides an abstraction layer, such as SQLAlchemy, but none of
them provide access to the LISTEN/NOTIFY functionality of PostgreSQL. It’s still pos-
sible to access the underlying database connection to execute the code, but there
would be no point in doing that for this example, since we don’t need any of the

other features the ORM library would provide.

The program listens on channel_1. As soon as it receives a notification, it prints it
to the screen. If we run the program and insert a row in the message table, we get
this output:

$ python3 listen.py

Got NOTIFY: 28797 channel 1

{"id":10, "channel":1, "source":"jd","content":"hello world"}

Now, we’ll use Flask, a simple HTTP micro-framework, to build our application.

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 227

We’re going to send the data using the Server-Sent Events message protocol de-
fined by HTML5 *.

Example 12.5 Flask streamer application

import flask
import psycopg2
import psycopg2.extensions

import select

app = flask.Flask(_name)

def stream messages(channel):
conn = psycopg2.connect(database="'mydatabase', user='mydatabase’,
password='mydatabase', host='localhost"')

conn.set isolation level(

psycopg2.extensions.ISOLATION LEVEL AUTOCOMMIT)

curs = conn.cursor()

curs.execute("LISTEN channel %d;" % int(channel))

while True:
select.select([conn], [], [1)
conn.poll()
while conn.notifies:
notify = conn.notifies.pop()

yield "data: " + notify.payload + "\n\n"

@app.route("/message/<channel>", methods=['GET'])
def get messages(channel):

return flask.Response(stream messages(channel),

*An alternative would be to use Transfer-Encoding: chunked defined by HTTP/1.1.

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 228

mimetype="'text/event-stream')

if name == " main ":

app.run()

This application is quite simple and only supports streaming for the sake of the ex-
ample. We use Flask to route a request to GET /message/<channel>; as soon as the
code is called, it returns a response with the mimetype text/event-stream, sending
back a generator function instead of a string. Flask will then call this function and

send results each time the generator yields something.

The generator, stream_messages, reuses the code we wrote earlier to listen to Post-
greSQL notifications. It receives the channel identifier as an argument, listens to
that channel, and then yields the payload. Remember that we used PostgreSQL’s
JSON encoding function in the trigger function, so we’re already receiving JSON
data from PostgreSQL: there’s no need for us to transcode it, since we’re fine with
sending JSON data to the HTTP client.

Note

For the sake of simplicity, this example application has been written in a single file. It
isn’t easy to depict examples spanning multiple modules in a book. If this were a real
application, it would be a good idea to move the storage handling implementation into its

own Python module.

We can now run the server:

$ python listen+http.py
* Running on http://127.0.0.1:5000/

On another terminal, we can connect and retrieve the events as they’re entered.

Upon connection, no data is received and the connection is kept open:

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 229

$ curl -v http://127.0.0.1:5000/message/1

* About to connect() to 127.0.0.1 port 5000 (#0)
* Trying 127.0.0.1...

* Adding handle: conn: 0x1d46e90

* Adding handle: send: 0

* Adding handle: recv: 0

* Curl addHandleToPipeline: length: 1

* - Conn O (0x1d46e90) send pipe: 1, recv pipe: 0O
* Connected to 127.0.0.1 (127.0.0.1) port 5000 (#0)
> GET /message/1 HTTP/1.1

> User-Agent: curl/7.32.0

> Host: 127.0.0.1:5000

> Accept: */*

But as soon as we insert some rows in the message table:

mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'hello world');

INSERT 0 1

mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'it works');

INSERT 0 1

Data starts coming in through the terminal where curlis running:

data: {"id":71,"channel":1,"source":"jd","content":"hello world"}

data: {"id":72,"channel":1,"source":"jd","content":"it works"}

A naive and arguably more portable implementation of this application ® would in-

°It would be compatible with other RDBMS servers, such as MySQL

12.2. INTERVIEW WITH DIMITRI FONTAINE 230

stead loop over a SELECT statement over and over to poll for new data inserted in
the table. However, there’s no need to demonstrate that a push system like this one

is much more efficient than constantly polling the database.

12.2 Interview with Dimitri Fontaine

| first met Dimitri a decade ago. He is a skilled PostgreSQL Major Contributor who
works at 2ndQuadrant and argues with other database gurus on the pgsqgl-hackers
mailing-list. We’ve shared a lot of open source adventures, and he’s been kind
enough to answer some questions about what you should do when dealing with

databases.

What advice would you give to developers using RDBMS as their stor-

age backends? What should they know about?*

That’s a very good question, mainly because it offers more than one op-
portunity to clarify assumptions that | want to highlight as very wrong
here. If you think the question as asked makes sense, you really need to

be reading my answer now!

Let’s start with somethingreally boring: RDBMS stands for Relational DataBase
Management System. Those beasts have been invented in the 70s to an-
swer some common needs that every application developer needed to
solve themselves at that time, and the main services RDBMS have been
implementing are not data storage, as everyone knew how to implement

that already.

The main services offered by a RDBMS are the following:

12.2. INTERVIEW WITH DIMITRI FONTAINE 231

« Concurrency: access your data for read or write with as many concurrent
threads of execution as you want to, the RDBMS is there to handle that

correctly for you. That’s the main feature you want out of a RDBMS.

