

Contents

ǔ Starting your project ǔ

ǔ.ǔ P⁴thon versions . ǔ

ǔ.Ǖ Project la⁴out . Ǖ

ǔ.ǖ Version numbering . ǘ

ǔ.Ǘ Coding st⁴le & automated checks . ǚ

Ǖ Modules and libraries ǔǔ

Ǖ.ǔ The import s⁴stem . ǔǔ

Ǖ.Ǖ Standard libraries . ǔǙ

Ǖ.ǖ External libraries . ǔǛ

Ǖ.Ǘ Frameworks . Ǖǔ

Ǖ.ǘ Interview with Doug Hellmann . ǕǕ

Ǖ.Ǚ Managing API changes . ǖǔ

Ǖ.ǚ Interview with Christophe de Vienne . ǖǘ

ǖ Documentation ǗǓ

ǖ.ǔ Getting started with Sphinx and reST . ǗǕ

CONTENTS ii

ǖ.Ǖ Sphinx modules . Ǘǖ

ǖ.ǖ Extending Sphinx . Ǘǚ

Ǘ Distribution ǘǓ

Ǘ.ǔ A bit of histor⁴ . ǘǓ

Ǘ.Ǖ Packaging with pbr . ǘǖ

Ǘ.ǖ TheWheel format . ǘǘ

Ǘ.Ǘ Package installation . ǘǚ

Ǘ.ǘ Sharing ⁴our work with the world . ǘǜ

Ǘ.Ǚ Interview with Nick Coghlan . ǙǗ

Ǘ.ǚ Entr⁴ points . ǙǙ

Ǘ.ǚ.ǔ Visualising entr⁴ points . Ǚǚ

Ǘ.ǚ.Ǖ Using console scripts . ǙǛ

Ǘ.ǚ.ǖ Using plugins and drivers . ǚǔ

ǘ Virtual environments ǚǘ

Ǚ Unit testing ǛǕ

Ǚ.ǔ The basics . ǛǕ

Ǚ.Ǖ Fixtures . ǜǔ

Ǚ.ǖ Mocking . ǜǕ

Ǚ.Ǘ Scenarios . ǜǛ

Ǚ.ǘ Test streaming and parallelism . ǔǓǕ

Ǚ.Ǚ Coverage . ǔǓǚ

Ǚ.ǚ Using virtualenv with tox . ǔǔǔ

CONTENTS iii

Ǚ.Ǜ Testing polic⁴ . ǔǔǙ

Ǚ.ǜ Interview with Robert Collins . ǔǔǚ

ǚ Methods and decorators ǔǕǔ

ǚ.ǔ Creating decorators . ǔǕǔ

ǚ.Ǖ Howmethods work in P⁴thon . ǔǕǛ

ǚ.ǖ Static methods . ǔǖǔ

ǚ.Ǘ Class method . ǔǖǕ

ǚ.ǘ Abstract methods . ǔǖǖ

ǚ.Ǚ Mixing static, class, and abstract methods ǔǖǘ

ǚ.ǚ The truth about super . ǔǖǛ

Ǜ Functional programming ǔǗǖ

Ǜ.ǔ Generators . ǔǗǗ

Ǜ.Ǖ List comprehensions . ǔǘǓ

Ǜ.ǖ Functional functions functioning . ǔǘǔ

ǜ The AST ǔǙǔ

ǜ.ǔ H⁴ . ǔǙǘ

ǜ.Ǖ Interview with Paul Tagliamonte . ǔǙǚ

ǔǓ Performances and optimizations ǔǚǖ

ǔǓ.ǔ Data structures . ǔǚǖ

ǔǓ.Ǖ Profiling . ǔǚǘ

ǔǓ.ǖ Ordered list and bisect . ǔǛǕ

CONTENTS iv

ǔǓ.Ǘ Namedtuple and slots . ǔǛǗ

ǔǓ.ǘ Memoi⁵ation . ǔǜǔ

ǔǓ.Ǚ P⁴P⁴ . ǔǜǖ

ǔǓ.ǚ Achieving ⁵ero cop⁴ with the buffer protocol ǔǜǘ

ǔǓ.Ǜ Interview with Victor Stinner . ǕǓǕ

ǔǔ Scaling and architecture ǕǓǘ

ǔǔ.ǔ A note onmulti-threading . ǕǓǘ

ǔǔ.Ǖ Multiprocessing vs multithreading . ǕǓǛ

ǔǔ.ǖ As⁴nchronous and event-driven architecture ǕǔǓ

ǔǔ.Ǘ Service-oriented architecture . Ǖǔǘ

ǔǕ RDBMS and ORM Ǖǔǜ

ǔǕ.ǔ Streaming data with Flask and PostgreSQL ǕǕǖ

ǔǕ.Ǖ Interview with Dimitri Fontaine . ǕǖǓ

ǔǖ Python ǖ support strategies ǕǗǔ

ǔǖ.ǔ Language and standard librar⁴ . ǕǗǖ

ǔǖ.Ǖ External libraries . ǕǗǙ

ǔǖ.ǖ Using six . ǕǗǚ

ǔǗ Write less, codemore Ǖǘǔ

ǔǗ.ǔ Single dispatcher . Ǖǘǔ

ǔǗ.Ǖ Context managers . Ǖǘǚ

List of Figures

ǔ.ǔ Standard package director⁴ . ǖ

Ǚ.ǔ Coverage of ceilometer.publisher . ǔǔǓ

ǔǓ.ǔ KCacheGrind example . ǔǚǚ

ǔǓ.Ǖ Using slice onmemoryview objects . ǔǜǛ

ǔǖ.ǔ P⁴thon Ǖ base classes . ǕǗǗ

ǔǖ.Ǖ P⁴thon ǖ base classes . ǕǗǘ

List of Examples

ǔ.ǔ A pepǛ run . Ǜ

ǔ.Ǖ Running pepǛwith --ignore . ǜ

Ǖ.ǔ Hymodule importer . ǔǖ

Ǖ.Ǖ A documented API change . ǖǕ

Ǖ.ǖ A documented API change with warning ǖǖ

Ǖ.Ǘ Running python -W error . ǖǗ

ǖ.ǔ Code from sphinxcontrib.pecanwsme.rest.setup ǗǛ

Ǘ.ǔ setup.py using distutils . ǘǓ

Ǘ.Ǖ setup.py using setuptools . ǘǔ

Ǘ.ǖ Using setup.py sdist . ǘǜ

Ǘ.Ǘ Result of epi group list . Ǚǚ

Ǘ.ǘ Result of epi group show console_scripts Ǚǚ

Ǘ.Ǚ Result of epi ep show console_scripts coverage ǙǛ

Ǘ.ǚ A console script generated b⁴ setuptools ǚǓ

Ǘ.Ǜ Running p⁴timed . ǚǖ

ǘ.ǔ Automatic virtual environment creation ǚǚ

ǘ.Ǖ Boostraping a venv environment . ǚǛ

Ǚ.ǔ A reall⁴ simple test in test_true.py . Ǜǖ

Ǚ.Ǖ Failing a test . ǛǛ

Ǚ.ǖ Skipping tests . ǛǛ

LIST OF EXAMPLES vii

Ǚ.Ǘ Using setUpwith unittest . ǜǓ

Ǚ.ǘ Using fixtures.EnvironmentVariable ǜǕ

Ǚ.Ǚ Basic mock usage . ǜǖ

Ǚ.ǚ Checking method calls . ǜǗ

Ǚ.Ǜ Using mock.patch . ǜǘ

Ǚ.ǜ Using mock.patch to test a set of behaviour ǜǘ

Ǚ.ǔǓ testscenarios basic usage . ǜǜ

Ǚ.ǔǔ Using testscenarios to test drivers . ǔǓǔ

Ǚ.ǔǕ Using subunit2pyunit . ǔǓǕ

Ǚ.ǔǖ A .testr.conf file . ǔǓǘ

Ǚ.ǔǗ Running testr run --parallel . ǔǓǙ

Ǚ.ǔǘ Using nosetests --with-coverage . ǔǓǛ

Ǚ.ǔǙ Using coverage with testrepository . ǔǔǔ

Ǚ.ǔǚ A .travis.yml example file . ǔǔǚ

ǚ.ǔ A registering decorator . ǔǕǕ

ǚ.Ǖ Source code of functools.update_wrapper in P⁴thon ǖ.ǖ ǔǕǘ

ǚ.ǖ Using functools.wraps . ǔǕǙ

ǚ.Ǘ Retrieving function arguments using inspect ǔǕǚ

ǚ.ǘ A P⁴thon Ǖ method . ǔǕǛ

ǚ.Ǚ A P⁴thon ǖ method . ǔǕǛ

ǚ.ǚ Calling unbound get_si⁵e in P⁴thon Ǖ . ǔǕǜ

ǚ.Ǜ Calling unbound get_si⁵e in P⁴thon ǖ . ǔǕǜ

ǚ.ǜ Calling bound get_size . ǔǖǓ

ǚ.ǔǓ @staticmethod usage . ǔǖǔ

ǚ.ǔǔ Implementing an abstract method . ǔǖǗ

ǚ.ǔǕ Implementing an abstract method using abc ǔǖǗ

ǚ.ǔǖ Mixing @classmethod and @abstractmethod ǔǖǙ

ǚ.ǔǗ Using super()with abstract methods . ǔǖǚ

LIST OF EXAMPLES viii

Ǜ.ǔ yield returning a value . ǔǗǛ

Ǜ.Ǖ filter usage in P⁴thon ǖ . ǔǘǕ

Ǜ.ǖ Using first . ǔǘǙ

Ǜ.Ǘ Using the operatormodule with itertools.groupby ǔǙǓ

ǜ.ǔ Parsing P⁴thon code to AST . ǔǙǔ

ǜ.Ǖ Hello world using P⁴thon AST . ǔǙǖ

ǜ.ǖ Changing all binar⁴ operation to addition ǔǙǗ

ǔǓ.ǔ Using the cProfilemodule . ǔǚǘ

ǔǓ.Ǖ Using KCacheGrind to visuali⁵e P⁴thon profiling data ǔǚǙ

ǔǓ.ǖ A function defined in a function, disassembled ǔǛǓ

ǔǓ.Ǘ Disassembling a closure . ǔǛǔ

ǔǓ.ǘ Usage of bisect . ǔǛǕ

ǔǓ.Ǚ Usage of bisect.insort . ǔǛǖ

ǔǓ.ǚ A SortedList implementation . ǔǛǖ

ǔǓ.Ǜ A class declaration using __slots__ . ǔǛǛ

ǔǓ.ǜ Memor⁴ usage of objects using __slots__ ǔǛǛ

ǔǓ.ǔǓDeclaring a class using namedtuple . ǔǛǜ

ǔǓ.ǔǔMemor⁴ usage of a class built from collections.namedtuple ǔǜǓ

ǔǓ.ǔǕA basic memoi⁵ation technique . ǔǜǔ

ǔǓ.ǔǖUsing functools.lru_cache . ǔǜǕ

ǔǔ.ǔ Result of time python worker.py . ǕǓǜ

ǔǔ.Ǖ Worker using multiprocessing . ǕǓǜ

ǔǔ.ǖ Result of time python worker.py . ǕǓǜ

ǔǔ.Ǘ Basic example of using select . Ǖǔǔ

ǔǔ.ǘ Example with pyev . ǕǔǗ

ǔǕ.ǔ Creating the message table . ǕǕǖ

ǔǕ.Ǖ The notify_on_insert function . ǕǕǗ

ǔǕ.ǖ The trigger for notify_on_insert . ǕǕǘ

LIST OF EXAMPLES ix

ǔǕ.Ǘ Receiving notifications in P⁴thon . ǕǕǘ

ǔǕ.ǘ Flask streamer application . ǕǕǚ

ǔǗ.ǔ Simple implementation of a context object Ǖǘǚ

ǔǗ.Ǖ Simplest usage of contextlib.contextmanager ǕǘǛ

ǔǗ.ǖ Using a context manager on a pipeline object Ǖǘǜ

ǔǗ.Ǘ Opening two files at the same time . ǕǙǓ

ǔǗ.ǘ Opening two files at the same time with one with statement ǕǙǓ

About this book

Version ǔ.Ǔ released in March ǕǓǔǗ.

If ⁴ou’re reading this, odds are good ⁴ou’ve been working with P⁴thon for some

time alread⁴. Ma⁴be ⁴ou learned it using some tutorials, delved into some existing

programs, or started from scratch, but whatever the case, ⁴ou’ve hacked ⁴our wa⁴

into learning it. That’s exactl⁴ how I got familiar with P⁴thon up until I joined the

OpenStack team over two ⁴ears ago.

Before then, I was building m⁴ own P⁴thon libraries and applications on a "garage

project" scale, but things change once ⁴ou start working with hundreds of devel-

opers on sotware and libraries that thousands of users rel⁴ on. The OpenStack

platform represents over half a million lines of P⁴thon code, all of which needs to

be concise, efficient, and scalable to needs of whatever cloud computing applica-

tion its users require. And when ⁴ou have a project this si⁵e, things like testing and

documentation absolutel⁴ require automation, or else the⁴ won’t get done at all.

I thought I knewa lot about P⁴thonwhen I first joinedOpenStack, but I’ve learned a

lot more these past two ⁴ears working on projects the scale of which I could barel⁴

even imagine when I got started. I’ve also had the opportunit⁴ tomeet some of the

best P⁴thon hackers in the industr⁴ and learn from them – ever⁴thing from general

architecture and design principles to various helpful tips and tricks. Through this

book, I hope to share the most important things I’ve learned so that ⁴ou can build

better P⁴thon programs – and build themmore efficientl⁴, too!

ǔ Starting your project

1.1 Python versions

One of the first questions ⁴ou’re likel⁴ to ask is "which versions of P⁴thon should

m⁴ sotware support?". It’s well worth asking, since each new version of P⁴thon

introduces new features and deprecates old ones. Furthermore, there’s a huge gap
between P⁴thon Ǖ.x and P⁴thon ǖ.x: there are enough changes between the two

branches of the language that it can be hard to keep code compatible with both,

as we’ll see in more detail later, and it can be hard to tell which version is more

appropriate when ⁴ou’re starting a new project. Here are some short answers:

• Versions Ǖ.ǘ and older are prett⁴ much obsolete b⁴ now, so ⁴ou don’t have to

worr⁴ about supporting themat all. If ⁴ou’re intent on supporting these older ver-

sions an⁴wa⁴, be warned that ⁴ou’ll have an even harder time ensuring that ⁴our

program supports P⁴thon ǖ.x as well. Though ⁴ou might still run into P⁴thon Ǖ.ǘ

on some older s⁴stems; if that’s the case for ⁴ou, sorr⁴!

• Version Ǖ.Ǚ is still viable; ⁴ou’ll find it in some older versions of operating s⁴stems

such as Red Hat Enterprise Linux. It’s not hard to support P⁴thon Ǖ.Ǚ as well as

newer versions, but if ⁴ou don’t think ⁴our programwill need to run on Ǖ.Ǚ, don’t

stress ⁴ourself tr⁴ing to accommodate it.

• Version Ǖ.ǚ is and will remain the last version of P⁴thon Ǖ.x. It’s a good idea to

ǔ.Ǖ. PROJECT LAYOUT Ǖ

make it ⁴our main target, or one of ⁴our main targets, since a lot of sotware, li-

braries, and developers still make use of it. P⁴thon Ǖ.ǚ should continue to be sup-

ported until around ǕǓǔǙ, so odds are it’s not going awa⁴ an⁴time soon.

• Version ǖ.Ǔ, ǖ.ǔ, and ǖ.Ǖ were released in quick succession and as such haven’t

seenmuch adoption. If ⁴our code alread⁴ supports Ǖ.ǚ, there’s not much point in

supporting these versions as well.

• Version ǖ.ǖ and ǖ.Ǘ are the most recent distributed editions of P⁴thon ǖ and the

ones ⁴ou should focus on supporting. P⁴thon ǖ.ǖ and ǖ.Ǘ represent the future of

the language, so unless ⁴ou’re focusing on compatibilit⁴ with older versions, ⁴ou

should make sure ⁴our code runs on these versions as well.

In summar⁴: support Ǖ.Ǚ onl⁴ if ⁴ou have to (or are looking for a challenge), def-

initel⁴ support Ǖ.ǚ, and if ⁴ou want to guarantee that ⁴our sotware will continue

to run for the foreseeable future, support ǖ.ǖ and above as well. You can safel⁴ ig-

nore other versions, though that’s not to sa⁴ it’s impossible to support themall: the

Cherr⁴P⁴ project supports all versions of P⁴thon from Ǖ.ǖ onward.

Techniques for writing programs that support both P⁴thon Ǖ.ǚ and ǖ.ǖ will be dis-

cussed in Chapter ǔǖ. Youmight spot some of these techniques in the sample code

as ⁴ou read: all of the code that ⁴ou’ll see in this book has been written to support

both major versions.

1.2 Project layout

Your project structure should be fairl⁴ simple. Use packages and hierarch⁴ wisel⁴:

a deep hierarch⁴ can be a nightmare to navigate, while a flat hierarch⁴ tends to

become bloated.

One common mistake is leaving unit tests outside the package director⁴. These

tests should definitel⁴ be included in a sub-package of ⁴our sotware so that:

ǔ.Ǖ. PROJECT LAYOUT ǖ

• the⁴ don’t get automaticall⁴ installed as a tests top-level module b⁴ setuptools
(or some other packaging librar⁴).

• the⁴ can be installed and eventuall⁴ used b⁴ other packages to build their own

unit tests.

The following diagram illustrates what a standard file hierarch⁴ should look like:

Figure ǔ.ǔ: Standard package director⁴

setup.py is the standard name for P⁴thon installation script. When run, it installs

⁴our package using the P⁴thon distribution utilities (distutils). You can also pro-

ǔ.Ǖ. PROJECT LAYOUT Ǘ

vide important information to users in README.rst (or README.txt, orwhatever file-

name suits ⁴our fanc⁴). requirements.txt should list ⁴our P⁴thon package’s de-

pendencies – i.e., all of the packages that a tool such as pip should install to make

⁴our package work. You can also include test-requirements.txt, which lists onl⁴

the dependencies required to run the test suite. Finall⁴, the docs director⁴ should

contain the package’s documentation in reStructuredText format, that will be con-

sumed b⁴ Sphinx (see Section ǖ.ǔ).

Packages oten have to provide extra data, such as images, shell scripts, and so

forth. Unfortunatel⁴, there’s no universall⁴ accepted standard for where these files

should be stored. Just put themwherever makes the most sense for ⁴our project.

The following top-level directories also frequentl⁴ appear:

Most of the time, the following extra top level directories are used:

• etc is for sample configuration files.

• tools is for shell scripts or related tools.

• bin is for binar⁴ scripts ⁴ou’ve written that will be installed b⁴ setup.py.

• data is for other kinds of data, such as media files.

A design issue I oten encountered is to create files or modules based on the t⁴pe

of code the⁴ will store. Having a functions.py or exceptions.py file is a terrible
approach. It doesn’t help an⁴thing at all with code organi⁵ation and forces a reader

to jump between files for no good reason. Organi⁵e ⁴our code based on features,

not t⁴pe.

Also, don’t create a director⁴ and just an __init__.py file in it, e.g. don’t create

hooks/__init__.py where hooks.py would have been enough. If ⁴ou create a di-

rector⁴, it should contains several other P⁴thon files that belongs to the categor⁴/-

module the director⁴ represents.

ǔ.ǖ. VERSION NUMBERING ǘ

1.3 Version numbering

As ⁴oumight alread⁴ know, there’s an ongoing effort to standardi⁵e packagemeta-

data in the P⁴thon ecos⁴stem. One such piece of metadata is version number.

PEP ǗǗǓ introduces a version format that ever⁴ P⁴thon package, and ideall⁴ ever⁴

application, should follow. This wa⁴, other programs and packages will be able to

easil⁴ and reliabl⁴ identif⁴ which versions of ⁴our package the⁴ require.

PEP ǗǗǓ defines the following regular expression format for version numbering:

N[.N]+[{a|b|c|rc}N][.postN][.devN]

This allows for standard numbering like ǔ.Ǖ or ǔ.Ǖ.ǖ. But note:

• ǔ.Ǖ is equivalent to ǔ.Ǖ.Ǔ; ǔ.ǖ.Ǘ is equivalent to ǔ.ǖ.Ǘ.Ǔ, and so forth.

• Versions matching N[.N]+ are considered final releases.

• Date-based versions such as ǕǓǔǖ.ǓǙ.ǕǕ are considered invalid. Automated tools

designed to detect PEP ǗǗǓ-format version numberswill (or should) raise an error

if the⁴ detect a version number greater than or equal to ǔǜǛǓ.

Final components can also use the following format:

• N[.N]+aN (e.g. ǔ.Ǖaǔ) denotes an alpha release, a version that might be unstable

andmissing features.

• N[.N]+bN (e.g. Ǖ.ǖ.ǔbǕ) denotes a beta release, a version that might be feature-

complete but still bugg⁴.

• N[.N]+cN or N[.N]+rcN (e.g. Ǔ.Ǘrcǔ) denotes a (release) candidate, a version that

mightbe releasedas the final product unless significantbugs emerge. While the rc

and c suffixes have the samemeaning, if both are used, rc releases are considered

to be newer than c releases.

ǔ.ǖ. VERSION NUMBERING Ǚ

These suffixes can also be used:

• .postN (e.g. ǔ.Ǘ.postǕ) indicates a post release. These are t⁴picall⁴ used to ad-

dressminor errors in the publication process (e.g. mistakes in release notes). You

shouldn’t use .postN when releasing a bugfix version; instead, ⁴ou should incre-

ment the minor version number.

• .devN (e.g. Ǖ.ǖ.Ǘ.devǖ) indicates a developmental release. This suffix is discour-
aged because it is harder for humans to parse. It indicates a prerelease of the

version that it qualifies: e.g. Ǖ.ǖ.Ǘ.devǖ indicates the third developmental version

of the Ǖ.ǖ.Ǘ release, prior to an⁴ alpha, beta, candidate or final release.

This scheme should be sufficient for most common use cases.

Note

You might have heard of Semantic Versioning, which provides its own guidelines for ver-

sion numbering. This specification partially overlaps with PEP 440, but unfortunately,

they’re not entirely compatible. For example, Semantic Versioning’s recommendation for

prerelease versioning uses a scheme such as 1.0.0-alpha+001 that is not compliant with

PEP 440.

If ⁴ou need to handle more advanced version numbers, ⁴ou should note that PEP

ǗǕǙ defines source label, a field that ⁴ou can use to carr⁴ an⁴ version string, and

then build a version number consistent with PEP requirements.

Man⁴DVCS ¹platforms, suchasGit andMercurial, are able to generate versionnum-

bers using an identif⁴ing hash ². Unfortunatel⁴, this s⁴stem isn’t compatible with

the scheme defined b⁴ PEP ǗǗǓ: for one thing, identif⁴ing hashes aren’t orderable.

However, it’s possible to use a source label field to hold such a version number and

use it to build a PEP ǗǗǓ-compliant version number.

¹Distributed Version Control S⁴stem
²For Git, refer to git-describe(ǔ).

ǔ.Ǘ. CODING STYLE & AUTOMATED CHECKS ǚ

Tip

pbr ᵃ, which will be discussed in Section 4.2, is able to automatically build version numbers

based on the Git revision of a project.

ᵃPython Build Reasonableness

1.4 Coding style & automated checks

Yes, coding st⁴le is a touch⁴ subject, but we still need to talk about it.

P⁴thon has an ama⁵ing qualit⁴ ³ that few other languages have: it uses indentation

to define blocks. At first glance, it seems to offer a solution to the age-old ques-

tion of "where should I put m⁴ curl⁴ braces?"; unfortunatel⁴, it introduces a new

question in the process: "how should I indent?"

And so the P⁴thon communit⁴, in their vast wisdom, came upwith the PEP Ǜ ⁛ stan-

dard for writing P⁴thon code. The list of guidelines boils down to:

• Use Ǘ spaces per indentation level.

• Limit all lines to a maximum of ǚǜ characters.

• Separate top-level function and class definitions with two blank lines.

• Encode files using ASCII or UTF-Ǜ.

• Onemodule import per import statement and per line, at the top of the file, ater

comments and docstrings, grouped first b⁴ standard, then third-part⁴, and finall⁴

local librar⁴ imports.

• No extraneous whitespaces between parentheses, brackets, or braces, or before

commas.
³Your mileage ma⁴ var⁴.
⁛PEP Ǜ Style Guide for Python Code, ǘth Jul⁴ ǕǓǓǔ, Guido van Rossum, Barr⁴Warsaw, Nick Coghlan

ǔ.Ǘ. CODING STYLE & AUTOMATED CHECKS Ǜ

• Nameclasses inCamelCase; suffixexceptionswithError (if applicable); name func-

tions in lowercase with words separated_by_underscores; and use a leading un-

derscore for _private attributes or methods.

These guidelines reall⁴ aren’t hard to follow, and furthermore, the⁴ make a lot of

sense. Most P⁴thon programmers have no trouble sticking to them as the⁴ write

code.

However, errarehumanumest, and it’s still a pain to look through⁴our code tomake

sure it fits the PEP Ǜ guidelines. That’s what the pepǛ tool is there for: it can auto-

maticall⁴ check an⁴ P⁴thon file ⁴ou send its wa⁴.

Example ǔ.ǔ A pepǛ run

$ pep8 hello.py

hello.py:4:1: E302 expected 2 blank lines, found 1

$ echo $?

1

pepǛ indicates which lines and columns do not conform to PEP Ǜ and reports each

issue with a code. Violations of MUST statements in the specification are reported

aserrors (startingwithE),whileminorproblemsare reportedaswarnings (starting
with W). The three-digit code following the letter indicates the exact kind of error

or warning; ⁴ou can tell the general categor⁴ at a glance b⁴ looking at the hundreds

digit. For example, errors starting with EǕ indicate issues with whitespace; errors

starting with Eǖ indicate issues with blank lines; and warnings starting withWǙ in-

dicate deprecated features being used.

The communit⁴ still debates whether validating against PEP Ǜ code that is not part

of the standard librar⁴ is a good practice. I advise ⁴ou to consider it and run a PEP Ǜ

validation tool against ⁴our source code on a regular basis. An eas⁴ wa⁴ to do this

is to integrate it into ⁴our test suite. While it ma⁴ seem a bit extreme, it’s a good

wa⁴ to ensure that ⁴ou continue to respect the PEP Ǜ guidelines in the long term.

ǔ.Ǘ. CODING STYLE & AUTOMATED CHECKS ǜ

We’ll discuss in Section Ǚ.ǚ how ⁴ou can integrate pepǛwith tox to automate these

checks.

TheOpenStack project has enforced PEP Ǜ conformance through automatic checks

since the beginning. While it sometimes frustrates newcomers, it ensures that the

codebase – which has grown to over ǔ.Ǚǚ million lines of code – alwa⁴s looks the

same in ever⁴ part of the project. This is ver⁴ important for a project of an⁴ si⁵e

where there are multiple developers with differing opinions on whitespace order-

ing.

It’s also possible to ignore certain kinds of errors andwarnings b⁴ using the --ignore

option:

Example ǔ.Ǖ Running pepǛwith --ignore

$ pep8 --ignore=E3 hello.py

$ echo $?

0

This allows ⁴ou to effectivel⁴ ignore parts of the PEP Ǜ standard that ⁴oudon’twant

to follow. If ⁴ou’re running pepǛ on a existing code base, it also allows ⁴ou to ignore

certain kinds of problems so ⁴ou can focus on fixing issues one categor⁴ at a time.

Note

If you write C code for Python (e.g. modules), the PEP 7 standard describes the coding

style that you should follow.

Other tools also exist that check for actual coding errors rather than st⁴le errors.

Some notable examples include:

• p⁴flakes, which supports plugins

• p⁴lint, which also checks PEP Ǜ conformance, performs more checks b⁴ default,

and supports plugins

ǔ.Ǘ. CODING STYLE & AUTOMATED CHECKS ǔǓ

These tools all make use of static anal⁴sis – that is, the⁴ parse the code and anal⁴⁵e

it rather than running it outright.

If ⁴ou choose to use pyflakes, note that it doesn’t check PEP Ǜ conformance on its

own – ⁴ou’ll still need to run pepǛ as well. To simplif⁴ things, a project called flakeǛ

combinespyflakesandpepǛ into a single command. It also adds somenew features

such as skipping checks on lines containing #noqa and extensibilit⁴ via entr⁴ points.

In its quest for beautiful andunified code, theOpenStackproject chose flakeǛ for all

of its code checks. However, as time passed, the hackers took advantage of flakeǛ's

extensibilit⁴ to test for even more potential issues with submitted code. The end

result of all this is a flakeǛ extension called hacking. It checks for errors such as

odd usage of except, P⁴thon Ǖ/ǖ portabilit⁴ issues, import st⁴le, dangerous string

formatting, and possible locali⁵ation issues.

If ⁴ou’re startinganewproject, I strongl⁴ recommend⁴ouuseoneof these toolsand

rel⁴ on it for automatic checking of ⁴our code qualit⁴ and st⁴le. If ⁴ou alread⁴ have

a codebase, a goodapproach is to run themwithmost of thewarnings disabled and

fix issues one categor⁴ at a time.

While none of these tools ma⁴ be a perfect fit for ⁴our project or ⁴our preferences,

using flakeǛ and hacking together is a goodwa⁴ to improve the qualit⁴ of ⁴our code

andmake it more durable. If nothing else, it’s a good start toward that goal.

Tip

Many text editors, including the famous GNU Emacs and vim, have plugins available (such

as Flymake) that can run tools such as pep8 or flake8 directly in your code buffer, inter-

actively highlighting any part of your code that isn’t PEP 8-compliant. This is a handy way

to fix most style errors as you write your code.

Ǖ Modules and libraries

2.1 The import system

In order to use modules and libraries, ⁴ou have to import them.

The Zen of Python
>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Ǖ.ǔ. THE IMPORT SYSTEM ǔǕ

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

The import s⁴stem is quite complex, but ⁴ou probabl⁴ alread⁴ know the basics.

Here, I’ll show ⁴ou some of the internals of this subs⁴stem.

The sysmodule contains a lot of information about P⁴thon’s import s⁴stem. First

of all, the list of modules currentl⁴ imported is available through the sys.modules

variable. It’s a dictionar⁴ where the ke⁴ is the module name and the value is the

module object.

>>> sys.modules['os']

<module 'os' from '/usr/lib/python2.7/os.pyc'>

Some modules are built-in; these are listed in sys.builtin_module_names. Built-

in modules can var⁴ depending on the compilation options passed to the P⁴thon

build s⁴stem.

When importing modules, P⁴thon relies on a list of paths. This list is stored in the

sys.path variable and tells P⁴thon where to look for modules to load. You can

change this list in code, adding or removing paths as necessar⁴, or ⁴ou can modif⁴

the PYTHONPATH environment variable to add paths without writing P⁴thon code at

all. The following approaches are almost equivalent ¹:

>>> import sys

>>> sys.path.append('/foo/bar')

$ PYTHONPATH=/foo/bar python

>>> import sys

¹Almost because the pathwill not be placed at the same level in the list, though itma⁴ notmatter
depending on ⁴our use case.

bjpcjp

bjpcjp

bjpcjp

Ǖ.ǔ. THE IMPORT SYSTEM ǔǖ

>>> '/foo/bar' in sys.path

True

The order in sys.path is important, since the list will be iterated over to find the

requested module.

It is also possible to extend the import mechanism using custom importers. This is

the technique thatHy ² uses to teachP⁴thonhowto import filesother thanstandard

.py or .pyc files.

The import hook mechanism, as it is called, is defined b⁴ PEP ǖǓǕ ³. It allows ⁴ou

to extend the standard import mechanism and appl⁴ preprocessing to it. You can

also add a custommodule finder b⁴ appending a factor⁴ class to sys.path_hooks.

Themodule finderobjectmusthaveafind_module(fullname, path=None)method

that returns a loader object. The load object also must have a load_module(fulln

ame) responsible for loading the module from a source file.

To illustrate, here’s how Hy uses a custom importer to import source files ending

with .hy instead of .py:

Example Ǖ.ǔ Hymodule importer

class MetaImporter(object):

def find_on_path(self, fullname):

fls = ["%s/__init__.hy", "%s.hy"]

dirpath = "/".join(fullname.split("."))

for pth in sys.path:

pth = os.path.abspath(pth)

for fp in fls:

composed_path = fp % ("%s/%s" % (pth, dirpath))

if os.path.exists(composed_path):

²Hy is a Lisp implementation on top of P⁴thon, discussed in Section ǜ.ǔ
³New Import Hooks, implemented since P⁴thon Ǖ.ǖ

bjpcjp

bjpcjp

bjpcjp

Ǖ.ǔ. THE IMPORT SYSTEM ǔǗ

return composed_path

def find_module(self, fullname, path=None):

path = self.find_on_path(fullname)

if path:

return MetaLoader(path)

sys.meta_path.append(MetaImporter())

Once the path is determined to both be valid and point to a module, a MetaLoader

object is returned:

Hymodule loader

class MetaLoader(object):

def __init__(self, path):

self.path = path

def is_package(self, fullname):

dirpath = "/".join(fullname.split("."))

for pth in sys.path:

pth = os.path.abspath(pth)

composed_path = "%s/%s/__init__.hy" % (pth, dirpath)

if os.path.exists(composed_path):

return True

return False

def load_module(self, fullname):

if fullname in sys.modules:

return sys.modules[fullname]

if not self.path:

Ǖ.ǔ. THE IMPORT SYSTEM ǔǘ

return

sys.modules[fullname] = None

mod = import_file_to_module(fullname,

self.path) ②1

ispkg = self.is_package(fullname)

mod.__file__ = self.path

mod.__loader__ = self

mod.__name__ = fullname

if ispkg:

mod.__path__ = []

mod.__package__ = fullname

else:

mod.__package__ = fullname.rpartition('.')[0]

sys.modules[fullname] = mod

return mod

②1 import_file_to_module reads aHy source file, compiles it to P⁴thon code, and

returns a P⁴thonmodule object.

The uprefix module is another good example of this feature in action. P⁴thon ǖ.Ǔ

throughǖ.Ǖdidn’thave theuprefix fordenotingUnicodestrings featured inP⁴thon Ǖ

⁛; this module ensures compatibilit⁴ between Ǖ.x and ǖ.x b⁴ removing the u prefix

from strings before compilation.

⁛It was added back in P⁴thon ǖ.ǖ.

bjpcjp

Ǖ.Ǖ. STANDARD LIBRARIES ǔǙ

2.2 Standard libraries

P⁴thon comes with a huge standard librar⁴ packed with tools and features for an⁴

purpose ⁴ou can think of. Newcomers to P⁴thon who are used to having to write

their own functions for basic tasks are oten shocked to find that the language itself

ships with such functionalit⁴ built in and read⁴ for use.

Whenever ⁴ou’re about to write ⁴our own function to handle a simple task, please

stop and look through the standard librar⁴ first. M⁴ advice is to skim through the

whole thing at least once so that next time ⁴ou need a function, ⁴ou’ll alread⁴ know

whether what ⁴ou need alread⁴ exists in the standard librar⁴.

We’ll talk about some of these modules in later sections, such as functools and
itertools, but here’s a few of the standardmodules that ⁴ou should definitel⁴ know

about:

• atexit allows ⁴ou to register functions to call when ⁴our program exits.

• argparse provides functions for parsing command line arguments.

• bisect provides bisection algorithms for sorting lists (see Section ǔǓ.ǖ).

• calendar provides a number of date-related functions.

• codecs provides functions for encoding and decoding data.

• collections provides a variet⁴ of useful data structures.

• copy provides functions for cop⁴ing data.

• csv provides functions for reading and writing CSV files.

• datetime provides classes for handling dates and times.

• fnmatch provides functions for matching Unix-st⁴le filename patterns.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǖ.Ǖ. STANDARD LIBRARIES ǔǚ

• glob provides functions for matching Unix-st⁴le path patterns.

• io provides functions for handling I/O streams. In P⁴thon ǖ, it also contains Strin-
gIO (which is in the module of the same name in P⁴thon Ǖ), which allows ⁴ou to

treat strings as files.

• json provides functions for reading and writing data in JSON format.

• logging provides access to P⁴thon’s own built-in logging functionalit⁴.

• multiprocessing allows ⁴ou to runmultiple subprocesses from ⁴our application,

while providing an API that makes them look like threads.

• operatorprovides functions implementing the basic P⁴thon operatorswhich ⁴ou

can use instead of having towrite ⁴our own lambda expressions (see Section Ǜ.ǖ).

• os provides access to basic OS functions.

• random provides functions for generating pseudo-random numbers.

• re provides regular expression functionalit⁴.

• select provides access to the select() and poll() functions for creating event loops.

• shutil provides access to high-level file functions.

• signal provides functions for handling POSIX signals.

• tempfile provides functions for creating temporar⁴ files and directories.

• threading provides access to high-level threading functionalit⁴.

• urllib (and urllibǕ and urlparse in P⁴thon Ǖ.x) provides functions for handling

and parsing URLs.

• uuid allows ⁴ou to generate UUIDs (Universall⁴ Unique Identifiers).

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǖ.ǖ. EXTERNAL LIBRARIES ǔǛ

Use this list as a quick reference to help ⁴ou keep track of which librar⁴modules do

what. If ⁴ou can memori⁵e even part of it, all the better. The less time ⁴ou have to

spend looking up librar⁴ modules, the more time ⁴ou can spend writing the code

⁴ou actuall⁴ need.

Tip

The entire standard library is written in Python, so there’s nothing stopping you from look-

ing at the source code of its modules and functions. When in doubt, crack open the code

and see what it does for yourself. Even if the documentation has everything you need to

know, there’s always a chance you could learn something useful.

2.3 External libraries

Have ⁴ou ever unwrapped an awesome birthda⁴ git or Christmas present onl⁴ to

find out that whoever gave it to ⁴ou forgot to bu⁴ batteries for it? P⁴thon’s "bat-

teries included" philosoph⁴ is all about keeping that from happening to ⁴ou as a

programmer: the idea is that, once ⁴ou have P⁴thon installed, ⁴ou have ever⁴thing

⁴ou need to make an⁴thing ⁴ou want.

Unfortunatel⁴, there’s nowa⁴ the people behind P⁴thon can predict everything ⁴ou

might want to make. And even if the⁴ could, most people won’t want to deal with

a multi-gigab⁴te download when all the⁴ want to do is write a quick script for re-

naming files. The bottom line is, even with all its extensive functionalit⁴, there are

some things the P⁴thon Standard Librar⁴ just doesn’t cover. But that doesn’tmean

that there are things ⁴ou simpl⁴ can’t do with P⁴thon – it just means that there are

things ⁴ou’ll have to do using external libraries.