« Concurrency semantics: the details about the concurrency behaviour
when using a RDBMS are proposed with a high-level specificationin terms
of Atomicity and Isolation, that are maybe the most crucial parts of
ACID. Atomicity is the property that in between the time you BEGIN a
transaction and the time you’re done with it (either COMMIT or ROLLBACK),
no other concurrent activity on the system s allowed to know whatyou’re
doing, whatever that is. When using a proper RDBMS that includes Data
Definition Language (or DDL, e.g. CREATE TABLE or ALTER TABLE). Isola-
tion is all about what you’re allowed to notice of the concurrent activity
of the system from within your own transaction. The SQL standard de-
fines 4 level of isolation, as described in transaction isolation documen-

tation

The RDBMS takes full responsibility for your data. So it allows the devel-
oper to describe its own rules for consistency and then it will check that
those rules are valid at crucial times such as transaction commit or state-
ments boundaries, depending on the deferability of your constraints dec-

larations.

The first constraint you can place on your data is about its expected input
and output formatting, using the proper data type. A proper RDBMS will
know how to work with much more than text, numbers and dates, and
will properly handle dates that actually appear in a calendar in use today
(Julian is not huge nowadays, you probably want Gregorian unless doing
history).

Data Types are notjustaboutinputand output formats, though. Theyalso

allow to implement behaviours and some level of polymorphism, as we

12.2. INTERVIEW WITH DIMITRI FONTAINE 232

all expect the basic equality tests to be data type specific: we don’t com-
pare text and numbers, dates and IP addresses, points boxes and lines,
booleans and circles, UUIDs and XML, Arrays and Ranges in the same way,

to name but a few.

Protecting your data also means that the only choice for a proper RDBMS
is to actively refuse data that won’t match with your consistency rules, the
first of which is the data type you’ve chosen. If you think it’s OK to have
to deal with a date such as 0000-00-00 that never existed in the calendar,

then you need to rethink.

The other part of the consistency guaranteesis expressed in terms of con-
straints as in CHECK constraints, NOT NULL constraints and constraint trig-
gers, one of which is known as foreign key. All of that can be though as
a user level extension of the data type definition and behavior, the main
difference being that you can choose to DEFER checking those constraints
from being enforced at the end of each statement to being enforced at the

end of the current transaction.

The relational bits of an RDBMS is all about modeling your data and the
guarantee that all tuples found in a relation share a common set of rules:
structure and constraints. When enforcing that, we are enforcing the use

of a proper explicit schema to handle our data.

Working on a proper schema for your data is a process known as Normal-
ization and you can aim for a number of subtly different Normal Forms
in your design. Sometimes though, you need more flexibility than given
by the result of your Normalization process. Common wisdom is to first
normalize your data schema and only then see about how to denormal-
ize it in order to get back the flexibility you think you need. Chances are

that you realize you actually don’t need any.

When you do need more flexibility, using PostgreSQL you can pick from

12.2. INTERVIEW WITH DIMITRI FONTAINE 233

a number of denormalisation options: composite types, records, arrays,

hstore, json or XML, for starters.

There’s a very important drawback to denormalisation though, which
is that the Query Language we’re going to talk about next is designed
to handle rather normalized data. With PostgreSQL of course the Query
Language has been extended to support as much denormalisation as
possible when using composite types, arrays or hstore, and even json in
recent releases.

The RDBMS knows very much about your data and can help you imple-
ment a very fined grain security model, should you need to do so. The
access patterns are managed at the relation and column level, and Post-
greSQL also implements SECURITY DEFINER stored procedure, allowing
you to offer access to sensible data in a very controlled way, much the

same as with using suid programs.

The RDBMS offers you to access your data using a Structured Query Lan-
guage which became a de-facto standard in the 80s and is now driven by
a commitee. In the case of PostgreSQL, lots of extensions are being added
with each and every major release each year allowing you to have access
to a very rich DSL language. All the work of query planning and optimisa-
tion is done for you by the RDBMS so that you can focus on a declarative

query whereyou only describe the result you want from the data you have.

And that’s also why you need to pay close attention to the NoSQL offerings
here, as most of those trendy products are in fact not just removing the
Structured Query Language out of the offering, but a whole lot of other

foundations that you’ve been trained to expect.

My advice to developersistorememberthe differences between a storage
backend and a RDBMS. Those are very different services, and if all you

need actually is a storage backend, maybe consider not using a RDBMS.

12.2. INTERVIEW WITH DIMITRI FONTAINE 234

Most often though, what you really need is a full blown RDBMS. In that
case, the best option you have is PostgreSQL. Go read its documentation,
see the list of data types, operators, functions, features and extensions it

provides. Read some usage examples on blog posts.

Then consider PostgreSQL as a tool you can leverage in your develop-
ment, and include it in your application architecture. Parts of the services
you need to implement are best offered at the RDBMS layer, and Post-
greSQL excels at being that trustworthy part of your whole implementa-

tion.
What’s the best way to use or not use ORM?

SQL stands for Structured Query Language and in the case of PostgreSQL
has been proven to be Turing Complete. Its implementation and opti-

mizer are far from trivial.

As ORM stands for Object Relational Mapper, the idea is that you can
deal with a one-to-one mapping of database relations with classes and

database tuples with objects, or class instances.

Even when a RDBMS, like PostgreSQL, implements strong static typing, re-
lation definitions are built on the fly: each query result is a new relation.
Each subquery result is a new relation that might exists only for the dura-
tion of the subquery. Each JOIN, either INNER or OUTER, will result in a

new relation dynamically built for solving just that JOIN.