The P⁴thon Standard Librar⁴ is safe, well-charted territor⁴: its modules are heavil⁴

documented, and enough people use it on a regular basis that ⁴ou can be sure it

won’t break messil⁴ when ⁴ou tr⁴ to use it – and in the unlikel⁴ event that it does,

bjpcjp

Ǖ.ǖ. EXTERNAL LIBRARIES ǔǜ

⁴ou can be sure someone will fix it in short order. External libraries, on the other

hand, are the parts of the map labeled "here there be dragons": documentation

ma⁴ be sparse, functionalit⁴ ma⁴ be bugg⁴, and updates ma⁴ be sporadic or even

nonexistent. An⁴ serious project will likel⁴ need functionalit⁴ that onl⁴ external li-

braries can provide, but ⁴ou need to bemindful of the risks involved in using them.

Here’s a tale from the trenches. OpenStackuses SQLAlchem⁴, adatabase toolkit for

P⁴thon; if ⁴ou’re familiar with SQL, ⁴ou know that database schemas can change

over time, sowealsomadeuse of sqlalchem⁴-migrate to handle our schemamigra-

tion needs. And it worked…until it didn’t. Bugs started piling up, and nothing was

getting done about them. Furthermore, OpenStack was getting interested in sup-

porting P⁴thon ǖ at the time, but there was no sign that sqlalchem⁴-migrate was

going to support it as well. It was clear b⁴ that point that sqlalchem⁴-migrate was

effectivel⁴ dead andweneeded to switch to something else. At the timeof thiswrit-

ing, OpenStack projects are migrating towards using Alembic instead; not without

some effort, but fortunatel⁴ without much pain.

All of this builds up to one important question: "how can I be sure I won’t fall into

this sametrap?". Unfortunatel⁴, ⁴oucan’t: programmersarepeople, too, and there’s

no wa⁴ ⁴ou can know for sure whether a librar⁴ that’s ⁵ealousl⁴ maintained toda⁴

will still be like that in a few months. However, here at OpenStack, we use the fol-

lowing checklist to help tip the odds in our favor (and I encourage ⁴ou to do the

same!):

• P⁴thon ǖ compatibilit⁴. Even if ⁴ou’re not targeting P⁴thon ǖ right now, odds are

good that ⁴ouwill somewhere down the line, so it’s a good idea to check that ⁴our

chosen librar⁴ is alread⁴P⁴thon ǖ-compatible andcommitted to sta⁴ing thatwa⁴.

• Active development. GitHub and Ohloh usuall⁴ provide enough information to

determine whether a given librar⁴ is still being worked on b⁴ its maintainers.

• Active maintenance. Even if a librar⁴ is "finished" (i.e. feature-complete), the

bjpcjp

bjpcjp

Ǖ.ǖ. EXTERNAL LIBRARIES ǕǓ

maintainers should still be working on ensuring it remains bug-free. Check the

project’s tracking s⁴stem to see how quickl⁴ the maintainers respond to bugs.

• Packaged with OS distributions. If a librar⁴ is packaged with major Linux distri-

butions, that means other projects are depending on it – so if something goes

wrong, ⁴ou won’t be the onl⁴ one complaining. It’s also a good idea to check this

if ⁴ou plan to release ⁴our sotware to the public: it’ll be easier to distribute if its

dependencies are alread⁴ installed on the end user’s machine.

• API compatibilit⁴ commitment. Nothing’s worse than having ⁴our sotware sud-

denl⁴breakbecausea librar⁴ it dependsonchanged its entireAPI. Youmightwant

to check whether ⁴our chosen librar⁴ has had an⁴thing like this happen in the

past.

Appl⁴ing this checklist to dependencies is also a good idea, though it might be a

huge undertaking. If ⁴ou know ⁴our application is going to depend heavil⁴ on a

particular librar⁴, ⁴ou should at least appl⁴ this checklist to each of that librar⁴’s

dependencies.

No matter what libraries ⁴ou end up using, ⁴ou need to treat them like ⁴ou would

an⁴ other tools: as useful devices that could potentiall⁴ do some serious damage.

It won’t alwa⁴s be the case, but ask ⁴ourself: if ⁴ou had a hammer, would ⁴ou carr⁴

it through ⁴our entire house, possibl⁴ breaking ⁴our stuff b⁴ accident as ⁴ou went

along? Or would ⁴ou keep it in ⁴our tool shed or garage, awa⁴ from ⁴our fragile

valuables and right where ⁴ou actuall⁴ need it?

It’s the same thing with external libraries: no matter how useful the⁴ are, ⁴ou need

to be war⁴ of letting them get their hooks into ⁴our actual source code. Otherwise,

if something goeswrong and ⁴ouneed to switch libraries, ⁴oumight have to rewrite

huge swaths of ⁴our program. Abetter idea is towrite ⁴our ownAPI – awrapper that

encapsulates ⁴our external libraries and keeps them out of ⁴our source code. Your

programneverhas toknowwhatexternal libraries it’s using; onl⁴what functionalit⁴

Ǖ.Ǘ. FRAMEWORKS Ǖǔ

⁴our API provides. Need to use a different librar⁴? All ⁴ou have to change is ⁴our

wrapper: as long as it still provides the same functionalit⁴, ⁴ouwon’t have to touch

⁴our codebaseat all. Theremightbeexceptions, but there shouldn’t beman⁴: most

libraries aredesigned to solvea tightl⁴ focused rangeofproblemsandcan therefore

be easil⁴ isolated.

Later, in Section Ǘ.ǚ.ǖ, we’ll also look at how⁴ou canuse entr⁴ points to build driver

s⁴stems that will allow ⁴ou to treat parts of ⁴our projects as modules that can be

switched out at will.

2.4 Frameworks

There are various P⁴thon frameworks available for various kinds of P⁴thon appli-

cations: if ⁴ou’re writing a Web application, ⁴ou could use Django, P⁴lons, Turbo-

Gears, Tornado, Zope, or Plone; if ⁴ou’re looking for an event-driven framework,

⁴ou could use Twisted or Circuits; and so on.

Themain difference between frameworks and external libraries is that applications

make use of frameworks b⁴ building on top of them: ⁴our code will extend the

framework rather than vice versa. Unlike a librar⁴, which is basicall⁴ an add-on ⁴ou

can bring in to give ⁴our code some extra oomph, a framework forms the chassis of

⁴our code: ever⁴thing ⁴ou do is going to build on that chassis in some wa⁴, which

can be a double-edged sword. There are plent⁴ of upsides to using frameworks,

such as rapid protot⁴ping and development, but there are also some noteworth⁴

downsides, such as lock-in. You need to take these considerations into account

when ⁴ou decide whether to use a framework.

The recommended method for choosing a framework for a P⁴thon application is

largel⁴ the sameas theonedescribedearlier for external libraries -whichonl⁴makes

sense, as frameworks are distributed as bundles of P⁴thon libraries. Sometimes

the⁴ also include tools for creating, running, and deplo⁴ing applications, but that

bjpcjp

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǕǕ

doesn’t change the criteria ⁴ou should appl⁴. We’ve alread⁴ established that re-

placing an external librar⁴ ater ⁴ou’ve alread⁴ written code that makes use of it is

a pain, but replacing a framework is a thousand times worse, usuall⁴ requiring a

complete rewrite of ⁴our program from the ground up.

Just to giveanexample, theTwisted frameworkmentionedearlier still doesn’t have

full P⁴thon ǖ support: if ⁴ou wrote a program using Twisted a few ⁴ears back and

want to update it to run on P⁴thon ǖ, ⁴ou’re out of luck unless either ⁴ou rewrite

⁴our entire program to use a different framework or someone finall⁴ gets around to

upgrading it with full P⁴thon ǖ support.

Some frameworks are lighter than others. For one comparison, Django has its own

built-in ORM functionalit⁴; Flask, on the other hand, has nothing of the sort. The

less a framework tries to do for ⁴ou, the fewer problems ⁴ou’ll havewith it in the fu-

ture; however, each feature a framework lacks is another problem for ⁴our to solve,

either b⁴ writing ⁴our own code or going through the hassle of hand-picking an-

other librar⁴ to handle it. It’s ⁴our choice which scenario ⁴ou’d rather deal with,

but choose wisel⁴: migrating awa⁴ from a framework when things go sour can be a

Herculean task, and even with all its other features, there’s nothing in P⁴thon that

can help ⁴ou with that.

2.5 Interview with Doug Hellmann

I’ve had the chance to work with Doug Hellmann these past fewmonths. He’s a se-

nior developer at DreamHost and a fellow contributor to theOpenStack project. He

launched the website P⁴thon Module of the Week a while back, and he’s also writ-

ten an excellent book called The Python Standard Library By Example. He is also a

P⁴thon core developer. I’ve askedDoug a fewquestions about the Standard Librar⁴

and designing libraries and applications around it.

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN Ǖǖ

WhenyoustartwritingaPythonapplication fromscratch,what’syour
first move? Is it different from hacking an existing application?

The steps are similar in the abstract, but the details change. There tend

to be more differences between m⁴ approach to working on applications

and libraries than there are for new versus existing projects.

When I want to change existing code, especiall⁴ when it has been created

b⁴ someone else, I start b⁴ digging in to figure out how itworks andwhere

m⁴ change would need to go. I ma⁴ add logging or print statements, or

use pdb, and run the app with test data to make sure I understand what

it is doing. I usuall⁴ make the change and test it b⁴ hand, then add an⁴

automated tests before contributing a patch.

I take the same explorator⁴ approach when I create a new application. I

create some code and run it b⁴ hand, then write tests to make sure I’ve

covered all of the edge cases ater I have the basic aspect of a feature

working. Creating the tests ma⁴ also lead to some refactoring to make

the code easier to work with.

That was definitel⁴ the case with smiley. I started b⁴ experimenting with

P⁴thon’s traceAPIusing some throw-awa⁴ scripts, beforebuilding the real

application. M⁴original vision for smile⁴ includedonepiece to instrument

and collect data from another running application, and a second piece to

collect the data sent over the network and save it. In the course of adding

a couple of different reporting features, I reali⁵ed that the processing for

repla⁴ing the data that had been collected was almost identical to the

bjpcjp

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǕǗ

processing for collecting it in the first place. I refactored a few classes,

and was able to create a base class for the data collection, database ac-

cess, and report generator. Making those classes conform to the same API

allowedme to easil⁴ create a version of the data collection app thatwrote

directl⁴ to the database instead of sending information over the network.

While designing an app, I think about how the user interface works, but

for libraries, I focus on how a developer will use the API. Thinking about

how towrite programswith the new librar⁴ can bemade easier b⁴writing

the tests first, instead of ater the librar⁴ code. I usuall⁴ create a series of

example programs in the form of tests, and then build the librar⁴ to work

that wa⁴.

I have also found that writing the documentation for a librar⁴ before writ-

ing an⁴ code at all givesme awa⁴ to think through the features andwork-

flows for using it without committing to the implementation details. It

also lets me record the choices I made in the design so the reader under-

stands not just how to use the librar⁴ but the expectations I had while

creating it. That was the approach I took with stevedore.

I knew I wanted stevedore to provide a set of classes for managing plu-

gins for applications. During the design phase, I spent some time think-

ing about common patterns I had seen for consuming plugins and wrote

a few pages of rough documentation describing how the classes would

be used. I reali⁵ed that if I put most of the complex arguments into the

class constructors, the map()methods could be almost interchangeable.

Those design notes fed directl⁴ into the introduction for stevedore’s of-

ficial documentation, explaining the various patterns and guidelines for

using plugins in an application.

What’s the process for getting a module into the Python Standard Li-
brary?

bjpcjp

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN Ǖǘ

The full process and guidelines can be found in the P⁴thon Developer’s

Guide.

Before a module can be added to the P⁴thon Standard Librar⁴, it needs

to be proven to be stable and widel⁴ useful. The module should provide

something that is eitherhard to implementcorrectl⁴or souseful thatman⁴

developers have created their ownvariations. TheAPI shouldbe clear and

the implementation should not have dependencies on modules outside

the Standard Librar⁴.

The first step to proposing a newmodule is bringing it up within the com-

munit⁴ via the python-ideas list to informall⁴ gauge the level of interest.

Assuming the response is positive, the next step is to create a P⁴thon En-

hancement Proposal (PEP), which includes themotivation for adding the

module and some implementation details of how the transition will hap-

pen.

Because package management and discover⁴ tools have become so reli-

able, especiall⁴ pip and the P⁴thon Package Index (P⁴PI), it ma⁴ be more

practical tomaintainanew librar⁴outsideof theP⁴thonStandardLibrar⁴.

A separate release allows for more frequent updates with new features

and bugfixes, which can be especiall⁴ important for libraries addressing

new technologies or APIs.

What are the top three modules from the Standard Library that you
wish people knewmore about and would start using?

I’ve been doing a lot of work with d⁴namicall⁴ loaded extensions for ap-

plications recentl⁴. I use the abcmodule to define the APIs for those ex-

tensions as abstract base classes to help extension authors understand

which methods of the API are required and which are optional. Abstract

base classes are built into some other OOP languages, but I’ve found a lot

of P⁴thon programmers don’t know we have them as well.

bjpcjp

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǕǙ

The binar⁴ search algorithm in the bisect module is a good example of

a feature that is widel⁴ useful and oten implemented incorrectl⁴, which

makes it a great fit for the Standard Librar⁴. I especiall⁴ like the fact that

it can search sparse lists where the search value ma⁴ not be included in

the data.

Thereare someusefuldata structures in thecollectionsmodule thataren’t

used as oten as the⁴ could be. I like to usenamedtuple for creating small

class-like data structures that just need to hold data but don’t have an⁴

associated logic. It’s ver⁴ eas⁴ to convert from a namedtuple to a regular

class if logic does need to be added later, since namedtuple supports ac-

cessing attributes b⁴ name. Another interesting data structure is Chain-
Map, which makes a good stackable namespace. ChainMap can be used

to create contexts for rendering templates ormanaging configuration set-

tings from different sources with clearl⁴ defined precedence.

A lot of projects, including OpenStack, or external libraries, roll their
ownabstractionsontopof theStandardLibrary. I’mparticularly think-
ing about things like date/time handling, for example. What would
be your advice on that? Should programmers stick to the Standard
Library, roll their own functions, switch to some external library, or
start sending patches to Python?

All of the above! I prefer to avoid reinventing the wheel, so I advocate

strongl⁴ for contributing fixes and enhancements upstream to projects

that canbeusedasdependencies. On theotherhand, sometimes itmakes

sense to create another abstraction and maintain that code separatel⁴,

either within an application or as a new librar⁴.

The example ⁴ou raise, the timeutilsmodule in OpenStack, is a fairl⁴ thin

wrapper around P⁴thon’s datetime module. Most of the functions are

short and simple, but b⁴ creating a module with the most common oper-

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN Ǖǚ

ations, we can ensure the⁴ are handled consistentl⁴ throughout all Open-

Stack projects. Because a lot of the functions are application-specific, in

the sense that the⁴ enforce decisions about things like timestamp format

strings orwhat "now"means, the⁴ are not good candidates for patches to

P⁴thon’s librar⁴or tobe releasedasageneralpurpose librar⁴andadopted

b⁴ other projects.

In contrast, I have been working to move the API services in OpenStack

awa⁴ from the WSGI framework created in the earl⁴ da⁴s of the project

andontoa third-part⁴webdevelopment framework. Therearea lot of op-

tions for creatingWSGI applications in P⁴thon, and while wema⁴ need to

enhance one to make it completel⁴ suitable for OpenStack’s API servers,

contributing those reusable changes upstream is preferable to maintain-

ing a "private" framework.

Doyouhave any particular recommendations onwhat to dowhen im-
porting and using a lot ofmodules, from the Standard Library or else-
where?

I don’t have a hard limit, but if I have more than a handful of imports, I

reconsider the design of the module and think about splitting it up into a

package. The split ma⁴ happen sooner for a lower level module than for

a high-level or application module, since at a higher level I expect to be

joining more pieces together.

RegardingPython ǖ,what are themodules that areworthmentioning
andmight make developers more interested in looking into it?

The number of third-part⁴ libraries supporting P⁴thon ǖ has reached crit-

ical mass. It’s easier than ever to build new libraries and applications for

P⁴thon ǖ, and maintaining support for P⁴thon Ǖ.ǚ is also easier thanks to

the compatibilit⁴ features added to ǖ.ǖ. Themajor Linux distributions are

working on shipping releases with P⁴thon ǖ installed b⁴ default. An⁴one

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǕǛ

starting a new project in P⁴thon should look seriousl⁴ at P⁴thon ǖ unless

the⁴ have a dependenc⁴ that hasn’t been ported. At this point, though, li-

braries that don’t run on P⁴thon ǖ could almost be classified as "unmain-

tained."

Manydeveloperswrite all their code into anapplication, but there are
caseswhere it would beworth the effort to branch their code out into
a Python library. In term of design, planning ahead, migration, etc.,
what are the best ways to do this?

Applications are collections of "glue code" holding libraries together for

a specific purpose. Designing based on implementing those features as a

librar⁴ first and then building the application ensures that code is prop-

erl⁴ organi⁵ed into logical units, which in turn makes testing simpler. It

also means the features of an application are accessible through the li-

brar⁴ and can be remixed to create other applications. Failing to take this

approach means the features of the application are tightl⁴ bound to the

user interface, which makes them harder to modif⁴ and reuse.

Whatadvicewouldyougive topeopleplanning tostart theirownPython
libraries?

I alwa⁴s recommend designing libraries and APIs from the top down, ap-

pl⁴ing design criteria such as the Single Responsibilit⁴ Principle (SRP) at

each la⁴er. Think about what the caller will want to do with the librar⁴,

and create an API that supports those features. Think about what values

can be stored in an instance and used b⁴ the methods versus what needs

to be passed to each method ever⁴ time. Finall⁴, think about the imple-

mentation and whether the underl⁴ing code should be organi⁵ed differ-

entl⁴ from the public API.

SQLAlchemy is an excellent example of appl⁴ing those guidelines. The

declarative ORM, data mapping, and expression generation la⁴ers are all

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN Ǖǜ

separate. Adeveloper candecide the right level of abstraction for entering

the API and using the librar⁴ based on their needs rather than constraints

imposed b⁴ the librar⁴’s design.

What are the most common programming errors that you encounter
while reading random Python developers' code?

A big area where P⁴thon’s idioms are different from other languages is

loopingand iteration. Forexample, oneof themost commonanti-patterns

I see is using a for loop to filter one list b⁴ appending items to a new list

and then processing the result in a second loop (possibl⁴ ater passing the

list as an argument to a function). I almost alwa⁴s suggest converting fil-

tering loops like that to generator expressions because the⁴ are more ef-

ficient and easier to understand. It’s also common to see lists being com-

bined so their contents can be processed together in some wa⁴, rather

than using itertools.chain().

There are also somemore subtle things I suggest in code reviews, like us-

ing a dict() as a lookup table instead of a long if:then:else block; mak-

ing sure functions alwa⁴s return the same t⁴pe of object (e.g., an empt⁴

list instead of None); reducing the number of arguments to a function b⁴

combining related values into an object with either a tuple or a new class;

and defining classes to use in public APIs instead of rel⁴ing on dictionar-

ies.

Doyouhaveaconcreteexample, somethingyou’veeitherdoneorwit-
nessed, of picking up a "wrong" dependency?

Recentl⁴, I had a case inwhich a new release ofpyparsingdroppedP⁴thon

Ǖ support and causedme a little trouble with a librar⁴ I maintain. The up-

date to p⁴parsing was a major revision, and was clearl⁴ labeled as such,

but because I had not constrained the version of the dependenc⁴ in the

settings for cliff , the new release of p⁴parsing caused issues for some of

Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǖǓ

cliff 's consumers. The solution was to provide different version bounds

for P⁴thon Ǖ and P⁴thon ǖ in the dependenc⁴ list for cliff. This situation

highlighted the importance of both understanding dependenc⁴ manage-

ment and ensuring proper test configurations for continuous integration

testing.

What’s your take on frameworks?

Frameworks are like an⁴ other kind of tool. The⁴ can help, but ⁴ou need

to take care when choosing one to make sure that it’s right for the job at

hand.

B⁴ pulling out the common parts into a framework, ⁴ou can focus ⁴our

development efforts on the unique aspects of an application. The⁴ also

help ⁴ou bring an application to a useful state more quickl⁴ than if ⁴ou

started from scratch b⁴ providing a lot of bootstrapping code for doing

things like running in development mode and writing a test suite. The⁴

also encourage ⁴ou to be consistent in the wa⁴ ⁴ou implement the appli-

cation, which means ⁴ou end up with code that is easier to understand

andmore reusable.

Thereare somepotentialpitfalls towatchout forwhenworkingwith frame-

works, though. The decision to use a particular framework usuall⁴ im-

plies something about the design of the application itself. Selecting the

wrong framework can make an application harder to implement if those

design constraints do not align naturall⁴ with the application’s require-

ments. You ma⁴ end up fighting with the framework if ⁴ou tr⁴ to use dif-

ferent patterns or idioms than it recommends.

Ǖ.Ǚ. MANAGING API CHANGES ǖǔ

2.6 Managing API changes

When building an API, it’s rare to get ever⁴thing right the first tr⁴. Your API will have

to evolve, adding, removing, or changing the features it provides.

In the following paragraphs, we will discuss how to manage public API changes.

Public APIs are the APIs that ⁴ou expose to users of ⁴our librar⁴ or application; in-

ternal APIs are another concern, and since the⁴’re internal (i.e. ⁴our userswill never

have to deal with them), ⁴ou can do whatever ⁴ou want with them: break them,

twist them, or generall⁴ abuse them as ⁴ou see fit.

The two t⁴pes of API can be easil⁴ distinguished from each other. The P⁴thon con-

vention is to prefix private API s⁴mbols with an underscore: foo is public, but _bar

is private.

When building an API, the worst thing ⁴ou can do is to break it abruptl⁴. Linus Tor-

valds is (among other things) famous for having a ⁵ero tolerance polic⁴ on public

API breakage for the Linux kernel. Considering howman⁴ people rel⁴ on Linux, it’s

safe to sa⁴ he made a wise choice.

Unix platforms have a complex management s⁴stem for libraries, rel⁴ing on son-

ame[http://en.wikipedia.org/wiki/Soname]and fine-grainedversion identifiers. P⁴thon

doesn’t provide such a s⁴stem, nor an equivalent convention. It’s up to maintain-

ers to pick the right version numbers and policies. However, ⁴ou can still take the

Unix s⁴stem as inspiration for how to version ⁴our own libraries or applications.

Generall⁴, ⁴our version numbering should reflect changes in the API that will im-

pact users; most developers usemajor version increments to denote such changes,

but depending on how ⁴ou number ⁴our versions, ⁴ou can also use minor version

increments as well.

Whatever else ⁴ou decide to do, the first thing andmost important stepwhenmod-

if⁴ing an API is to heavil⁴ document the change. This includes:

bjpcjp

bjpcjp

Ǖ.Ǚ. MANAGING API CHANGES ǖǕ

• documenting the new interface

• documenting that the old interface is deprecated

• documenting how to migrate to the new interface

You shouldn’t remove the old interface right awa⁴; in fact, ⁴ou should tr⁴ to keep

the old interface for as long as possible. New users won’t use it since it’s explicitl⁴

markedasdeprecated. Youshouldonl⁴ remove theold interfacewhen it’s toomuch

trouble to keep.

Example Ǖ.Ǖ A documented API change

class Car(object):

def turn_left(self):

"""Turn the car left.

.. deprecated:: 1.1

Use :func:`turn` instead with the direction argument set to left

"""

self.turn(direction='left')

def turn(self, direction):

"""Turn the car in some direction.

:param direction: The direction to turn to.

:type direction: str

"""

Write actual code here instead

pass

It’s a good idea to use Sphinxmarkup to highlight changes. When building the doc-

umentation, it will be clear to users that the function should not be used, and direct

Ǖ.Ǚ. MANAGING API CHANGES ǖǖ

access to the new functionwill be provided alongwith an explanation of how tomi-

grate old code. The downside of this approach is that ⁴ou can’t rel⁴ on developers

to read ⁴our changelog or documentationwhen the⁴ upgrade to a newer version of

⁴our P⁴thon package.

P⁴thon provides an interestingmodule called warnings that can help in this regard.

This module allows ⁴our code to issue various kinds of warnings, such as Pending

DeprecationWarning and DeprecationWarning. These warnings can be used to in-

form the developer that a function the⁴’re calling is either deprecated or going to

be deprecated. This wa⁴, developers will be able to see that the⁴’re using an old

interface and should do something about it. ⁜

To go back to the previous example, we canmake use of this and warn the user:

Example Ǖ.ǖ A documented API change with warning

import warnings

class Car(object):

def turn_left(self):

"""Turn the car left.

.. deprecated:: 1.1

Use :func:`turn` instead with the direction argument set to " ←֓

left".

"""

warnings.warn("turn_left is deprecated, use turn instead",

DeprecationWarning)

self.turn(direction='left')

def turn(self, direction):

⁜For those who work with C, this is a hand⁴ counterpart to the __attribute__ ((deprecated))
GCC extension.

bjpcjp

Ǖ.Ǚ. MANAGING API CHANGES ǖǗ

"""Turn the car in some direction.

:param direction: The direction to turn to.

:type direction: str

"""

Write actual code here instead

pass

Should an⁴ code call the deprecated turn_left function, a warning will be raised:

>>> Car().turn_left()

__main__:8: DeprecationWarning: turn_left is deprecated, use turn instead

Note

Since Python 2.7, DeprecationWarning are not displayed by default. To disable this

filter, you need to call python with the -W all option. See the python manual page for

more information on the possible values for -W.

Having ⁴our code tell developers that their programs are using something that will

stopworkingeventuall⁴ is agood ideabecause it canalsobeautomated. When run-

ning their test suites, developers can run python with the -W error option, which

transformswarnings intoexceptions. Thatmeans that ever⁴ timeanobsolete func-

tion is called, an error will be raised, and it will be eas⁴ for developers using ⁴our

librar⁴ to know exactl⁴ where their code needs to be fixed.

Example Ǖ.Ǘ Running python -W error

>>> import warnings

>>> warnings.warn("This is deprecated", DeprecationWarning)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

DeprecationWarning: This is deprecated

bjpcjp

Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǘ

2.7 Interview with Christophe de Vienne

Christophe is a P⁴thon developer and the author ofWSME,WebServicesMade Easy.

This frameworkallowsdevelopers todefinewebservices inaP⁴thonicwa⁴andsup-

ports a wide variet⁴ of APIs, allowing it to be plugged into man⁴ other web frame-

works.

Whatare themistakesdevelopersotenmakewhendesigningaPython
API?

There are a fewmistakes I tr⁴ not to make when designing a P⁴thon API:

• Making it too complicated. As the sa⁴ing goes, "Keep It Simple." (Some

peoplewould sa⁴ "Keep It Simple Stupid," but I don’t think "simple" and

"stupid" are compatible.) Complicated APIs are hard to understand and

hard to document. You don’t have to make the actual librar⁴ function-

alit⁴ simple as well, but it’s a smart idea. A good example is the Re-

quests librar⁴: compared to the various standardurllib libraries, theRe-
quests API is ver⁴ simple and natural, but it does complex things behind

the scenes. The urllib API, b⁴ contrast, is almost as complicated as the

things it does.

• Doing (visible) magic. When ⁴our API does things that ⁴our documen-

tation doesn’t explain, ⁴our end users are going to want to crack open

⁴our codeand seewhat’s goingonunder thehood. It’s oka⁴ if ⁴ou’ve got

some magic happening behind the scenes, but ⁴our end users should

never see an⁴thing unnatural happening up front.

Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǙ

• Forgetting ⁴ouruse cases. Whenwriting codedown in thedepthsof ⁴our

librar⁴, it’s eas⁴ to forget how ⁴our librar⁴ will actuall⁴ be used. Coming

up with good use cases makes it easier to design an API.

• Not writing unit tests. TDD is a ver⁴ efficient wa⁴ to write libraries, es-

peciall⁴ in P⁴thon. It forces the developer to assume the role of the end

user from the ver⁴ beginning and maintain compatibilit⁴ between ver-

sions. It’s also theonl⁴ approach I knowof that allows ⁴ou to completel⁴

rewrite a librar⁴. Even if it’s not alwa⁴s necessar⁴, it’s good to have that

option.

Considering the variety of frameworks WSME can sit on top of, what
kinds of API does it have to support?

There actuall⁴ aren’t thatman⁴, since the frameworks it sits on are similar

in a lot of wa⁴s. The⁴ use decorators to expose functions andmethods to

the outside world; the⁴’re based on the WSGI standard (so their request

objects look ver⁴ similar); and the⁴’ve all more or less used each other as

a source of inspiration. That said, we haven’t ⁴et attempted to plug it into

an as⁴nchronous web framework such as Twisted.

The biggest difference I’ve had to deal with is thewa⁴ contextual informa-

tion is accessed. In a web framework, the context is mainl⁴ the request

and what can be deduced from or attached to it (identit⁴, session data,

data connection, etc.), as well as a few global things like the global con-

figuration, connection pool, and so forth. Most web frameworks assume

the⁴’re running on a multi-threaded server and treat all this information

as TSD (Thread-Specific Data). This allows them to access the current

request b⁴ simpl⁴ importing a request prox⁴ object from a module and

working with it. While it’s prett⁴ straightforward to use, it implies a little

magic andmakes global objects out of context-specific data.

Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǚ

The P⁴ramid framework doesn’t work like this, for example. Instead, the

context is explicitl⁴ injected into the code pieces that work with it. This is

wh⁴ the views takes a "request" parameter, which wraps the WSGI envi-

ronment and gives access to the global context of the application.

What are their pros and cons?

An API st⁴le like the one used in P⁴ramid has the big advantage that it

allows a single program to run several completel⁴ distinct environments

in a ver⁴ natural wa⁴. The downside is that its learning curve is a little

steeper.

How does Pythonmake it easier or harder to design a library API?

The lack of a built-in wa⁴ to definewhich parts are public andwhich parts

aren’t is both a (slight) problem and an advantage.

It’s aproblemwhen itmeansdevelopersdon’t thinkasmuchas the⁴ should

about which parts are their API and which parts aren’t. But with a little

discipline, documentation, and (if needed) tools like zope.interface, it

doesn’t sta⁴ a problem for long.

It’s anadvantagewhen itmakes it quicker andeasier to refactor APIswhile

keeping compatibilit⁴ with previous versions.

What’s your ruleof thumbaboutAPI evolution, deprecation, removal,
etc.?

There are several criteria I weigh whenmaking a decision:

• How difficult will it be for users of the library to adapt their code?
Considering that there are people rel⁴ing on ⁴our API, an⁴ change ⁴ou

make has to beworth the effort needed to adopt it. This rule is intended

to prevent non-compatible changes to the parts of the API that are in

common use. That said, one of the advantages of P⁴thon is that it’s rel-

ativel⁴ eas⁴ to refactor code to adopt an API change.

Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǛ

• Will maintenance be easier with the change? Simplif⁴ing the imple-

mentation, cleaning up the codebase,making the API easier to use, hav-

ing more complete unit tests, making the API easier to understand at

first glance… all of these things will make ⁴our life as a maintainer eas-

ier.

• Howmuchmore (or less) consistentwillmy API be ater the change?
If all of the API’s functions follow a similar pattern (such as requiring the

same parameter in the first position), it’s important to make sure that

new functions follow that pattern as well. Also, doing too man⁴ things

at once is a great wa⁴ to end up doing none of them right: keep ⁴our API

focused on what it’s meant to do.

• How will users benefit from this change? Last but not least, alwa⁴s

consider the users' point of view.

What advice do you have regarding API documentation in Python?

Documentation makes it eas⁴ for newcomers to adopt ⁴our librar⁴. Ne-

glecting it will drive awa⁴ a lot of potential users; not just beginners, ei-

ther. The problem is, documenting is difficult, so it gets neglected all the

time!

Document earl⁴ and include ⁴our documentation build in continuous in-

tegration. Now that we have Read the Docs, there’s no excuse for not

having documentation built and published (at least for open-source sot-

ware).

Use docstrings to document classes and functions in ⁴our API. Follow the

PEP Ǖǘǚ⁝ guidelines so that developers won’t have to read ⁴our source

to understand what ⁴our API does. Generate HTML documentation from

⁴our docstrings, and don’t limit it to the API reference.

⁝Docstring Conventions, David Goodger, Guido van Rossum, Ǖǜ Ma⁴ ǕǓǓǔ

Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǜ

Give practical examples throughout. Have at least one "startup guide"

that will shownewcomers how to build aworking example. The first page

of thedocumentation should give aquick overviewof ⁴our API’s basic and

representative use case.

Document the evolution of ⁴our API in detail, version b⁴ version. (VCS logs

are not enough!)

Make⁴ourdocumentationaccessibleand, if possible, comfortable to read:

⁴our users need to be able to find it easil⁴ and get the information the⁴

need without feeling like the⁴’re being tortured. Publishing ⁴our docu-

mentation through P⁴PI is one wa⁴ to achieve this; publishing on Read

the Docs is also a good idea, since users will expect to find ⁴our documen-

tation there.

Finall⁴, choose a theme that is both efficient and attractive. I chose the

"Cloud" Sphinx theme forWSME, but there are plent⁴ of other themes out

there to choose from. You don’t have to be a web expert to produce nice-

looking documentation.

ǖ Documentation

As I’ve alread⁴ touched upon, documentation is one of the most important parts

of writing sotware. Unfortunatel⁴, there are still a lot of projects out there that

doesn’t provide proper documentation. Writing documentation is seen as a com-

plicated and daunting task, but it doesn’t have to be: with the tools that are avail-

able to P⁴thon programmers, documenting ⁴our code can be just as eas⁴ aswriting

it in the first place.

One of the biggest culprits behind wh⁴ documentation is either sparse or nonexis-

tent is that man⁴ people assume that the onl⁴ wa⁴ to document code is b⁴ hand.

Even if ⁴ou havemultiple people working on the same project, this means that one

or more of them is going to end up having to juggle contributing code with main-

taining documentation – and if ⁴ou ask an⁴ developer which job the⁴’d prefer, ⁴ou

can be sure the⁴’ll tell ⁴ou the⁴’d rather write sotware than write about sotware.

Sometimes thedocumentationprocess is even completel⁴ separate fromthedevel-

opment process, meaning that the documentation is written b⁴ people who have

never written so much as a line of the actual code. Furthermore, an⁴ documenta-

tion produced this wa⁴ is likel⁴ to be out-of-date: whether the documentation is

handled b⁴ the programmers themselves or b⁴ dedicated writers, it’s almost im-

possible for manual documentation to keep up with the pace of development.

Thebottom line is, themoredegreesof separation there arebetween⁴our codeand

⁴our documentation, the harder it will be to keep the latter properl⁴ maintained.

bjpcjp

CHAPTER ǖ. DOCUMENTATION Ǘǔ

So wh⁴ keep ⁴our code and documentation separate at all? It’s not onl⁴ possible

to put ⁴our documentation directl⁴ in ⁴our code itself, but it’s also eas⁴ to convert

that documentation into eas⁴-to-read HTML and PDF files.

The de facto standard documentation format for P⁴thon is reStructuredText, or reST

for short. It’s a lightweight markup language (like the famous Markdown) that’s as

eas⁴ to read and write for humans as it is for computers. Sphinx is the most com-

monl⁴ used tool for working with this format: it can read reST-formatted content

and output documentation in a variet⁴ of other formats.

Your project documentation should include:

• The problem ⁴our project is intended to solve, in one or two sentences.

• The license ⁴our project is distributed under. If ⁴our sotware is open source, ⁴ou

should also include this information in a header in each code file: just because

⁴ou’ve uploaded ⁴our code to the Internet doesn’t mean that people will know

what the⁴’re allowed to do with it.

• A small example of how it works.

• Installation instructions.

• Links to communit⁴ support, mailing list, IRC, forums, etc.

• A link to ⁴our bug tracker s⁴stem.

• A link to ⁴our source code so that developers can download and start delving into

it right awa⁴.

You should also include a README.rst file that explainswhat ⁴our project does. This

READMEwill bedispla⁴edon⁴ourGitHuborP⁴PI project page; both sites knowhow

to handle reST formatting.

ǖ.ǔ. GETTING STARTEDWITH SPHINX AND REST ǗǕ

Tip

If you’re using GitHub, you can also add a CONTRIBUTING.rst file that will be displayed

when someone creates a pull request. It should provide a checklist for them to follow

before they submit the request, e.g. follow PEP 8 or don’t forget to run the unit tests.

Tip

Read The Docs allows you to build and publish your documentation online automatically.

Signing up and configuring a project is a straightforward process: it searches for your

Sphinx configuration file, builds your documentation, and makes it available for your users

to access. It’s a great companion to code hosting sites.

3.1 Getting started with Sphinx and reST

First of all, ⁴ou should run sphinx-quickstart in ⁴our project’s top-level director⁴.

This will create the director⁴ structure Sphinx expects to find, along with two files

in the doc/source folder: conf.py, which contains Sphinx's configuration settings

(and is absolutel⁴ required for Sphinx to work), and index.rst, which will serve as

the front page of ⁴our documentation.

You can then build ⁴our documentation in HTML format b⁴ calling sphinx-build

with ⁴our source director⁴ and output director⁴ as arguments:

$ sphinx-build doc/source doc/build

import pkg_resources

Running Sphinx v1.2b1

loading pickled environment... done

No builder selected, using default: html

building [html]: targets for 1 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

bjpcjp

ǖ.Ǖ. SPHINX MODULES Ǘǖ

preparing documents... done

writing output... [100%] index

writing additional files... genindex search

copying static files... done

dumping search index... done

dumping object inventory... done

build succeeded.

Now ⁴ou can open doc/build/index.html in ⁴our favorite browser and read ⁴our

documentation.

Tip

If you are using setuptools or pbr (see Section 4.2) for packaging, Sphinx extends them

to support the command setup.py build_sphinx, which will run sphinx-build

automatically. The pbr integration of Sphinx has some saner defaults, such as outputting

the documentation in the doc subdirectory.

index.rst is where ⁴our documentation begins, but it doesn’t have to end there:

reST supports includes, so there’s nothing stopping ⁴ou from dividing ⁴our docu-

mentationup intomultiple files. Don’tworr⁴ toomuchabout s⁴ntax and semantics

to startwith: it’s true that reST offers a lot of formatting possibilities, but ⁴ou’ll have

plent⁴ of time to dive into the reference later. The complete reference explains how

to create titles, bulleted lists, tables, andmore.

3.2 Sphinx modules

Sphinx is highl⁴ extensible: its basic functionalit⁴ onl⁴ supports manual documen-

tation, but it comes with a number of useful modules which enable automatic doc-

umentation and other features. For example, sphinx.ext.autodoc extracts reST-

formatted docstrings from ⁴ourmodules and generates .rst files for inclusion. sph

bjpcjp

ǖ.Ǖ. SPHINX MODULES ǗǗ

inx-quickstart will ask ⁴ou if ⁴ou want to activate this module when ⁴ou run it –

alternatel⁴, ⁴ou can edit ⁴our conf.py file and add it as an extension:

extensions = ['sphinx.ext.autodoc']

Note that autodocwill not automaticall⁴ recogni⁵e and include ⁴our modules. You

need to explicitl⁴ indicate which modules ⁴ou want to be documented b⁴ adding

something like this to one of ⁴our .rst files:

.. automodule:: foobar

:members: ②1

:undoc-members: ②2

:show-inheritance: ②3

②1 Request that all documentedmembers be printed (optional)

②2 Request that all undocumentedmembers be printed (optional)

②3 Show inheritance (optional)

Also note:

• If ⁴ou don’t include an⁴ directives, Sphinx won’t generate an⁴ output.

• If ⁴ouonl⁴ specif⁴:members:, undocumentednodeson⁴ourmodule/class/method

tree will be skipped, even if all their members are documented. For example, if

⁴ou document the methods of a class but not the class itself, :members: will ex-

clude both the class and itsmethods entirel⁴. To keep this fromhappening, ⁴ou’d

either have to write a docstring for the class or specif⁴ :undoc-members: as well.

• Your module needs to be where P⁴thon can import it. Adding ., .., and/or ../..

to sys.path can help with this.

bjpcjp

ǖ.Ǖ. SPHINX MODULES Ǘǘ

autodoc gives ⁴ou the power to includemost of ⁴our documentation in ⁴our actual

source code. You can even pick and choose which modules and methods to doc-

ument – it’s not an "all-or-nothing" solution. B⁴ maintaining ⁴our documentation

directl⁴ alongside ⁴our source code, ⁴ou can easil⁴ ensure it sta⁴s up-to-date.

If ⁴ou’re writing a P⁴thon librar⁴, ⁴ou’ll usuall⁴ want to format ⁴our API documen-

tationwith a table of contents containing links to individual pages for eachmodule.

The sphinx.ext.autogenmodule was created specificall⁴ to handle this common

use case. First, ⁴ou need to enable it in conf.py:

extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary']

Now ⁴ou can add something like the following to an .rst file to automaticall⁴ gen-

erate a TOC for the specified modules:

.. autosummary::

mymodule

mymodule.submodule

This will create files called generated/mymodule.rst and generated/mymodule.sub

module.rst containing the autodoc directives described earlier. Using this same

format, ⁴ou can specif⁴ which parts of ⁴our module API ⁴ou want included in ⁴our

documentation.

Tip

In large projects, it can be tedious to add modules to this list by hand. Just remember

that conf.py is an ordinary Python source file: there’s nothing stopping you from writing

your own code in it, including code that automatically builds .rst files indicating which

modules to document.

Another useful feature of Sphinx is the abilit⁴ to run doctest on ⁴our examples auto-

maticall⁴ when ⁴ou build ⁴our documentation. doctest is a standard P⁴thon mod-

ǖ.Ǖ. SPHINX MODULES ǗǙ

ule which searches ⁴our documentation for code snippets and runs them to test

whether the⁴ accuratel⁴ reflect what ⁴our code actuall⁴ does. Ever⁴ paragraph

starting with >>> (i.e. the primar⁴ prompt) is treated as a code snippet to test:

To print something to the standard output, use the :py:func:`print` ←֓

function.

>>> print("foobar")

foobar

It’s eas⁴ to end up leaving ⁴our examples unchanged as ⁴our API evolves; doctest

helps ⁴ou make sure this doesn’t happen. If ⁴our documentation includes a step-

b⁴-step tutorial, doctest will help ⁴ou keep it up-to-date throughout development.

You can also use doctest for Documentation-Driven Development (DDD): write ⁴our

documentation and examples first, and then write ⁴our code to match ⁴our docu-

mentation.

Taking advantage of this feature is as simple as running sphinx-buildwith the spe-

cial doctest builder:

$ sphinx-build -b doctest doc/source doc/build

Running Sphinx v1.2b1

loading pickled environment... done

building [doctest]: targets for 1 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

running tests...

Document: index

1 items passed all tests:

1 tests in default

1 tests in 1 items.

ǖ.ǖ. EXTENDING SPHINX Ǘǚ

1 passed and 0 failed.

Test passed.

Doctest summary

===============

1 test

0 failures in tests

0 failures in setup code

0 failures in cleanup code

build succeeded.

Sphinx also provides a bev⁴ of other features, either out-of-the-box or through ex-

tension modules, including:

• Link between projects using

• HTML themes

• Diagrams and formulas

• Output to Texinfo and EPUB format

• Linking to external documentation

You might not need all this functionalit⁴ right awa⁴, but if ⁴ou ever need it in the

future, it’s good to know in advance that there are modules that can provide it.

3.3 Extending Sphinx

Sometimes the off-the-shelf solutions just aren’t enough. It’s one thing if ⁴ou’re

writing an API that’s going to be used from within P⁴thon, but what if ⁴ou’re writ-

ing, sa⁴, an HTTP REST API? Sphinx will onl⁴ document the P⁴thon side of ⁴our API,

ǖ.ǖ. EXTENDING SPHINX ǗǛ

forcing ⁴ou to write ⁴our REST API documentation b⁴ hand with all the problems

that entails.

The creators of WSME had other ideas. The⁴ developed a Sphinx extension called

sphinxcontrib-pecanwsmewhichanal⁴⁵esdocstringsandactualP⁴thoncode togen-

erate REST API documentation automaticall⁴. You can do the same thing for ⁴our

own projects: if ⁴ou can extract information from ⁴our code that could be useful in

⁴our documentation, it onl⁴ makes sense to automate the process.

Tip

You can use sphinxcontrib.httpdomain for other HTTP frameworks such as Flask, Bottle,

and Tornado.

M⁴ point here is that whenever ⁴ou know that ⁴ou could extract information from

⁴our code that could help to build documentation, ⁴ou should reall⁴ do that and

automati⁵e it. It is better than tr⁴ing to maintain a manuall⁴ written documenta-

tion, especiall⁴ when ⁴ou can leverage it with auto-publication tools like Read The

Docs.

To write a Sphinx extension, first ⁴ou need to write a module, preferabl⁴ as a sub-

module of sphinxcontrib (as long as ⁴our module is generic enough), and pick a

name for it. Sphinx expects this module to have one predefined function called

setup(app). The app object will contain the methods ⁴ou’ll use to connect ⁴our

code to Sphinx events and directives. The full list of methods is available in the

Sphinx extension API.

For example, sphinxcontrib-pecanwsme adds a single directive called rest-contr

oller using the setup(app) function. This added directive needs a full⁴ qualified

WSME controller class name to generate documentation for.

Example ǖ.ǔ Code from sphinxcontrib.pecanwsme.rest.setup

bjpcjp

bjpcjp

ǖ.ǖ. EXTENDING SPHINX Ǘǜ

def setup(app):

app.add_directive('rest-controller', RESTControllerDirective)

RESTControllerDirective is a directive class which has to have certain properties

and methods as described in the Sphinx extension API. The main method, run(),

will do the actual work of extracting documentation from ⁴our code.

The sphinx-contrib repositor⁴ has a bunch of small modules that can help ⁴ou de-

velop ⁴our own.

Note

Even though Sphinx is written in Python and targets it by default, there are extensions

available that allow it to support other languages as well. You can use Sphinx to document

your project in full even if it uses multiple languages at once.

bjpcjp

Ǘ Distribution

It’s a safe bet ⁴ou’ll want to distribute ⁴our sotware at some point. As tempted as

⁴oumight be to just ⁵ip up ⁴our code and upload it to the Internet, P⁴thon provides

tools to help ⁴ou make sure ⁴our end users will have no trouble getting ⁴our sot-

ware to work. You should alread⁴ be familiar with using setup.py to install P⁴thon

applications and libraries, but ⁴ou’ve probabl⁴ never delved into how it actuall⁴

works behind the scenes, or how to make a setup.py of ⁴our own.

4.1 A bit of history

distutils has been part of the standard P⁴thon librar⁴ since ǔǜǜǛ. It was originall⁴

developed b⁴ GregWard, who sought to create an eas⁴ wa⁴ for developers to auto-

mate the installation process for their end users:

Example Ǘ.ǔ setup.py using distutils

#!/usr/bin/python

from distutils.core import setup

setup(name="rebuildd",

description="Debian packages rebuild tool",

author="Julien Danjou",

author_email="acid@debian.org",

Ǘ.ǔ. A BIT OF HISTORY ǘǔ

url="http://julien.danjou.info/software/rebuildd.html",

packages=['rebuildd'])

And that’s it. All users have to do to build or install ⁴our sotware is run setup.py

with the appropriate command. If ⁴our distribution includes Cmodules in addition

to native P⁴thon ones, it can even handle those automaticall⁴ as well.

Developmentondistutilswasabandoned inǕǓǓǓ; since then, otherdeveloperspicked

up where it let off, building their own tools based on it. One of the most notable

successors to distutils is the packaging librar⁴ known as setuptools, which offered

more frequent updates and advanced features such as automatic dependenc⁴ han-

dling, the Egg distribution format, and the easy_install command. Since distutils

was still the canonicalmeans of packaging sotware includedwith theP⁴thonStan-

dard Librar⁴, setuptools also provided a degree of backwards compatibilit⁴ with it.

Example Ǘ.Ǖ setup.py using setuptools

#!/usr/bin/env python

import setuptools

setuptools.setup(

name="pymunincli",

version="0.2",

author="Julien Danjou",

author_email="julien@danjou.info",

description="munin client library",

license="GPL",

url="http://julien.danjou.info/software/pymunincli/",

packages=['munin'],

classifiers=[

"Development Status :: 2 - Pre-Alpha",

"Intended Audience :: Developers",

Ǘ.ǔ. A BIT OF HISTORY ǘǕ

"Intended Audience :: Information Technology",

"License :: OSI Approved :: GNU General Public License (GPL)",

"Operating System :: OS Independent",

"Programming Language :: Python"

],

)

Eventuall⁴, developmenton setuptools sloweddown, andpeoplebegan to consider

it a dead project like the original distutils. It wasn’t long before another group of

developers forked it to create a new librar⁴ called distribute, which offered several

advantagesover setuptools, including fewerbugsandP⁴thon ǖ support. All thebest

stories have a twist ending, though, and this one’s no different: in March ǕǓǔǖ, the

teams behind setuptools and distribute decided to merge their code bases under

the aegis of the original setuptools project. So distribute is now deprecated, and

setuptools is oncemore the canonicalwa⁴ tohandle advancedP⁴thon installations.

While all this was happening, another project known as distutilsǕ was developed

with the intentionof replacingdistutils in theP⁴thonStandardLibrar⁴outright. One

of its most notable differences from both distutils and setuptoolswas that it stored

package metadata in a plain text file, setup.cfg, which was both easier for devel-

opers to write and easier for external tools to read. However, it also retained some

of the failings of distutils, such as its obtuse command-based design, and lacked

support for things like entr⁴ points and native script execution on Windows - both

features provided b⁴ setuptools. For these and other reasons, plans to include dis-

tutilsǕ in the P⁴thon ǖ.ǖ Standard Librar⁴ as packaging fell through, and the project

was abandoned in ǕǓǔǕ.

However, packaging still has a chance to rise from the ashes through distlib, an up-

and-coming effort to replace distutils which - hopefull⁴ - will become part of the

Standard Librar⁴ in ǖ.Ǘ. It includes the best features from packaging and imple-

ments the basic groundwork described in the packaging-related PEPs.

Ǘ.Ǖ. PACKAGINGWITH PBR ǘǖ

So, to recap:

• distutils is part of the P⁴thon standard librar⁴ and can handle simple package in-

stallations.

• setuptools, the standard for advanced package installations, was at first depre-

cated but is now back in active development.

• distribute has beenmerged back into setuptools as of version Ǔ.ǚ.

• distutilsǕ (a.k.a. packaging) has been abandoned.

• distlib might replace distutils in the future.

There are other packaging libraries out there, though these five are the ones ⁴ou’ll

encounter themost inpractice. Be carefulwhen lookingup informationabout them

on the Internet: there’s plent⁴ of documentation out there that’s outdated due to

the complicated histor⁴ outlined above. The official documentation is, at least, up

to date.

The short version of all this is, setuptools is the distribution librar⁴ to use for the

time being, but keep an e⁴e out for distlib in the future.

4.2 Packaging with pbr

Now that I’ve spent some pages making ⁴our head confused with a lot of distribu-

tion tools, let’s talk, about another tool and alternative, called pbr.

You probabl⁴ alread⁴ have written some package and tried to write a setup.py, ei-

ther b⁴ cop⁴ing one from some other project, or b⁴ skimming through the docu-

mentation. It isn’t an obvious task, as the various problem we discussed earlier

about which tool to use are usuall⁴ a first obstacle. In this section I want to intro-

duce ⁴ou to pbr, a tool ⁴ou should use to write ⁴our next setup.py so ⁴ou’ll never

have to lose ⁴our time on that part again.

Ǘ.Ǖ. PACKAGINGWITH PBR ǘǗ

pbr stands for Python Build Reasonableness. The project has been started inside

OpenStack as a set of tools around setuptools to facilitate installation and deplo⁴-

ment of packages. It takes inspiration from distutilsǕ, using a setup.cfg file to de-

scribe the packager’s intents.

This is how a setup.py using pbr looks like:

import setuptools

setuptools.setup(setup_requires=['pbr'], pbr=True)

Two lines of code – it’s that simple. The actual metadata that the setup requires is

stored in setup.cfg:

[metadata]

name = foobar

author = Dave Null

author-email = foobar@example.org

summary = Package doing nifty stuff

license = MIT

description-file =

README.rst

home-page = http://pypi.python.org/pypi/foobar

requires-python = >=2.6

classifier =

Development Status :: 4 - Beta

Environment :: Console

Intended Audience :: Developers

Intended Audience :: Information Technology

License :: OSI Approved :: Apache Software License

Operating System :: OS Independent

Programming Language :: Python

bjpcjp

Ǘ.ǖ. THEWHEEL FORMAT ǘǘ

[files]

packages =

foobar

Sound familiar? That’s right – this particular wa⁴ of doing things was directl⁴ in-

spired b⁴ distutilsǕ.

pbr also offers other features such as:

• automatic dependenc⁴ installation based on requirements.txt

• automatic documentation using Sphinx

• automatic generation of AUTHORS and ChangeLog files based on git histor⁴

• automatic creation of file lists for git

• version management based on git tags

And all this with little to no effort on ⁴our part. pbr is well-maintained and in ver⁴

activedevelopment, so if ⁴ouhavean⁴plans todistribute⁴our sotware, ⁴oushould

seriousl⁴ consider including pbr in those plans.

4.3 TheWheel format

For most of P⁴thon’s existence, there’s been no official standard distribution for-

mat. While different distribution tools still generall⁴ use some kind of common

archive format – even the Egg format introducedb⁴ setuptools is just a ⁵ip filewith a

different extension – their metadata and package structures are incompatible with

each other. This problem was compounded when an official installation standard

was finall⁴ defined in PEP ǖǚǙ, which was also incompatible with existing formats.

Ǘ.ǖ. THEWHEEL FORMAT ǘǙ

To solve these problems, PEP ǗǕǚ was written to define a new standard for P⁴thon

distribution packages calledWheel. The reference implementation of this format is

available as a tool, also called wheel.

Wheel is supported b⁴ pip starting with version ǔ.Ǘ. If ⁴ou’re using setuptools and
have the wheel package installed, it is automaticall⁴ integrated as a command:

python setup.py bdist_wheel

This will create a .whl file in the dist director⁴. Like with the Egg format, a Wheel

archive is just a ⁵ip file with a different extension, except Wheel archives don’t re-

quire installation – ⁴ou can load and run ⁴our code just b⁴ adding a slash followed

b⁴ the name of ⁴our module:

$ python wheel-0.21.0-py2.py3-none-any.whl/wheel -h

usage: wheel [-h]

{keygen,sign,unsign,verify,unpack,install,install-scripts, ←֓

convert,help}

...

positional arguments:

[...]

Youmight be surprised to learn this isn’t a feature introduced b⁴ theWheel format.

P⁴thon can also run regular ⁵ip files as well, just like with Java’s .jar files:

python foobar.zip

This is equivalent to:

PYTHONPATH=foobar.zip python -m __main__

In other words, the __main__ module for ⁴our program will automaticall⁴ be im-

ported from __main__.py. It’s also possible to import __main__ from amodule ⁴ou

Ǘ.Ǘ. PACKAGE INSTALLATION ǘǚ

specif⁴ b⁴ appending a slash followed b⁴ its name, just like with Wheel:

python foobar.zip/mymod

This is equivalent to:

PYTHONPATH=foobar.zip python -m mymod.__main__

One of the advantages ofWheel is that its naming conventions allow ⁴ou to specif⁴

whether ⁴our distribution is intended for a specific architecture and/or P⁴thon im-

plementation (CP⁴thon, P⁴P⁴, J⁴thon, etc.). This is particularl⁴ useful if ⁴ou need

to distribute modules written in C.

4.4 Package installation

setuptools introduced the firstuseful command for installingpackages, easy_install.

It allows ⁴ou to install P⁴thon modules from Egg archives with a single command;

unfortunatel⁴, easy_install has suffered a bad reputation from the beginning due to

someof itsmorequestionable behaviors, such as ignoringbest practices for s⁴stem

administration and its lack of uninstall functionalit⁴.

The pip project offers a much better wa⁴ to handle package installations. It’s ac-

tivel⁴ developed, well-maintained, and will be included with P⁴thon starting in ǖ.Ǘ

¹. It can install or uninstall packages fromP⁴PI, a tarball, or aWheel (seeSection Ǘ.ǖ)

archive.

Its usage is simple:

$ pip install --user voluptuous

Downloading/unpacking voluptuous

Downloading voluptuous-0.8.3.tar.gz

Storing download in cache at ./.cache/pip/https%3A%2F%2Fpypi.python.org%2 ←֓

Fpackages%2Fsource%2Fv%2Fvoluptuous%2Fvoluptuous-0.8.3.tar.gz

¹See PEP Ǘǘǖ and the ensurepipmodule

Ǘ.Ǘ. PACKAGE INSTALLATION ǘǛ

Running setup.py egg_info for package voluptuous

WARNING: Could not locate pandoc, using Markdown long_description.

Requirement already satisfied (use --upgrade to upgrade): distribute in / ←֓

usr/lib/python2.7/dist-packages (from voluptuous)

Installing collected packages: voluptuous

Running setup.py install for voluptuous

WARNING: Could not locate pandoc, using Markdown long_description.

Successfully installed voluptuous

Cleaning up...

You can also provide a --user option that makes pip install the package in ⁴our

home director⁴. This avoids polluting ⁴our operating s⁴stem directories with pack-

ages installed s⁴stem-wide.

Tip

If you’re using pip to install the same packages over and over, you can make it use a

local cache instead of downloading the packages each time. Just set the environment

variable PIP_DOWNLOAD_CACHE to a directory: pip will then use it to store downloaded

tarballs and will check that location for packages before downloading them. This is very

useful when using tox (see Section 6.7), which needs to download packages to build virtual

environments. You can also add the download-cache option to your ~/.pip/pip.

conf file.

You can list the packages that are currentl⁴ installed b⁴ using the pip freeze com-

mand:

$ pip freeze

Babel==1.3

Jinja2==2.7.1

Ǘ.ǘ. SHARING YOURWORKWITH THEWORLD ǘǜ

commando=0.3.4

…

All other installation tools are being deprecated in favor of pip, so ⁴ou shouldn’t

have an⁴ trouble if ⁴ou treat it as ⁴our one-stop shop for all ⁴our packagemanage-

ment needs.

4.5 Sharing your work with the world

Once ⁴ou have a proper setup.py file, it’s eas⁴ to build a source tarball that ⁴ou can

distribute. Just use the sdist command:

Example Ǘ.ǖ Using setup.py sdist

$ python setup.py sdist

running sdist

[pbr] Writing ChangeLog

[pbr] Generating AUTHORS

running egg_info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top_level.txt

writing dependency_links to ceilometer.egg-info/dependency_links.txt

writing entry points to ceilometer.egg-info/entry_points.txt

[pbr] Processing SOURCES.txt

[pbr] In git context, generating filelist from git

warning: no previously-included files matching '*.pyc' found anywhere in ←֓

distribution

writing manifest file 'ceilometer.egg-info/SOURCES.txt'

running check

copying setup.cfg -> ceilometer-2014.1.a6.g772e1a7

Ǘ.ǘ. SHARING YOURWORKWITH THEWORLD ǙǓ

Writing ceilometer-2014.1.a6.g772e1a7/setup.cfg

[…]

Creating tar archive

removing 'ceilometer-2014.1.a6.g772e1a7' (and everything under it)

This will create a tarball under the dist director⁴ of ⁴our source tree that contains

all ⁴our packages and can be used to install ⁴our sotware. As seen in Section Ǘ.ǖ,

⁴ou can also buildWheel archives using the bdist_wheel command.

The final step is to make things eas⁴ on ⁴our end users b⁴ setting things up where

⁴ourpackagecanbe installedusingpip. Thismeanspublishing ⁴ourproject toP⁴PI.

Since ⁴ou’ll probabl⁴ make mistakes if this is ⁴our first time, it pa⁴s to test out the

publishing process in a safe sandbox rather than on the production server. You can

use the P⁴PI staging server for this purpose: it replicates all the functionalit⁴ of the

main index, but it’s used solel⁴ for testing purposes.

The first step is to register ⁴our project on the test server. Start b⁴ opening ⁴our ~/

.pypirc file and adding these lines:

[distutils]

index-servers =

testpypi

[testpypi]

username = <your username>

password = <your password>

repository = https://testpypi.python.org/pypi

Now ⁴ou can register ⁴our project in the index:

$ python setup.py register -r testpypi

Ǘ.ǘ. SHARING YOURWORKWITH THEWORLD Ǚǔ

running register

running egg_info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top_level.txt

writing dependency_links to ceilometer.egg-info/dependency_links.txt

writing entry points to ceilometer.egg-info/entry_points.txt

[pbr] Reusing existing SOURCES.txt

running check

Registering ceilometer to https://testpypi.python.org/pypi

Server response (200): OK

Finall⁴, ⁴ou can upload a source distribution tarball:

% python setup.py sdist upload -r testpypi

running sdist

[pbr] Writing ChangeLog

[pbr] Generating AUTHORS

running egg_info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top_level.txt

writing dependency_links to ceilometer.egg-info/dependency_links.txt

writing entry points to ceilometer.egg-info/entry_points.txt

[pbr] Processing SOURCES.txt

[pbr] In git context, generating filelist from git

warning: no previously-included files matching '*.pyc' found anywhere in ←֓

distribution

writing manifest file 'ceilometer.egg-info/SOURCES.txt'

running check

creating ceilometer-2014.1.a6.g772e1a7

Ǘ.ǘ. SHARING YOURWORKWITH THEWORLD ǙǕ

[…]

copying setup.cfg -> ceilometer-2014.1.a6.g772e1a7

Writing ceilometer-2014.1.a6.g772e1a7/setup.cfg

Creating tar archive

removing 'ceilometer-2014.1.a6.g772e1a7' (and everything under it)

running upload

Submitting dist/ceilometer-2014.1.a6.g772e1a7.tar.gz to https://testpypi. ←֓

python.org/pypi

Server response (200): OK

As well as aWheel archive:

$ python setup.py bdist_wheel upload -r testpypi

running bdist_wheel

running build

running build_py

running egg_info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top_level.txt

writing dependency_links to ceilometer.egg-info/dependency_links.txt

writing entry points to ceilometer.egg-info/entry_points.txt

[pbr] Reusing existing SOURCES.txt

installing to build/bdist.linux-x86_64/wheel

running install

running install_lib

creating build/bdist.linux-x86_64/wheel

[…]

Ǘ.ǘ. SHARING YOURWORKWITH THEWORLD Ǚǖ

creating build/bdist.linux-x86_64/wheel/ceilometer-2014.1.a6.g772e1a7.dist- ←֓

info/WHEEL

running upload

Submitting /home/jd/Source/ceilometer/dist/ceilometer-2014.1.a6.g772e1a7- ←֓

py27-none-any.whl to https://testpypi.python.org/pypi

Server response (200): OK

You should now be able to search for ⁴our package on the P⁴Pi staging server and

see whether it uploaded properl⁴. You can also tr⁴ installing it using pip, specif⁴ing

the test server using the -i option:

$ pip install -i https://testpypi.python.org/pypi ceilometer

If ever⁴thing checks out, ⁴ou can continue to the next step: uploading ⁴our project

to the main P⁴PI server. Just add ⁴our credentials and the details for the server to

⁴our ~/.p⁴pircˋ file:

[distutils]

index-servers =

pypi

testpypi

[pypi]

username = <your username>

password = <your password>

[testpypi]

repository = https://testpypi.python.org/pypi

username = <your username>

password = <your password>

Ǘ.Ǚ. INTERVIEWWITH NICK COGHLAN ǙǗ

Running register and uploadwith the -r pypi switchwill now upload ⁴our package

to P⁴PI proper.

4.6 Interview with Nick Coghlan

Nick is a P⁴thon core developer working at Red Hat. He has written several PEP

proposals, includingPEPǗǕǙ (Metadata for PythonSotwarePackages Ǖ.Ǔ) forwhich

he is acting as BDFL ² delegate.

The number of packaging solutions (distutils, setuptools, distutils2,
distlib, bento, pbr, etc.) for Python is quite impressive. In your opin-
ion, what are the (possibly historical) reasons for such fragmentation
and divergence?

The short answer is that sotware publication, distribution, and integra-

tion is a complex problem with plent⁴ of room for multiple solutions tai-

lored for different use cases. The long answer can be found in the P⁴thon

Packaging User Guide. In m⁴ recent talks on this, I have noted that the

problem ismainl⁴ one of age and the aforementioned tools being born in

a somewhat different era of sotware distribution.

setuptools is thede facto standard forPythondistributionsnowadays.
Is there anything you think users should be aware ofwhen using it (or
not)?

setuptools is quite reasonableasabuild s⁴stem, especiall⁴ forpureP⁴thon

²"Benevolent Dictator For Life," title given to Guido van Rossum, author of P⁴thon

bjpcjp

bjpcjp

Ǘ.Ǚ. INTERVIEWWITH NICK COGHLAN Ǚǘ

projects, or those with onl⁴ simple C extensions. It also offers a powerful

s⁴stem for plugin registration and good cross-platform script generation.

While effective, the multi-version support in pkg_resources is also a bit

quirk⁴ and trick⁴ to use properl⁴. Unless there’s a reall⁴ compelling rea-

son to have conflicting versions in the same environment, it’smuch easier

to just use virtualenv or zc.buildout.

PEP ǗǕǙ, which defines a newmetadata format for Python packages,
is still fairly recent and not yet approved. Is it on good track? What
motivated it in the first place, howdo you think it’ll tackle the current
problems?

PEPǗǕǙoriginall⁴ startedaspartof theWheel formatdefinition, butDaniel

Holth eventuall⁴ reali⁵ed that Wheel could work with the existing meta-

data format defined b⁴ setuptools. PEP ǗǕǙ is thus a consolidation of the

existing setuptools metadata with some of the ideas from distutilsǕ and

other packaging s⁴stems (like RPM and npm), and also addresses some of

the frustrations encountered with existing tools (like cleanl⁴ separating

different kinds of dependencies).

If PEP ǗǕǙ is accepted, what kinds of tools would you to see built to
take advantage of what it offers?

The main gains will be a REST API on P⁴PI offering full metadata access,

as well as (hopefull⁴) the abilit⁴ to automaticall⁴ generate distribution

polic⁴-compliant packages from upstreammetadata.

TheWheel format is fairly recent andnotwidely used yet, but it seems
promising. Is there any reason it isn’t part of the Standard Library, or
are there already plans to include it?

It turns out the Standard Librar⁴ isn’t reall⁴ a suitable place for packaging

standards: it evolves too slowl⁴, and an addition to a later version of the

Ǘ.ǚ. ENTRY POINTS ǙǙ

Standard Librar⁴ can’t be used with earlier versions of P⁴thon. So, at the

P⁴thon language summit earlier this ⁴ear, we tweaked the PEP process to

allow distutils-sig tomanage the full approval c⁴cle for packaging-related

PEPs. python-dev will onl⁴ be involved for proposals that involve chang-

ing CP⁴thon directl⁴ (like pip bootstrapping).

What kind of future do you envision that would push developers to
build and distributeWheel packages?

pip is adopting it at as an alternative to the Egg format, allowing local

caching of builds for fast virtual environment creation, and P⁴PI allows

uploads of Wheel archives for Windows and Mac OS X. We still have some

tweaks to make before it will be suitable for use on Linux.

4.7 Entry points

Youma⁴havealread⁴used setuptoolsentr⁴pointswithoutknowingan⁴thingabout

them. If ⁴ou haven’t ⁴et decided to use setuptools (or pbr, see Section Ǘ.Ǖ) to pro-

vide a setup.py file with ⁴our sotware, here are a few features that might help ⁴ou

make up ⁴our mind.

Sotwaredistributedusing setuptools includes importantmetadatadescribing things

such as its required dependencies and –more relevantl⁴ to this topic – a list of "en-

tr⁴ points." These entr⁴ points can be used b⁴ other P⁴thon programs to d⁴nami-

call⁴ discover features that a package provides.

In the following sections, wewill discuss howwe can use entr⁴ points to add exten-

sibilit⁴ to our sotware.

Ǘ.ǚ. ENTRY POINTS Ǚǚ

4.7.1 Visualising entry points

The easiest wa⁴ to visuali⁵e the entr⁴ points available in a package is to use a pack-

age called entry_point_inspector.

When installed, it provides a command called epi that ⁴ou can run from ⁴our ter-

minal to interactivel⁴ discover the entr⁴ points provided b⁴ installed packages:

Example Ǘ.Ǘ Result of epi group list

+--------------------------+

| Name |

+--------------------------+

| console_scripts |

| distutils.commands |

| distutils.setup_keywords |

| egg_info.writers |

| epi.commands |

| flake8.extension |

| setuptools.file_finders |

| setuptools.installation |

+--------------------------+

Example Ǘ.Ǘ shows thatwehaveman⁴differentpackages that provideentr⁴points.

You’ll alsonotice this list includes console_scripts, whichwe’ll discuss inSection Ǘ.ǚ.Ǖ.

Example Ǘ.ǘ Result of epi group show console_scripts

+----------+----------+--------+--------------+-------+

| Name | Module | Member | Distribution | Error |

+----------+----------+--------+--------------+-------+

| coverage | coverage | main | coverage 3.4 | |

+----------+----------+--------+--------------+-------+

Ǘ.ǚ. ENTRY POINTS ǙǛ

Example Ǘ.ǘ shows us that an entr⁴ point named coverage refers to the member

main of themodule coverage. This entr⁴ point is provided b⁴ the package coverage

ǖ.Ǘ. We can obtain more information b⁴ using epi ep show:

Example Ǘ.Ǚ Result of epi ep show console_scripts coverage

+--------------+----------------------------------+

| Field | Value |

+--------------+----------------------------------+

| Module | coverage |

| Member | main |

| Distribution | coverage 3.4 |

| Path | /usr/lib/python2.7/dist-packages |

| Error | |

+--------------+----------------------------------+

The tool we’re using here is just a thin la⁴er on top of a more complete P⁴thon li-

brar⁴ which can help us discover entr⁴ points for an⁴ P⁴thon librar⁴ or program.

Entr⁴ points are useful for various things, including console scripts and d⁴namic

code discover⁴, as we’re going to see in the next few sections.

4.7.2 Using console scripts

WhenwritingaP⁴thonapplication, ⁴oualmost alwa⁴shave toprovidea launchable

program – a P⁴thon script that the end user can actuall⁴ run. This program needs

to be installed inside a director⁴ somewhere in the s⁴stem path.

Most projects will have something along the lines of this:

#!/usr/bin/python

import sys

import mysoftware

Ǘ.ǚ. ENTRY POINTS Ǚǜ

mysoftware.SomeClass(sys.argv).run()

This is actuall⁴ a best-case scenario: man⁴ projects have a much longer script in-

stalled in the s⁴stem path. But using such scripts has somemajor issues:

• There’s no wa⁴ the⁴ can knowwhere the P⁴thon interpreter is or which version it

will be.

• The⁴ leak binar⁴ code that can’t be imported b⁴ sotware or unit tests.

• There’s no eas⁴ wa⁴ to define where to install them.

• It’s not obvious how to install this in a portable wa⁴ (Unix vs Windows for exam-

ple).

setuptools has a feature that helps us circumvent these problems: console_scripts.

console_scripts is an entr⁴ point that can be used to make setuptools install a tin⁴

program in the s⁴stempathwhich then calls a specific function in one of ⁴ourmod-

ules.

Let’s imagine a foobar program that consists of a client and a server. Each part is

written in its ownmodule – foobar.client and foobar.server, respectivel⁴:

foobar/client.py
def main():

print("Client started")

foobar/server.py
def main():

print("Server started")

Of course, our program doesn’t reall⁴ do much of an⁴thing – our client and server

don’t even talk to each other. For the purposes of our example, though, all the⁴

need to do is print a message letting us know the⁴’ve started successfull⁴.

Ǘ.ǚ. ENTRY POINTS ǚǓ

We can nowwrite the following setup.py file in the root director⁴:

setup.py
from setuptools import setup

setup(

name="foobar",

version="1",

description="Foo!",

author="Julien Danjou",

author_email="julien@danjou.info",

packages=["foobar"],

entry_points={

"console_scripts": [

"foobard = foobar.server:main",

"foobar = foobar.client:main",

],

},

)

We define our entr⁴ points using the format package.subpackage:function.

When ⁴ou run python setup.py install, setuptools will create a script that will

look like this:

Example Ǘ.ǚ A console script generated b⁴ setuptools

#!/usr/bin/python

EASY-INSTALL-ENTRY-SCRIPT: 'foobar==1','console_scripts','foobar'

__requires__ = 'foobar==1'

import sys

from pkg_resources import load_entry_point

if __name__ == '__main__':

Ǘ.ǚ. ENTRY POINTS ǚǔ

sys.exit(

load_entry_point('foobar==1', 'console_scripts', 'foobar')()

)

This code scans the entr⁴ points of the foobar package and retrieves the foobar

ke⁴ from the console_scripts categor⁴, which is used to locate and run the corre-

sponding function.

Using this technique will ensure that ⁴our code sta⁴s in ⁴our P⁴thon package and

can be imported (and tested) b⁴ other programs.

Tip

If you’re using pbr on top of setuptools, the generated script is simpler (and therefore

faster) than the default one built by setuptools as it will call the function you wrote in the

entry point without having to search the entry point list dynamically at runtime.

4.7.3 Using plugins and drivers

Entr⁴ pointsmake it eas⁴ to discover and d⁴namicall⁴ load code deplo⁴ed b⁴ other

packages. You can use pkg_resources to discover and load entr⁴ point files from

within ⁴our P⁴thon programs. (Youmight notice that this is the same package used

in the console script that setuptools creates, as seen in Example Ǘ.ǚ.)

In this section, we’re going to create a cron-st⁴le daemon thatwill allow an⁴ P⁴thon

program to register a command to be run once ever⁴ few seconds b⁴ registering an

entr⁴ point in the group pytimed. The attribute this entr⁴ point points to should be

an object that returns number_of_seconds, callable.

Here’sour implementationofpycrondusingpkg_resources todiscoverentr⁴points:

pytimed.py

import pkg_resources

Ǘ.ǚ. ENTRY POINTS ǚǕ

import time

def main():

seconds_passed = 0

while True:

for entry_point in pkg_resources.iter_entry_points('pytimed'):

try:

seconds, callable = entry_point.load()()

except:

Ignore failure

pass

else:

if seconds_passed % seconds == 0:

callable()

time.sleep(1)

seconds_passed += 1

This is a ver⁴ simple and naive implementation, but it’s sufficient for our example.

Now we can write another P⁴thon program that needs one of its functions called

on a periodic basis:

hello.py
def print_hello():

print("Hello, world!")

def say_hello():

return 2, print_hello

We register the function using the appropriate entr⁴ points:

setup.py
from setuptools import setup

Ǘ.ǚ. ENTRY POINTS ǚǖ

setup(

name="hello",

version="1",

packages=["hello"],

entry_points={

"pytimed": [

"hello = hello:say_hello",

],

},)

Andnow ifwe run our pytimed script, we’ll see "Hello, world!" printed on the screen

ever⁴ Ǖ seconds:

Example Ǘ.Ǜ Running p⁴timed

% python3

Python 3.3.2+ (default, Aug 4 2013, 15:50:24)

[GCC 4.8.1] on linux

Type "help", "copyright", "credits" or "license" for more ←֓

information.

>>> import pytimed

>>> pytimed.main()

Hello, world!

Hello, world!

Hello, world!

The possibilities this mechanism offers are huge: it allows ⁴ou to build driver s⁴s-

tems, hook s⁴stems, and extensions in an eas⁴ and generic wa⁴. Implementing this

mechanism b⁴ hand in ever⁴ program ⁴oumakewould be tedious, but fortunatel⁴,

there’s a P⁴thon librar⁴ that can take care of the boring parts for us.

Ǘ.ǚ. ENTRY POINTS ǚǗ

stevedore provides support for d⁴namic plugins based on the exact same mech-

anism demonstrated in our previous examples. Our use case in this example isn’t

ver⁴ complicated, but we can still simplif⁴ it a bit using stevedore:

pytimed_stevedore.py

from stevedore.extension import ExtensionManager

import time

def main():

seconds_passed = 0

while True:

for extension in ExtensionManager('pytimed', invoke_on_load=True):

try:

seconds, callable = extension.obj

except:

Ignore failure

pass

else:

if seconds_passed % seconds == 0:

callable()

time.sleep(1)

seconds_passed += 1

Our example is still ver⁴ simple, but if ⁴ou look through the stevedore documenta-

tion, ⁴ou’ll see that ExtensionManager has a variet⁴ of subclasses that can handle

different situations, suchas loading specific extensionsbasedon their namesor the

result of a function.

bjpcjp

ǘ Virtual environments

When dealing with P⁴thon applications, there’s alwa⁴s a time where ⁴ou’ll have

to deplo⁴, use and/or test ⁴our application. But doing that can be reall⁴ painful,

because of the external dependencies. There’s a lot of reasons for which that ma⁴

fail to deplo⁴ or operate on ⁴our operation s⁴stem, such as:

• Your s⁴stem does not have the librar⁴ ⁴ou need packaged.

• Your s⁴stem does not have the right version of the librar⁴ ⁴ou need packaged.

• You need two different versions of the same librar⁴ for two different applications.

This can happen right at the time ⁴ou deplo⁴ ⁴our application, or later on while

running. UpgradingaP⁴thon librar⁴ installed via ⁴our s⁴stemmanagermightbreak

⁴our application in a snap without warning ⁴ou.

The solution to this problem is to use a librar⁴ director⁴ per application, containing

its dependencies. This director⁴ will be used rather than the s⁴stem installed ones

to load the needed P⁴thonmodules.

The toolvirtualenvhandles thesedirectoriesautomaticall⁴ for ⁴ou. Once installed,

⁴ou just need to run it with a destination director⁴ as argument.