As a direct consequence of that, it’s easy to understand that where the
ORM will be able to best work for you is for what’s called CRUD appli-
cations: Create, Read, Update and Delete. The Read part should then
only be limited to a very simple SELECT statement targeting a single ta-
ble. If you compare non-trivial output lists you can measure the impact

of retrieving more columns than necessary on query performances. Now,

12.2. INTERVIEW WITH DIMITRI FONTAINE 235

if your ORM is including all the known fields in its projections (or output
list), then it will force your RDBMS to fetch external data (and decompress)
it before sending it, maybe only to compress it again if you’re using SSL in
between the RDBMS and your application. Also, just think about network
bandwidth usage and remember than we’re measuring simple primary

key based lookup queries in fractions of a millisecond.

So any column you retrieve from the RDBMS and that you end-up not us-

ing is pure waste of precious resources, a first scalability killer.

Even when your ORM of choice is well able to only fetch the data you’re
asking for, then you have to somehow manage the exact list of columns
you wantin each situation, and avoid using a simple abstract magic method

that will automatically compute the fields list for you.

The next part of the CRUD queries are simple INSERT, UPDATE and DELETE
statements. First, all those commands accept joins and sub-select when
you’re using an advanced RDBMS, such as PostgreSQL. Then again, for
example PostgreSQL implements the RETURNING clause, allowing you to
return to the client any data that’s just been edited, such as default (typ-
ically sequence numbers for surrogate keys) and other values computed
automatically on the RDBMS (typically with BEFORE <action> triggers).

Is your ORM aware of that? What’s the syntax there to benefit from that?

In the general case, a relation is either a table, the result of calling a Set
REturning Function, or the result of any query. It’s common practice
when using an ORM to build a relational mapping in between defined

tables and some model classes, or some other helper stubs.

If you consider the whole SQL semantics in their generalities, then the re-
lational mapper should really be able to map any query against a class.

You would then presumably have to build a new class for each query you

12.2. INTERVIEW WITH DIMITRI FONTAINE 236

want to run.

The legend of the Sufficiently Smart Compiler applies to ORMs too. For
more details about what that legend is, read On Being Sufficiently Smart

by James Hague.

The idea when applied to our very case is that you trust your ORM to do a
better job than you at writing efficient SQL queries, even when you’re not
giving it enough information to even work out the exact set of data you

are interested into.

It’s true that at times, SQL can get quite complex. You’re not going to get
anywhere near simpler by using an APl to SQL generator that you can’t

control, though.

After having said all that against the typical ORM, something needs to be

said against the alternatives.

Building SQL queries as a string is not scalable. You want to be able to
compose several restrictions (the WHERE clauses) and dynamically add
some joinsrightinto a subquery just sothatyou can optionally fetch some

more detailed data, etc.

My current thinking is that the tool you really want to have is not an ORM,

it’s a nice way to compose a SQL query from a programmatic interface.

There’s a PostgreSQL driver proposing exactly the right abstraction to that
problem, it’s the Common Lisp library Postmodern with the S-SQL solu-
tion. Of course, Lisp lends itself really well to allow for easy to program

composable components.

Actually intwo casesyou canrelaxand use your ORM, provided thatyou’re
willing to accept the following compromise: as soon as possible you will

need to edit your ORM usage out of your code base.

« Time To Market; When you’re really in a hurry and want to gain market

12.2. INTERVIEW WITH DIMITRI FONTAINE 237

share as soon as possible, the only way to get there is to release a first
version of your application and idea. If your team is more proficient at
using an ORM when compared to hand crafting SQL queries, then by all
means just do that. You have to realize, though, that as soon as you’re
successful with your application, one of the first scalability problems
you will have to solveis going to be related to your ORM producing really
bad queries, and your usage of the ORM having painted you into a cor-
ner and bad code design decisions. But if you’re there, you’re successful
enough to spend some refactoring money and remove any dependency
toward the ORM, right?

« CRUD Application; the real thing, where you are only editing a single
tuple at a time, and you don’t really care about performances. Like for

the basic admin application interface.

Are there any pros or cons to choosing PostgreSQL over other databases

when working with Python?

Here are my top reasons for choosing PostgreSQL as a developer:

« Community support: the PostgreSQL community really is welcoming to
new users, and will typically spend the time it takes to fully understand
your question before to answer the best possible answer. The mailing
lists are still the best way to communicate with the community. See

PostgreSQL Mailing Lists for details.

« Dataintegrity and durability: any data you send to PostgreSQL is safe in

its definition and your ability to fetch it again later.

- Data Types, function, operators, arrays and ranges: PostgreSQL has a
very rich set of data types that are really useful and come with a host
of operators and functions to process them. It’s even possible to de-

normalize using arrays or JSON data types, and still be able to write

12.2. INTERVIEW WITH DIMITRI FONTAINE 238

advanced queries including joins against those. For example, did you
know about the ~ regular expression operator? and the regexp split

to _array and regexp split to table functions?

« The planner and optimizer: you have to try to push the limits you know
about those to really understand how complex and powerful they are.
I’'ve repeatedly seen 2 to 3 pages long queries run to complement in a

small number of milliseconds.

« Transactional DDL: it’s possible to ROLLBACK almost any command. Try
it now, just open your psql shell against a database you have and type
in BEGIN;DROP TABLE foo;ROLLBACK; where you replace foo with the

name of a table that exists in your local instance. Amazing, right?