$ virtualenv myvenv

Using base prefix '/usr'

New python executable in myvenv/bin/python3

bjpcjp

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǚǙ

Also creating executable in myvenv/bin/python

Installing Setuptools........................done.

Installing Pip...............................done.

Once ran, virtualenv creates a lib/pythonX.Y director⁴ and uses it to install setu

ptools and pip, that will be necessar⁴ to install further P⁴thon packages.

You can now activate the virtualenv b⁴ "sourcing" the activate command:

$ source myvenv/bin/activate

Once ⁴ou do that, ⁴our shell promptwill be prefixed b⁴ the name of ⁴our virtual en-

vironment. Calling pythonwill call the P⁴thon that has been copied into the virtual

environment. You can check that its working b⁴ reading the sys.path variable; it

will have ⁴our virtual environment director⁴ as its first component.

You can stop and leave the virtual environment at an⁴ time b⁴ calling the deactiv

ate command:

$ deactivate

That’s it.

Alsonot that ⁴ou’re not force to run activate if ⁴ouwant touse theP⁴thon installed

in ⁴our virtual environment just once. Calling the python binar⁴ will also work:

$ myvenv/bin/python

Now, while we’re in our activated virtual environment, we don’t have access to an⁴

of the module installed and available on the s⁴stem. That’s good, but we probabl⁴

need to install them. To do that, ⁴ou just have to use the standard pip command,

and that will install the packages in the right place, without changing an⁴thing to

⁴our s⁴stem:

$ source myvenv/bin/activate

(myvenv) $ pip install six

bjpcjp

bjpcjp

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǚǚ

Downloading/unpacking six

Downloading six-1.4.1.tar.gz

Running setup.py egg_info for package six

Installing collected packages: six

Running setup.py install for six

Successfully installed six

Cleaning up...

And voilà. We can install all the librarieswe need and then run our application from

this virtual environment, without breaking our s⁴stem. It’s then easil⁴ imaginable

to script this to automati⁵e the installation of a virtual environment based on a list

of a dependenc⁴ with something along these lines:

Example ǘ.ǔ Automatic virtual environment creation

virtualenv myappvenv

source myappvenv/bin/activate

pip install -r requirements.txt

deactivate

In certain situation, it’s still useful to have access to ⁴our s⁴stem installed packages.

You can enable themwhen creating ⁴our virtual environment b⁴ passing the --sys

tem-site-packages flag to the virtualenv command.

As ⁴ou might guess, virtual environments are utterl⁴ useful for automated run of

unit test suite. This is a reall⁴ common pattern, so common that a special tool has

been built to solve it, called tox (discussed in Section Ǚ.ǚ).

More recentl⁴, the PEP ǗǓǘ ¹ which defines a virtual environment mechanism has

been accepted and implemented in P⁴thon ǖ.ǖ. Indeed, the usage of virtual envi-

¹Python Virtual Environments, ǔǖth June ǕǓǔǔ, Carl Me⁴er

bjpcjp

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǚǛ

ronment became so popular that it is now part of the standard P⁴thon librar⁴.

The venvmodule is now part of P⁴thon ǖ.ǖ and above, and allows to handle virtual

environment without using the virtualenv package or an⁴ other one. You can call

it using the -m flag of P⁴thon, which loads a module:

$ python3.3 -m venv

usage: venv [-h] [--system-site-packages] [--symlinks] [--clear] [--upgrade ←֓

]

ENV_DIR [ENV_DIR ...]

venv: error: the following arguments are required: ENV_DIR

Building virtual environment is then reall⁴ simple:

$ python3.3 -m venv myvenv

And that’s it. Inside myvenv, ⁴ou will find a pyvenv.cfg, the configuration file for

this environment. It doesn’t have a lot of configuration option b⁴ default. You’ll

recogni⁵e include-system-site-package, whose purpose is the same as the --sys

tem-site-packages of virtualenv that we described earlier.

Themechanism toactivate the virtual environment is the sameasdescribedearlier,

"sourcing" the activate script:

$ source myvenv/bin/activate

(myvenv) $

Also here, ⁴ou can call deactivate to leave the virtual environment.

The downside of this venv module is that it doesn’t install setuptools nor pip b⁴

default. We will have to bootstrap the environment b⁴ ourself, contrar⁴ to virtual

env that does that for us.

Example ǘ.Ǖ Boostraping a venv environment

(myvenv) $ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ ←֓

ez_setup.py -O - | python

bjpcjp

bjpcjp

bjpcjp

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǚǜ

-2013-09-02 22:26:07-- https://bitbucket.org/pypa/setuptools/raw/bootstrap ←֓

/ez_setup.py

Resolving bitbucket.org (bitbucket.org)... 131.103.20.168, 131.103.20.167

Connecting to bitbucket.org (bitbucket.org)|131.103.20.168|:443... ←֓

connected.

HTTP request sent, awaiting response... 200 OK

Length: 11835 (12K) [text/plain]

Saving to: ‘STDOUT’

100%[==>] 11,835 --.-K/s ←֓

in 0s

2013-09-02 22:26:08 (184 MB/s) - written to stdout [11835/11835]

Downloading https://pypi.python.org/packages/source/s/setuptools/setuptools ←֓

-1.1.tar.gz

Extracting in /tmp/tmp228fqm

Now working in /tmp/tmp228fqm/setuptools-1.1

Installing Setuptools

running install

running bdist_egg

running egg_info

writing dependency_links to setuptools.egg-i

[…]

Adding setuptools 1.1 to easy-install.pth file

Installing easy_install script to /home/jd/myvenv/bin

Installing easy_install-3.3 script to /home/jd/myvenv/bin

Installed /home/jd/myvenv/lib/python3.3/site-packages/setuptools-1.1-py3.3. ←֓

egg

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǛǓ

Processing dependencies for setuptools==1.1

Finished processing dependencies for setuptools==1.1

We can then install pip via easy_install:

(myvenv) $ easy_install pip

Searching for pip

Reading https://pypi.python.org/simple/pip/

Best match: pip 1.4.1

Downloading https://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.gz# ←֓

md5=6afbb46aeb48abac658d4df742bff714

Processing pip-1.4.1.tar.gz

Writing /tmp/easy_install-hxo3b0/pip-1.4.1/setup.cfg

Running pip-1.4.1/setup.py -q bdist_egg --dist-dir /tmp/easy_install-hxo3b0 ←֓

/pip-1.4.1/egg-dist-tmp-efgi80

warning: no files found matching '*.html' under directory 'docs'

warning: no previously-included files matching '*.rst' found under ←֓

directory 'docs/_build'

no previously-included directories found matching 'docs/_build/_sources'

Adding pip 1.4.1 to easy-install.pth file

Installing pip script to /home/jd/myvenv/bin

Installing pip-3.3 script to /home/jd/myvenv/bin

Installed /home/jd/myvenv/lib/python3.3/site-packages/pip-1.4.1-py3.3.egg

Processing dependencies for pip

Finished processing dependencies for pip

We can then use pip to install an⁴ further package we would need.

So while P⁴thon ǖ.ǖ includes venv b⁴ default, one has to admit that it has this little

drawback to not come with what ⁴ou would expect b⁴ default. It’s eas⁴ enough to

write a tool using the venv librar⁴ that wouldmimic the default behaviour of virtu

CHAPTER ǘ. VIRTUAL ENVIRONMENTS Ǜǔ

alenv, but on the other side, there’s little point working on that unless ⁴ou are onl⁴

targeting P⁴thon ǖ.ǖ and above. On the other hand, the pipbootstrapping code has

beenmerged into P⁴thon ǖ.Ǘ, meaning that this bootstrap problem is solved b⁴ the

latest P⁴thon version.

An⁴wa⁴, since like most projects, ⁴ou probabl⁴ target P⁴thon Ǖ and P⁴thon ǖ, re-

l⁴ing onl⁴ on the venvmodule isn’t reall⁴ an option. Sticking with virtualenv for

now is probabl⁴ the best solution. Considering that the⁴ both function in an iden-

tical manner, this shouldn’t be a problem.

Ǚ Unit testing

Breaking news! It’s ǕǓǔǖ and there are still people who don’t have a polic⁴ of test-

ing their projects. Now, the purpose of this book is not to convince ⁴ou to jump in

and start unit testing. If ⁴ou need to be convinced, I suggest ⁴ou start b⁴ reading

about the benefits of test-driven development. Writing code that is not tested is

essentiall⁴ useless, as there’s no wa⁴ to conclusivel⁴ prove that it works.

This section will cover the P⁴thon tools ⁴ou can use to construct a great suite of

tests. We’ll talk about how ⁴ou can utilise them to enhance ⁴our sotware, making

it rock-solid and regression free!

6.1 The basics

Contrar⁴ to what ⁴ou ma⁴ believe, the writing and running of unit tests is reall⁴

simple inP⁴thon. It’s not intrusive or disruptive, and it’s going tohelp ⁴ouandother

developers a lot in maintaining ⁴our sotware.

Your tests should be stored inside a tests submodule of ⁴our application or librar⁴.

This allows ⁴ou to ship the tests as part of ⁴our module, so that the⁴ can be run or

reused b⁴ an⁴one – even once ⁴our sotware is installed –without necessaril⁴ using

the source package. This also prevents them from being installed b⁴ mistake in a

top-level testsmodule.

Ǚ.ǔ. THE BASICS Ǜǖ

It’s usuall⁴ simpler to use a hierarch⁴ in ⁴our test tree thatmimics the hierarch⁴ ⁴ou

have in ⁴ourmodule tree. Thismeans that the tests covering the code of mylib/foo

bar.py should be inside mylib/tests/test_foobar.py; this makes things simpler

when looking for the tests relating to a particular file.

Example Ǚ.ǔ A reall⁴ simple test in test_true.py

def test_true():

assert True

This is the most simple unit test that can be written. To run it, ⁴ou simpl⁴ need to

load the test_true.py file and run the test_true function defined within.

Obviousl⁴, following these steps for all of ⁴our test files and functions would be a

pain. This is where the nose package comes to the rescue – once installed, it pro-

vides thenosetests command,which loadsever⁴ filewhosenamestartswithtest_

and then executes all functions within that start with test_.

Therefore,with the test_true.py file in our source tree, running nosetestswill give

us the following output:

$ nosetests -v

test_true.test_true ... ok

Ran 1 test in 0.003s

OK

On the other hand, as soon as a test fails, the output changes to indicate the failure,

accompanied b⁴ the whole traceback.

% nosetests -v

test_true.test_true ... ok

test_true.test_false ... FAIL

Ǚ.ǔ. THE BASICS ǛǗ

===

FAIL: test_true.test_false

Traceback (most recent call last):

File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in ←֓

runTest

self.test(*self.arg)

File "/home/jd/test_true.py", line 5, in test_false

assert False

AssertionError

Ran 2 tests in 0.003s

FAILED (failures=1)

A test fails as soon as an AssertionError exception is raised; assert does indeed

raise an AssertionError as soon as its argument is evaluated to something false

(False, None, Ǔ…). If an⁴ other exception is raised, the test also errors out.

Simple, isn’t it? While simplistic, this approach is used b⁴ a lot of small projects,

andworks ver⁴ well. The⁴ don’t require tools or libraries other than than nose, and

rel⁴ing on assert is good enough.

However, as ⁴ou start to writemore sophisticated tests, ⁴ou’ll start to become frus-

trated b⁴ things like the use of assert. Consider the following test:

def test_key():

a = ['a', 'b']

b = ['b']

assert a == b

When running nosetests, it gives the following output:

Ǚ.ǔ. THE BASICS Ǜǘ

$ nosetests -v

test_complicated.test_key ... FAIL

==

FAIL: test_complicated.test_key

Traceback (most recent call last):

File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in ←֓

runTest

self.test(*self.arg)

File "/home/jd/test_complicated.py", line 4, in test_key

assert a == b

AssertionError

Ran 1 test in 0.001s

FAILED (failures=1)

Alright, so a and b are different and this test doesn’t pass. But how are the⁴ differ-

ent? assert doesn’t give us this information, just states that the assertion is wrong

– not particularl⁴ useful.

Also, with such a basic ⁵ero framework approach, advanced usage such as skipping

tests or executing actions before or ater running ever⁴ test can become painful.

This is where the unittest package comes in hand⁴. It provides tools that will help

covering all of that – and good news is that unittest is part of the P⁴thon standard

librar⁴.

Ǚ.ǔ. THE BASICS ǛǙ

Warning

unittest has been largely improved starting with Python 2.7, so if you are supporting

earlier version of Python you may want to use its backport named unittest2. If you

need to support Python 2.6, you can then use the following snippet to import the correct

module for any Python versions at runtime:

try:

import unittest2 as unittest

except ImportError:

import unittest

If we rewrite the previous example using unittest, this is what it will look like:

import unittest

class TestKey(unittest.TestCase):

def test_key(self):

a = ['a', 'b']

b = ['b']

self.assertEqual(a, b)

As ⁴ou can see, the implementation isn’t much more complicated. All ⁴ou have to

do is create a class that inherits from unittest.TestCase, and write a method that

runs a test. Instead of using assert, we rel⁴ on a method provided b⁴ unittest.

TestCase that provides an equalit⁴ tester. When run, it outputs the following:

$ nosetests -v

test_key (test_complicated.TestKey) ... FAIL

===

FAIL: test_key (test_complicated.TestKey)

Traceback (most recent call last):

Ǚ.ǔ. THE BASICS Ǜǚ

File "/home/jd/Source/python-book/test_complicated.py", line 7, in ←֓

test_key

self.assertEqual(a, b)

AssertionError: Lists differ: ['a', 'b'] != ['b']

First differing element 0:

a

b

First list contains 1 additional elements.

First extra element 1:

b

- ['a', 'b']

+ ['b']

Ran 1 test in 0.001s

FAILED (failures=1)

As ⁴ou can see, the output is much more useful. An assertion error is still raised,

and the test is still being failed, but at least we have real information about wh⁴ it’s

failing, which canhelp us to fix the problem. This iswh⁴ ⁴ou should definitel⁴never
use assert when writing test cases. An⁴one who tries to hack ⁴our code and ends

up failing a test will definitel⁴ thank ⁴ou for having not used assert, and having

thereb⁴ providing him/her with debugging information right awa⁴.

unittest provides a few test functions that ⁴ou can use to speciali⁵e ⁴our tests,

suchas: assertDictEqual, assertEqual, assertTrue, assertFalse, assertGreater,

assertGreaterEqual, assertIn, assertIs, assertIsIntance, assertIsNone, asser

Ǚ.ǔ. THE BASICS ǛǛ

tIsNot, assertIsNotNone, assertItemsEqual, assertLess, assertLessEqual, asse

rtListEqual, assertMultiLineEqual, assertNotAlmostEqual, assertNotEqual, ass

ertTupleEqual, assertRaises, assertRaisesRegexp, assertRegexpMatches, etc. It

would be a good idea to go through pydoc unittest and discover them all.

It’s also possible to deliberatel⁴ fail a test right awa⁴ using the fail(msg)method.

This can be convenient when ⁴ou know that a particular part of ⁴our code will def-

initel⁴ raise an error if executed, but there isn’t a particular assertion to check for.

Example Ǚ.Ǖ Failing a test

import unittest

class TestFail(unittest.TestCase):

def test_range(self):

for x in range(5):

if x > 4:

self.fail("Range returned a too big value: %d" % x)

It’s sometimes useful skip a test if it can’t be run – for example, ⁴ou ma⁴ wish to

run a test conditionall⁴ based on the presence or absence of a particular librar⁴. To

that end, ⁴ou can raise the unittest.SkipTest exception. When the test is raised,

it is simpl⁴ marked as having been skipped. The convenient method unittest.Tes

tCase.skipTest() can be used rather than raising the exception manuall⁴, as can

the unittest.skip decorator:

Example Ǚ.ǖ Skipping tests

import unittest

try:

import mylib

except ImportError:

mylib = None

Ǚ.ǔ. THE BASICS Ǜǜ

class TestSkipped(unittest.TestCase):

@unittest.skip("Do not run this")

def test_fail(self):

self.fail("This should not be run")

@unittest.skipIf(mylib is None, "mylib is not available")

def test_mylib(self):

self.assertEqual(mylib.foobar(), 42)

def test_skip_at_runtime(self):

if True:

self.skipTest("Finally I don't want to run it")

When executed, this test file will output the following:

$ python -m unittest -v test_skip

test_fail (test_skip.TestSkipped) ... skipped 'Do not run this'

test_mylib (test_skip.TestSkipped) ... skipped 'mylib is not available'

test_skip_at_runtime (test_skip.TestSkipped) ... skipped "Finally I don't ←֓

want to run it"

Ran 3 tests in 0.000s

OK (skipped=3)

Ǚ.ǔ. THE BASICS ǜǓ

Tip

As you may have noticed in Example 6.3, the unittest module provides a way to ex-

ecute a Python module that contains tests. It is less convenient than using nosetests,

as it does not discover test files on its own, but it can still be useful for running a particular

test module.

In man⁴ cases, there’s a need to execute a set of common actions before and ater

running a test. unittest provides two particular methods called setUp and tearD

own that are executed each time one of the test methods of a class is about to, or

has been, called.

Example Ǚ.Ǘ Using setUpwith unittest

import unittest

class TestMe(unittest.TestCase):

def setUp(self):

self.list = [1, 2, 3]

def test_length(self):

self.list.append(4)

self.assertEqual(len(self.list), 4)

def test_has_one(self):

self.assertEqual(len(self.list), 3)

self.assertIn(1, self.list)

In this case, setUp is called before running test_length and before running test_

has_one. It can be reall⁴ hand⁴ to create objects that are worked with during each

test; but ⁴ouneed to be sure that the⁴ get recreated in a clean state before each test

method is called. This is reall⁴ useful for creating test environments, oten referred

Ǚ.Ǖ. FIXTURES ǜǔ

to as "fixtures" (see Section Ǚ.Ǖ).

Tip

When using nosetests, you often might want to run only one particular test.

You can select which test you want to run by passing it as an argument – the

syntax is: path.to.your.module:ClassOfYourTest.test_method. Be sure that there’s

a colon between the module path and the class name. You can also specify

path.to.your.module:ClassOfYourTest to execute an entire class, or path.to.your.module

to execute an entire module.

Tip

It’s possible to run tests in parallel to speed things up. Simply add the --processes=N

option to your nosetests invocation to spawn several nosetests processes. However,

testrepository is a better alternative – this is discussed in Section 6.5.

6.2 Fixtures

In unit testing, fixtures represent components that are set up before a test, and

cleaned up ater the test is done. It’s usuall⁴ a good idea to build a special kind

of component for them, as the⁴ are reused in a lot of different places. For exam-

ple, if ⁴ou need an object which represents the configuration state of ⁴our applica-

tion, there’s a chance ⁴ou ma⁴ want it to be initiali⁵ed before each test, and reset

to its default values when the test is done. Rel⁴ing on temporar⁴ file creation also

requires that the file is created before the test starts, and deleted once the test is

done.

unittestonl⁴ provides the setUp and tearDown functionswe alread⁴ evoked. How-

ever, amechanismexists tohook into these. The fixturesP⁴thonmodule (not part

of the standard librar⁴) provides an eas⁴mechanism for creating fixture classes and

objects, such as the useFixturemethod.

Ǚ.ǖ. MOCKING ǜǕ

The fixturesmodules provides a few built-in fixtures, like fixtures.Environment

Variable – useful for adding or changing a variable in os.environ that will be reset

upon test exit.

Example Ǚ.ǘ Using fixtures.EnvironmentVariable

import fixtures

import os

class TestEnviron(fixtures.TestWithFixtures):

def test_environ(self):

fixture = self.useFixture(

fixtures.EnvironmentVariable("FOOBAR", "42"))

self.assertEqual(os.environ.get("FOOBAR"), "42")

def test_environ_no_fixture(self):

self.assertEqual(os.environ.get("FOOBAR"), None)

When ⁴ou can identif⁴ common patterns like these, it’s a good idea to create a fix-

ture that ⁴ou can reuse over all ⁴our test cases. This greatl⁴ simplifies the logic, and

shows exactl⁴ what ⁴ou are testing and in what manner.

Note

If you’re wondering why the base class unittest.TestCase isn’t used in the examples

in this section, it’s because fixtures.TestWithFixtures inherits from it.

6.3 Mocking

Mock objects are simulated objects that mimic the behaviour of real application

objects, but in particular and controlled wa⁴s. These are especiall⁴ useful in creat-

Ǚ.ǖ. MOCKING ǜǖ

ing environments that describe precisel⁴ the conditions for which ⁴ouwould like to

test code.

If ⁴ou arewriting anHTTP client, it’s likel⁴ impossible (or at least extremel⁴ compli-

cated) to spawn the HTTP server and test it through all scenarios, making it return

ever⁴ possible value. It’s especiall⁴ difficult to test for all failure scenarios.

Amuch simpler option is to build a set of mock objects that model these particular

scenarios, and to use them as environment for testing ⁴our code.

The standard librar⁴ for creating mock objects in P⁴thon is mock. Starting with

P⁴thon ǖ.ǖ, it has beenmerged into the P⁴thon standard librar⁴ as unittest.mock.

You can therefore use a snippet like:

try:

from unittest import mock

except ImportError:

import mock

Tomaintain backward compatibilit⁴ between P⁴thon ǖ.ǖ and earlier versions.

Mock is prett⁴ simple to use:

Example Ǚ.Ǚ Basic mock usage

>>> import mock

>>> m = mock.Mock()

>>> m.some_method.return_value = 42

>>> m.some_method()

42

>>> def print_hello():

... print("hello world!")

...

>>> m.some_method.side_effect = print_hello

>>> m.some_method()

Ǚ.ǖ. MOCKING ǜǗ

hello world!

>>> def print_hello():

... print("hello world!")

... return 43

...

>>> m.some_method.side_effect = print_hello

>>> m.some_method()

hello world!

43

>>> m.some_method.call_count

3

Evenusing just this set of features, ⁴ou shouldbe able tomimic a lot of ⁴our internal

objects in order to fake various data scenarios.

Mock uses the action/assertion pattern: thismeans that once ⁴our test has run, ⁴ou

will have to check that the actions ⁴ou are mocking were correctl⁴ executed.

Example Ǚ.ǚ Checking method calls

>>> import mock

>>> m = mock.Mock()

>>> m.some_method('foo', 'bar')

<Mock name='mock.some_method()' id='26144272'>

>>> m.some_method.assert_called_once_with('foo', 'bar')

>>> m.some_method.assert_called_once_with('foo', mock.ANY)

>>> m.some_method.assert_called_once_with('foo', 'baz')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/usr/lib/python2.7/dist-packages/mock.py", line 846, in ←֓

assert_called_once_with

return self.assert_called_with(*args, **kwargs)

File "/usr/lib/python2.7/dist-packages/mock.py", line 835, in ←֓

Ǚ.ǖ. MOCKING ǜǘ

assert_called_with

raise AssertionError(msg)

AssertionError: Expected call: some_method('foo', 'baz')

Actual call: some_method('foo', 'bar')

As ⁴ou can see, it’s eas⁴ enough to pass amock object to an⁴ part of ⁴our code, and

to check later if the code has been called with whatever argument it was supposed

to have. If ⁴ou don’t know what arguments ma⁴ have been passed, ⁴ou can use

mock.ANY as a value; that will match an⁴ argument passed to ⁴our mock method.

Sometimes ⁴ou ma⁴ need to a some function, method or object from an external

module. mock provides a set of patching functions to that end.

Example Ǚ.Ǜ Using mock.patch

>>> import mock

>>> import os

>>> def fake_os_unlink(path):

... raise IOError("Testing!")

...

>>> with mock.patch('os.unlink', fake_os_unlink):

... os.unlink('foobar')

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

File "<stdin>", line 2, in fake_os_unlink

IOError: Testing!

With the mock.patchmethod, it’s possible to change an⁴ part of an external piece

of code –making it behave in the requiredwa⁴ in order to test all conditions in ⁴our

sotware.

Example Ǚ.ǜ Using mock.patch to test a set of behaviour

Ǚ.ǖ. MOCKING ǜǙ

import requests

import unittest

import mock

class WhereIsPythonError(Exception):

pass

def is_python_still_a_programming_language():

try:

r = requests.get("http://python.org")

except IOError:

pass

else:

if r.status_code == 200:

return 'Python is a programming language' in r.content

raise WhereIsPythonError("Something bad happened")

def get_fake_get(status_code, content):

m = mock.Mock()

m.status_code = status_code

m.content = content

def fake_get(url):

return m

return fake_get

def raise_get(url):

raise IOError("Unable to fetch url %s" % url)

class TestPython(unittest.TestCase):

@mock.patch('requests.get', get_fake_get(

Ǚ.ǖ. MOCKING ǜǚ

200, 'Python is a programming language for sure'))

def test_python_is(self):

self.assertTrue(is_python_still_a_programming_language())

@mock.patch('requests.get', get_fake_get(

200, 'Python is no more a programming language'))

def test_python_is_not(self):

self.assertFalse(is_python_still_a_programming_language())

@mock.patch('requests.get', get_fake_get(

404, 'Whatever'))

def test_bad_status_code(self):

self.assertRaises(WhereIsPythonError,

is_python_still_a_programming_language)

@mock.patch('requests.get', raise_get)

def test_ioerror(self):

self.assertRaises(WhereIsPythonError,

is_python_still_a_programming_language)

Example Ǚ.ǜ uses the decorator version of mock.patch, this does not change its be-

haviour, but is easier to use when ⁴ou need to usemockingwithin the context of an

entire test function.

B⁴ using mocking we can simulate an⁴ problem – such as a Web server returning

a ǗǓǗ error, or network issues arising. We can make sure that our code returns the

correct values, or raises the correct exception in ever⁴ case – ensuring that our code

alwa⁴s behaves as expected.

Ǚ.Ǘ. SCENARIOS ǜǛ

6.4 Scenarios

Whenunit testing, it is common to require that a set of tests be run against different

versions of an object. You ma⁴ want to run the same error-handling test with a

bunch of different objects that trigger that error; or ⁴ou ma⁴ want to run an entire

test suite against different drivers.

This last case is one that we heavil⁴ relied on in Ceilometer. Ceilometer provides

an abstract class that we call the storage API. An⁴ driver can implement this base

abstract class and register itself to become a driver. The sotware loads the config-

ured storage driver when required, and uses the implemented storage API to store

or retrieve data. In this case, what need is a class of unit tests that runs against each

driver – meaning against each implementation of this storage API – to be sure that

the⁴ conform to what the callers expect.

The natural wa⁴ of doing this is to use mixin classes; on one side, ⁴ou would have

a class with unit tests, and on the other side a class with the specific driver usage

setup.

import unittest

class MongoDBBaseTest(unittest.TestCase):

def setUp(self):

self.connection = connect_to_mongodb()

class MySQLBaseTest(unittest.TestCase):

def setUp(self):

self.connection = connect_to_mysql()

class TestDatabase(unittest.TestCase):

def test_connected(self):

self.assertTrue(self.connection.is_connected())

bjpcjp

bjpcjp

Ǚ.Ǘ. SCENARIOS ǜǜ

class TestMongoDB(TestDatabase, MongoDBBaseTest):

pass

class TestMySQL(TestDatabase, MySQLBaseTest):

pass

Unfortunatel⁴, in the long run this method is far from convenient or scalable.

A better technique does exist, using the testscenarios package. This package pro-

vides an eas⁴ wa⁴ to run a class test against a different set of scenarios generated

at run-time. Using testscenarios, I have rewritten part of Example Ǚ.ǜ to illustrate

mocking as covered in Section Ǚ.ǖ.

Example Ǚ.ǔǓ testscenarios basic usage

import mock

import requests

import testscenarios

class WhereIsPythonError(Exception):

pass

def is_python_still_a_programming_language():

r = requests.get("http://python.org")

if r.status_code == 200:

return 'Python is a programming language' in r.content

raise WhereIsPythonError("Something bad happened")

def get_fake_get(status_code, content):

m = mock.Mock()

m.status_code = status_code

bjpcjp

Ǚ.Ǘ. SCENARIOS ǔǓǓ

m.content = content

def fake_get(url):

return m

return fake_get

class TestPythonErrorCode(testscenarios.TestWithScenarios):

scenarios = [

('Not found', dict(status=404)),

('Client error', dict(status=400)),

('Server error', dict(status=500)),

]

def test_python_status_code_handling(self):

with mock.patch('requests.get',

get_fake_get(

self.status,

'Python is a programming language for sure')):

self.assertRaises(WhereIsPythonError,

is_python_still_a_programming_language)

Even though onl⁴ one test seems to be defined, testscenarios runs the test three

times – because we have defined three scenarios.

% python -m unittest -v test_scenario

test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ←֓

ok

test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ←֓

ok

test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ←֓

ok

Ǚ.Ǘ. SCENARIOS ǔǓǔ

Ran 3 tests in 0.001s

OK

As can see, all we need to construct the scenario list is a tuple list that consists of

the scenario name as first argument, and as a second argument the dictionar⁴ of

attributes to be added to the test class for this scenario.

It is eas⁴ enough to imagine another use: where instead of storing a single value as

an attribute for each test, ⁴ou could instantiate a particular driver and run all the

tests of the class against it.

Example Ǚ.ǔǔ Using testscenarios to test drivers

import testscenarios

from myapp import storage

class TestPythonErrorCode(testscenarios.TestWithScenarios):

scenarios = [

('MongoDB', dict(driver=storage.MongoDBStorage())),

('SQL', dict(driver=storage.SQLStorage())),

('File', dict(driver=storage.FileStorage())),

]

def test_storage(self):

self.assertTrue(self.driver.store({'foo': 'bar'}))

def test_fetch(self):

self.assertEqual(self.driver.fetch('foo'), 'bar')

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǕ

Note

If you wonder why there is no need to use the base class unittest.TestCase in the

previous examples, it’s because testscenarios.TestWithScenarios inherits from

it.

6.5 Test streaming and parallelism

When performing a lot of tests, it can be useful to anal⁴⁵e themas the⁴ are run. The

default behaviour of tools like nosetests is to output the result to stdout – which is

not reall⁴ convenient to parse or anal⁴⁵e.

subunit is a P⁴thon module that provides a streaming protocol for test results. It

allows for a number of interesting things, such as aggregating test results ¹ or to

record and archive test runs, etc.

Running a test using subunit is simple enough:

$ python -m subunit.run test_scenario

The output of this command is binar⁴ data, so unless ⁴ou have the abilit⁴ to sight-

read the subunitprotocol, itwouldn’t be interesting to reproduce it’s outputdirectl⁴

here. However, subunit also comes with a set of tools to transform this binar⁴

stream into something smoother:

Example Ǚ.ǔǕ Using subunit2pyunit

$ python -m subunit.run test_scenario | subunit2pyunit

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not ←֓

found)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not ←֓

found) ... ok

¹Even from different source programs or languages

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǖ

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client ←֓

error)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client ←֓

error) ... ok

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server ←֓

error)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server ←֓

error) ... ok

Ran 3 tests in 0.061s

OK

Now this is something that we can understand – ⁴ou should recogni⁵e the test suite

with scenarios from Section Ǚ.Ǘ. Other tools worth mentioning include subunit2

csv, subunit2gtk and subunit2junitxml.

subunit is also able to automaticall⁴ discover which test to run, when it is passed

the discover argument.

$ python -m subunit.run discover | subunit2pyunit

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not ←֓

found)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not ←֓

found) ... ok

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client ←֓

error)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client ←֓

error) ... ok

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server ←֓

error)

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǗ

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server ←֓

error) ... ok

Ran 3 tests in 0.061s

OK

You can list tests, rather than running them, b⁴ passing the argument --list. To

view the results, ⁴ou can use subunit-ls:

$ python -m subunit.run discover --list | subunit-ls --exists

test_request.TestPython.test_bad_status_code

test_request.TestPython.test_ioerror

test_request.TestPython.test_python_is

test_request.TestPython.test_python_is_not

test_scenario.TestPythonErrorCode.test_python_status_code_handling

Tip

You can also load a list of tests that you want to run – rather than running all tests – by

using the --load-list option.

In large applications the number of tests canbe overwhelming, so having programs

to handle the stream of results is ver⁴ useful. The testrepository package is in-

tended to do just that; it provides the testr program, which ⁴ou can use to handle

a database of ⁴our test run.

$ testr init

$ touch .testr.conf

% python -m subunit.run test_scenario | testr load

Ran 4 tests in 0.001s

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǘ

PASSED (id=0)

$ testr failing

PASSED (id=0)

$ testr last

Ran 3 tests in 0.001s

PASSED (id=0)

$ testr slowest

Test id Runtime (s)

-- -----------

test_python_status_code_handling(Not found) 0.000

test_python_status_code_handling(Server error) 0.000

test_python_status_code_handling(Client error) 0.000

$ testr stats

runs=1

Once the subunit stream of tests has been run and loaded inside testrepository, it is

possible to manipulate it easil⁴ using the testr command.

Obviousl⁴, this is tedious to do b⁴ hand each time ⁴ou want to run tests. Instead,

⁴ou should teach testr how it should run ⁴our tests, so that it can load the results

itself. This can be accomplished b⁴ editing the .testr.conf file at the root of ⁴our

project.

Example Ǚ.ǔǖ A .testr.conf file

[DEFAULT]

test_command=python -m subunit.run discover . $LISTOPT $IDOPTION ②1

test_id_option=--load-list $IDFILE ②2

test_list_option=--list ②3

②1 Command to run when calling testr run

②2 Command to run to load a test list

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǙ

②3 Command to run to list tests

The first line, test_command, is the one that is themost interesting. Now, all that we

need to do to load tests into testrepository and perform them is to run testr run.

Note

If you’re accustomed to running nosetests, testr run is now the equivalent com-

mand.

Two other options enable us to run the tests in parallel. This is simple enough to do

– all ⁴ou need to do is add the --parallel switch to testr run. Running ⁴our tests

in parallel can speed up the process considerabl⁴.

Example Ǚ.ǔǗ Running testr run --parallel

$ testr run --parallel

running=python -m subunit.run discover . --list

running=python -m subunit.run discover . --load-list /tmp/tmpiMq5Q1

running=python -m subunit.run discover . --load-list /tmp/tmp7hYEkP

running=python -m subunit.run discover . --load-list /tmp/tmpP_9zBc

running=python -m subunit.run discover . --load-list /tmp/tmpTejc5J

Ran 26 (+10) tests in 0.029s (-0.001s)

PASSED (id=7, skips=3)

Under the hood, testr runs the test listing operation, splits the test list into several

sublists, and creates a separate P⁴thon process to run each sublist of test. B⁴ de-

fault, the number of sublists is equal to the number of CPUs in the machine being

used. You can override the number of processes that b⁴ adding the --concurrency

flag.

$ testr run --parallel --concurrency=2

Ǚ.Ǚ. COVERAGE ǔǓǚ

As ⁴ou can imagine, there’s a lot of possibilities opened up b⁴ tools such as subunit

and testrepository that have onl⁴ be skimmed through in this section. I believe

it’sworthbeing familiarwith them, because testing cangreatl⁴ influence thequalit⁴

of the sotware ⁴ou will produce and release. Having powerful tools like these can

save a lot of time.

testrepository also integrates with setuptools and deplo⁴s a testr command for it.

This provides easier integration with setup.py-based workflows – ⁴ou can, for ex-

ample, document ⁴our entire project around setup.py. The command setup.py

testr accepts a few options, such as --testr-args – which adds more options to

the testr run, or --coverage, which will be covered in the next section.

6.6 Coverage

Code coverage is a tool which complements unit testing. It uses code anal⁴sis tools

and tracing hooks to determinewhich lines of ⁴our code have been executed; when

usedduring aunit test run, it can show⁴ouwhichparts of ⁴our codebasehavebeen

crossed over and which parts have not.

Writing tests is useful; but having a wa⁴ to know what part of ⁴our code ⁴ou ma⁴

have missed is the cherr⁴ on the cake.

Obviousl⁴, the first thing to do is to install the coverage P⁴thon module on ⁴our

s⁴stem. Once this is done ⁴ou will have access to the coverage program command

from ⁴our shell.²

Using coverage in standalone mode is straightforward, and can be useful- it could

lead ⁴ou to part of ⁴our programs that are never run, and which might be "dead

code". In addition, using it while ⁴our unit tests are running provides an obvious

benefit: ⁴ou’ll know which parts of the code are not being tested. The test tools

²The commandma⁴ also be named python-coverage, if ⁴ou install coverage through ⁴our oper-
ating s⁴stem installation sotware. That is the case on Debian, for example.

bjpcjp

bjpcjp

Ǚ.Ǚ. COVERAGE ǔǓǛ

we’ve talked about so far are all integrated with coverage.

When using nose, ⁴ou onl⁴ need to add a few option switches to generate a nice

code coverage output:

Example Ǚ.ǔǘ Using nosetests --with-coverage

$ nosetests --cover-package=ceilometer --with-coverage tests/test_pipeline ←֓

.py

..

Name Stmts Miss Cover Missing

ceilometer 0 0 100%

ceilometer.pipeline 152 20 87% 49, 59, 113, ←֓

127-128, 188-192, 275-280, 350-362

ceilometer.publisher 12 3 75% 32-34

ceilometer.sample 31 4 87% 81-84

ceilometer.transformer 15 3 80% 26-32, 35

ceilometer.transformer.accumulator 17 0 100%

ceilometer.transformer.conversions 59 0 100%

TOTAL 888 393 56%

Ran 46 tests in 0.170s

OK

Adding the --cover-package option is important, since otherwise ⁴ou will see ev-
ery P⁴thon package used, including standard librar⁴ or third-part⁴ modules. The

output includes the lines of code that are were not run – and which therefore have

no tests. All ⁴ou need to do now is spawn ⁴our favorite text editor and start writing

some.

Ǚ.Ǚ. COVERAGE ǔǓǜ

But ⁴ou can do better, andmake coverage generate nice HTML reports. Simpl⁴ add

the --cover-html flag, and the cover director⁴ from which ⁴ou ran the command

will be populated with HTML pages. Each page will show ⁴ou which parts of ⁴our

source code were or were not run.

Ǚ.Ǚ. COVERAGE ǔǔǓ

Figure Ǚ.ǔ: Coverage of ceilometer.publisher

If ⁴ou want to be that gu⁴, ⁴ou can use the option --cover-min-percentage=COVE

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǔ

R_MIN_PERCENTAGE, which will make the test suite fail if a minimum percentage of

the code is not executed when the test suite is run.

Warning

A code coverage score of 100% doesn’t necessarily mean that the code is entirely tested

and that you can rest. It only proves that your whole code path has been run; there is

no indication that every possible condition has been tested. So while being a respectable

goal, it doesn’t indicate anything conclusive.

When using testrepository, coverage can be run using setuptools integration.

Example Ǚ.ǔǙ Using coverage with testrepository

$ python setup.py testr --coverage

This will automaticall⁴ run ⁴our test suite with coverage and generate an HTML re-

port in the cover director⁴.

You should thenuse this information to consolidate ⁴our test suite andadd tests for

an⁴ code that is currentl⁴ not being run. This is important; it facilitates later project

maintenance, and increases ⁴our code’s overall qualit⁴.

6.7 Using virtualenv with tox

In Chapter ǘ, the use of virtual environments is presented and discussed. One of

theirmain uses is to provide a clean environment for running unit tests. It would be

reall⁴ sad if ⁴ou thought that ⁴our tests were working, when in fact ⁴ou were not,

for example, respecting the dependenc⁴ list.

You could write a script to deplo⁴ a virtual environment, install setuptools, and

then install all of the dependencies required for both ⁴our application/librar⁴ run-

time and unit tests. But this is such a common use case that an application dedi-

cated to this task has alread⁴ been built: tox.

bjpcjp

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǕ

Tox aims to automate and standardi⁵e how tests are run in P⁴thon. To that end,

it provides ever⁴thing needed to run an entire test suite in a clean virtual environ-

ment,whilealso installing⁴ourapplication tocheck that the installationworks fine.

Before using tox, ⁴ou need to provide a configuration file. This file is named tox.

ini and should be placed in the root director⁴ of ⁴our project, beside ⁴our setup.

py file.

$ touch tox.ini

You can now run tox successfull⁴:

% tox

GLOB sdist-make: /home/jd/project/setup.py

python create: /home/jd/project/.tox/python

python inst: /home/jd/project/.tox/dist/project-1.zip

____________________ summary _____________________

python: commands succeeded

congratulations :)

Obviousl⁴ this alone is not ver⁴ useful. In this instance, tox creates a virtual envi-

ronment in .tox/python using its default P⁴thon version, uses setup.py to create a

distribution of ⁴our package and then installs it inside this virtual environment. No

commands are then run, because we didn’t specif⁴ an⁴ in the configuration file.

We can change this default behaviour b⁴ adding a command that will be run inside

our test environment. Editing tox.ini to include the following:

[testenv]

commands=nosetests

will run the command nosetests will likel⁴ fail, since we don’t have nosetests in-

stalled in the virtual environment. We need to list it as part of the dependencies to

be installed.

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǖ

[testenv]

deps=nose

commands=nosetests

When run, toxwill now recreate the environment, install the new dependenc⁴ and

run the command nosetests, which will execute all of our unit tests. Obviousl⁴, we

mightwant to addmore dependencies – ⁴ou can list them in the deps configuration

option, but ⁴ou can also use the -rfile s⁴ntax to read from a file. If ⁴ou’re using

pbr to manage ⁴our setup.py file, ⁴ou know that it reads the dependencies from a

file called requirements.txt. It is therefore a good idea to tell tox to use that file

too:

[testenv]

deps=nose

-rrequirements.txt

commands=nosetests

The [testenv] sectionof the file defines theparameters for all virtual environments

managed b⁴ tox. But as mentioned previousl⁴, tox can manage multiple P⁴thon

virtual environments – indeed, it’s possible to run our tests under a P⁴thon version

other than the default one b⁴ passing the -e flag to tox:

% tox -e py26

GLOB sdist-make: /home/jd/project/setup.py

py26 create: /home/jd/project/.tox/py26

py26 installdeps: nose

py26 inst: /home/jd/project/.tox/dist/rebuildd-1.zip

py26 runtests: commands[0] | nosetests

.......

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǗ

Ran 7 tests in 0.029s

OK

____________________ summary _____________________

py26: commands succeeded

congratulations :)

B⁴default, tox can simulateman⁴environments: pyǕǗ,pyǕǘ,pyǕǙ,pyǕǚ,pyǖǓ,pyǖǔ,

pyǖǕ, pyǖǖ, jython and pypy! You can even add ⁴our own. To add an environment or

to create a new one, ⁴ou just need to add another section named [testenv:_envn

ame_]. If we want to run a different command for one of the environments, it’s eas⁴

with the following tox.ini file:

[testenv]

deps=nose

commands=nosetests

[testenv:py27]

commands=pytest

This onl⁴ overrides the commands for the py27 environment; so nose will still be

installed as part of the dependencieswhen running tox -e py27, but the command

pytestwill be run instead.

We can create a new environment with an unsupported version of P⁴thon right

awa⁴:

[testenv]

deps=nose

commands=nosetests

[testenv:py21]

basepython=python2.1

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǘ

We cannow (attempt to) useP⁴thon Ǖ.ǔ to runour test suite – although I don’t think

it will work.

Now, it is likel⁴ that ⁴ou will want to support multiple P⁴thon versions. So it would

be great to have tox run all the tests for all the P⁴thon versions ⁴ouwant to support

b⁴ default. This can be done b⁴ specif⁴ing the environment list ⁴ou want to use

when tox is run without arguments:

[tox]

envlist=py26,py27,py33,pypy

[testenv]

deps=nose

commands=nosetests

When tox is launched without an⁴ further arguments, all four environments listed

will be created, populatedwith thedependencies and the application, and then the

command nosetestswill be run.

We can also use tox to integrate other tests like flake8, as discussed in Section ǔ.Ǘ.

[tox]

envlist=py26,py27,py33,pypy,pep8

[testenv]

deps=nose

commands=nosetests

[testenv:pep8]

deps=flake8

commands=flake8

In this case, the pepǛ environment will be run using the default version of P⁴thon,

Ǚ.Ǜ. TESTING POLICY ǔǔǙ

which is probabl⁴ fine.³

Tip

When running tox, you will spot that all of the environments are built and run in sequence.

This can often make the process very long. Since the virtual environments are isolated,

nothing prevents you from running tox commands in parallel. This is exactly what the

detox package does, by providing a detox command which runs all of the default envi-

ronments from envlist in parallel. You should pip install it!

6.8 Testing policy

Having testing code embedded in ⁴our project is wonderful, but how ⁴ou run it is

also extremel⁴ important. There are too man⁴ projects that have test code which

la⁴s around, but which fails to be run for some reason.

While this topic is not strictl⁴ limited to P⁴thon, I consider it important enough to

emphasi⁵ehere: ⁴oushouldhavea ⁵ero tolerancepolic⁴onuntestedcode. Nocode

should be merged unless there is a proper set of unit tests to cover it.

The minimum that ⁴ou should aim for is to be sure that each of the commits ⁴ou

push pass all the tests. Having an automated wa⁴ to do that is even better.

For example, OpenStack relies on a specific workflow based on Gerrit, Jenkins and

Zuul. Eachcommitpushedgoes through thecode reviews⁴stemprovidedb⁴Gerrit,

andZuul is in chargeof runninga set of testing jobsagainst it using Jenkins. Jenkins

runs the unit testing, and various higher-level functional tests for each project. This

ensures that the submitted patches pass all tests. Code reviewing b⁴ a couple of

developers makes sure that all code that is committed has associated unit tests.

If ⁴ou are using the popular GitHubhosting service, Travis CI provides awa⁴ to run a

test ater eachpushormerge, or against pull requests that are submitted. While it is
³You can still specif⁴ the basepython option if ⁴ou want to change that

bjpcjp

bjpcjp

bjpcjp

Ǚ.ǜ. INTERVIEWWITH ROBERT COLLINS ǔǔǚ

unfortunate that this done post-push, it’s still a fantastic wa⁴ to track regressions.

Travis supports all significant P⁴thon versions out of the box, and it’s possible to

customi⁵e it to a high degree. Once ⁴ou’ve activated Travis on ⁴our project via their

Web interface, adding a file is simple: .travis.yml does the job for ⁴ou.

Example Ǚ.ǔǚ A .travis.yml example file

language: python

python:

- "2.7"

- "3.3"

command to install dependencies

install: "pip install -r requirements.txt --use-mirrors"

command to run tests

script: nosetests

Wherever ⁴our code is hosted, these da⁴s it is alwa⁴s possible to aim for some sort

of automatic testing of ⁴our sotware, and tomake sure that ⁴ou are going forward

with ⁴our project – not going backward b⁴ adding more bugs.

6.9 Interview with Robert Collins

You ma⁴ have alread⁴ used one of Robert’s programs, without knowing – he is,

among other things, the original author of the Bazaar distributed version control

s⁴stem. Toda⁴, he is a Distinguished Technologist at HP Cloud Services, where he

works on OpenStack. Robert has written a lot of the P⁴thon tools described in this

book, such as fixtures, testscenarios, testrespository and even python-subunit.

bjpcjp

Ǚ.ǜ. INTERVIEWWITH ROBERT COLLINS ǔǔǛ

What kind of testing policywould you advise using? When is it accept-
able not to test code?

I think it’s an engineering trade-off – considering the likelihood of fail-

ure slipping through to production undetected, the cost of an undetected

failure of that component, the si⁵e and cohesion of the team doing the

work… Take OpenStack – ǔǙǓǓ contributors – a nuanced polic⁴ is ver⁴

hard to work with there, as so man⁴ people have opinions. Generall⁴

speaking, there should be some automated check as part of landing in

trunk that the code will do what it is intended to do and that what it is in-

tended to do is what is needed. Oten that speaks to requiring functional

tests that might be in different code bases. Unit tests are great for speed

andpinning down corner cases. I think it’s ok to var⁴ the balance between

st⁴les of testing, as long as there is testing.

Where the cost of testing is ver⁴ high and the returns are ver⁴ low, I think

it’s fine to make an informed decision not to test, but that’s a relativel⁴

rare situation: most things can be tested fairl⁴ cheapl⁴, and the benefit of

catching errors earl⁴ is usuall⁴ quite high.

What are the best strategies to put in placewhenwriting Python code
in order to make testing easier, and improve its quality?

Separate out concerns – don’t domultiple things in one place; this makes

reuse easier, and that makes it easier to put test doubles in place. Take a

pure functional approachwhen⁴oucan (e.g. in a singlemethodeither cal-

culate something, or change some state, but where possible avoid doing

bjpcjp

bjpcjp

Ǚ.ǜ. INTERVIEWWITH ROBERT COLLINS ǔǔǜ

both). Thatwa⁴ ⁴ou can test all of the calculatingbehaviourwithout deal-

ing with state changes – such as writing to a database, talking to an HTTP

server, etc. The benefit works the other wa⁴ around too – ⁴ou can replace

the calculation logic for tests toprovoke corner casebehaviour anddetect

via mocks / test doubles that the expected state propagation happens as

desired. The most heinous stuff to test IME is deepl⁴ la⁴ered stacks with

complex cross-la⁴er behavioural dependencies. There ⁴ouwant to evolve

the code so that the contract between la⁴ers is simple, predictable, and

most usefull⁴ for testing – replaceable.

In your opinion, what’s the best way to organize unit tests in source
code?

Having a hierarch⁴ like $ROOT/$PACKAGE/tests – but I do just one for a

whole source tree (vs e.g. $ROOT/$PACKAGE/$SUBPACKAGE/tests).

Within tests, I oten mirror the structure of the rest of the source tree:

$ROOT/$PACKAGE/foo.py would be tested in $ROOT/$PACKAGE/tests/tes

t_foo.py.

There should be no imports from tests b⁴ the rest of the tree except per-

haps a test_suite/load_tests function in the top level __init__. This per-

mits easil⁴ detaching the tests for small footprint installations.

What are the tools that can be employed to build functional tests in
Python?

I just use whichever flavour of unittest is in use in the project: it’s suf-

ficientl⁴ flexible (particularl⁴ with things like testresources and parallel

runners) to cater for most needs.

How do you envision the future of unit testing libraries and frame-
works in Python?

The big challenges I see are:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǚ.ǜ. INTERVIEWWITH ROBERT COLLINS ǔǕǓ

• the continued expansion of parallel capabilities in new machines – Ǘ

CPU phones now. Existing unit test internal APIs aren’t optimised for

parallel workloads. M⁴ StreamResult work is aimed directl⁴ at this;

• more complex scheduling support – a lessugl⁴ solution for theproblems

that class andmodule scoped setup aim at;

• finding somewa⁴ toconsolidate the largevariet⁴of frameworkswehave

toda⁴: itwouldbegreat tobeable togeta consolidatedviewacrossmul-

tiple projects – for integration testing – that have different test runners

in use.

ǚ Methods and decorators

P⁴thon provides decorators as a hand⁴ wa⁴ to modif⁴ functions. The⁴ were first

introduced with classmethod() and staticmethod() in P⁴thon Ǖ.Ǖ, but were over-

hauled through PEP ǖǔǛ into something more flexible and readable. P⁴thon pro-

vides a few decorators (including the two mentioned above) right out of the box,

but it seems thatmost developers don’t understandhow the⁴ actuall⁴work behind

the scenes. This chapter aims to change that.

7.1 Creating decorators

A decorator is essentiall⁴ a function that takes another function as an argument

and replaces it with a new, modified function. Odds are good ⁴ou’ve alread⁴ used

decorators to make ⁴our own wrapper functions. The simplest possible decorator

is the identit⁴ function, which does nothing except return the original function:

def identity(f):

return f

You can then use ⁴our decorator like this:

@identity

def foo():

return 'bar'

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǕ

Which is the same as:

def foo():

return 'bar'

foo = identity(foo)

This decorator is useless, but it works. It just does nothing.

Example ǚ.ǔ A registering decorator

_functions = {}

def register(f):

global _functions

_functions[f.__name__] = f

return f

@register def foo(): return bar

In this example, we register and store functions in a dictionar⁴ so we can retrieve

them b⁴ their name later from that dictionar⁴.

In the following sections, I’ll explain the standard decorators that P⁴thon provides

and how (and when) to use them.

The primar⁴ use case for decorators is factoring common code that needs to be

called before, ater, or aroundmultiple function. If ⁴ou ever wrote Emacs Lisp code

⁴ou ma⁴ have used defadvice that allows ⁴ou to define code called around a func-

tion. Same things appl⁴ for developers having used the fabulousmethod combina-

tions brought b⁴ CLOS ¹.

Consider a set of functions that are called and need to check that the user name

that the⁴ receive as argument:

class Store(object):

def get_food(self, username, food):

¹The Common Lisp Object S⁴stem

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǖ

if username != 'admin':

raise Exception("This user is not allowed to get food")

return self.storage.get(food)

def put_food(self, username, food):

if username != 'admin':

raise Exception("This user is not allowed to get food")

self.storage.put(food)

The obvious first step here is to factor the checking code:

def check_is_admin(username):

if username != 'admin':

raise Exception("This user is not allowed to get food")

class Store(object):

def get_food(self, username, food):

check_is_admin(username)

return self.storage.get(food)

def put_food(self, username, food):

check_is_admin(username)

self.storage.put(food)

Now our code looks a bit cleaner. But we can do even better if we use a decorator:

def check_is_admin(f):

def wrapper(*args, **kwargs):

if kwargs.get('username') != 'admin':

raise Exception("This user is not allowed to get food")

return f(*args, **kwargs)

return wrapper

ǚ.ǔ. CREATING DECORATORS ǔǕǗ

class Store(object):

@check_is_admin

def get_food(self, username, food):

return self.storage.get(food)

@check_is_admin

def put_food(self, username, food):

self.storage.put(food)

Using decorators like this makes it easier to manage common functionalit⁴. This is

probabl⁴ old hat to ⁴ou if ⁴ou have an⁴ serious P⁴thon experience, but what ⁴ou

might not reali⁵e is that this naive approach to implementing decorators has some

major drawbacks.

Asmentionedbefore, adecorator replaces theoriginal functionwithanewonebuilt

on-the-fl⁴. However, this new function lacks man⁴ of the attributes of the original

function, such as its docstring and its name:

>>> def is_admin(f):

... def wrapper(*args, **kwargs):

... if kwargs.get('username') != 'admin':

... raise Exception("This user is not allowed to get food")

... return f(*args, **kwargs)

... return wrapper

...

>>> def foobar(username="someone"):

... """Do crazy stuff."""

... pass

...

>>> foobar.func_doc

'Do crazy stuff.'

>>> foobar.__name__

bjpcjp

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǘ

'foobar'

>>> @is_admin

... def foobar(username="someone"):

... """Do crazy stuff."""

... pass

...

>>> foobar.__doc__

>>> foobar.__name__

'wrapper'

Fortunatel⁴, the functoolsmodule included in P⁴thon solves this problemwith the

update_wrapper function, which copies these attributes to the wrapper itself. The

source code of update_wrapper is self-explanator⁴:

Example ǚ.Ǖ Source code of functools.update_wrapper in P⁴thon ǖ.ǖ

WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',

'__annotations__')

WRAPPER_UPDATES = ('__dict__',)

def update_wrapper(wrapper,

wrapped,

assigned = WRAPPER_ASSIGNMENTS,

updated = WRAPPER_UPDATES):

wrapper.__wrapped__ = wrapped

for attr in assigned:

try:

value = getattr(wrapped, attr)

except AttributeError:

pass

else:

setattr(wrapper, attr, value)

for attr in updated:

bjpcjp

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǙ

getattr(wrapper, attr).update(getattr(wrapped, attr, {}))

Return the wrapper so this can be used as a decorator via partial()

return wrapper

If we take our previous example anduse this function to update ourwrapper, things

work muchmore nicel⁴:

>>> def foobar(username="someone"):

... """Do crazy stuff."""

... pass

...

>>> foobar = functools.update_wrapper(is_admin, foobar)

>>> foobar.__name__

'foobar'

>>> foobar.__doc__

'Do crazy stuff.'

It can get tedious to use update_wrapper manuall⁴ when creating decorators, so

functools provides a decorator for decorators called wraps:

Example ǚ.ǖ Using functools.wraps

import functools

def check_is_admin(f):

@functools.wraps(f)

def wrapper(*args, **kwargs):

if kwargs.get('username') != 'admin':

raise Exception("This user is not allowed to get food")

return f(*args, **kwargs)

return wrapper

class Store(object):

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǚ

@check_is_admin

def get_food(self, username, food):

return self.storage.get(food)

In our examples so far, we’ve alwa⁴s assumed that the decorated function would

have a username passed to it as a ke⁴word argument, but that might not alwa⁴s

be the case. With this in mind, it’s a better idea to build a smarter version of our

decorator that can look at the decorated function’s arguments and pull out what it

needs.

To that end, the inspect module allows us to retrieve a function’s signature and

operate on it:

Example ǚ.Ǘ Retrieving function arguments using inspect

import functools

import inspect

def check_is_admin(f):

@functools.wraps(f)

def wrapper(*args, **kwargs):

func_args = inspect.getcallargs(f, *args, **kwargs)

if func_args.get('username') != 'admin':

raise Exception("This user is not allowed to get food")

return f(*args, **kwargs)

return wrapper

@check_is_admin

def get_food(username, type='chocolate'):

return type + " nom nom nom!"

The function that does theheav⁴ litinghere is inspect.getcallargs, which returns

a dictionar⁴ containing the names and values of the arguments as ke⁴-value pairs.

bjpcjp

bjpcjp

ǚ.Ǖ. HOWMETHODSWORK IN PYTHON ǔǕǛ

In our example, this function returns {'username':'admin', 'type':'chocolat

e'}. Thismeans that our decorator doesn’t have to check if the usernameparameter

is a positional or a ke⁴word argument: all it has to do is look for it in the dictionar⁴.

7.2 How methods work in Python

You’ve probabl⁴ written do⁵ens of methods and thought nothing of them before

now, but tounderstandwhat certaindecoratorsdo, ⁴ouneed toknowhowmethods

work behind the scenes.

A method is a function that is stored as a class attribute. Let’s have a look at what

happens when we tr⁴ to access such an attribute directl⁴:

Example ǚ.ǘ A P⁴thon Ǖ method

>>> class Pizza(object):

... def __init__(self, size):

... self.size = size

... def get_size(self):

... return self.size

...

>>> Pizza.get_size

<unbound method Pizza.get_size>

P⁴thon Ǖ tellsus that theget_sizeattributeof thePizzaclass is anunboundmethod.

Example ǚ.Ǚ A P⁴thon ǖ method

>>> class Pizza(object):

... def __init__(self, size):

... self.size = size

... def get_size(self):

... return self.size

...

bjpcjp

ǚ.Ǖ. HOWMETHODSWORK IN PYTHON ǔǕǜ

>>> Pizza.get_size

<function Pizza.get_size at 0x7fdbfd1a8b90>

In P⁴thon ǖ, the concept of unboundmethod has been removed entirel⁴, andwe’re

told get_size is a function.

The principle is the same in both cases: get_size is a function that is not tied to an⁴

particular object, and P⁴thon will raise an error if we tr⁴ to call it:

Example ǚ.ǚ Calling unbound get_si⁵e in P⁴thon Ǖ

>>> Pizza.get_size()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unbound method get_size() must be called with Pizza instance as ←֓

first argument (got nothing instead)

Example ǚ.Ǜ Calling unbound get_si⁵e in P⁴thon ǖ

>>> Pizza.get_size()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: get_size() missing 1 required positional argument: 'self'

P⁴thon Ǖ rejects the method call because it’s unbound; P⁴thon ǖ permits the call,

but complains that we haven’t provided the necessar⁴ self argument. This makes

P⁴thon ǖ a bit more flexible: not onl⁴ can we pass an arbitrar⁴ instance of the class

to the method if we want to, but we can pass any object as long as it has the prop-

erties that the method expects to find:

>>> Pizza.get_size(Pizza(42))

42

And it works, just as promised, though it’s not ver⁴ convenient: we have to refer to

the class ever⁴ time we want to call one of its methods.

bjpcjp

ǚ.Ǖ. HOWMETHODSWORK IN PYTHON ǔǖǓ

So P⁴thon goes the extra mile for us b⁴ binding a class’s methods to its instances.

In otherwords, we can access get_size froman⁴ Pizza, and better still, P⁴thonwill

automaticall⁴ pass the object itself to the method’s self parameter:

Example ǚ.ǜ Calling bound get_size

>>> Pizza(42).get_size

<bound method Pizza.get_size of <__main__.Pizza object at 0x7f3138827910>>

>>> Pizza(42).get_size()

42

As expected, we don’t have to provide an⁴ argument to get_size, since it’s a bound

method: its self argument is automaticall⁴ set to our Pizza instance. Here’s a even

better example:

>>> m = Pizza(42).get_size

>>> m()

42

You don’t even have to keep a reference to ⁴our Pizza object as long as ⁴ou have a

reference to the bound method. And if ⁴ou have a reference to a method but ⁴ou

want to find out which object it’s bound to, ⁴ou can just check the method’s __sel

f__ propert⁴:

>>> m = Pizza(42).get_size

>>> m.__self__

<__main__.Pizza object at 0x7f3138827910>

>>> m == m.__self__.get_size

True

Obviousl⁴, we still have a reference to our object, andwe can find it back if wewant.

ǚ.ǖ. STATIC METHODS ǔǖǔ

7.3 Static methods

Static methods are methods which belong to a class, but don’t actuall⁴ operate on

class instances. For example:

Example ǚ.ǔǓ @staticmethod usage

class Pizza(object):

@staticmethod

def mix_ingredients(x, y):

return x + y

def cook(self):

return self.mix_ingredients(self.cheese, self.vegetables)

You could write mix_ingredients as a non-static method if ⁴ou wanted to, but it

would take a self argument thatwould never actuall⁴ be used. The @staticmethod

decorator gives us several things:

• P⁴thon doesn’t have to instantiate a boundmethod for each Pizza object we cre-

ate. Boundmethods are objects, too, and creating themhas a cost. Using a static

method lets us avoid that:

>>> Pizza().cook is Pizza().cook

False

>>> Pizza().mix_ingredients is Pizza.mix_ingredients

True

>>> Pizza().mix_ingredients is Pizza().mix_ingredients

True

• It improves the readabilit⁴ of the code: when we see @staticmethod, we know

that the method does not depend on the state of the object.

ǚ.Ǘ. CLASS METHOD ǔǖǕ

• We can override our static methods in subclasses. If we used a mix_ingredie

nts function defined at the top level of our module, a class inheriting from Pizza

wouldn’t be able to change thewa⁴wemix ingredients for our pi⁵⁵awithout over-

riding the cookmethod itself.

7.4 Class method

Class methods are methods that are bound directl⁴ to a class rather than its in-

stances:

>>> class Pizza(object):

... radius = 42

... @classmethod

... def get_radius(cls):

... return cls.radius

...

>>> Pizza.get_radius

<bound method type.get_radius of <class '__main__.Pizza'>>

>>> Pizza().get_radius

<bound method type.get_radius of <class '__main__.Pizza'>>

>>> Pizza.get_radius is Pizza().get_radius

True

>>> Pizza.get_radius()

42

However ⁴ou choose to access this method, it will be alwa⁴s bound to the class it

is attached to, and its first argument will be the class itself (remember, classes are

objects too!)

Class methods are mostl⁴ useful for creating factory methods – methods which in-

stantiateobjects ina specific fashion. Ifweuseda@staticmethod instead,wewould

ǚ.ǘ. ABSTRACT METHODS ǔǖǖ

have to hard-code the Pizza class name in ourmethod,making an⁴ class inheriting

from Pizza unable to use our factor⁴ for its own purposes.

class Pizza(object):

def __init__(self, ingredients):

self.ingredients = ingredients

@classmethod

def from_fridge(cls, fridge):

return cls(fridge.get_cheese() + fridge.get_vegetables())

In this case, we provide a from_fridge factor⁴ method that we can pass a Fridge

object to. If we call this method with something like Pizza.from_fridge(myfrid

ge), it will return a brand-new Pizza with ingredients taken from what’s available

in myfridge.

7.5 Abstract methods

An abstract method is a method defined in a base class which ma⁴ or ma⁴ not ac-

tuall⁴ provide an⁴ implementation. The simplest wa⁴ to write an abstract method

in P⁴thon is:

class Pizza(object):

@staticmethod

def get_radius():

raise NotImplementedError

An⁴class inheriting fromPizza should implementandoverride theget_radiusmethod;

otherwise, calling the method will raise an exception.

This particular wa⁴ of implementing abstractmethods has a drawback: if ⁴ouwrite

a class that inherits from Pizza and forget to implement get_radius, the error will

onl⁴ be raised if ⁴ou tr⁴ to use that method at runtime.

ǚ.ǘ. ABSTRACT METHODS ǔǖǗ

Example ǚ.ǔǔ Implementing an abstract method

>>> Pizza()

<__main__.Pizza object at 0x7fb747353d90>

>>> Pizza().get_radius()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in get_radius

NotImplementedError

If ⁴ou implement⁴ourabstractmethodsusingP⁴thon’sbuilt-inabcmodule instead,

⁴ou’ll get an earl⁴ warning if ⁴ou tr⁴ to instantiate an object with abstractmethods:

Example ǚ.ǔǕ Implementing an abstract method using abc

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def get_radius(self):

"""Method that should do something."""

When ⁴ou use abc and its special class, if ⁴ou tr⁴ to instantiate a BasePizza or a

class inheriting from it that doesn’t override get_radius, ⁴ou’ll get a TypeError:

>>> BasePizza()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: Can't instantiate abstract class BasePizza with abstract methods ←֓

get_radius

ǚ.Ǚ. MIXING STATIC, CLASS, AND ABSTRACT METHODS ǔǖǘ

Note

The metaclass declaration changed between Python 2 and Python 3. The previous ex-

amples only work with Python 2 for this reason.

7.6 Mixing static, class, and abstract methods

Each of these decorators is useful on its own, but the time ma⁴ come when ⁴ou’ll

have to use them together. Here are some tips that will help ⁴ou with that.

An abstract method’s protot⁴pe isn’t set in stone. When ⁴ou actuall⁴ implement

the method, there’s nothing stopping ⁴ou from extending the argument list as ⁴ou

see fit:

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def get_ingredients(self):

"""Returns the ingredient list."""

class Calzone(BasePizza):

def get_ingredients(self, with_egg=False):

egg = Egg() if with_egg else None

return self.ingredients + [egg]

We can define Calzone's methods an⁴ wa⁴ we like, as long as the⁴ still support the

interface we define in the BasePizza class. This includes implementing them as

class or static methods:

ǚ.Ǚ. MIXING STATIC, CLASS, AND ABSTRACT METHODS ǔǖǙ

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def get_ingredients(self):

"""Returns the ingredient list."""

class DietPizza(BasePizza):

@staticmethod

def get_ingredients():

return None

Even though our static get_ingredientsmethod doesn’t return a result based on

the object’s state, it still supports our abstract BasePizza class’s interface, so it’s

still valid.

Starting with P⁴thon ǖ (this won’t work as expected in P⁴thon Ǖ; see issue ǘǛǙǚ),

it’s also possible to use the @staticmethod and @classmethod decorators on top of

@abstractmethod:

Example ǚ.ǔǖMixing @classmethod and @abstractmethod

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

ingredients = ['cheese']

@classmethod

ǚ.Ǚ. MIXING STATIC, CLASS, AND ABSTRACT METHODS ǔǖǚ

@abc.abstractmethod

def get_ingredients(cls):

"""Returns the ingredient list."""

return cls.ingredients

Note thatdefiningget_ingredientsasaclassmethod inBasePizza like thisdoesn’t

force its subclasses to define it as a class method as well. The same would appl⁴ if

we’d defined it as a staticmethod: there’s nowa⁴ to force subclasses to implement

abstract methods as a specific kind of method.

Butwait – herewe have an implementation in an abstractmethod. Canwe do that?

Yep – P⁴thon doesn’t have a problemwith it! Unlike Java, ⁴ou can put code in ⁴our

abstract methods and call it using super():

Example ǚ.ǔǗ Using super()with abstract methods

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

default_ingredients = ['cheese']

@classmethod

@abc.abstractmethod

def get_ingredients(cls):

"""Returns the default ingredient list."""

return cls.default_ingredients

class DietPizza(BasePizza):

def get_ingredients(self):

return [Egg()] + super(DietPizza, self).get_ingredients()

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǖǛ

In this example, ever⁴ Pizza ⁴ou make that inherits from BasePizza will have to

override the get_ingredients method, but it will have access to the base class’s

default mechanism for getting the ingredients list.

7.7 The truth about super

From the earliest da⁴s of P⁴thon, developers have been able to use both single and

multiple inheritance to extend their classes. However,man⁴developers don’t seem

to understand how these mechanisms actuall⁴ work, and the associated super()

method that is associated with it.

There is pros and cons of single andmultiple inheritance, composition or evenduck

t⁴ping would be out of topic for this book, though if ⁴ou are not familiar with these

notions I suggest that ⁴ou read about them to have a view – and build ⁴our own

opinion.

Multiple inheritance is still used in man⁴ places, and especiall⁴ in code where the

mixin pattern is involved. That’s wh⁴ it’s still important to know about it, and be-

cause it is part of P⁴thon’s core.

Note

A mixin is a class that inherits from two or more other classes, combining their features

together.

As ⁴ou should know b⁴ now, classes are objects in P⁴thon. The construct used to

create a class is a special statement that ⁴ou should be well familiar with: class

classname(expression of inheritance).

The part in parentheses is a P⁴thon expression that returns the list of class objects

to be used as the class’s parents. Normall⁴ ⁴ou’d specif⁴ them directl⁴, but ⁴ou

could also write something like:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǖǜ

>>> def parent():

... return object

...

>>> class A(parent()):

... pass

...

>>> A.mro()

[<class '__main__.A'>, <type 'object'>]

And itworks as expected: class A is definedwith objectas its parent class. The class

method mro() returns themethod resolution order used to resolve attributes. The

current MRO s⁴stemwas first implemented in P⁴thon Ǖ.ǖ, and its internal workings

are described in the P⁴thon Ǖ.ǖ release notes.

You alread⁴ know that the canonical wa⁴ to call a method in a parent class is b⁴

using the super() function, but what ⁴ou probabl⁴ don’t know is that super() is

actuall⁴ a constructor, and ⁴ou instantiate a super object each time ⁴ou call it. It

takes either one or two arguments: the first argument is a class, and the second

argument is either a subclass or an instance of the first argument.

The object returned b⁴ the constructor functions as a prox⁴ for the parent classes

of the first argument. It has its own __getattribute__ method that iterates over

the classes in the MRO list and returns the first matching attribute it finds:

>>> class A(object):

... bar = 42

... def foo(self):

... pass

...

>>> class B(object):

... bar = 0

...

bjpcjp

bjpcjp

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǗǓ

>>> class C(A, B):

... xyz = 'abc'

...

>>> C.mro()

[<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <type ' ←֓

object'>]

>>> super(C, C()).bar

42

>>> super(C, C()).foo

<bound method C.foo of <__main__.C object at 0x7f0299255a90>>

>>> super(B).__self__

>>> super(B, B()).__self__

<__main__.B object at

Whenrequestinganattributeof the superobjectof an instanceof C, itwalks through

the MRO list and return the attribute from the first class having it.

In the previous example, we used a bound super object; i.e., we called super with

two arguments. If we call super() with onl⁴ one argument, it returns an unbound

super object instead:

>>> super(C)

<super: <class 'C'>, NULL>

Since this object is unbound, ⁴ou can’t use it to access class attributes:

>>> super(C).foo

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'super' object has no attribute 'foo'

>>> super(C).bar

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǗǔ

AttributeError: 'super' object has no attribute 'bar'

>>> super(C).xyz

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'super' object has no attribute 'xyz'

At first glance, it might seem like this kind of super object is useless, but the su-

per class implements the descriptor protocol (i.e. __get__) in a wa⁴ that makes

unbound super objects useful as class attributes:

>>> class D(C):

... sup = super(C)

...

>>> D().sup

<super: <class 'C'>, <D object>>

>>> D().sup.foo

<bound method D.foo of <__main__.D object at 0x7f0299255bd0>>

>>> D().sup.bar

42

The unbound super object’s __get__ method is called using the instance and the

attribute name as arguments (super(C).__get__(D(), 'foo')), allowing it to find

and resolve foo.

Note

Even if you’ve never heard of the descriptor protocol, you’ve probably used it through

the @property decorator without knowing it. It’s the mechanism in Python that allows

an object that’s stored as an attribute to return something other than itself. This protocol

isn’t covered in this book, but you can find out more about it in the Python data model

documentation.

There are plent⁴ of situations where using super can be trick⁴, such as handling

bjpcjp

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǗǕ

different method signatures along the inheritance chain. Unfortunatel⁴, there’s no

silver bullet for that, apart from using tricks like having all ⁴our methods accept

their arguments using *args, **kwargs.

In P⁴thon ǖ, super() picked up a little bit ofmagic: it can nowbe called fromwithin

a method without an⁴ arguments. When no arguments are passed to super(), it

automaticall⁴ searches the stack frame for them:

class B(A):

def foo(self):

super().foo()

super is the standard wa⁴ of accessing parent attributes in subclasses, and ⁴ou

should alwa⁴s use it. It allows cooperative calls of parentmethodswithout an⁴ sur-

prises, such as parent methods not being called or being called twice when using

multiple inheritance.

bjpcjp

Ǜ Functional programming

Functional programmingmight not be the first thing ⁴ou think of when ⁴ou think of

P⁴thon, but the support is there, and it’s quite extensive. Man⁴ P⁴thon developers

don’t seemto reali⁵e this, though,which is a shame: with fewexceptions, functional

programming allows ⁴ou to write more concise and efficient code.

When ⁴ouwrite codeusing functional st⁴le, ⁴our functions are designednot to have

side effects: the⁴ take an input and produce an output without keeping state or

modif⁴ingan⁴thingnot reflected in the returnvalue. Functions that follow this ideal

are referred to as purely functional:

A non-pure function
def remove_last_item(mylist):

"""Removes the last item from a list."""

mylist.pop(-1) # This modifies mylist

A pure function
def butlast(mylist):

"""Like butlast in Lisp; returns the list without the last element."""

return mylist[:-1] # This returns a copy of mylist

The practical advantages of functional programming include:

• Formal provability; admittedl⁴, this is a pure theoretical advantages, nobod⁴ is

going to mathematicall⁴ prove a P⁴thon program.

Ǜ.ǔ. GENERATORS ǔǗǗ

• Modularity; writing functionall⁴ forces a certain degree of separation in solving

⁴our problems and eases reuse in other contexts.

• Brevity. Functional programming is oten less verbose than other paradigms.

• Concurrency. Purel⁴ functional functions are thread-safe and can run concur-

rentl⁴. While it’s not ⁴et the case in P⁴thon, some functional languages do this

automaticall⁴, which can be a big help if ⁴ou ever need to scale ⁴our application.

• Testability. It’s a simplematter to test a functional program: all ⁴ou need is a set

of inputs and an expected set of outputs. The⁴ are idempotent.

Tip

If you want to get serious about functional programming, take my advice: take a break

from Python and learn Lisp. I know it might sound strange to talk about Lisp in a Python

book, but playing with Lisp for several years is what taught me how to "think functional."

You simply won’t develop the thought processes necessary to make full use of functional

programming if all your experience comes from imperative and object-oriented program-

ming. Lisp isn’t purely functional itself, but there’s more focus on functional programming

than you’ll find in Python.

8.1 Generators

Agenerator is anobject that returns a valueoneach call of its next()methoduntil it

raises StopIteration. The⁴ were first introduced in PEP Ǖǘǘ and offer an eas⁴ wa⁴

to create objects that implement the iterator protocol.

All ⁴ou have to do to create a generator is write a normal P⁴thon function that con-

tains a yield statement. P⁴thonwill detect the use of yield and tag the function as

a generator. When the function’s execution reaches a yield statement, it returns a

value as with a return statement, but with one notable difference: the interpreter

Ǜ.ǔ. GENERATORS ǔǗǘ

will save a stack reference, which will be used to resume the function’s execution

the next time next is called.

Creating a generator

>> def mygenerator():

... yield 1

... yield 2

... yield 'a'

...

>>> mygenerator()

<generator object mygenerator at 0x10d77fa50>

>>> g = mygenerator()

>>> next(g)

1

>>> next(g)

2

>>> next(g)

'a'

>>> next(g)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

You can check whether a function is a generator or not ⁴ourself b⁴ using inspect.

isgeneratorfunction:

>>> import inspect

>>> def mygenerator():

... yield 1

...

>>> inspect.isgeneratorfunction(mygenerator)

True

bjpcjp

Ǜ.ǔ. GENERATORS ǔǗǙ

>>> inspect.isgeneratorfunction(sum)

False

Reading the source code of inspect.isgeneratorfunction gives us some insight

into the tagging mentioned earlier:

Source code of inspect.isgeneratorfunction

def isgeneratorfunction(object):

"""Return true if the object is a user-defined generator function.

Generator function objects provides same attributes as functions.

See help(isfunction) for attributes listing."""

return bool((isfunction(object) or ismethod(object)) and

object.func_code.co_flags & CO_GENERATOR)

P⁴thon ǖ provides another useful function, inspect.getgeneratorstate:

>>> import inspect

>>> def mygenerator():

... yield 1

...

>>> gen = mygenerator()

>>> gen

<generator object mygenerator at 0x7f94b44fec30>

>>> inspect.getgeneratorstate(gen)

'GEN_CREATED'

>>> next(gen)

1

>>> inspect.getgeneratorstate(gen)

'GEN_SUSPENDED'

>>> next(gen)

bjpcjp

bjpcjp

Ǜ.ǔ. GENERATORS ǔǗǚ

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

>>> inspect.getgeneratorstate(gen)

'GEN_CLOSED'

This function gives us the current state of a generator, allowing us to determine

whether it’s waiting to be run for the first time (GEN_CREATED), currentl⁴ being exe-

cuted b⁴ the interpreter (GEN_RUNNING), waiting to be resumed b⁴ a call to next()

(GEN_SUSPENDED), or finished running (GEN_CLOSED).