« INSERT INTO ...RETURNING: you can return anything from the INSERT
statement directly, like for example the id value that got derived from
a sequence. You win a network round-trip and get the result with the

same protocol and tools as when issuing a SELECT statement.

e WITH (DELETE FROM ...RETURNING *) INSERT INTO ...SELECT: Post-
greSQL support Common Table Expression in queries, which are known
as WITH queries, and thanks to its support for the RETURNING clause, it

also supports DML commands there. That’s just awesome, rith?

« Window Functions, CREATE AGGREGATE: if you don’t know what a window
function is, go read about it in the PostgreSQL Manual or in my blog at
Understanding Window Functions. Then you have to realise that Post-
greSQL allows you to use any existing aggregate as a window function,

and allows you to dynamically define new aggregates online in SQL.

« PL/Python (and others such as C, SQL, Javascript or Lua): you can run
your own code on the server, right where the data is, so that you don’t
have to fetch it over the network just to process it then send it back in a

query to do the next level of JOIN. Whatever itis, you can do it all on the

12.2. INTERVIEW WITH DIMITRI FONTAINE 239

server.

« Specific Indexing (GiST, GIN, SP-GiST, partial & functional): did you know
that you can create Python functions to process your data from within
PostgreSQL, then index the result of calling that function? So that when
you issue a query with a WHERE clause calling that function, it’s called
only once with the data from the query, then it’s matched directly with
the contents of the index? PostgreSQL implements index frameworks
for non sortable data types, like 2 dimensional types (ranges, geometry,
etc); and for container data types. Lots of cases are already supported
out of the box, and a host more thanks to the Extension system. Have a
look at the Additional Supplied Modules and the PostgreSQL Extension

Network.

« Extensions: such extensionsinclude hstore, a full blown key value store
with flexible indexing, ltree for indexing nested tags, pg_trgm as a poor
man’s full text search solution, that supports indexing regular expres-
sion searches and unanchored LIKE queries, ip4r for quick searches of

an IP address in a range, and a lot more.

- Foreign Data Wrappers: the foreign data wrappers are a whole class of
extensions, implementing the SQL/MED standard (Management of Ex-
ternal Data). The idea is to embed a connection driver right into the
PostgreSQL server then expose it through the CREATE SERVER command.
PostgreSQL provides an API to foreign data wrapper authors that al-
lows them to implement read and write access to the remote data, and
also where clauses push-down for efficient joining capabilities. You can
even use the advanced SQL capabilities of PostgreSQL against data that

you maintain with another piece of technology!

« LISTEN/NOTIFY: PostgreSQLimplementsanasynchronousserver-to-client

protocol called LISTEN/NOTIFY. The application may receive unsolicited

12.2. INTERVIEW WITH DIMITRI FONTAINE 240

messages from the server when something interesting happens, for ex-
ample an UPDATE of some data. The NOTIFY command accepts a data
payload so thatyou can e.g. notify your cache application the objectid’s
to purge when the object just has been removed or updated. Of course,
the notification only happens if the transaction actually did a successful
COMMIT.

« COPY Streaming protocol: PostgreSQL implements a streaming protocol
and uses it to implement its fully integrated replication solution. Now,
that protocol is quite easy to use from an application and allows im-
pressive performance boosts. As soon as you’re working on more than a
dozen row at a time, sometimes before, thing about using COPY against
a temporary table then issuing a single statement joining to that tem-
porary table: PostgreSQL knows how to join against other tables in all
data modifying statements (insert, update, delete), and batch opera-

tion usually are way faster.

13 Python 3 support strategies

As far as I’m aware, Python 3 is still not the default Python interpreterin any system
that I’'m aware of at the moment, despite having been released in December 2008

- five years ago!

The problem, as you know, is that Python 3 broke compatibility with Python 2. At
the time that Python 3.0 arrived, the gap between it and Python 2.6 was so huge
that people weren’t even beginning to think about bridging it. Scared. Shrugging.

But then things changed: Python 2.7 back-ported a lot of features from Python 3.1,
narrowing the gap. Much sanity returned through subsequent versions of Python,
and | am happy to state that it is now possible to support both Python 2.7 and
Python 3.3... almost without difficulty!

There s official documentation on porting applications, but | wouldn’t recommend
following it to the letter. It talks a lot about the 2to3 tool - which converts Python 2
code to Python 3 - and contains proposals like starting a special Python 3 branch

for your project.

In my opinion, this is terrible advice nowadays. It may have been the most appro-
priate advice a few years ago, but considering the current state of "compatibility"

between Python 2.7 and Python 3.3, it’s better to forget about this approach.

CHAPTER 13. PYTHON 3 SUPPORT STRATEGIES 242

f Note
Note that a 3to2 tool also exists — but for the same reason given above, | wouldn’t encour-

age its use.

Firstly, 2to3 doesn’t do always the right thing - it’s not magic. It only deals with
syntax changes, which covers a lot; but it doesn’t maintain backward compatibility
with Python 2 - and in any case, you’ll have to handle semantic changes manually.
Secondly, running 2to3 is damn slow; and for this reason it’s unlikely to be a good
long-term solution. Some guides even suggest running it at setup.py time, which is

somewhat hazardous.