In P⁴thon, generators are built b⁴ keeping a reference of the stack when a function

yield something, resuming this stack when needed, i.e. when a call to next() is

executed again.

When ⁴ou iterate over an⁴ kind of data, the obvious approach is to build the entire

list first, which is oten wasteful in terms of memor⁴ consumption. Sa⁴ we want to

find the first number between ǔ and ǔǓ,ǓǓǓ,ǓǓǓ that’s equal to ǘǓ,ǓǓǓ. Sounds eas⁴,

doesn’t it? Let’s make this a challenge. We’ll run P⁴thon with a memor⁴ constraint

of ǔǕǛ MB:

$ ulimit -v 131072

$ python

>>> a = list(range(10000000))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

MemoryError

Uh-oh. Turns out we can’t build a list of tenmillion items with onl⁴ ǔǕǛMB ofmem-

or⁴!

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǜ.ǔ. GENERATORS ǔǗǛ

Warning

In Python 3, range() returns a generator; to get a generator in Python 2, you have to

use xrange() instead. (This function doesn’t exist in Python 3, since it’s redundant.)

Let’s tr⁴ using a generator instead:

$ python

>>> for value in xrange(10000000):

... if value == 50000:

... print("Found it")

... break

...

Found it

This time, our program executes without issue. The range() function returns an

iterable object that d⁴namicall⁴ generates our list of integers. Better still, since we

were onl⁴ interested in the ǘǓ,ǓǓǓth number, the generator onl⁴ had to generate

ǘǓ,ǓǓǓ numbers.

Generators allow ⁴ou to handle large data sets withminimal consumption ofmem-

or⁴ and processing c⁴cles b⁴ generating values on-the-fl⁴. Whenever ⁴ou need to

work with a huge number of values, generators can help ensure ⁴ou handle them

efficientl⁴.

yield also has a less commonl⁴ used feature: it can return a value like a function

call. This allows us to pass a value to a generator b⁴ calling its send()method:

Example Ǜ.ǔ yield returning a value

def shorten(string_list):

length = len(string_list[0])

for s in string_list:

length = yield s[:length]

bjpcjp

bjpcjp

Ǜ.ǔ. GENERATORS ǔǗǜ

mystringlist = ['loremipsum', 'dolorsit', 'ametfoobar']

shortstringlist = shorten(mystringlist)

result = []

try:

s = next(shortstringlist)

result.append(s)

while True:

number_of_vowels = len(filter(lambda letter: letter in 'aeiou', s))

Truncate the next string depending

on the number of vowels in the previous one

s = shortstringlist.send(number_of_vowels)

result.append(s)

except StopIteration:

pass

In this example, we’ve written a function called shorten that takes a list of strings

and returns a list consisting of those same strings, onl⁴ truncated. The length of

each string is determined b⁴ the number of vowels in the previous string: "loremip-

sum" has four vowels, so the second value returned b⁴ the generator will be the

first four letters of "dolorsit"; "dolo" has onl⁴ two vowels, so "ametfoobar" will

be truncated to its first two letters ("am"). The generator then stops and raises

StopIteration. Our generator thus returns:

['loremipsum', 'dolo', 'am']

Using yield and send() in this fashion allows P⁴thon generators to function like

coroutines seen in Lua and other languages.

Ǜ.Ǖ. LIST COMPREHENSIONS ǔǘǓ

Tip

PEP 289 introduced generator expressions, making it possible to build one-line generators

using a syntax similar to list comprehension:

>>> (x.upper() for x in ['hello', 'world'])

<generator object <genexpr> at 0x7ffab3832fa0>

>>> gen = (x.upper() for x in ['hello', 'world'])

>>> list(gen)

['HELLO', 'WORLD']

8.2 List comprehensions

List comprehension, or listcomp for short, allows ⁴ou to define a list’s contents in-

line with its declaration:

Without list comprehension

>>> x = []

>>> for i in (1, 2, 3):

... x.append(i)

...

>>> x

[1, 2, 3]

With list comprehension

>>> x = [i for i in (1, 2, 3)]

>>> x

[1, 2, 3]

You can use multiple for statements together and use if statements to filter out

items:

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǔ

x = [word.capitalize()

for line in ("hello world?", "world!", "or not")

for word in line.split()

if not word.startswith("or")]

>>> x

['Hello', 'World?', 'World!', 'Not']

Using list comprehension rather than for loops is a neat wa⁴ to quickl⁴ define lists.

Since we’re still talking about functional programming, it’s worth noting that lists

built through list comprehension can’t rel⁴ on the program’s state. ¹ This generall⁴

makes them more concise and easier to read than lists made without list compre-

hension.

Note

There’s also syntax for building dictionaries or sets in the same fashion:

>>> {x:x.upper() for x in ['hello', 'world']}

{'world': 'WORLD', 'hello': 'HELLO'}

>>> {x.upper() for x in ['hello', 'world']}

set(['WORLD', 'HELLO'])

Note that this only works in Python 2.7 and onward.

8.3 Functional functions functioning

P⁴thon includes a number of tools for functional programming. These built-in func-

tions cover the basics:

• map(function, iterable) applies function to each item in iterable and returns

either a list in P⁴thon Ǖ or an iterable map object in P⁴thon ǖ:
¹Technicall⁴ the⁴ can, but that’s reall⁴ not how the⁴’re supposed to work.

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǕ

map usage in Python ǖ

>>> map(lambda x: x + "bzz!", ["I think", "I'm good"])

<map object at 0x7fe7101abdd0>

>>> list(map(lambda x: x + "bzz!", ["I think", "I'm good"]))

['I thinkbzz!', "I'm goodbzz!"]

• filter(function or None, iterable) filters the items in iterable based on

the result returned b⁴ function, and returns either a list in P⁴thon Ǖ, or better, an

iterable filter object in P⁴thon ǖ:

Example Ǜ.Ǖ filter usage in P⁴thon ǖ

>>> filter(lambda x: x.startswith("I "), ["I think", "I'm good"])

<filter object at 0x7f9a0d636dd0>

>>> list(filter(lambda x: x.startswith("I "), ["I think", "I'm good"]))

['I think']

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǖ

Tip

You can write a function equivalent to filter or map using generators and list compre-

hension:

Equivalent of map using list comprehension

>>> (x + "bzz!" for x in ["I think", "I'm good"])

<generator object <genexpr> at 0x7f9a0d697dc0>

>>> [x + "bzz!" for x in ["I think", "I'm good"]]

['I thinkbzz!', "I'm goodbzz!"]

Equivalent of filter using list comprehension

>>> (x for x in ["I think", "I'm good"] if x.startswith("I "))

<generator object <genexpr> at 0x7f9a0d697dc0>

>>> [x for x in ["I think", "I'm good"] if x.startswith("I ")]

['I think']

Using generators like this in Python 2 will give you an iterable object rather than a list, just

like the map and filter functions in Python 3.

• enumerate(iterable[, start]) returns an iterable enumerate object that ⁴ields

a sequence of tuples, each consisting of an integer index (starting with start, if

provided) and the corresponding item in iterable. It’s useful when ⁴ou need to

write code that refers to arra⁴ indexes. For example, instead of writing this:

i = 0

while i < len(mylist):

print("Item %d: %s" % (i, mylist[i]))

i += 1

You could write this:

for i, item in enumerate(mylist):

print("Item %d: %s" % (i, item))

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǗ

• sorted(iterable, key=None, reverse=False) returns a sorted version of itera

ble. The key argument allows ⁴ou to provide a function that returns the value to

sort on.

• any(iterable) and all(iterable) both return a boolean depending on the val-

ues returned b⁴ iterable. These functions are equivalent to:

def all(iterable):

for x in iterable:

if not x:

return False

return True

def any(iterable):

for x in iterable:

if x:

return True

return False

These functionsareuseful for checkingwhetheran⁴orall of thevalues inan iterable

satisf⁴ a given condition:

mylist = [0, 1, 3, -1]

if all(map(lambda x: x > 0, mylist)):

print("All items are greater than 0")

if any(map(lambda x: x > 0, mylist)):

print("At least one item is greater than 0")

• zip(iter1 [,iter2 [...]]) takes multiple sequences and combines them into

tuples. It’s useful when ⁴ou need to combine a list of ke⁴s and a list of values into

a dict. Like the other functions described above, it returns a list in P⁴thon Ǖ and

an iterable in P⁴thon ǖ:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǘ

>>> keys = ["foobar", "barzz", "ba!"]

>>> map(len, keys)

<map object at 0x7fc1686100d0>

>>> zip(keys, map(len, keys))

<zip object at 0x7fc16860d440>

>>> list(zip(keys, map(len, keys)))

[('foobar', 6), ('barzz', 5), ('ba!', 3)]

>>> dict(zip(keys, map(len, keys)))

{'foobar': 6, 'barzz': 5, 'ba!': 3}

You might have noticed b⁴ now how the return t⁴pes differ between P⁴thon Ǖ and

P⁴thon ǖ. Most of P⁴thon’s purel⁴ functional built-in functions return a list rather

than an iterable in P⁴thon Ǖ, making them lessmemor⁴-efficient than their P⁴thon

ǖ.x equivalents. If ⁴ou’re planning towrite code using these functions, keep inmind

that ⁴ou’ll get themost benefit out of them in P⁴thon ǖ. If ⁴ou’re stuck to P⁴thon Ǖ,

don’t despair ⁴et: the itertoolsmodule from the standard librar⁴ provides an it-

erator based version ofman⁴ of these functions (itertools.izip, itertoolz.imap,

itertools.ifilter, etc).

There’s still one important tool missing from this list, however. One common task

when working with lists is finding the first item that satisfies a specific condition.

This is usuall⁴ accomplished with a function like this:

def first_positive_number(numbers):

for n in numbers:

if n > 0:

return n

We can also write this in functional st⁴le:

def first(predicate, items):

for item in items:

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǙ

if predicate(item):

return item

first(lambda x: x > 0, [-1, 0, 1, 2])

Or more concisel⁴:

Less efficient

list(filter(lambda x: x > 0, [-1, 0, 1, 2]))[0] ②1

Efficient but for Python 3

next(filter(lambda x: x > 0, [-1, 0, 1, 2]))

Efficient but for Python 2

next(itertools.ifilter(lambda x: x > 0, [-1, 0, 1, 2]))

②1 Note that thisma⁴ raise an IndexError if no items satisf⁴ the condition, causing

list(filter()) to return an empt⁴ list.

Instead of writing this same function in ever⁴ program ⁴ou make, ⁴ou can include

the small but ver⁴ useful P⁴thon package first:

Example Ǜ.ǖ Using first

>>> from first import first

>>> first([0, False, None, [], (), 42])

42

>>> first([-1, 0, 1, 2])

-1

>>> first([-1, 0, 1, 2], key=lambda x: x > 0)

1

The key argument can be used to provide a functionwhich receives each item as an

argument and returns a boolean indicating whether it satisfies the condition.

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǚ

You’ll notice that we’ve used lambda in a good portion of the examples so far in this

chapter. lambda was actuall⁴ added to P⁴thon in the first place to facilitate func-

tional programming functions such as map() and filter(), which otherwise would

have required writing an entirel⁴ new function ever⁴ time ⁴ou wanted to check a

different condition:

import operator

from first import first

def greater_than_zero(number):

return number > 0

first([-1, 0, 1, 2], key=greater_than_zero)

This codeworks identicall⁴ to the previous example, but it’s a good dealmore cum-

bersome: if we wanted to get the first number in the sequence that’s greater than,

sa⁴, ǗǕ, thenwe’d need to def an appropriate function rather than defining it in-line

with our call to first.

But despite its usefulness in helping us avoid situations like this, lambda still has

its problems. First and most obviousl⁴, we can’t pass a key function using lambda

if it would require more than a single line of code. In this event, we’re back to the

cumbersome pattern of writing new function definitions for each key we need. Or

are we?

functools.partial is our first step towards replacing lambda with a more flexible

alternative. It allowsus tocreateawrapper functionwitha twist: rather thanchang-

ing the behavior of a function, it instead changes the arguments it receives:

from functools import partial

from first import first

def greater_than(number, min=0):

bjpcjp

bjpcjp

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǛ

return number > min

first([-1, 0, 1, 2], key=partial(greater_than, min=42))

Our new greater_than function works just like the old greater_than_zero b⁴ de-

fault, but nowwe can specif⁴ the valuewewant to compare our numbers to. In this

case, we pass functools.partial our function and the value we want for min, and

we get back a new function that has min set to ǗǕ, just like wewant. In other words,

we can write a function and use functools.partial to customi⁵e what it does to

our needs in an⁴ given situation.

This is still a couple lines more than we strictl⁴ need in this case, though. All we’re

doing in this example is comparing two numbers; what if P⁴thon had built-in func-

tions for these kinds of comparisons? As it turns out, the operatormodule has just

what we’re looking for:

import operator

from functools import partial

from first import first

first([-1, 0, 1, 2], key=partial(operator.le, 0))

Here we see that functools.partial also works with positional arguments. In this

case, operator.le(a, b) takes two numbers and returns whether the first is less

than or equal to the second: the Ǔwepass to functools.partial gets sent to a, and

the argument passed to the function returned b⁴ functools.partial gets sent to

b. So this works identicall⁴ to our initial example, without using lambda or defining

an⁴ additional functions.

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǜ

Note

functools.partial is typically useful in replacement of lambda, and is to be consid-

ered as a superior alternative. lambda is to be considered an anomaly in Python lan-

guage ᵃ, due to its limited body size of one line long single expression. On the other hand,

functools.partial is built as a nice wrapper around the original function.

ᵃAndwas once even planned to be removed in P⁴thon ǖ, but finall⁴ escaped from its fate.

The itertoolsmodule in the P⁴thon Standard Librar⁴ also provides a bunch of use-

ful functions that ⁴ou’ll want to keep inmind. I’ve seen tooman⁴ programmers end

upwriting their own versions of these functions even though P⁴thon itself provides

them out-of-the-box:

• chain(*iterables) iterates over multiple iterables one ater each other without

building an intermediate list of all items.

• combinations(iterable, r) generates all combinationof length r from the given

iterable.

• compress(data, selectors) applies a booleanmask from selectors to data and

returns onl⁴ the values from datawhere the corresponding element of selectors

is true.

• count(start, step)generatesanendless sequenceof values, starting fromstart

and incrementing b⁴ stepwith each call.

• cycle(iterable) loops repeatedl⁴ over the values in iterable.

• dropwhile(predicate, iterable) filters elementsof an iterable starting fromthe

beginning until predicate is false.

• groupby(iterable, keyfunc) creates an iterator grouping items b⁴ the result re-

turned b⁴ the keyfunc function.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǙǓ

• permutations(iterable[, r]) returns successive r-length permutations of the

items in iterable.

• product(*iterables) returns an iterable of the cartesian product of iterables

without using a nested for loop.

• takewhile(predicate, iterable) returns elements of an iterable starting from

the beginning until predicate is false.

These functions are particularl⁴ useful in conjunction with the operator module.

When used together, itertools and operator can handle most situations that pro-

grammers t⁴picall⁴ rel⁴ on lambda for:

Example Ǜ.Ǘ Using the operatormodule with itertools.groupby

>>> import itertools

>>> a = [{'foo': 'bar'}, {'foo': 'bar', 'x': 42}, {'foo': 'baz', 'y': 43}]

>>> import operator

>>> list(itertools.groupby(a, operator.itemgetter('foo')))

[('bar', <itertools._grouper object at 0xb000d0>), ('baz', <itertools. ←֓

_grouper object at 0xb00110>)]

>>> [(key, list(group)) for key, group in list(itertools.groupby(a, ←֓

operator.itemgetter('foo')))]

[('bar', []), ('baz', [{'y': 43, 'foo': 'baz'}])]

In this case, we could have alsowritten lambda x:x['foo'], but using operator lets

us avoid having to use lambda at all.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

ǜ The AST

AST stands for Abstract Syntax Tree. It is a tree representation of the abstract struc-

ture of the source code of an⁴ programming language, including P⁴thon. P⁴thon as

its own AST that is built upon parsing a P⁴thon source file.

This area of P⁴thon is not heavil⁴ documented, and not eas⁴ to deal with at first

glance. Still, its is ver⁴ interesting to know and understand some deeper construc-

tion of P⁴thon as a programming language to masteri⁵e its usage.

Theeasiestwa⁴ tohaveaviewofwhat theP⁴thonAST looks like is toparseaP⁴thon

code and dumps the generated AST. To do that, the P⁴thon ast module provides

ever⁴thing ⁴ou need for.

Example ǜ.ǔ Parsing P⁴thon code to AST

>>> import ast

>>> ast.parse

<function parse at 0x7f062731d950>

>>> ast.parse("x = 42")

<_ast.Module object at 0x7f0628a5ad10>

>>> ast.dump(ast.parse("x = 42"))

"Module(body=[Assign(targets=[Name(id='x', ctx=Store())], value=Num(n=42)) ←֓

])"

The ast.parse function returns a _ast.Module object that is the root of the tree.

bjpcjp

CHAPTER ǜ. THE AST ǔǙǕ

The tree can be entirel⁴ dumped using the ast.dumpmodule, and in this case is the

following:

An AST construction alwa⁴s starts with a root element, which is usuall⁴ an ast.

Module object. This object contains a list of statements or expressions to evaluate

in its body attribute. It usuall⁴ represents the content of a file.

As ⁴ou can guess, the ast.Assign object represents an assignment, that ismapped

to the = sign in the P⁴thon s⁴ntax. Assign has a list of targets, and a value it assig-

nates to it. The list of target in this case consists of one object, ast.Name, which

represents a variable named x. The value is a number with value being ǗǕ.

This AST can be passed to P⁴thon to be compiled and then evaluated. The compile

function provided as a P⁴thon built-in allows that.

>>> compile(ast.parse("x = 42"), '<input>', 'exec')

<code object <module> at 0x111b3b0, file "<input>", line 1>

>>> eval(compile(ast.parse("x = 42"), '<input>', 'exec'))

>>> x

42

An abstract s⁴ntax tree can be built manuall⁴ using the classes provided in the ast

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

CHAPTER ǜ. THE AST ǔǙǖ

module. Obviousl⁴, this is a ver⁴ long wa⁴ to write P⁴thon code, not a method I

would recommend! But it’s still interesting to use.

Let’s write a good old "Hello world!" in P⁴thon using the AST.

Example ǜ.Ǖ Hello world using P⁴thon AST

>>> hello_world = ast.Str(s='hello world!', lineno=1, col_offset=1)

>>> print_call = ast.Print(values=[hello_world], lineno=1, col_offset=1, nl ←֓

=True)

>>> module = ast.Module(body=[print_call])

>>> code = compile(module, '', 'exec')

>>> eval(code)

hello world!

Note

lineno and col_offset represents the line number and column offset of the source

code that has been used to generate the AST. This doesn’t have much sense to set them in

this context since we are not parsing any source file, but it’s useful to find back the position

of the code that generated this AST. It’s for example used by Python when generating

backtraces. Anyway, Python refused to compile any AST object that doesn’t provide this

information, this is why we pass it fake values of 1 here. The ast.fix_missing_loc

ations() function can fix it for you by setting the missing values to the ones set on the

parent node.

The whole list of objects that are available in the AST is easil⁴ available b⁴ reading

the _astmodule documentation (note the underscore).

The first two categories ⁴ou should consider are statement and expressions. State-

ments cover t⁴pes like assert, assign (=), augmented assigned (+=, /=, etc), global,

def, if, return, for, class, pass, import, etc. The⁴ all inherit from ast.stmt. Expres-

sions cover t⁴pes like lambda, number, yield, name (variable), compareor call. The⁴

all inherit from ast.expr.

bjpcjp

CHAPTER ǜ. THE AST ǔǙǗ

There’s also a few other categories, such as ast.operator defining standard oper-

ator such as add (+), div (/), right shit (>>), etc, or ast.cmpop defining comparisons

operator.

You can easil⁴ imagine that it is then possible to leverage this AST to construct a

compiler thatwould parse strings and generate code b⁴ building a P⁴thon AST. This

is exactl⁴ what led to the H⁴ project discussed in Section ǜ.ǔ.

In case ⁴ou need to walk through ⁴our tree, the ast.walk function will help ⁴ou

with that. But the astmodule also provides NodeTransformer, a class that can be

subclassed to walk an AST to modif⁴ some nodes. It’s therefore eas⁴ to use it to

change code d⁴namicall⁴.

Example ǜ.ǖ Changing all binar⁴ operation to addition

import ast

class ReplaceBinOp(ast.NodeTransformer):

"""Replace operation by addition in binary operation"""

def visit_BinOp(self, node):

return ast.BinOp(left=node.left,

op=ast.Add(),

right=node.right)

tree = ast.parse("x = 1/3")

ast.fix_missing_locations(tree)

eval(compile(tree, '', 'exec'))

print(ast.dump(tree))

print(x)

tree = ReplaceBinOp().visit(tree)

ast.fix_missing_locations(tree)

print(ast.dump(tree))

eval(compile(tree, '', 'exec'))

bjpcjp

bjpcjp

bjpcjp

ǜ.ǔ. HY ǔǙǘ

print(x)

Which executes to the following:

Module(body=[Assign(targets=[Name(id='x', ctx=Store())],

value=BinOp(left=Num(n=1), op=Div(), right=Num(n=3)))])

0.3333333333333333

Module(body=[Assign(targets=[Name(id='x', ctx=Store())],

value=BinOp(left=Num(n=1), op=Add(), right=Num(n=3)))])

4

Tip

If you need to evaluate a string of Python that should return a simple data type, you can

use ast.literal_eval. Contrary to eval, it disallows the input string to execute any

code. It’s a safer alternative to eval.

9.1 Hy

Now that ⁴ou knowabout the AST, ⁴ou can easil⁴ dreamof creating a new s⁴ntax for

P⁴thon that ⁴ou would parse and compile down to a standard P⁴thon AST. The H⁴

programming language is doing exactl⁴ that. It is a Lisp dialect that parses a Lisp

like language and converts it to regular P⁴thon AST. It is therefore full⁴ compatible

with the P⁴thon ecos⁴stem. You could compare it to what Clojure is to Java. H⁴

could deserve a book for itself, so we will onl⁴ fl⁴ over it in this section.

If ⁴ou alread⁴ wrote Lisp ¹, the H⁴ s⁴ntax will reall⁴ look familiar. Once installed,

launching the hy interpreter will give ⁴ou a standard REPL prompt where ⁴ou can

start interact with the interpreter.

¹If not, ⁴ou should consider it.

bjpcjp

ǜ.ǔ. HY ǔǙǙ

% hy

hy 0.9.10

=> (+ 1 1)

2

For those not familiar with the Lisp s⁴ntax, the parentheses denote a list, the first

element is a function, and the rest of the list are the arguments. Here the code is

equivalent to P⁴thon 1 + 1.

Most constructs aremapped from P⁴thon directl⁴, such as function definition. Set-

ting a variable relies on the setv function.

=> (defn hello [name]

... (print "Hello world!")

... (print (% "Nice to meet you %s" name)))

=> (hello "jd")

Hello world!

Nice to meet you jd

Internall⁴,Hy parses the code that is provided and compiles it down to P⁴thon AST.

Luckil⁴, Lisp is an eas⁴ to parse tree, as each pair of parentheses represents a node

of the list tree. All is needed to be done is to convert this Lisp tree to a P⁴thon ab-

stract s⁴ntax tree.

Class definition is supported through the defclass construct, that is inspired from

CLOS ².

(defclass A [object]

[[x 42]

[y (fn [self value]

(+ self.x value))]])

²Common Lisp Object S⁴stem

ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǙǚ

This defines a class named A, inheriting from object, with a class attribute xwhose

value is ǗǕ and a method y that returns the x attribute plus the value passed as

argument.

What’s reall⁴ wonderful, is that ⁴ou can import any Python library directl⁴ into H⁴
and use it with no penalt⁴.

=> (import uuid)

=> (uuid.uuid4)

UUID('f823a749-a65a-4a62-b853-2687c69d0e1e')

=> (str (uuid.uuid4))

'4efa60f2-23a4-4fc1-8134-00f5c271f809'

Hy alsohasmoreadvancedconstruct andmacros. If ⁴oueverwanted tohavea case

or switch statement in P⁴thon, admire what cond can do for ⁴ou:

(cond

((> somevar 50)

(print "That variable is too big!"))

((< somevar 10)

(print "That variable is too small!"))

(true

(print "That variable is jusssst right!")))

Hy is a ver⁴ niceproject that allows ⁴ou to jump into Lispworldwithout leaving ⁴our

comfort ⁵one too far behind ⁴ou, as ⁴ou are still writing P⁴thon. The hy2py tool can

even show ⁴ou what ⁴our H⁴ code would look like once translated into P⁴thon ³.

9.2 Interview with Paul Tagliamonte

Paul is a Debian developer, who’s working at Sunlight Foundation. He created H⁴

in ǕǓǔǖ and, as a Lisp lover, I joined him in this fabulous adventure some time later.
³Though it has some restrictions.

bjpcjp

ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǙǛ

Why did you create Hy in the first place?

Initiall⁴, I createdH⁴ followinga conversationabout howsomeone should

write a Lisp that compiles to P⁴thon rather than Java’s JVM (Clojure). A

few short da⁴s later, and I had the first version of H⁴ – something which

resembled a lisp, and even worked like a proper lisp, but it was slow. I

mean, reall⁴ slow. It took about an order ofmagnitude slower than native

P⁴thon, since the Lisp runtime itself was implemented in P⁴thon.

Frustrated, I almost gave up, onl⁴ to be pushed forward b⁴ a coworker

the promise of using AST to implement the runtime, rather than imple-

ment the runtime in P⁴thon. This insane idea started to reall⁴ spark the

entire project. This set in shortl⁴ before the holida⁴s in ǕǓǔǕ, leading me

to spendm⁴entire break fromwork hacking onH⁴. Aweekor so later, and

I ended upwith something that resembled the current H⁴ codebase quite

closel⁴ – most H⁴ devs would even know their wa⁴ around the compiler.

Just ater getting enoughworking to implement a basic Flask app, I gave a

talk at BostonP⁴thon about this project, and the receptionwas incredibl⁴

warm – sowarm, in fact, that I’d started to viewH⁴ as a goodwa⁴ to teach

people about P⁴thon internals, such as how the REPL works ⁛, PEP ǖǓǕ

import hooks, and P⁴thon AST – a good introduction to the concept of

code that writes code.

Ater the talk, Iwasabitdisappointed ina fewsections, so I rewrotechunks

of the compiler to fix some philosophical issues in the process, leading us

to the current iteration of the codebase – which has stood up quite well!
⁛code.InteractiveConsole

bjpcjp

ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǙǜ

In addition, H⁴ (the Language) is a good wa⁴ to get people to understand

how to read Lisp, since the⁴ can get comfortable with s-expressions in an

environment the⁴ know (evenusing libraries the⁴have l⁴ing around), eas-

ing the transition to other (“real”) Lisps, such as Common Lisp, Schemeor

Clojure, aswell as experimentwith new ideas (such asmacro s⁴stems, ho-

moiconicit⁴, and working without the concept of a statement).

Howdid you find out about using the AST correctly? What are the tips
and tricks, advice you can give to people looking at it?

P⁴thon’s AST is quite interesting. It’s not quite private (in fact, it’s ex-

plicitl⁴ not private), but it’s also not a public interface either. No stabil-

it⁴ is guaranteed from version to version – in fact, there are some rather

anno⁴ing differences between P⁴thon Ǖ and ǖ, and even within different

P⁴thon ǖ releases. In addition, different implementations ma⁴ interpret

the AST differentl⁴, or even have a unique AST. Nothing sa⁴s J⁴thon, P⁴P⁴,

or CP⁴thonmust deal with P⁴thon AST in the same wa⁴.

For instance, CP⁴thon can deal with slightl⁴ out of order AST entries (b⁴

the linenoand col_offset),whereasP⁴P⁴will throwanassertionerror. While

sometimesanno⁴ing, theAST isgenerall⁴ sane. It’snot impossible tobuild

AST that works on a vast number of P⁴thon instances. With a conditional

or two, it’s onl⁴ mildl⁴ anno⁴ing to create AST that works on CP⁴thon Ǖ.Ǚ

through ǖ.ǖ and P⁴P⁴, making this tool quite hand⁴.

The AST is extremel⁴ under-documented, somost knowledge comes from

reverse engineering generated AST. B⁴ writing up simple P⁴thon scripts,

one can use something similar to import ast;ast.dump(ast.parse("pri

nt foo")) to generate equivalent AST to help with the task. With a bit of

guesswork, and some persistence, it’s not untenable to build up a basic

understanding this wa⁴.

At some point, I’ll take on the task of documenting m⁴ understanding of

bjpcjp

ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǚǓ

the ASTmodule, but I find writing code is the best wa⁴ to learn the AST.

What’s the current status, and future goals of Hy?

H⁴ is currentl⁴ in development. It has a few subtle issues that need to

be addressed, and fixing the bugs to make H⁴ virtuall⁴ indistinguishable

froman⁴ other LISP-ǔ variant. This is amonumental task, but it’s one that

it’s ripe for hacking.

I’m also interested in keeping H⁴ efficient, in so far as it can be.

I hope, in the long run, that H⁴ will become a sort of teaching tool – one

wa⁴ to explain some of the concepts that are quite foreign to even expe-

rienced P⁴thonistas. I hope it also proves interesting enough to P⁴thon-

istas that the⁴ take an interest in these tools at our disposal, and continue

pushing the bounds of what I think H⁴ is.

M⁴ hope is that people see H⁴ for what it is – an ama⁵ing teaching tool. A

wa⁴ to get people interested in Common Lisp, Clojure or Scheme. I want

people to go home and read about wh⁴ Lisp variants do things the wa⁴

the⁴do, andhow the⁴ canborrow this philosoph⁴ in their da⁴-to-da⁴ cod-

ing.

How interoperable with Python is Hy? What about code distribution
and packaging?

Ama⁵ingl⁴ interoperable. Stunningl⁴ interoperable, reall⁴. Sowell, in fact,

that pdb can properl⁴ debugH⁴without an⁴ changes at all. To reall⁴ drive

this point home, I’ve written Flask apps, Django apps and modules of all

sorts. P⁴thon can import P⁴thon, H⁴ can importH⁴, H⁴ can import P⁴thon

and P⁴thon can import H⁴. This is what reall⁴ makes H⁴ unique – even

variants like Clojure can’t do this, the interop is purel⁴ unidirectional (Clo-

jure can import Java, but Java has one hell of a time importing Clojure).

This was done to reall⁴ bring homehowpowerful these toolswe have are.

bjpcjp

bjpcjp

ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǚǔ

H⁴worksb⁴ translatingH⁴ code (in s-expressions) intoP⁴thonASTalmost

directl⁴. This compilation step means the generated b⁴tecode is fairl⁴

sane stuff (somuchso thatdebuggingH⁴b⁴ lookingatP⁴thonsourcegen-

erated fromP⁴thon AST is a goodwa⁴ of tracking down pesk⁴ AST errors),

whichmeans P⁴thon has a ver⁴ hard time of even telling themodule isn’t

written in P⁴thon at all.

Common Lisp-isms, such as *earmuffs* or using-dashes are full⁴ sup-

ported b⁴ translating them to a P⁴thon equivalent (in this case, *earmuf

fs*becomesEARMUFFS, andusing-dashesbecomesusing_dashes),which

means P⁴thon doesn’t have a hard time of using them at all.

Ensuring that we have reall⁴ good interoperabilit⁴ is one of our highest

priorities, so if ⁴ou see an⁴ bugs – file them!

What are the upside and downside of choosing Hy over Python?

This is an interesting question. I’m quite partial, so take this with a grain

of salt!

H⁴ outshines P⁴thon in a few special wa⁴s because we’ve taken a bit of

effort to smooth behavior over P⁴thon versions to allow the newP⁴thon ǖ

future happen sooner. This was done b⁴ doing things like using future

division in P⁴thon Ǖ, and ensuring the s⁴ntax is normali⁵ed between the

two versions.

In addition, H⁴has somethingP⁴thonhasa ver⁴ hard timewith (evenwith

the outstanding AST module), which is a full macro s⁴stem. Macros are

ver⁴ special functions that alter the code during it’s compile step – not

unlike having ast.NodeVisitor as a first-class function of the language.

This leads to eas⁴ creation of new domain-specific languages, which is

composed of the base language (in this case, H⁴ / P⁴thon), with the addi-

tion of man⁴ macros which allow uniquel⁴ expressive and succinct code.

bjpcjp

ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǚǕ

Oten times, clever DSLs can replace languages designed to perform this

role, such as Lua.

As for downsides, what gives H⁴ it’s power can also hurt it. Not techni-

call⁴, but sociall⁴. H⁴, b⁴ virtue of being a Lisp written in s-expressions,

suffers from the stigma of being hard to learn, read or maintain. People

mightbeaverse toworkingonprojectsusingH⁴due to the fearofH⁴being

extremel⁴ complex.

H⁴ is the Lisp ever⁴one loves to hate – P⁴thon folks tend to not enjo⁴

its s⁴ntax, and Lispers tend to avoid H⁴ due to, well, being P⁴thon. H⁴

uses P⁴thon objects directl⁴, so the behavior of fundamental objects can

sometimes be surprising to the seasoned Lisper.

Hopefull⁴peoplewill lookpast it’s s⁴ntaxandconsiderusing it foraproject

toexpandone’shori⁵ons, andexplorepartsofP⁴thonpreviousl⁴untouched.

ǔǓ Performances and optimizations

Premature optimi⁵ation is the root of all evil.

--- Donald Knuth Structured Programming with go to Statements

10.1 Data structures

Most computer problems can be solved in an elegant and simplemanner, provided

that ⁴ou use the right data structures – and P⁴thon provides man⁴ data structures

to choose from.

Oten, there is a temptation to code ⁴our owncustomdata structures – this is invari-

abl⁴ a vain, useless, doomed idea. P⁴thon almost alwa⁴s has better data structures

and code to offer – learn to use them.

For example, ever⁴bod⁴ uses dict, but how man⁴ times have ⁴ou seen code like

this:

def get_fruits(basket, fruit):

A variation is to use "if fruit in basket:"

try:

return basket[fruit]

except KeyError:

ǔǓ.ǔ. DATA STRUCTURES ǔǚǗ

return set()

It’s muchmore eas⁴ to use the getmethod alread⁴ provided b⁴ the dict structure:

def get_fruits(basket, fruit):

return basket.get(fruit, set())

It’s not uncommon for people to use basic P⁴thon data structures without being

aware of all the methods the⁴ provide. This is also true for sets – for example:

def has_invalid_fields(fields):

for field in fields:

if field not in ['foo', 'bar']:

return True

return False

This can be written without a loop:

def has_invalid_fields(fields):

return bool(set(fields) - set(['foo', 'bar']))

The set data structures have methods which can solve man⁴ problems that would

otherwise need to be addressed b⁴ writing nested for/if blocks.

There are also more advanced data structures that can greatl⁴ reduce the burden

of code maintenance. For example, take a look at the following code:

def add_animal_in_family(species, animal, family):

if family not in species:

species[family] = set()

species[family].add(animal)

species = {}

add_animal_in_family(species, 'cat', 'felidea')

ǔǓ.Ǖ. PROFILING ǔǚǘ

Sure, this code is perfectl⁴ valid, but how man⁴ times will ⁴our program require a

variation of the above? Tens? Hundreds?

P⁴thon provides the collections.defaultdict structure, which solves the prob-

lem in an elegant wa⁴.

import collections

def add_animal_in_family(species, animal, family):

species[family].add(animal)

species = collections.defaultdict(set)

add_animal_in_family(species, 'cat', 'felidea')

Each time that ⁴ou tr⁴ to access anon-existent item from⁴ourdict, the defaultdict

will use the function that was passed as argument to its constructor to build a new

value – instead than raisinga KeyError. In this case, the set function is used tobuild

a new set each time we need it.

B⁴ the wa⁴, the collections module offers a few useful data structures that can

solve other kinds of problems, such as OrderedDict or Counter.

It’s reall⁴ important to look for the right data structure in P⁴thon, as the correct

choice will save ⁴ou time, and lessen codemaintenance.

10.2 Profiling

P⁴thon provides a few tools to profile ⁴our program. The standard one is cProfile

and is eas⁴ enough to use.

Example ǔǓ.ǔ Using the cProfilemodule

$ python -m cProfile myscript.py

343 function calls (342 primitive calls) in 0.000 seconds

ǔǓ.Ǖ. PROFILING ǔǚǙ

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.000 0.000 :0(_getframe)

1 0.000 0.000 0.000 0.000 :0(len)

104 0.000 0.000 0.000 0.000 :0(setattr)

1 0.000 0.000 0.000 0.000 :0(setprofile)

1 0.000 0.000 0.000 0.000 :0(startswith)

2/1 0.000 0.000 0.000 0.000 <string>:1(<module>)

1 0.000 0.000 0.000 0.000 StringIO.py:30(<module>)

1 0.000 0.000 0.000 0.000 StringIO.py:42(StringIO)

The results list indicates the number of calls each functionwas called, and the time

spent on its execution. You canuse the -soption to sort b⁴ other fields; e.g. -s time

will sort b⁴ internal time.

If ⁴ou’ve coded in C, as I did ⁴ears ago, ⁴ou probabl⁴ alread⁴ know the fantastic

Valgrind tool, that – among other things – is able to provide profiling data for C

programs. The data that it provides can then be visuali⁵ed b⁴ another great tool

named KCacheGrind.

You’ll behapp⁴ toknowthat theprofiling informationgeneratedb⁴ cProfile caneas-

il⁴ be converted to a call tree that can be read b⁴ KCacheGrind. The cProfilemod-

ule has a -o option that allows ⁴ou to save the profiling data, and p⁴profǕcalltree

can convert from one format to the other.

Example ǔǓ.Ǖ Using KCacheGrind to visuali⁵e P⁴thon profiling data

$ python -m cProfile -o myscript.cprof myscript.py

$ pyprof2calltree -k -i myscript.cprof

ǔǓ.Ǖ. PROFILING ǔǚǚ

Figure ǔǓ.ǔ: KCacheGrind example

This provides a lot of information thatwill allow ⁴ou to determinewhat part of ⁴our

programmight be consuming toomuch resources.

While this clearl⁴ works well for a macroscopic view of ⁴our program, it sometimes

helps to have a microscopic view of some part of the code. In such a context, I find

it better to rel⁴ on the dis module to find out what’s going on behind the scenes.

The dismodule is a disassembler of P⁴thon b⁴te code. It’s simple enough to use:

>>> def x():

... return 42

...