Some documentation recommends using different project branches to support Python 2
and Python 3. Experience shows that this can be terrible to manage, and that users
will get confused about which version they should use. Even worse, you will get
confused when they start submitting bug reports without explicitly stating which

branch they are using.

A better method is to use a single code base that is both Python 2 and Python 3

compatible. Thisis on what we put our effort on with OpenStack.

Inthe end, the only way to be sure that your code works under both Python versions
is to have unit testing. Without unit testing, it is impossible to know if your code
will work in both contexts and across versions. If you do not have any test in your
application ' the first thing to do is to increase your code coverage dramatically; you

may want to jump to Chapter 6 right ahead.

Tox is a great tool for automating tests run against multiple Python versions, and

we’ll talk about it in Section 6.7.

Once you have unit tests and tox set up, it’s easy enough to run your tests against

both Python versions using:

' have heard that such projects exist.

13.1. LANGUAGE AND STANDARD LIBRARY 243

tox -e py27,py33

See what’s broken, fix it, and launch tox again. Repeat until all tests pass. If you’re
doingit correctly, the number of errors will decrease slowly but steadily, to the point

where all of your code base will be fully Python 2 and 3 compatible.

If you have a C module written for Python that you would like to port, I’'m sorry to
inform you that there’s not much to say - other than to tell you to read the doc-
umentation and port your code. It may be a useful option to rewrite using cffi if

possible.

In the following sections | will discuss some points you will encounter while porting
between Python versions. | will assume that you already have a Python 2 code base.
While most of what follows could in theory also be applied to the porting of a Python

3 project to Python 2, | have never personally encountered such a case.

13.1 Language and standard library

The language hasn’t changed radically; I’m sure you’ve already taken a look. This
book won’t cover the entire list of changes - it would be much too boring, and in
any case can be found online. The book Porting to Python 3 gives a pretty good

overview of what you may need to change in order to support Python 3.

If you haven’t yet taken a look at the language changes made in Python 3, | invite
you to do so. It’s a great language, with a lot less corner cases, and much cleaner

interfaces on various object bases. You’ll love Python 3.

But it raises strong compatibility problems. The syntax changes to some state-
ments (e.g. exception catching) have removed old Python version compatibilities,
and they can be a pain to tackle if you used them. The hacking tool that we’ll dis-

cuss in section Section 1.4 can help you to fix these incompatible usages, and stop

13.1. LANGUAGE AND STANDARD LIBRARY 244

you from adding more.

When supporting multiple versions of Python, you shouldn’t try to support anything
older than 2.6 and 3.3 at the same time. Python 2.6 is the first version which has

enough compatibility with Python 3 to be easy enough to port forward.

The changes that might impact you the most are in the area of string handling. In
Python 3 what was called unicode is now str. That means that every string is Uni-

code - i.e. that u’foobar’ > and 'foobar’ mean the same thing.

Figure 13.1: Python 2 base classes

*The u prefix was removed in Python 3.0 but reintroduced in Python 3.3 - see PEP 414

13.1. LANGUAGE AND STANDARD LIBRARY 245

Figure 13.2: Python 3 base classes

Classes implementing unicode should rename that function to str, since the former
isn’t used anymore; you can automate this with a class decorator along these lines:
-*- encoding: utf-8 -*-

import six

This backports your Python 3 str for Python 2
def unicode compat(klass):
if not six.PY3:
klass. unicode = klass. str
klass. str = lambda self: self. unicode ().encode('utf-8")

return klass

@unicode compat
class Square(object):

def str (self):

13.2. EXTERNAL LIBRARIES 246

return u'"m " + str(id(self))

Thatway youimplementjust one method for all Python versions returning Unicode,

and the decorator handles the compatibility issue.

Another trick that can be handy when dealing with Python and Unicode is to use
the unicode_literals function, which is available starting with Python 2.6 °,

>>> 'foobar'

‘foobar'

>>> from future import unicode literals

>>> 'foobar'

u'foobar'

Various functions no longer return lists, instead returning iterable objects (such as
range); in addition, dictionary methods like keys or items now return iterable ob-
jects, and functions like iterkeys and iteritems have been removed. This is a big

change, but six (discussed in Section 13.3) can help you with handling it.

Obviously, the standard library has evolved between Python 2 and Python 3, but
that shouldn’t be a huge concern. Some modules have been renamed or moved,
butin the end the result is a clearer layout. There’s no official listing that I’'m aware

of, but you can find a pretty good list here, or use a search engine.

The sixmodule, which we will discuss in Section 13.3, will also help alot when trying
to maintain compatibility between Python 2 & 3.
13.2 External libraries

Your first enemies are the external libraries you depend on. If you read my advice

in Section 2.3 and followed my check-list, you won’t have a problem here - since

*Another reason not to support older versions?

13.3. USING SIX 247

that check-list included a Python 3 support requirement. However, you may have

started a project earlier and have already made the mistake.

Unfortunately there isn’t any magic trick than can resolve the problem. Luckily, if
you followed my other advice, you isolated this library enough that it is not spread
across your whole code base; so you can think about replacing it. Indeed, this may
be your best move if the library does not show a strong possibility of supporting
Python 3. However, small and medium-sized libraries might be more easily ported

to Python 3 than big frameworks, so you may want to cut your teeth on them.

When looking for packages on PyPI, you can check for the trove classifiers "Pro-
gramming Language :: Python :: 2" and "Programming Language :: Python :: 3",
which indicate which version of Python the package supports. However, be careful

that these may not be up to date.