>>> import dis

>>> dis.dis(x)

2 0 LOAD_CONST 1 (42)

ǔǓ.Ǖ. PROFILING ǔǚǛ

3 RETURN_VALUE

The dis.dis function disassembles the function that ⁴ou passed as a parameter,

and prints the list of b⁴tecode instructions that are run b⁴ the function. It can be

useful to understand what’s reall⁴ behind each line of code that ⁴ou write, in order

to be able to properl⁴ optimi⁵e ⁴our code.

The following code defines two functions, each of which does the same thing – con-

catenates three letters:

abc = ('a', 'b', 'c')

def concat_a_1():

for letter in abc:

abc[0] + letter

def concat_a_2():

a = abc[0]

for letter in abc:

a + letter

Both appear to do exactl⁴ the same thing, but if we disassemble them, we’ll see

that the generated b⁴tecode is a bit different:

>>> dis.dis(concat_a_1)

2 0 SETUP_LOOP 26 (to 29)

3 LOAD_GLOBAL 0 (abc)

6 GET_ITER

>> 7 FOR_ITER 18 (to 28)

10 STORE_FAST 0 (letter)

3 13 LOAD_GLOBAL 0 (abc)

16 LOAD_CONST 1 (0)

ǔǓ.Ǖ. PROFILING ǔǚǜ

19 BINARY_SUBSCR

20 LOAD_FAST 0 (letter)

23 BINARY_ADD

24 POP_TOP

25 JUMP_ABSOLUTE 7

>> 28 POP_BLOCK

>> 29 LOAD_CONST 0 (None)

32 RETURN_VALUE

>>> dis.dis(concat_a_2)

2 0 LOAD_GLOBAL 0 (abc)

3 LOAD_CONST 1 (0)

6 BINARY_SUBSCR

7 STORE_FAST 0 (a)

3 10 SETUP_LOOP 22 (to 35)

13 LOAD_GLOBAL 0 (abc)

16 GET_ITER

>> 17 FOR_ITER 14 (to 34)

20 STORE_FAST 1 (letter)

4 23 LOAD_FAST 0 (a)

26 LOAD_FAST 1 (letter)

29 BINARY_ADD

30 POP_TOP

31 JUMP_ABSOLUTE 17

>> 34 POP_BLOCK

>> 35 LOAD_CONST 0 (None)

38 RETURN_VALUE

As ⁴ou can see, in the second version we store abc[0] in a temporar⁴ variable be-

ǔǓ.Ǖ. PROFILING ǔǛǓ

fore running the loop. This makes the b⁴tecode executed inside the loop a little

smaller, as we avoid having to do the abc[0] lookup for each iteration. Measured

using timeit, the second version is ǔǓ% faster than the first one; it takes a whole

microsecond less to execute! Obviousl⁴ thismicrosecond is notworth theoptimi⁵a-

tion unless ⁴ou call this function millions of times – but this is kind of insight that

the dismodule can provide.

Whether ⁴ou should need to rel⁴ on such "tricks" as storing the value outside the

loop is debatable – ultimatel⁴, it should be the compiler’swork to optimi⁵e this kind

of thing. On the other hand, as the language is heavil⁴ d⁴namic, it’s difficult for the

compiler to be sure that optimi⁵ationwouldn’t result in negative side effects. So be

careful when writing ⁴our code!

Another wrong habit I’ve oten encountered when reviewing code is the defining of

functions inside functions for no reason. This has a cost – as the function is going

to be redefined over and over for no reason.

Example ǔǓ.ǖ A function defined in a function, disassembled

>> import dis

>>> def x():

... return 42

...

>>> dis.dis(x)

2 0 LOAD_CONST 1 (42)

3 RETURN_VALUE

>>> def x():

... def y():

... return 42

... return y()

...

>>> dis.dis(x)

2 0 LOAD_CONST 1 (<code object y at 0x100ce7e30, ←֓

ǔǓ.Ǖ. PROFILING ǔǛǔ

file "<stdin>", line 2>)

3 MAKE_FUNCTION 0

6 STORE_FAST 0 (y)

4 9 LOAD_FAST 0 (y)

12 CALL_FUNCTION 0

15 RETURN_VALUE

We can see here that it is needlessl⁴ complicated, calling MAKE_FUNCTION, STORE_F

AST, LOAD_FAST and CALL_FUNCTION instead of just LOAD_CONST. That requires man⁴

more opcodes for no good reason – and function calling in P⁴thon is alread⁴ ineffi-

cient.

The onl⁴ case in which it is required to define a function within a function is when

building a function closure, and this is a perfectl⁴ identified use case in P⁴thon’s

opcodes.

Example ǔǓ.Ǘ Disassembling a closure

>>> def x():

... a = 42

... def y():

... return a

... return y()

...

>>> dis.dis(x)

2 0 LOAD_CONST 1 (42)

3 STORE_DEREF 0 (a)

3 6 LOAD_CLOSURE 0 (a)

9 BUILD_TUPLE 1

12 LOAD_CONST 2 (<code object y at 0x100d139b0, ←֓

ǔǓ.ǖ. ORDERED LIST AND BISECT ǔǛǕ

file "<stdin>", line 3>)

15 MAKE_CLOSURE 0

18 STORE_FAST 0 (y)

5 21 LOAD_FAST 0 (y)

24 CALL_FUNCTION 0

27 RETURN_VALUE

10.3 Ordered list and bisect

When manipulating large lists, the use of sorted lists has a few advantages over

non-sorted lists – for example, sorted lists have a retrieve time of O(log n).

A couple of times, however, I’ve seen people tr⁴ing to implement their own data

structures and algorithms to handle such cases. This is a bad idea – ⁴ou shouldn’t

spend time on problems alread⁴ solved.

Firstl⁴, P⁴thon provides a bisectmodule which contains a bisection algorithm. It’s

eas⁴ enough to use:

Example ǔǓ.ǘ Usage of bisect

>>> farm = sorted(['haystack', 'needle', 'cow', 'pig'])

>>> bisect.bisect(farm, 'needle')

3

>>> bisect.bisect_left(farm, 'needle')

2

>>> bisect.bisect(farm, 'chicken')

0

>>> bisect.bisect_left(farm, 'chicken')

0

>>> bisect.bisect(farm, 'eggs')

ǔǓ.ǖ. ORDERED LIST AND BISECT ǔǛǖ

1

>>> bisect.bisect_left(farm, 'eggs')

1

Thebisect functionallows⁴ou to retrieve the indexwhereanew list element should

be inserted, while keeping the list sorted.

If ⁴ou wish to insert the element immediatel⁴, the bisectmodule provides the ins

ort_left and insort_right functions that do exactl⁴ that.

Example ǔǓ.Ǚ Usage of bisect.insort

>>> farm

['cow', 'haystack', 'needle', 'pig']

>>> bisect.insort(farm, 'eggs')

>>> farm

['cow', 'eggs', 'haystack', 'needle', 'pig']

>>> bisect.insort(farm, 'turkey')

>>> farm

['cow', 'eggs', 'haystack', 'needle', 'pig', 'turkey']

You can then use these functions to create a list that is alwa⁴s sorted:

Example ǔǓ.ǚ A SortedList implementation

import bisect

class SortedList(list):

def __init__(self, iterable):

super(SortedList, self).__init__(sorted(iterable))

def insort(self, item):

bisect.insort(self, item)

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǗ

def index(self, value, start=None, stop=None):

place = bisect.bisect_left(self[start:stop], value)

if start:

place += start

end = stop or len(self)

if place < end and self[place] == value:

return place

raise ValueError("%s is not in list" % value)

Obviousl⁴, one shouldn’t use the direct functions append or extend on this list – or

the list will no longer be sorted.

Man⁴ P⁴thon libraries exist which implement various versions of the above code –

and man⁴ more data t⁴pes, such as binar⁴ or red-black tree structures. The blist

and bintreeP⁴thon packages contain code that ⁴ou can be use for these purposes,

rather than implementing and debugging ⁴our own version.

10.4 Namedtuple and slots

Sometimes it’s useful to have the abilit⁴ to create ver⁴ simple objects which onl⁴

possess a few fixed attributes. A simple implementationwould be something along

these lines:

class Point(object):

def __init__(self, x, y):

self.x = x

self.y = y

This definitel⁴ gets the job done – however, there is a downside to this approach: it

creates a class which inherits from object. In using this Point class, ⁴ou be instanti-

ating objects.

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǘ

Onepropert⁴of suchobjects inP⁴thon, is that the⁴ storeall of their attributes inside

a dictionar⁴; this dictionar⁴ is itself stored in the __dict__ attribute:

>>> p = Point(1, 2)

>>> p.__dict__

{'y': 2, 'x': 1}

>>> p.z = 42

>>> p.z

42

>>> p.__dict__

{'y': 2, 'x': 1, 'z': 42}

The advantage is that ⁴ou can add as man⁴ attributes as ⁴ou want to an object.

The drawback, however, is that using a dictionar⁴ to store these attributes is quite

expensive in terms of memor⁴ – ⁴ou need to store the object, the ke⁴s, the value

references, etc. It’s slow to create and slow to manipulate, with a high memor⁴

cost. Consider the following simple class:

[source,python]

class Foobar(object):

def __init__(self, x):

self.x = x

Let’s check the memor⁴ usage using the memory_profiler P⁴thon package:

$ python -m memory_profiler object.py

Filename: object.py

Line # Mem usage Increment Line Contents

==

5 @profile

6 9.879 MB 0.000 MB def main():

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǙ

7 50.289 MB 40.410 MB f = [Foobar(42) for i in range ←֓

(100000)]

Therefore, it exists a wa⁴ to use objects without this default behaviour. Classes in

P⁴thon can define a __slots__ attribute that will list the onl⁴ attributes allowed

for instances of this class. The power of this is that instead of allocating a whole

dictionar⁴ object to store all of the object attributes, the⁴ can now be stored in a

list object. If ⁴ou go through the CP⁴thon source code and take a look at the Obje

cts/typeobject.c file, it is quite eas⁴ to understandwhat P⁴thon does in this case.

Here is a cut down version of the function which handles this:

static PyObject *

type_new(PyTypeObject *metatype, PyObject *args, PyObject *kwds)

{

[…]

/* Check for a __slots__ sequence variable in dict, and count it */

slots = _PyDict_GetItemId(dict, &PyId___slots__);

nslots = 0;

if (slots == NULL) {

if (may_add_dict)

add_dict++;

if (may_add_weak)

add_weak++;

}

else {

/* Have slots */

/* Make it into a tuple */

if (PyUnicode_Check(slots))

slots = PyTuple_Pack(1, slots);

else

slots = PySequence_Tuple(slots);

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǚ

/* Are slots allowed? */

nslots = PyTuple_GET_SIZE(slots);

if (nslots > 0 && base->tp_itemsize != 0) {

PyErr_Format(PyExc_TypeError,

"nonempty __slots__ "

"not supported for subtype of '%s'",

base->tp_name);

goto error;

}

/* Copy slots into a list, mangle names and sort them.

Sorted names are needed for __class__ assignment.

Convert them back to tuple at the end.a

*/

newslots = PyList_New(nslots - add_dict - add_weak);

if (newslots == NULL)

goto error;

if (PyList_Sort(newslots) == -1) {

Py_DECREF(newslots);

goto error;

}

slots = PyList_AsTuple(newslots);

Py_DECREF(newslots);

if (slots == NULL)

goto error;

}

/* Allocate the type object */

type = (PyTypeObject *)metatype->tp_alloc(metatype, nslots);

[…]

/* Keep name and slots alive in the extended type object */

et = (PyHeapTypeObject *)type;

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǛ

Py_INCREF(name);

et->ht_name = name;

et->ht_slots = slots;

slots = NULL;

[…]

return (PyObject *)type;

As ⁴ou can see, P⁴thon converts the content of __slots__ into a tuple, then a list

that it builds and sorts, before converting it back into a tuple to use and store it

in the class. This wa⁴, P⁴thon can retrieve the values quickl⁴, without having to

allocate and use an entire dictionar⁴.

It’s eas⁴ enough to declare such a class:

Example ǔǓ.Ǜ A class declaration using __slots__

class Foobar(object):

__slots__ = 'x'

def __init__(self, x):

self.x = x

We can easil⁴ compare the memor⁴ usage of the two approaches using the memory

_profiler P⁴thon package:

Example ǔǓ.ǜMemor⁴ usage of objects using __slots__

% python -m memory_profiler slots.py

Filename: slots.py

Line # Mem usage Increment Line Contents

==

7 @profile

8 9.879 MB 0.000 MB def main():

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǜ

9 21.609 MB 11.730 MB f = [Foobar(42) for i in range ←֓

(100000)]

So it seems that b⁴ using the __slots__ attribute of P⁴thon classes, we can halve

our memor⁴ usage – this means that when creating a large amount of simple ob-

jects, the__slots__attribute is aneffectiveandefficient choice. However, the tech-

nique shouldn’t be misused in order to perform static t⁴ping or the like. This isn’t

in the spirit of P⁴thon programs.

Due to the fixed nature of the attribute list, it’s eas⁴ enough to imagine classes

where the attributes listed would alwa⁴s have a value, and where the fields would

alwa⁴s be sorted in some wa⁴.

That’s exactl⁴ thenature of the namedtuple class from the collectionmodule. It al-

lows us to d⁴namicall⁴ create a class that will inherit from tuple, therefore sharing

its characteristics – such as being immutable, and having a fixed number of entries.

What namedtuple provides is the abilit⁴ to retrieve the tuple elements b⁴ referenc-

ing a named attribute, rather than just referencing b⁴ index.

Example ǔǓ.ǔǓ Declaring a class using namedtuple

>>> import collections

>>> Foobar = collections.namedtuple('Foobar', ['x'])

>>> Foobar = collections.namedtuple('Foobar', ['x', 'y'])

>>> Foobar(42, 43)

Foobar(x=42, y=43)

>>> Foobar(42, 43).x

42

>>> Foobar(42, 43).x = 44

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

>>> Foobar(42, 43).z = 0

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǜǓ

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'Foobar' object has no attribute 'z'

>>> list(Foobar(42, 43))

[42, 43]

Since a class like this would inherit from tuple, we can easil⁴ convert it to a list. We

can’t change or add an⁴ attributes on objects of this class, because on one hand it

inherits from tuple, and also because the __slots__ value is set to an empt⁴ tuple

– thereb⁴ avoiding the creating of the __dict__.

Example ǔǓ.ǔǔMemor⁴ usage of a class built from collections.namedtuple

% python -m memory_profiler namedtuple.py

Filename: namedtuple.py

Line # Mem usage Increment Line Contents

==

4 @profile

5 9.895 MB 0.000 MB def main():

6 23.184 MB 13.289 MB f = [Foobar(42) for i in range ←֓

(100000)]

Therefore, usage of the namedtuple class factor⁴ is as almost as efficient as using an

objectwith __slots__, the onl⁴ differencebeing that it is compatiblewith the tuple

class. It can therefore be passed toman⁴ native P⁴thon functions and libraries that

expect an iterable t⁴pe as an argument. It also enjo⁴s the various optimi⁵ations

that exist for tuples ¹.

namedtuple also provides a few extra methods that, even if prefixed b⁴ an under-

score, are actuall⁴ intended to be public. _asdict can convert the namedtuple to
¹For example, tuples smaller than PyTuple_MAXSAVESIZE (ǕǓ b⁴ default) will use a faster memor⁴

allocator in CP⁴thon

ǔǓ.ǘ. MEMOIZATION ǔǜǔ

a dict instance, _make allows us to convert an existing iterable object to this class,

and _replace returns a new instance of the object with some fields replaced.

10.5 Memoization

Memoi⁵ation is a technique used to speed up function calls b⁴ caching their result.

The results can be cached onl⁴ if the function is pure – meaning that it has no side

effects or outputs, and that it does not depend on an⁴ global state.

A trivial function that can be memoi⁵ed is the sine function sin.

Example ǔǓ.ǔǕ A basic memoi⁵ation technique

>>> import math

>>> _SIN_MEMOIZED_VALUES = {}

>>> def memoized_sin(x):

... if x not in _SIN_MEMOIZED_VALUES:

... _SIN_MEMOIZED_VALUES[x] = math.sin(x)

... return _SIN_MEMOIZED_VALUES[x]

>>> memoized_sin(1)

0.8414709848078965

>>> _SIN_MEMOIZED_VALUES

{1: 0.8414709848078965}

>>> memoized_sin(2)

0.9092974268256817

>>> memoized_sin(2)

0.9092974268256817

>>> _SIN_MEMOIZED_VALUES

{1: 0.8414709848078965, 2: 0.9092974268256817}

>>> memoized_sin(1)

0.8414709848078965

>>> _SIN_MEMOIZED_VALUES

bjpcjp

ǔǓ.ǘ. MEMOIZATION ǔǜǕ

{1: 0.8414709848078965, 2: 0.9092974268256817}

The first time that memoized_sin is calledwith an argument that is not stored in _SI

N_MEMOIZED_VALUES, the valuewill be computed and stored in this dictionar⁴. Later

on, ifwe call the functionwith the samevalueagain, the resultwill be retrieved from

the dictionar⁴ rather than computed again. While sin is a functionwhich computes

ver⁴ quickl⁴, this ma⁴ not be true of some advanced functions which involve more

complicated computations.

If ⁴ou’ve alread⁴ readaboutdecorators (if not, go toSection ǚ.ǔ), ⁴oumust be think-

ing that there is a perfect opportunit⁴ to use them here – and ⁴ou’d be right. P⁴PI

lists a few implementations of memoi⁵ation through decorators, from ver⁴ simple

cases to the most complex and complete.

Starting with P⁴thon ǖ.ǖ, the functools module provides a LRU (Least-Recentl⁴-

Used) cache decorator. This provides the same functionalit⁴ as the memoi⁵ation

describedhere, butwith thebenefit that it limits the number of entries in the cache,

removing the least recentl⁴usedonewhen thecachesi⁵e reaches itsmaximumsi⁵e.

Themodule also provides statistics on cache hits, misses, etc. Inm⁴ opinion, these

are amust-haveswhen implementing such a cache. There’s no point in usingmem-

oi⁵ation – or an⁴ caching technique – if ⁴ou are unable to meter its usage and use-

fulness.

Here’s an example of the memoized_sin function above, using functools.lru_ca

che:

Example ǔǓ.ǔǖ Using functools.lru_cache

>>> import functools

>>> import math

>>> @functools.lru_cache(maxsize=2)

... def memoized_sin(x):

... return math.sin(x)

ǔǓ.Ǚ. PYPY ǔǜǖ

...

>>> memoized_sin(2)

0.9092974268256817

>>> memoized_sin.cache_info()

CacheInfo(hits=0, misses=1, maxsize=2, currsize=1)

>>> memoized_sin(2)

0.9092974268256817

>>> memoized_sin.cache_info()

CacheInfo(hits=1, misses=1, maxsize=2, currsize=1)

>>> memoized_sin(3)

0.1411200080598672

>>> memoized_sin.cache_info()

CacheInfo(hits=1, misses=2, maxsize=2, currsize=2)

>>> memoized_sin(4)

-0.7568024953079282

>>> memoized_sin.cache_info()

CacheInfo(hits=1, misses=3, maxsize=2, currsize=2)

>>> memoized_sin(3)

0.1411200080598672

>>> memoized_sin.cache_info()

CacheInfo(hits=2, misses=3, maxsize=2, currsize=2)

>>> memoized_sin.cache_clear()

>>> memoized_sin.cache_info()

CacheInfo(hits=0, misses=0, maxsize=2, currsize=0)

10.6 PyPy

P⁴P⁴ is an efficient implementation of the P⁴thon language which complies with

standards. Indeed, the canonical implementation of P⁴thon, CP⁴thon – so called

bjpcjp

ǔǓ.Ǚ. PYPY ǔǜǗ

because it’s written in C – can be ver⁴ slow. The idea behind P⁴P⁴ was to write

a P⁴thon interpreter in P⁴thon itself. In time it evolved to be written in RP⁴thon,

which is a restricted subset of the P⁴thon language.

RP⁴thon places constraints on the P⁴thon language in such a wa⁴ that a variable’s

t⁴pe can be inferred at compile time. The RP⁴thon code is translated to C code that

is compiled tobuild the interpreter –RP⁴thon couldof coursebeused to implement

other languages than P⁴thon.

What’s interesting in P⁴P⁴, besides the technical challenge, is that it is now at a

stage where it can act as a faster replacement for CP⁴thon. P⁴P⁴ has a JIT (Just-

In-Time) compiler built-in – long stor⁴ short, it allows the code to be run in a faster

wa⁴ b⁴ combining the speed of compiled code with the flexibilit⁴ of interpretation.

How fast? That depends, but for pure algorithmic code it ismuch faster. For more

general code, P⁴P⁴ claims to achieve ǖ times the speed, most of the time. Though

don’t start dreaming too much about it ⁴et – P⁴P⁴ also has some of the CP⁴thon

limitations, such as the hated GIL. ²

While not being a strict optimi⁵ation technique, targeting P⁴P⁴ as one of ⁴our sup-

ported P⁴thon implementations is probabl⁴ a good idea. Achieving this goal re-

quires the same kind of coding polic⁴ that is required for support of other P⁴thon

versions – basicall⁴, ⁴ou need to make sure that ⁴ou are testing ⁴our sotware un-

der P⁴P⁴ like ⁴ou do under CP⁴thon. tox (see Section Ǚ.ǚ) supports the building of

virtual environments using P⁴P⁴, just as it does for CP⁴thon Ǖ or CP⁴thon ǖ, so it

should be prett⁴ straightforward to put this in place.

Doing so at the beginning of the project will make sure that there’s not too much

work to do at a later stage if ⁴ou wish to be able to run ⁴our sotware with P⁴P⁴.

²Global Interpreter Lock

bjpcjp

bjpcjp

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǘ

Note

For the Hy project, we successfully adopted such a strategy from the beginning. Hy always

has supported PyPy and all CPython versions without much trouble. On the other hand,

we failed to do so in all of our OpenStack projects, and we are now blocked by various

code paths and dependencies that don’t work on PyPy for various reasons, as they weren’t

fully tested in the early stages.

P⁴P⁴ is compatible with P⁴thon Ǖ.ǚ, and its JIT compiler works on ǖǕ- and ǙǗ-bit,

xǛǙ and ARM architectures, and under various operating s⁴stems (Linux, Windows,

Mac OS X…). Support for P⁴thon ǖ is underwa⁴.

10.7 Achieving zero copy with the buffer protocol

Oten programs have to deal with a huge amount of data in the form of large arra⁴s

of b⁴tes. Handling such a large amount of data in strings can be ver⁴ ineffective

once ⁴ou start manipulating it b⁴ cop⁴ing, slicing, andmodif⁴ing them.

Let’s consider a small program which reads a large file of binar⁴ data, and copies

it partiall⁴ into another file. To examine out our memor⁴ usage, we will use mem-

or⁴_profiler, a nice P⁴thon package that allows us to see the memor⁴ usage of a

program line b⁴ line.

@profile

def read_random():

with open("/dev/urandom", "rb") as source:

content = source.read(1024 * 10000)

content_to_write = content[1024:]

print("Content length: %d, content to write length %d" %

(len(content), len(content_to_write)))

with open("/dev/null", "wb") as target:

bjpcjp

bjpcjp

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǙ

target.write(content_to_write)

if __name__ == '__main__':

read_random()

We then run the above program usingmemory_profiler:

$ python -m memory_profiler memoryview/copy.py

Content length: 10240000, content to write length 10238976

Filename: memoryview/copy.py

Mem usage Increment Line Contents

======================================

@profile

9.883 MB 0.000 MB def read_random():

9.887 MB 0.004 MB with open("/dev/urandom", "rb") as source:

19.656 MB 9.770 MB content = source.read(1024 * 10000) ②1

29.422 MB 9.766 MB content_to_write = content[1024:] ②2

29.422 MB 0.000 MB print("Content length: %d, content to write ←֓

length %d" %

29.434 MB 0.012 MB (len(content), len(content_to_write)))

29.434 MB 0.000 MB with open("/dev/null", "wb") as target:

29.434 MB 0.000 MB target.write(content_to_write)

②1 We are reading ǔǓ MB from /dev/urandom and not doing much with it. P⁴thon

needs to allocate around ǔǓ MB of memor⁴ to store this data as a string.

②2 We cop⁴ the entire block of dataminus the first KB – becausewewon’t bewrit-

ing to that first KB to the target file.

What’s interesting in this example is that, as ⁴ou can see, the memor⁴ usage of the

program is increased b⁴ about ǔǓ MB when building the variable content_to_write.

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǚ

In fact, the slice operator is cop⁴ing the entiret⁴ of content, minus the first KB, into

a new string object.

Whendealingwith largedata, performing this kindof operationon largeb⁴te arra⁴s

is going to be a disaster. If ⁴ou happen to have written C code alread⁴, ⁴ou know

that using memcpy() has a significant cost, both in term of memor⁴ usage and in

terms of general performance: cop⁴ing memor⁴ is slow.

But as a C programmer ⁴ou’ll also know that strings are arra⁴s of characters, and

that nothing stops ⁴ou from looking at onl⁴ part of this arra⁴ without cop⁴ing it,

through the use of basic pointer arithmetic ³.

This is possible in P⁴thon using objects which implement the buffer protocol. The
buffer protocol is defined in PEP ǖǔǔǛ, which explains the C API used to provide this

protocol to various t⁴pes, such as strings.

When an object implements this protocol, ⁴ou can use thememoryview class con-

structor on it to build a newmemoryview object that will reference the original ob-

ject memor⁴.

Here’s an example:

>>> s = b"abcdefgh"

>>> view = memoryview(s)

>>> view[1]

98 ②1

>>> limited = view[1:3]

<memory at 0x7fca18b8d460>

>>> bytes(view[1:3])

b'bc'

②1 This is the ASCII code for the letter b.
³Assuming that the entire string is in a contiguous memor⁴ area.

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǛ

Figure ǔǓ.Ǖ: Using slice onmemoryview objects

In this case, we are going to make use of the fact that the memoryview object’s slice

operator itself returns a memoryview object. That means it does not cop⁴ an⁴ data,

but merel⁴ references a particular slice of it.

With this in mind, we now can rewrite the program, this time referencing the data

we want to write using amemoryview object.

@profile

def read_random():

with open("/dev/urandom", "rb") as source:

content = source.read(1024 * 10000)

content_to_write = memoryview(content)[1024:]

print("Content length: %d, content to write length %d" %

(len(content), len(content_to_write)))

with open("/dev/null", "wb") as target:

target.write(content_to_write)

if __name__ == '__main__':

read_random()

And this programwill have half the memor⁴ usage of the first version:

$ python -m memory_profiler memoryview/copy-memoryview.py

Content length: 10240000, content to write length 10238976

Filename: memoryview/copy-memoryview.py

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǜ

Mem usage Increment Line Contents

======================================

@profile

9.887 MB 0.000 MB def read_random():

9.891 MB 0.004 MB with open("/dev/urandom", "rb") as source:

19.660 MB 9.770 MB content = source.read(1024 * 10000) ②1

19.660 MB 0.000 MB content_to_write = memoryview(content) ←֓

[1024:] ②2

19.660 MB 0.000 MB print("Content length: %d, content to write ←֓

length %d" %

19.672 MB 0.012 MB (len(content), len(content_to_write)))

19.672 MB 0.000 MB with open("/dev/null", "wb") as target:

19.672 MB 0.000 MB target.write(content_to_write)

②1 We are reading ǔǓ MB from /dev/urandom and not doing much with it. P⁴thon

needs to allocate around ǔǓ MB of memor⁴ to store this data as a string.

②2 We reference the entire block of data minus the first KB – because we won’t

be writing to that first KB to the target file. No cop⁴ing means that no more

memor⁴ is used!

This kind of trick is especiall⁴ useful when dealing with sockets. As ⁴ou ma⁴ know,

when data is sent over a socket, it might not send all the data in a single call. A

simple implementation would be to write:

import socket

s = socket.socket(…)

s.connect(…)

data = b"a" * (1024 * 100000) ②1

while data:

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǕǓǓ

sent = s.send(data)

data = data[sent:] ②2

②1 Build a b⁴tes object with more than ǔǓǓ millions times the letter a.

②2 Remove the first sent b⁴tes sent.

Obviousl⁴, using such a mechanism, ⁴ou are going to cop⁴ the data over and over

until the socket has sent ever⁴thing. Usingmemoryview, we can achieve the same

functionalit⁴ without cop⁴ing data – hence, ⁵ero cop⁴:

import socket

s = socket.socket(…)

s.connect(…)

data = b"a" * (1024 * 100000) ②1

mv = memoryview(data)

while mv:

sent = s.send(mv)

mv = mv[sent:] ②2

②1 Build a b⁴tes object with more than ǔǓǓ millions times the letter a.

②2 Build a newmemor⁴viewobject pointing to the datawhich remains to be sent.

Thiswon’t cop⁴an⁴thing, andwon’t use an⁴morememor⁴ than the ǔǓǓMB initiall⁴

needed for our data variable.

We’ve now seen memor⁴view objects used to write data efficientl⁴, but the same

method can also be used to read data. Most I/O operations in P⁴thon know how to

deal with objects implementing the buffer protocol. The⁴ can read from it, but also

write to it. In this case, we don’t needmemoryview objects – we can just ask an I/O

function to write into our pre-allocated object:

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǕǓǔ

>>> ba = bytearray(8)

>>> ba

bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00')

>>> with open("/dev/urandom", "rb") as source:

... source.readinto(ba)

...

8

>>> ba

bytearray(b'`m.z\x8d\x0fp\xa1')

With such techniques, it’s eas⁴ to pre-allocate a buffer (as ⁴ouwould do in C tomit-

igate the number of calls tomalloc()) and fill it at ⁴our convenience. Usingmemo-

ryview, ⁴ou can even place data at an⁴ point in the memor⁴ area:

>>> ba = bytearray(8)

>>> ba_at_4 = memoryview(ba)[4:] ②1

>>> with open("/dev/urandom", "rb") as source:

... source.readinto(ba_at_4) ②2

...

4

>>> ba

bytearray(b'\x00\x00\x00\x00\x0b\x19\xae\xb2')

②1 We reference the bytearray from offset Ǘ to its end.

②2 Wewrite the content of /dev/urandom fromoffset Ǘ to the end of the bytearray,

effectivel⁴ reading Ǘ b⁴tes onl⁴.

Tip

Both the objects in the array module and the functions in the struct module can handle the

buffer protocol correctly, and can therefore perform efficiently when targeting zero copy.

ǔǓ.Ǜ. INTERVIEWWITH VICTOR STINNER ǕǓǕ

10.8 Interview with Victor Stinner

Victor is a long time P⁴thon hacker, a core contributor and the author of man⁴

P⁴thon modules. He recentl⁴ authored PEP ǗǘǗ, which proposes a new tracemal

locmodule to trace memor⁴ block allocation inside P⁴thon, and also wrote a sim-

ple AST optimi⁵er.

What’s a good starting strategy to optimize Python code?

Well, the strateg⁴ is the same in P⁴thon as in other languages. First ⁴ou

need a well-defined use case, in order to get a stable and reproducible

benchmark. Without a reliable benchmark, tr⁴ing different optimi⁵ations

ma⁴ result in a wasting time and premature optimi⁵ations. Useless op-

timi⁵ations ma⁴ make the code worse, less readable, or even slower. A

useful optimi⁵ation must speed the program up b⁴ at least ǘ%.

If a specific part of the code is identified as being "slow", a benchmark

should be prepared on this code. A benchmark on a short function is usu-

all⁴ called a "micro-benchmark". The speedup should be at least ǕǓ%,

ma⁴be Ǖǘ%, to justif⁴ an optimi⁵ation on amicro-benchmark.

It ma⁴ be interesting to run a benchmark on different computers, differ-

ent operating s⁴stems, different compilers. For example, performances

of realloc() ma⁴ var⁴ between Linux and Windows. Even if it should be

avoided, sometimes, the implementation ma⁴ depend on the platform.

There’sa lotofdifferent toolsaround forprofilingoroptimizingPython
code; what are your weapons of choice?

bjpcjp

bjpcjp

ǔǓ.Ǜ. INTERVIEWWITH VICTOR STINNER ǕǓǖ

P⁴thon ǖ.ǖ has a new time.perf_counter() function to measure elapsed

time for a benchmark. It has the best resolution available.

A test should be run more than once; ǖ times is a minimum, ǘ ma⁴ be

enough. Repeating a test fills disk cache and CPU caches. I prefer to keep

the minimum timing, other developers prefer the geometric mean.

For micro-benchmarks, the timeit module is eas⁴ to use and gives results

quickl⁴, but the results are not reliable using default parameters. Tests

should be repeated manuall⁴ to get stable results.

Optimi⁵ing can take a lot of time, so it’s better to focus on functionswhich

use the most CPU power. To find these functions, P⁴thon has cProfile

and profile modules which record the amount of time spent in each func-

tion.

What are the interesting Python tricks to know that could improve
performance?

Thestandard librar⁴ shouldbe reusedasmuchaspossible– it’swell tested,

and also usuall⁴ efficient. P⁴thon built-in t⁴pes are implemented in C and

have good performance. Use the correct container to get the best per-

formance; P⁴thon provides man⁴ different kind of containers – dict, list,

deque, set, etc.

There are some hacks to optimi⁵e P⁴thon, but the⁴ should be avoided

because the⁴ make the code less readable in exchange for onl⁴ a minor

speed-up.

The Zen of P⁴thon (PEP ǕǓ) sa⁴s "There should be one – and preferabl⁴

onl⁴ one – obvious wa⁴ to do it." In practice, there are different wa⁴s to

write P⁴thon code, and performances are not the same. Onl⁴ trust bench-

marks on ⁴our use case.

InwhichareasdoesPythonhavepoorperformance? Whichareasshould

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

ǔǓ.Ǜ. INTERVIEWWITH VICTOR STINNER ǕǓǗ

be used with care?

In general, I prefer not to worr⁴ about performance while developing a

new application. Premature optimi⁵ation is the root of all evil. When

slow functions are identified, the algorithm should be changed. If the al-

gorithm and the container t⁴pes are well chosen, it’s possible to rewrite

short functions in C to get best performances.

A bottleneck in CP⁴thon is the Global Interpreter Lock known as the "GIL".

Two threads cannot execute P⁴thonb⁴tecode at the same time. However,

this limitationonl⁴matters if two threadsare executingpureP⁴thoncode.

If most processing time is spent in function calls, and these functions re-

lease the GIL, then the GIL is not the bottleneck. For example, most I/O

functions release the GIL.

The multiprocessing module can easil⁴ be used to workaround the GIL.

Another option, more complex to implement, is to write as⁴nchronous

code. Twisted, Tornado and Tulip projects, which are network-oriented

libraries, make use of this technique.

What"mistakes" that contribute topoorperformancedoyouseemost
oten?

When P⁴thon is not well understood, inefficient code can be written. For

example, I have seen copy.deepcopy() misused, when no cop⁴ was re-

quired.

Another performance-killer is an inefficient data structure. With less than

one hundred items, the container t⁴pe has no impact on performance.

With more items, the complexit⁴ of each operation (add, get, delete) and

it’s effects must be known.

bjpcjp

bjpcjp

bjpcjp

ǔǔ Scaling and architecture

Nowada⁴s all the h⁴pe is about resilienc⁴ and scalabilit⁴, so I assume this is some-

thing that ⁴our development process is going to have to take into account sooner or

later. Man⁴ sides of the issue are not particularl⁴ tied to P⁴thon itself, while some

are onl⁴ relevant to its main implementation, CP⁴thon.

The scalabilit⁴, concurrenc⁴andparallelismofanapplication largel⁴dependon the

choicesmade about its initial architecture and design. As ⁴ou’ll see, there are some

paradigms – like multi-threading – that don’t appl⁴ correctl⁴ to P⁴thon, whereas

other techniques, such as service oriented architecture, work better.

11.1 A note on multi-threading

What is multi-threading? It’s the abilit⁴ to run code on separate processors ¹ inside

a single P⁴thon process. This means that different parts of ⁴our code will be run in

parallel.

Wh⁴ is this needed? The most common cases are:

ǔ. You need to run background tasks without stopping ⁴our main thread’s exe-

cution, e.g. in the case of a graphical user interface where the main loop is

waiting for events.

¹Or sequentiall⁴ on one, if multiple CPUs aren’t present

ǔǔ.ǔ. A NOTE ONMULTI-THREADING ǕǓǙ

Ǖ. You need to spread ⁴our work-load across several CPUs.

So at first, it ma⁴ seem thatmulti-threading looks like a goodwa⁴ to scale and par-

alleli⁵e ⁴our application, solving these problems. When ⁴ouwant to spread awork-

load, ⁴ou start a new thread for each new request instead of handling them one at

a time.

Wonderful. Job done. We canmove on.

No – sorr⁴! First, if ⁴ou’ve been in the P⁴thonworld for a long time, ⁴ou’ve probabl⁴

encountered the word GIL, and know how hated it is. The GIL is the P⁴thon Global

Interpreter Lock, a lock thatmust be acquired each timeCPython ² needs to execute

b⁴te-code. Unfortunatel⁴, this means that if ⁴ou tr⁴ to scale ⁴our application b⁴

making it run multiple threads, ⁴ou’ll alwa⁴s be limited b⁴ this global lock.

So while using threads seems like the ideal solution, in fact most applications I’ve

seen running requests in multiple threads struggle to attain ǔǘǓ% CPU usage – i.e.

ǔ.ǘ cores used. With computing nodes nowada⁴s not usuall⁴ having less than Ǖ or

Ǘ cores, it’s a shame. Blame the GIL.

There isn’t currentl⁴ an⁴ work being done to remove the GIL in CPython, because

nobod⁴ thinks the solution is worth the difficult⁴ of implementing andmaintaining

it.

However, CPython is just one ³ of the available P⁴thon implementations. J⁴thon,

for example, doesn’t have a global interpreter lock, which means that it can run

multiple threads in parallel efficientl⁴. Unfortunatel⁴, these projects b⁴ their ver⁴

nature lag behind CPython, and so are not reall⁴ useful targets.

²The reference implementation of P⁴thonwritten in C that ⁴ou run b⁴ t⁴ping python in ⁴our shell.
³although the most commonl⁴ used.

ǔǔ.ǔ. A NOTE ONMULTI-THREADING ǕǓǚ

Note

PyPy is another Python implementation, but is written in Python (see Section 10.6). PyPy

has a GIL too, but very interesting work is happening right now to replace it with a STM

(Software Transactional Memory)-based implementation. This is something very exciting

that’s going to change how we build and run multi-threading software in the future. Hard-

ware support is starting to appear in some processors, and Linux kernel developers are

looking at ways to suppress kernel locks too. These are good signs.

So are we back to our initial use cases, with no good solutions on offer? Not true –

there’s (at least) two solutions ⁴ou can use:

ǔ. If ⁴ou need to run background tasks, the easiest wa⁴ to do that is to build ⁴our

application around an event loop. There’s a lot of different P⁴thon modules

which provide for this, even a standard one called asyncore, which is an ef-

fort to standardi⁵e this functionalit⁴ as part of PEP ǖǔǘǙ. Some frameworks

suchas Twistedarebuilt around this concept. Themost advancedones should

give ⁴ou access to events based on signals, timers and file descriptors activit⁴

– we’ll talk about this in Section ǔǔ.ǖ.