One of the external library choices made at the beginning of the OpenStack project
was eventlet, a concurrent networking library. It has no support for Python 3, and
still tries to support Python 2.5 - which, as you imagine, does not facilitate any tran-
sition. This choice was made a long time ago in OpenStack, before any kind of
checks for Python 3 compatibility were done; and we already know that this mod-
uleis going a bigissue in the months ahead. As of yet, we have no concrete plan on

how to fix it.

Don’t make the same mistake!

13.3 Using six

Aswe have seen, Python 3 breaks compatibility with earlier versions and shifts things
around. However, the basics of the language haven’t changed, so it is possible to
have a sort of transition layer; a module that can implement forward and backward

compatibility - a bridge between Python 2 and Python 3.

This module exists, and it’s called six - because two times three equals six.

13.3. USING SIX 248

The first thing that six provides is the six.PY3 variable. This is a boolean which in-
dicates whether we are running Python 3 or not. This is the pivot variable for any of
your code base that has two versions, one for Python 2 and one for Python 3. How-
ever, be careful not to abuse it; scattering your code base with if six.PY3 is going to
be difficult to work with later.

As we discussed in Section 8.1, which concerned generators, Python 3 has a great
feature whereby iterable objects are returned instead of lists. That means that meth-
ods like dict.iteritems are gone, and that dict.items returns an iterator rather than a
list. Obviously this can break your code. six provides six.iteritems for such cases, so
that all you have to do is to replace the following code:

for k, v in mydict.iteritems():

print(k, v)

with:

import six

for k, v in six.iteritems(mydict):

print(k, v)

And voila, Python 3 compliance achieved in a snap! six provides a lot of similar

helper functions that can increase compatibility across Python versions.

The raise syntax also changed in Python 3 “, so re-raising exceptions should be done

using six.reraise.

If you are using metaclasses, Python 3 has also changed this completely. Six has a
nice trick for handling the transition - for example, if you are using the abc abstract
base classes metaclass, here’s how you would use six:

import abc

from six import with metaclass

*It now only accepts one argument, an exception.

13.3. USING SIX 249

class MyClass(with metaclass(abc.ABCMeta, object)):

pass

One cannot discuss Python 3 without touching on the string and unicode mess that
it solved. In Python 2, the basic type for string is str which can handle only ba-
sic ASCII strings, and the type unicode, added later, handles real string of text. In
Python 3, the basic type is still str, but it shares the properties of the Python 2
unicode class and can handle advanced encodings. The bytes type replaces the

str type for handling basic characters stream.

six provides a nice set of functions and constants to handle the transition, such
as six.u and six.string_types. The same compatibility is provided for integers, with
six.integer_types that will handle the long type that has been removed from Python
3.

As discussed in Section 13.1, some modules have moved, and six provides a nice

module called six.moves that handles a lot of these moves transparently.

For example, the ConfigParser module in Python 3 has been renamed to config-

parser. Code using ConfigParser under Python 2:

from ConfigParser import ConfigParser

conf = ConfigParser()

can be ported and made compatible with both major Python versions:

from six.moves.configparser import ConfigParser

conf = ConfigParser()

13.3. USING SIX 250

P

It is also possible to add your own moves via six.add_move to handle other transitions.

The six library might not be enough or cover all your use case. In this case, building
a compatibility module encapsulating six itself might be worth it. By isolating the
this in one particular module, you are assuring that you’ll be able to enhance it for
future version of Python, or dispose (part of) it when you’ll want to stop supporting
a particular version of Python. Also note that six is open source and that you can

contribute to it rather than maintaining your own hacks.

The lastthing I’'ll mention, is the modernize module. It’s a thin wrapper around 2to3
that "modernizes" code by porting to Python 3; but rather than convert the syntax
to Python 3 code only, it uses the six module. It’s a better choice than the standard
2to3 tool, and get your port off to a strong start by carrying out most of the grunt

work for you. It’s worth a shot.

14 Write less, code more

In this section I’'ve compiled a few of the more advanced features that | find inter-

esting - they’ll help you to write better code.

14.1 Single dispatcher

| often like to say that Python is a good subset of Lisp, and as time passes | find this
to be more and more true. Recently | stumbled across the PEP 443, which describes
a way to dispatch generic functions in a similar manner to that provided by CLOS,

the Common Lisp Object System.

If you’re familiar with Lisp, this won’t be new to you. The Lisp object system, which
is one of the basic components of Common Lisp, provides a good way to define and
handle method dispatching. I’ll show you how generic methods work in Lisp first -

even if only for the pleasure of including Lisp code in a book on Python!
To begin with, let’s define a few very simple classes, without any parent classes or

attributes

(defclass snare-drum ()

()

(defclass cymbal ()
())

14.1. SINGLE DISPATCHER 252

(defclass stick ()
())

(defclass brushes ()

()

This defines a few classes: snare-drum, symbal, stick and brushes, without any
parent class nor attribute. These classes compose a drum kit, and we can combine
them to play sound. So we define a play method that takes two arguments, and
returns a sound (as a string).

(defgeneric play (instrument accessory)

(:documentation "Play sound with instrument and accessory."))

This only defines a generic method: itisn’t attached to any class, and so cannot yet
be called. At this stage, we’ve only informed the object system that the method is
generic and can be called with various arguments. Now we’ll implement versions
of this method that simulate playing our snare-drum.

(defmethod play ((instrument snare-drum) (accessory stick))

“POC!")

(defmethod play ((instrument snare-drum) (accessory brushes))

“SHHHH!")

Now we’ve defined concrete methods in code. They take two arguments: instru
ment, which is an instance of snare-drum; and accessory, which is an instance of

stick or brushes.

At this stage, you should see the first major difference between this system and the
Python (or similar) object systems: the method isn’t tied to any particular class.

The methods are generic, and any class can implement them.

14.1. SINGLE DISPATCHER 253

Let’s try it.
* (play (make-instance 'snare-drum) (make-instance 'stick))

“POC!"

* (play (make-instance 'snare-drum) (make-instance 'brushes))

"SHHHH!"

* (play (make-instance 'cymbal) (make-instance 'stick))
debugger invoked on a SIMPLE-ERROR in thread
#<THREAD "main thread" RUNNING {1002ADAF23}>:
There is no applicable method for the generic function
#<STANDARD-GENERIC-FUNCTION PLAY (2)>
when called with arguments

(#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>).

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):
0: [RETRY] Retry calling the generic function.
1: [ABORT] Exit debugger, returning to top level.

((:METHOD NO-APPLICABLE-METHOD (T)) #<STANDARD-GENERIC-FUNCTION PLAY (2)> <«
#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>) [fast-method]

As you can see, which functionis called depends on the class of the arguments - the
object systems dispatch the function calls to the right function for us, depending
which classes we pass as arguments. If we call play with instances that are not

known to the object system, an error will be thrown.

Inheritance is also supported and, the (more powerful and less error prone) equiv-

alent of Python’s super() is available via (call-next-method).

14.1. SINGLE DISPATCHER 254

(defclass snare-drum () ())

(defclass cymbal () ())

(defclass accessory () ())
(defclass stick (accessory) ())

(defclass brushes (accessory) ())

(defmethod play ((c cymbal) (a accessory))
"BIIING!'")

(defmethod play ((c cymbal) (b brushes))
(concatenate 'string "SSHHHH!" (call-next-method)))

In this example, we define the stick and brushes classes as subclasses of access
ory. The play method defined will return the sound BIIING!, regardless of what kind
of accessory instance is used to play the cymbal - except if it’s a brushes instance;
the most precise method is always called. The (call-next-method) functionisused
to call the closest parent method, and in this case that would be the method which
returns "BIIING!".

* (play (make-instance 'cymbal) (make-instance 'stick))

"BITING!"

* (play (make-instance 'cymbal) (make-instance 'brushes))

"SSHHHH!BITING!"

Note that CLOS can define specialized methods which apply to only one instance of

a class- using the eql specializer.

But if you’re really curious about the many features CLOS provides, | suggest that

you read the brief guide to CLOS by Jeff Dalton as a starter.

14.1. SINGLE DISPATCHER 255

Python implements a simpler version of this workflow with the singledispatch
function, which will is with Python 3.4 as part of the functools module. Here’s the
rough equivalent of the Lisp program above:

import functools

class SnareDrum(object): pass
class Cymbal(object): pass
class Stick(object): pass

class Brushes(object): pass

@functools.singledispatch
def play(instrument, accessory):

raise NotImplementedError("Cannot play these")

@play.register(SnareDrum)
def (instrument, accessory):
if isinstance(accessory, Stick):
return "POC!"
if isinstance(accessory, Brushes):
return “SHHHH!"

raise NotImplementedError("Cannot play these")

We define our four classes, and a base play function that raises NotImplemented
Error, indicating that by default we don’t know what to do. We can then write a
specialized version of this function for a specific instrument, the SnareDrum. This
function checks which accessory type has been passed, and returns the appropriate

sound - or raises NotImplementedError again if it doesn’t recognise the accessory.

If we run the program, it should work as follows:

>>> play(SnareDrum(), Stick())
‘POC!"’

14.1. SINGLE DISPATCHER

>>> play(SnareDrum(), Brushes())
"SHHHH!'

>>> play(Cymbal(), Brushes())
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper

return dispatch(args[0]. class)(*args, **kw)
File "/home/jd/sd.py", line 10, in play
raise NotImplementedError("Cannot play these")
NotImplementedError: Cannot play these
>>> play(SnareDrum(), Cymbal())
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper

return dispatch(args[0]. class)(*args, **kw)
File "/home/jd/sd.py", line 18, in _
raise NotImplementedError("Cannot play these")

NotImplementedError: Cannot play these

256

The singledispatch module checks the class of the first argument passed, and calls

the appropriate version of the play function. For the object class, the first-defined

version of the function is always the one which is run - so, if our instrument is an

instance of a class that we did not register, this base function will be called.

For those eager to try it out, the singledispatch function is provided in Python 2.6

to 3.3, through the Python Package Index.

As we saw in the Lisp version of the code, CLOS provides a multiple dispatcher that

candispatch depending on the type of any of the arguments defined in the method

prototype, not just the first one. Unfortunately, the Python dispatcher is named

singledispatch for a good reason: it only knows how to dispatch based on the first

14.2. CONTEXT MANAGERS 257

argument. Guido van Rossum wrote a short article called multimethod about this

subject a few years ago.

In addition, there’s no way to call the parent function directly - no equivalent of
either (call-next-method) from Lisp, or the Python super() function. You’ll have

to use various tricks to bypass this limitation.

To conclude: while | am really glad that Python is heading in this direction, as it’s
a really powerful way to enhance an object system, it still lacks a lot of the more

advanced features that CLOS provides out of the box.

14.2 Context managers

The with statement introduced in Python 2.6 is likely to remind old time Lispers of
the various with-* macros that are often used in the language. Python provides a
similar-looking mechanism, with the use of objects which implement the context

management protocol.

Objects like those returned by open support this protocol; that’s why you can write
code along these lines:
with open("myfile", "r") as f:

line = f.readline()

The object returned by open has two methods, onecalled enter andonecalled
__exit ;theseare called at the start of thewith block and at the end of it, respec-

tively.

A simple implementation of a context object would be:

Example 14.1 Simple implementation of a context object

class MyContext(object):
def enter_(self):

pass

14.2. CONTEXT MANAGERS 258

def exit (self, exc type, exc value, traceback):

pass

It wouldn’t do anything, but is valid.

When do you want to use context managers? The use of context management pro-

tocol might be appropriate if you identify the following pattern in your object:

1. Call method A,
2. Execute some code;

3. Call method B.

Where it is expected that a call to method B must always be done after a call
to A. The open function illustrates this pattern well - in this case, the constructor
that opens the file and allocates a file descriptor internally is method A. The close
method that releases the file descriptor corresponds to method B. Obviously, the

close function is always meant to be called after you instantiate the file object.

The contextlib standard library provides contextmanager to ease the implemen-
tation of such a mechanism, by relying on a generator to construct the _enter
and _exit methods for you. We can use this to implement our simple context

manager:

Example 14.2 Simplest usage of contextlib.contextmanager

import contextlib

@contextlib.contextmanager
def MyContext():

yield

For example, I’'ve been using this design pattern in Ceilometer for the pipeline in-

frastructure we set up. Basically, a pipelineis a tube into which objects are put, and

14.2. CONTEXT MANAGERS 259

from which they are dispatched to various places. The steps to send data this way

are as follows:

1. Call the publish(objects) method of a pipeline, with your objects as argu-

ments - as many times as you need.

2. Once done, call the flush() method to indicate that you’re done publishing

for now.

Note thatif you never call the flush() method, your objects will never be sent down
the tube; or at least not completely. It can be very easy for a programmer to forget
about a flush() call, which breaks the program without giving any clues as to what

might be wrong.

It’s much better if your APl provides a context manager object that will not allow
the APl user to make this mistake. This can be done pretty easily with the following

code:

Example 14.3 Using a context manager on a pipeline object

import contextlib

class Pipeline(object):
def publish(self, objects):
Imagine publication code here

pass

def flush(self):
Imagine flushing code here

pass

@contextlib.contextmanager

def publisher(self):

14.2. CONTEXT MANAGERS 260

try:

yield self. publish
finally:

self. flush()

Now, when users of our APl wants to publish something in our pipeline, they don’t
have to use publish or flush. They just request a publisher using the eponym
function, and uses it.
pipeline = Pipeline()
with pipeline.publisher() as publisher:

publisher([1, 2, 3, 4])

When you provide an API like this, there’s no place for user error. Always use context

managers when you see that it suits the design pattern.

In some contexts, it might be useful to use several context managers at the same

time - for example, opening two files at the same time to copy their content:

Example 14.4 Opening two files at the same time

with open("filel", "r") as source:
with open("file2", "w") as destination:

destination.write(source.read())

Remember that the with statement supports having multiple arguments - so you

should write:

Example 14.5 Opening two files at the same time with one with statement

with open("filel", "r") as source, open("file2", "w") as destination:

destination.write(source.read())

	Starting your project
	Python versions
	Project layout
	Version numbering
	Coding style & automated checks

	Modules and libraries
	The import system
	Standard libraries
	External libraries
	Frameworks
	Interview with Doug Hellmann
	Managing API changes
	Interview with Christophe de Vienne

	Documentation
	Getting started with Sphinx and reST
	Sphinx modules
	Extending Sphinx

	Distribution
	A bit of history
	Packaging with pbr
	The Wheel format
	Package installation
	Sharing your work with the world
	Interview with Nick Coghlan
	Entry points
	Visualising entry points
	Using console scripts
	Using plugins and drivers

	Virtual environments
	Unit testing
	The basics
	Fixtures
	Mocking
	Scenarios
	Test streaming and parallelism
	Coverage
	Using virtualenv with tox
	Testing policy
	Interview with Robert Collins

	Methods and decorators
	Creating decorators
	How methods work in Python
	Static methods
	Class method
	Abstract methods
	Mixing static, class, and abstract methods
	The truth about super

	Functional programming
	Generators
	List comprehensions
	Functional functions functioning

	The AST
	Hy
	Interview with Paul Tagliamonte

	Performances and optimizations
	Data structures
	Profiling
	Ordered list and bisect
	Namedtuple and slots
	Memoization
	PyPy
	Achieving zero copy with the buffer protocol
	Interview with Victor Stinner

	Scaling and architecture
	A note on multi-threading
	Multiprocessing vs multithreading
	Asynchronous and event-driven architecture
	Service-oriented architecture

	RDBMS and ORM
	Streaming data with Flask and PostgreSQL
	Interview with Dimitri Fontaine

	Python 3 support strategies
	Language and standard library
	External libraries
	Using six

	Write less, code more
	Single dispatcher
	Context managers