Ǖ. If ⁴ou need to spread the work-load, using multiple processes is going to be

more efficient and easier. See Section ǔǔ.Ǖ.

For us developers, meremortals, it all means that we should think twice before us-

ing multi-threading. I’ve used multi-threading to dispatch jobs in rebuildd, a De-

bian build daemon I wrote a few ⁴ears ago. While it seemed hand⁴ to have a thread

to control each running build job, I ver⁴ quickl⁴ fell into the concurrenc⁴ trap. If I

had the chance to begin again, I’d build something based on as⁴nchronous events

handling or multi-processing, and not have to worr⁴ about this problem.

Getting multi-threaded applications right is hard. The level of complexit⁴ means

that it is a larger source of bugs than most others – and considering the little to be

ǔǔ.Ǖ. MULTIPROCESSING VS MULTITHREADING ǕǓǛ

gained generall⁴, it’s better not to waste too much effort on it.

11.2 Multiprocessing vs multithreading

As explained earlier, multi-threading is not a good scalabilit⁴ solution because of

theGIL. Abetter solution is themultiprocessingpackage that isprovidedwithP⁴thon.
It provides the same kind of interface that ⁴ou would have using themultithread-
ingmodule, except that it starts new processes (via fork(Ǖ)) rather than new s⁴stem

threads.

The below program is a simple example, which sums one million random integers

Ǜ times, spread across Ǜ threads at the same time.

Worker using multithreading
import random

import threading

results = []

def compute():

results.append(sum(

[random.randint(1, 100) for i in range(1000000)]))

workers = [threading.Thread(target=compute) for x in range(8)]

for worker in workers:

worker.start()

for worker in workers:

worker.join()

print("Results: %s" % results)

Running this program returns the following:

ǔǔ.Ǖ. MULTIPROCESSING VS MULTITHREADING ǕǓǜ

Example ǔǔ.ǔ Result of time python worker.py

$ time python worker.py

Results: [50517927, 50496846, 50494093, 50503078, 50512047, ←֓

50482863, 50543387, 50511493]

python worker.py 13.04s user 2.11s system 129% cpu 11.662 total

This has been runon an idle Ǘ cores CPU,whichmeans that P⁴thon could have used

up toǗǓǓ%CPUpower. But itwas clearl⁴ unable todo that, evenwith Ǜ threads run-

ning in parallel – it stuck at ǔǕǜ%, which is just ǖǕ% of the hardware’s capabilities.

Now, let’s rewrite this implementation using multiprocessing. For a simple case

like this, it’s prett⁴ straightforward:

Example ǔǔ.ǕWorker using multiprocessing

import multiprocessing

import random

def compute(n):

return sum(

[random.randint(1, 100) for i in range(1000000)])

Start 8 workers

pool = multiprocessing.Pool(8)

print("Results: %s" % pool.map(compute, range(8)))

Running this program under the exact same conditions gives the following result:

Example ǔǔ.ǖ Result of time python worker.py

$ time python workermp.py

Results: [50495989, 50566997, 50474532, 50531418, 50522470, ←֓

50488087, 50498016, 50537899]

ǔǔ.ǖ. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE ǕǔǓ

python workermp.py 16.53s user 0.12s system 363% cpu 4.581 total

The execution time has been reduced b⁴ ǙǓ%; this time, we have been able to con-

sume up to ǖǙǖ% of CPU power, which is more than ǜǓ% of the computer’s CPU

capacit⁴.

A further note – themultithreadingmodule is not onl⁴ able to efficientl⁴ spread a

work-loadsover several localprocessors, but canalsodosooveranetwork, through

itsmultithreading.managers objects. It also provides bi-directional communica-

tion transports so ⁴our processes can exchange information with each other.

Each time ⁴ou think that ⁴ou can parallelize some work for a certain amount of

time, it’s much better to rel⁴ on multi-processing and to fork ⁴our jobs, in order to

spread the workload among several CPU cores.

11.3 Asynchronous and event-driven architecture

Event-driven programming is a good solution to organi⁵e program flow in a wa⁴

which listens for various events at once, without using a multi-threaded approach.

Consider an application that wants to listen for connection on a socket and then

process the connection it receives. There are basicall⁴ three wa⁴s to approach the

problem:

ǔ. Forkanewprocesseach timeanewconnection is established, rel⁴ingonsome-

thing like themultiprocessingmodule.

Ǖ. Start a new threadeach timeanewconnection is established, rel⁴ingon some-

thing like the threadingmodule.

ǖ. Add this new connection to ⁴our event loop, and react to the event it will gen-

erate when it occurs.

ǔǔ.ǖ. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE Ǖǔǔ

It is (now) well known that listening to hundreds of event sources is going to scale

much better when using an event-driven approach than, sa⁴, a thread-per-event

approach ⁛. This doesn’t mean that the two techniques are not compatible, but it

doesmean that ⁴ou can usuall⁴ get rid ofmultiple threads b⁴ using an event-driven

mechanism.

We’ve alread⁴ covered the pros and cons of the first options; in this section, onl⁴

the event-driven mechanism will be discussed.

The technique behind event-driven architecture is the building of an event loop.

Your programcalls a function that blocks until an event is received. The ideabehind

this is that ⁴our program can be kept bus⁴ while waiting for inputs and outputs to

complete; the most basic events are "I have data read⁴ to be read" or "I can now

write data without blocking".

InUnix, the standard functions used tobuild suchanevent loopare the s⁴stemcalls

select(2) or poll(2). The⁴ expect a few file descriptors to listen for, and will react

when one of them is read⁴ to be read from or written to.

In P⁴thon, these s⁴stem calls are exposed through the select module. It’s eas⁴

enough to build an event-driven s⁴stemwith them, though it can be tedious.

Example ǔǔ.Ǘ Basic example of using select

import select

import socket

server = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

Never block on read/write operations

server.setblocking(0)

Bind the socket to the port

⁛For further reading on this, take a look at the CǔǓK problem.

ǔǔ.ǖ. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE ǕǔǕ

server.bind(('localhost', 10000))

server.listen(8)

while True:

select() returns 3 arrays containing the object (sockets, files…) ←֓

that

are ready to be read, written to or raised an error

inputs, outputs, excepts = select.select(

[server], [], [server])

if server in inputs:

connection, client_address = server.accept()

connection.send("hello!\n")

Awrapper around these low-level interfaceswas added to P⁴thon in the earl⁴ da⁴s,

called asyncore. It is not widel⁴ used, and hasn’t evolved much.

Alternativel⁴, there areman⁴ frameworkswhichprovide this kindof functionalit⁴ in

amore integratedmanner, such as Twisted or Tornado. Twisted has been almost a

de-facto standard for ⁴ears in this regard. C libraries that export P⁴thon interfaces,

such as libevent, libev or libuv, also provides ver⁴ efficient event loops.

While the⁴ all solve the same problem, the downside is that nowada⁴s there are

too man⁴ choices, and most of them are not interoperable. Also, most of them are

callbackbased–whichmeans that theprogramflow isnot reall⁴ clearwhen reading

the code.

What about gevent or Greenlet? The⁴ avoid the use of callback, but the imple-

mentation details are scar⁴, and include CP⁴thon xǛǙ specific code and monke⁴-

patching of standard functions. Not something ⁴ou want to use and maintain on

the long term, reall⁴.

Recentl⁴, Guido Van Rossum started towork on a solution code-named tulip, which

ǔǔ.ǖ. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE Ǖǔǖ

is documented under PEP ǖǔǘǙ.⁜ The goal of this package is to provide a standard

event loop interface. In the future, all frameworks and libraries would be compati-

ble with it and would be able to interoperate.

tulip has been renamed andmerged into P⁴thon ǖ.Ǘ as the asyncio package. If ⁴ou

don’t plan to depend on P⁴thon ǖ.Ǘ, it’s also possible to install it for P⁴thon ǖ.ǖ us-

ing the version provided on P⁴PI – simpl⁴ running pip install asyncio will do

the job. Victor Stinner started a backport of tulip named trollius, which aims to be

compatible with P⁴thon Ǖ.Ǚ and superior versions.

Now that ⁴ou’ve got all the cards in ⁴our hand, no doubt ⁴ou’re wondering: but

what should I use to build an event loop in my event-driven application?

At this point in P⁴thon’s development, it’s a reall⁴ tough question. The language is

still in a transition phase. As of the timeof thiswriting, nothing ⁴et uses the asyncio

module. That means that using is going to be a real challenge.

Here are m⁴ recommendations at this point:

• If ⁴ou target P⁴thon Ǖ onl⁴, asyncio is out of reach for ⁴ou. For me, the next best

choice would be something based on libev, like p⁴ev.

• If ⁴ou target both major P⁴thon versions – Ǖ and ǖ – ⁴ou’d better use something

that is compatible with both, such as p⁴ev. However, I would strongl⁴ advise ⁴ou

to keep inmind that ⁴oumight have to transition later to asyncio. Itma⁴beuseful

to have a minimal abstraction la⁴er, and not to spread the internal guts of ⁴our

eventing-dependenc⁴ over the entire program. If ⁴ou’re adventurous, tr⁴ing to

mix asyncio/trollius can be a nice solution too.

• If ⁴ou onl⁴ target version ǖ, go ahead with asyncio. It’ll be a pain to start with, as

there are still not a lot of examples or documentation, but it’s a safe bet. You’ll be

a pioneer.

⁜Asynchronous IO Support Rebooted: the "asyncio" Module, Guido van Rossum, ǕǓǔǕ

ǔǔ.ǖ. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE ǕǔǗ

Example ǔǔ.ǘ Example with pyev

import pyev

import socket

server = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

Never block on read/write operations

server.setblocking(0)

Bind the socket to the port

server.bind(('localhost', 10000))

server.listen(8)

def server_activity(watcher, revents):

connection, client_address = server.accept()

connection.send("hello!\n")

connection.close()

loop = pyev.default_loop()

watcher = pyev.Io(server, pyev.EV_READ, loop, server_activity)

watcher.start()

loop.start()

As ⁴ou can see here, the pyev interface is prett⁴ eas⁴ to grasp. Via its libev usage,

it supports an Io object for input/output, but also the tracking of child processes,

timers, signals and even callbacks to call when idle. libev also automaticall⁴ relies

on the best interface for polling – epoll(2) on Linux or kqueue(2) on BSD.

ǔǔ.Ǘ. SERVICE-ORIENTED ARCHITECTURE Ǖǔǘ

11.4 Service-oriented architecture

Considering thepreviousl⁴ statedproblemsandsolutions, the shortcomingsofP⁴thon

in terms of scalabilit⁴ and usage in large, complex applications can seem trick⁴ to

circumvent. However it appears thatP⁴thon is reall⁴goodat implementingService-

Oriented Architecture (SOA) – if ⁴ou’re not ⁴et familiar with this, there’s plent⁴ of

documentation and opinions that ⁴ou can read online.

SOA is the architecture t⁴pe used b⁴OpenStack in all its components. Components

useHTTPREST to communicatewith external clients (end-users) andanabstracted

RPCmechanism that can support several wire protocols, themost commonl⁴ used

one being AMQP.

In ⁴our own case, the choice of which communication channels to use between

those blocks is mainl⁴ amatter of knowing with whom ⁴ouwill be communicating.

When exposing an API to the outside world, the preferred channel nowada⁴s is

HTTP, and especiall⁴ stateless designs such as REST ⁝ st⁴le architectures. These

kinds of architectures are eas⁴ to implement, scale, deplo⁴ and comprehend.

However, when exposing and using ⁴our API internall⁴, using HTTPma⁴ be not the

best protocol. A large panel of communication protocols for applications exist, and

a full description of an⁴ of themwould likel⁴ fill an entire book.

In P⁴thon, there’s plent⁴ of libraries to build RPC ⁞ s⁴stems. Kombu – among others

– is interesting because it provides an RPCmechanism on top of a lot of back-ends;

AMQ protocol being the main one. But support for Redis, MongoDB, BeanStalk,

Ama⁵on SQS, CouchDB, or ZooKeeper are also provided.

In the end, there’s a huge amount to be gained indirectl⁴ from using such loosel⁴

coupledarchitecture. Ifwe consider that eachmoduleprovidesandexposesanAPI,

⁝Representational state transfer
⁞Remote Procedure Call

ǔǔ.Ǘ. SERVICE-ORIENTED ARCHITECTURE ǕǔǙ

we can run multiple daemons exposing this API. For example, Apache httpd would

create a new worker using a new s⁴stem process that handles new connections;

we can then dispatch our connection to a different worker running on the same

computenode. Allweneed tohave is a s⁴stemof dispatching theworkbetweenour

workers, which provides this API. Each blockwill be a different P⁴thon process, and

as we’ve seen above, this is better than multi-threading to spread ⁴our work-load.

You’ll be able to start multiple workers on each computing node ⁴ou have. Even if

not strictl⁴ necessar⁴, using stateless blocks should be favored an⁴ time ⁴ou have

the choice.

ZeroMQ is a socket librar⁴ that can act as a concurrenc⁴ framework. The follow-

ing example implements the same worker seen in the previous examples, but uses

ZeroMQ as a wa⁴ to dispatch and communicate.

Workers using ZeroMQ

import multiprocessing

import random

import zmq

def compute():

return sum(

[random.randint(1, 100) for i in range(1000000)])

def worker():

context = zmq.Context()

work_receiver = context.socket(zmq.PULL)

work_receiver.connect("tcp://0.0.0.0:5555")

result_sender = context.socket(zmq.PUSH)

result_sender.connect("tcp://0.0.0.0:5556")

poller = zmq.Poller()

poller.register(work_receiver, zmq.POLLIN)

ǔǔ.Ǘ. SERVICE-ORIENTED ARCHITECTURE Ǖǔǚ

while True:

socks = dict(poller.poll())

if socks.get(work_receiver) == zmq.POLLIN:

obj = work_receiver.recv_pyobj()

result_sender.send_pyobj(obj())

context = zmq.Context()

Build a channel to send work to be done

work_sender = context.socket(zmq.PUSH)

work_sender.bind("tcp://0.0.0.0:5555")

Build a channel to receive computed results

result_receiver = context.socket(zmq.PULL)

result_receiver.bind("tcp://0.0.0.0:5556")

Start 8 workers

processes = []

for x in range(8):

p = multiprocessing.Process(target=worker)

p.start()

processes.append(p)

Start 8 jobs

for x in range(8):

work_sender.send_pyobj(compute)

Read 8 results

results = []

for x in range(8):

results.append(result_receiver.recv_pyobj())

Terminate all processes

for p in processes:

p.terminate()

ǔǔ.Ǘ. SERVICE-ORIENTED ARCHITECTURE ǕǔǛ

print("Results: %s" % results)

As ⁴ou can see, ZeroMQ provides an eas⁴ wa⁴ to build communication channels.

I’ve chosen the TCP transport la⁴er here to illustrate the fact that we could run this

over a network. It should be noted that ZeroMQ also provides a inproc communi-

cation channel that works b⁴ using Unix sockets. Obviousl⁴ the communication

protocol built upon ZeroMQ in this example is ver⁴ simplistic – in order to keep this

book’s examples clear and concise; but it shouldn’t be hard to imagine building a

more sophisticated communication la⁴er on top of it.

With such a protocol, it’s eas⁴ to imagine building a entirel⁴ distributed application

communication with a network message bus – ZeroMQ, AMQP, or something else.

Note also that protocols like HTTP, ZeroMQ or AMQP are language agnostic; ⁴ou

can use different languages and platforms to implement each part of ⁴our s⁴stem.

While we all agree that P⁴thon is a good language, other teams might have other

preferences; or another languagemightbeabetter solution for somepart of aprob-

lem.

In the end, using a transport bus to decouple ⁴our application is a good option. It

allows ⁴ou to build both s⁴nchronous and as⁴nchronous APIs that can be spread

from one computer to several thousand. It doesn’t tie ⁴ou to a particular technol-

og⁴ or language – and these da⁴s, there’s no longer a reason not to be read⁴ to

distribute ⁴our sotware, or to be constrained b⁴ an⁴ particular language.

ǔǕ RDBMS and ORM

RDBMSs ¹ andORM ² are touch⁴ subjects, but there’s nowa⁴ to avoid having to deal

with them sooner or later. Man⁴ applications have to store data of some kind, and

developers oten choose todo sousing relational databases. Andwhenadeveloper

chooses to use a relational database, the tool the⁴ almost alwa⁴s choose to use for

it is an ORM librar⁴ of some kind.

Note

This chapter will be a little less Python-centric than others; bear with me. I’ll only be talking

about relational databases here, but many of the things we’ll cover here can also apply to

other kinds of databases.

RDBMSs are about storing relational data using normal form, while SQL is about

dealing with relational algebra. Together, the⁴ allow ⁴ou to store data and an-

swer questions about that data. However, there are a number of common difficul-

ties with using ORM in object-oriented programs, known collectivel⁴ as the object-

relational impedancemismatch. Thebottomline is, relationaldatabasesandobject-

orientedprogramshavedifferent representationsof datawhichdon’tmapproperl⁴

to one another: mapping SQL tables to P⁴thon classes won’t give ⁴ou optimal re-

sults, no matter what ⁴ou do.

¹Relational database management s⁴stems
²Object-relational mapping

CHAPTER ǔǕ. RDBMS AND ORM ǕǕǓ

ORM is supposed to make database s⁴stems easier to access: these tools abstract

theprocessof creatingqueries, generatingSQL so⁴oudon’t have to. Unfortunatel⁴,

more likel⁴ sooner than later, ⁴ou’ll want to do something with ⁴our database onl⁴

to discover that the abstraction la⁴er simpl⁴ won’t allow it. To make the most ef-

ficient use of ⁴our database, ⁴ou absolutel⁴ have to have an understanding of SQL

and RDBMSs so that ⁴ou can write ⁴our own queries directl⁴ without having to rel⁴

on the abstraction la⁴er for ever⁴thing.

But that’s not to sa⁴ ⁴ou should avoid ORM entirel⁴. ORM libraries can help with

rapid protot⁴ping of ⁴our application model, and some even provide useful tools

suchas schemaupgrades/downgrades. The important thing is that ⁴ouunderstand

that it’s not a substitute for a proper grasp of RDBMSs: man⁴ developers tr⁴ to solve

problems in the language of their choice rather than using their model API, and the

solutions the⁴ come up with are inelegant at best.

Imagine a SQL table for keeping track of messages. It has a single column named

"id," which is the primar⁴ ke⁴, and a string containing the message:

CREATE TABLE message (

id serial PRIMARY KEY,

content text

);

Wewant toavoidduplicateswhen receivingamessage, soa t⁴picaldeveloperwould

write something like this:

if message_table.select_by_id(message.id):

We already have the message, it's a duplicate, ignore and raise

raise DuplicateMessage(message)

else:

Insert the message

message_table.insert(message)

CHAPTER ǔǕ. RDBMS AND ORM ǕǕǔ

This would definitel⁴ work in most cases, but it has somemajor drawbacks:

• It implements a constraint alread⁴ expressed in the SQL schema, so it is a sort of

code duplication.

• It execute Ǖ SQL queries; executing SQL quer⁴ might be long and requires round-

trip to the SQL server, introducing extraneous dela⁴.

• It doesn’t take into account the possibilit⁴ of someone else inserting a duplicate

message ater we call select_by_id but before we call insert, which would cause

the program to raise an exception.

There’s a much better wa⁴ to write this code, but it requires cooperation with the

RDBMS server rather than treating it like dumb storage:

try:

Insert the message

message_table.insert(message)

except UniqueViolationError:

Duplicate

raise DuplicateMessage(message)

This achieves the exact same effect in amore efficient fashion andwithout an⁴ race

condition. This is a ver⁴ simple pattern, and it doesn’t conflict withORM in an⁴wa⁴.

The problem is that developers tend to treat SQL databases as dumb storage and

duplicate the constraints the⁴ wrote (or could write) in SQL in their controller code

rather than in their model.

Treating ⁴our SQL backend as a model API is good wa⁴ to make efficient use of it.

You can manipulate the data stored in ⁴our RDBMS with simple function calls pro-

grammed in its own procedural language.

Another point that needs to be raised about ORM is support for multiple database

backends. Man⁴ ORM libraries tout it as a feature, but it’s reall⁴ a trap waiting to

CHAPTER ǔǕ. RDBMS AND ORM ǕǕǕ

ensnare unsuspecting developers. NoORM librar⁴ provides a complete abstraction

of all RDBMS features, so ⁴ou’ll have to dumb down ⁴our code to the most basic

RDBMS available (or that ⁴ou want to put up with), and ⁴ou’ll be unable to use an⁴

advanced RDBMS functions without breaking the abstraction la⁴er.

Simple things that aren’t standardi⁵ed in SQL, such as handling timestamp oper-

ations, are a pain to deal with when using an ORM; even more so if ⁴our code is

written to be RDBMS-agnostic. With this in mind, be sure to choose an RDBMS that

suits ⁴our application well ³.

A good wa⁴ to mitigate the problems with ORM libraries is to isolate them as pre-

scribed in Section Ǖ.ǖ. This approach not onl⁴ allows ⁴ou to easil⁴ swap ⁴our ORM

librar⁴ for a different one should the need arise, but it also allows ⁴ou to optimi⁵e

⁴our SQL usage b⁴ identif⁴ing places with inefficient usage of queries, b⁴passing

most of the ORM boilerplate.

An eas⁴wa⁴ to build such isolation is to for example onl⁴ use ⁴our ORM in amodule

of ⁴our application, for example myapp.storage. This module should onl⁴ exports

functions andmethods that allow ⁴ou to manipulate the data at a high level of ab-

straction. The ORM should be onl⁴ used from that module. At an⁴ point later, ⁴ou

will beable todrop inan⁴moduleproviding the sameAPI to replacemyapp.storage.

In the end, this section’s goal isn’t to take a side in the debate over whether to use

ORM; there’s alread⁴ plent⁴ of discussion on the Internet arguing over the pros and

cons. Thepoint of this section is tohelp ⁴ouunderstandhow important it is to know

enough about SQL and RDBMS to make use of their full potential in ⁴our applica-

tion.

The most commonl⁴ used ORM librar⁴ in P⁴thon (and arguabl⁴ the de facto stan-

dard) is SQLAlchem⁴. It supports a huge number of different backends and pro-

vides abstraction for most common operations. Schema upgrades can be handled

b⁴ third-part⁴ packages such as alembic.
³When in doubt, pick PostgreSQL.

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǖ

Some frameworks, such as Django, provide their own ORM libraries. If ⁴ou choose

touse a framework, it’s a smart idea touse thebuilt-in librar⁴,whichwill (obviousl⁴)

have better integration with the framework than an external one.

Warning

The MVC ᵃ architecture that most frameworks rely on can be easily misused. They imple-

ment (or make it easy to implement) ORM in their model directly, but without abstracting

enough of it: any code you have in your view and controllers that uses the model will also

be using ORM directly. This is something that you need to avoid. You should write a

data model that includes the ORM library rather than consists of it: this will provide better

testability and better isolation, as well as make it easier to swap out with another storage

technology should the need arise.

ᵃModel View Controller

12.1 Streaming data with Flask and PostgreSQL

In the previous section, we talked about how important it can be tomasteri⁵e ⁴our

data storage s⁴stem. Here, I’ll show ⁴ou how ⁴ou can use one of PostgreSQL's ad-

vanced features to build an HTTP event streaming s⁴stem.

The purpose of this micro-application is to store messages in a SQL table and pro-

vide access to those messages via an HTTP REST API. Each message consists of a

channel number, a source string, and a content string. The code that creates this

table is quite simple:

Example ǔǕ.ǔ Creating the message table

CREATE TABLE message (

id SERIAL PRIMARY KEY,

channel INTEGER NOT NULL,

source TEXT NOT NULL,

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǗ

content TEXT NOT NULL

);

Whatwealsowant todo is streamthesemessages to the client so that it canprocess

them in real time. To do this, we’re going to use the LISTEN and NOTIFY features of

PostgreSQL. These features allow us to listen for messages sent b⁴ a function we

provide that PostgreSQLwill execute:

Example ǔǕ.Ǖ The notify_on_insert function

CREATE OR REPLACE FUNCTION notify_on_insert() RETURNS trigger AS $$

BEGIN

PERFORM pg_notify('channel_' || NEW.channel,

CAST(row_to_json(NEW) AS TEXT));

RETURN NULL;

END;

$$ LANGUAGE plpgsql;

This creates a trigger function written in pl/pgsql, a language that onl⁴ PostgreSQL

understands. Note that we could also write this function in other languages, such

as P⁴thon itself, as PostgreSQL provides a pl/python language b⁴ embedding the

P⁴thon interpreter.

This function performs a call to pg_notify. This is the function that actuall⁴ sends

the notification. The first argument is a string that represents a channel, while the

second is a string carr⁴ing the actual payload. We define the channel d⁴namicall⁴

based on the value of the channel column in the row. In this case, the pa⁴load will

be the entire row in JSON format. Yes, PostgreSQL knows how to convert a row to

JSON nativel⁴!

We want to send a notificationmessage on each INSERT performed in themessage

table, so we need to trigger this function on such events:

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǘ

Example ǔǕ.ǖ The trigger for notify_on_insert

CREATE TRIGGER notify_on_message_insert AFTER INSERT ON message

FOR EACH ROW EXECUTE PROCEDURE notify_on_insert();

And we’re done: the function is now plugged in and will be executed upon each

successful INSERT performed in the message table.

We can check that it works b⁴ using the LISTEN operation in psql:

$ psql

psql (9.3rc1)

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

Type "help" for help.

mydatabase=> LISTEN channel_1;

LISTEN

mydatabase=> INSERT INTO message(channel, source, content)

mydatabase-> VALUES(1, 'jd', 'hello world');

INSERT 0 1

Asynchronous notification "channel_1" with payload

"{"id":1,"channel":1,"source":"jd","content":"hello world"}"

received from server process with PID 26393.

As soon as the row is inserted, the notification is sent and we’re able to receive it

through the PostgreSQL client. Now all we have to do is build the P⁴thon applica-

tion that streams this event:

Example ǔǕ.Ǘ Receiving notifications in P⁴thon

import psycopg2

import psycopg2.extensions

import select

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǙ

conn = psycopg2.connect(database='mydatabase', user='myuser',

password='idkfa', host='localhost')

conn.set_isolation_level(

psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

curs = conn.cursor()

curs.execute("LISTEN channel_1;")

while True:

select.select([conn], [], [])

conn.poll()

while conn.notifies:

notify = conn.notifies.pop()

print("Got NOTIFY:", notify.pid, notify.channel, notify.payload)

The above code connects to PostgreSQL using the psycopgǕ librar⁴. We could have

used a librar⁴ that provides an abstraction la⁴er, such as SQLAlchemy, but none of

themprovideaccess to theLISTEN/NOTIFY functionalit⁴ of PostgreSQL. It’s still pos-

sible to access the underl⁴ing database connection to execute the code, but there

would be no point in doing that for this example, since we don’t need an⁴ of the

other features the ORM librar⁴ would provide.

The program listens on channel_ǔ. As soon as it receives a notification, it prints it

to the screen. If we run the program and insert a row in themessage table, we get

this output:

$ python3 listen.py

Got NOTIFY: 28797 channel_1

{"id":10,"channel":1,"source":"jd","content":"hello world"}

Now, we’ll use Flask, a simple HTTP micro-framework, to build our application.

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǚ

We’re going to send the data using the Server-Sent Eventsmessage protocol de-

fined b⁴ HTMLǘ ⁛.

Example ǔǕ.ǘ Flask streamer application

import flask

import psycopg2

import psycopg2.extensions

import select

app = flask.Flask(__name__)

def stream_messages(channel):

conn = psycopg2.connect(database='mydatabase', user='mydatabase',

password='mydatabase', host='localhost')

conn.set_isolation_level(

psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

curs = conn.cursor()

curs.execute("LISTEN channel_%d;" % int(channel))

while True:

select.select([conn], [], [])

conn.poll()

while conn.notifies:

notify = conn.notifies.pop()

yield "data: " + notify.payload + "\n\n"

@app.route("/message/<channel>", methods=['GET'])

def get_messages(channel):

return flask.Response(stream_messages(channel),

⁛An alternative would be to use Transfer-Encoding: chunked defined b⁴ HTTP/ǔ.ǔ.

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǛ

mimetype='text/event-stream')

if __name__ == "__main__":

app.run()

This application is quite simple and onl⁴ supports streaming for the sake of the ex-

ample. We use Flask to route a request to GET /message/<channel>; as soon as the

code is called, it returns a response with the mimet⁴pe text/event-stream, sending

back a generator function instead of a string. Flask will then call this function and

send results each time the generator ⁴ields something.

The generator, stream_messages, reuses the codewewrote earlier to listen to Post-

greSQL notifications. It receives the channel identifier as an argument, listens to

that channel, and then ⁴ields the pa⁴load. Remember that we used PostgreSQL’s

JSON encoding function in the trigger function, so we’re alread⁴ receiving JSON

data from PostgreSQL: there’s no need for us to transcode it, since we’re fine with

sending JSON data to the HTTP client.

Note

For the sake of simplicity, this example application has been written in a single file. It

isn’t easy to depict examples spanning multiple modules in a book. If this were a real

application, it would be a good idea to move the storage handling implementation into its

own Python module.

We can now run the server:

$ python listen+http.py

* Running on http://127.0.0.1:5000/

On another terminal, we can connect and retrieve the events as the⁴’re entered.

Upon connection, no data is received and the connection is kept open:

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǜ

$ curl -v http://127.0.0.1:5000/message/1

* About to connect() to 127.0.0.1 port 5000 (#0)

* Trying 127.0.0.1...

* Adding handle: conn: 0x1d46e90

* Adding handle: send: 0

* Adding handle: recv: 0

* Curl_addHandleToPipeline: length: 1

* - Conn 0 (0x1d46e90) send_pipe: 1, recv_pipe: 0

* Connected to 127.0.0.1 (127.0.0.1) port 5000 (#0)

> GET /message/1 HTTP/1.1

> User-Agent: curl/7.32.0

> Host: 127.0.0.1:5000

> Accept: */*

>

But as soon as we insert some rows in themessage table:

mydatabase=> INSERT INTO message(channel, source, content)

mydatabase-> VALUES(1, 'jd', 'hello world');

INSERT 0 1

mydatabase=> INSERT INTO message(channel, source, content)

mydatabase-> VALUES(1, 'jd', 'it works');

INSERT 0 1

Data starts coming in through the terminal where curl is running:

data: {"id":71,"channel":1,"source":"jd","content":"hello world"}

data: {"id":72,"channel":1,"source":"jd","content":"it works"}

A naive and arguabl⁴more portable implementation of this application ⁜ would in-

⁜It would be compatible with other RDBMS servers, such as M⁴SQL

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǓ

stead loop over a SELECT statement over and over to poll for new data inserted in

the table. However, there’s no need to demonstrate that a push s⁴stem like this one

is muchmore efficient than constantl⁴ polling the database.

12.2 Interview with Dimitri Fontaine

I first met Dimitri a decade ago. He is a skilled PostgreSQL Major Contributor who

works at ǕndQuadrant and argues with other database gurus on the pgsql-hackers

mailing-list. We’ve shared a lot of open source adventures, and he’s been kind

enough to answer some questions about what ⁴ou should do when dealing with

databases.

What advice would you give to developers using RDBMS as their stor-
age backends? What should they know about?*

That’s a ver⁴ good question, mainl⁴ because it offers more than one op-

portunit⁴ to clarif⁴ assumptions that I want to highlight as ver⁴ wrong

here. If ⁴ou think the question as asked makes sense, ⁴ou reall⁴ need to

be reading m⁴ answer now!

Let’s startwith something reall⁴boring: RDBMSstands forRelationalDataBase

Management S⁴stem. Those beasts have been invented in the ǚǓs to an-

swer some common needs that ever⁴ application developer needed to

solve themselves at that time, and the main services RDBMS have been

implementing are not data storage, as ever⁴one knew how to implement

that alread⁴.

The main services offered b⁴ a RDBMS are the following:

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǔ

• Concurrenc⁴: access ⁴ourdata for readorwritewithasman⁴concurrent

threads of execution as ⁴ouwant to, the RDBMS is there to handle that

correctl⁴ for ⁴ou. That’s the main feature ⁴ou want out of a RDBMS.

• Concurrenc⁴ semantics: the details about the concurrenc⁴ behaviour

whenusingaRDBMSareproposedwithahigh-level specification in terms

of Atomicity and Isolation, that are ma⁴be the most crucial parts of

ACID. Atomicity is the propert⁴ that in between the time ⁴ou BEGIN a

transaction and the time ⁴ou’re donewith it (either COMMITor ROLLBACK),

noother concurrentactivit⁴on thes⁴stem isallowed toknowwhat⁴ou’re

doing, whatever that is. When using a proper RDBMS that includesData
Definition Language (or DDL, e.g. CREATE TABLE or ALTER TABLE). Isola-
tion is all about what ⁴ou’re allowed to notice of the concurrent activit⁴

of the s⁴stem fromwithin ⁴our own transaction. The SQL standard de-

fines Ǘ level of isolation, as described in transaction isolation documen-

tation

The RDBMS takes full responsibilit⁴ for ⁴our data. So it allows the devel-

oper to describe its own rules for consistenc⁴ and then it will check that

those rules are valid at crucial times such as transaction commit or state-
mentsboundaries, dependingon thedeferabilityof ⁴our constraintsdec-
larations.

The first constraint ⁴ou can place on ⁴our data is about its expected input

and output formatting, using the proper data type. A proper RDBMS will

know how to work with much more than text, numbers and dates, and
will properl⁴ handle dates that actuall⁴ appear in a calendar in use toda⁴

(Julian is not huge nowada⁴s, ⁴ou probabl⁴wantGregorianunless doing
histor⁴).

DataT⁴pesarenot just about inputandoutput formats, though. The⁴also

allow to implement behaviours and some level of polymorphism, as we

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǕ

all expect the basic equalit⁴ tests to be data t⁴pe specific: we don’t com-

pare text and numbers, dates and IP addresses, points boxes and lines,

booleans and circles, UUIDs and XML, Arra⁴s and Ranges in the samewa⁴,

to name but a few.

Protecting ⁴our data also means that the onl⁴ choice for a proper RDBMS

is to activel⁴ refuse data thatwon’tmatchwith ⁴our consistenc⁴ rules, the

first of which is the data t⁴pe ⁴ou’ve chosen. If ⁴ou think it’s OK to have

to deal with a date such as 0000-00-00 that never existed in the calendar,

then ⁴ou need to rethink.

Theotherpart of the consistencyguarantees is expressed in termsof con-
straintsas in CHECK constraints, NOT NULL constraints and constraint trig-
gers, one of which is known as foreign key. All of that can be though as

a user level extension of the data t⁴pe definition and behavior, the main

difference being that ⁴ou can choose to DEFER checking those constraints

frombeing enforced at the end of each statement to being enforced at the

end of the current transaction.

The relational bits of an RDBMS is all about modeling ⁴our data and the

guarantee that all tuples found in a relation share a common set of rules:

structure and constraints. When enforcing that, we are enforcing the use

of a proper explicit schema to handle our data.

Working on a proper schema for ⁴our data is a process known asNormal-
ization and ⁴ou can aim for a number of subtl⁴ different Normal Forms
in ⁴our design. Sometimes though, ⁴ou need more flexibilit⁴ than given

b⁴ the result of ⁴our Normalization process. Common wisdom is to first

normali⁵e ⁴our data schema and onl⁴ then see about how to denormal-
ize it in order to get back the flexibilit⁴ ⁴ou think ⁴ou need. Chances are

that ⁴ou reali⁵e ⁴ou actuall⁴ don’t need an⁴.

When ⁴ou do need more flexibilit⁴, using PostgreSQL ⁴ou can pick from

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǖ

a number of denormalisation options: composite t⁴pes, records, arra⁴s,

hstore, json or XML, for starters.

There’s a ver⁴ important drawback to denormalisation though, which

is that the Query Language we’re going to talk about next is designed

to handle rather normalized data. With PostgreSQL of course the Quer⁴

Language has been extended to support as much denormalisation as

possible when using composite t⁴pes, arra⁴s or hstore, and even json in

recent releases.

The RDBMS knows ver⁴ much about ⁴our data and can help ⁴ou imple-

ment a ver⁴ fined grain securit⁴ model, should ⁴ou need to do so. The

access patterns are managed at the relation and column level, and Post-

greSQL also implements SECURITY DEFINER stored procedure, allowing

⁴ou to offer access to sensible data in a ver⁴ controlled wa⁴, much the

same as with using suid programs.

The RDBMS offers ⁴ou to access ⁴our data using a StructuredQuery Lan-
guagewhich became a de-facto standard in the ǛǓs and is now driven b⁴

a commitee. In the case of PostgreSQL, lots of extensions are being added

with each and ever⁴ major release each ⁴ear allowing ⁴ou to have access

to a ver⁴ richDSL language. All the work of quer⁴ planning and optimisa-

tion is done for ⁴ou b⁴ the RDBMS so that ⁴ou can focus on a declarative
quer⁴where⁴ouonl⁴describe the result ⁴ouwant fromthedata⁴ouhave.

And that’s alsowh⁴⁴ouneed topa⁴ closeattention to theNoSQLofferings

here, as most of those trend⁴ products are in fact not just removing the

Structured Query Language out of the offering, but a whole lot of other
foundations that ⁴ou’ve been trained to expect.

M⁴advice todevelopers is to remember thedifferencesbetweena storage
backend and a RDBMS. Those are ver⁴ different services, and if all ⁴ou

need actuall⁴ is a storage backend, ma⁴be consider not using a RDBMS.

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǗ

Most oten though, what ⁴ou reall⁴ need is a full blown RDBMS. In that

case, the best option ⁴ou have is PostgreSQL. Go read its documentation,

see the list of data t⁴pes, operators, functions, features and extensions it

provides. Read some usage examples on blog posts.

Then consider PostgreSQL as a tool ⁴ou can leverage in ⁴our develop-

ment, and include it in ⁴our application architecture. Parts of the services

⁴ou need to implement are best offered at the RDBMS la⁴er, and Post-

greSQL excels at being that trustworth⁴ part of ⁴our whole implementa-

tion.

What’s the best way to use or not use ORM?

SQLstands forStructuredQueryLanguageand in thecaseofPostgreSQL
has been proven to be Turing Complete. Its implementation and opti-

mi⁵er are far from trivial.

As ORM stands for Object Relational Mapper, the idea is that ⁴ou can

deal with a one-to-one mapping of database relations with classes and

database tuples with objects, or class instances.

EvenwhenaRDBMS, likePostgreSQL, implements strong static t⁴ping, re-

lation definitions are built on the fl⁴: each quer⁴ result is a new relation.

Each subquer⁴ result is a new relation that might exists onl⁴ for the dura-

tion of the subquer⁴. Each JOIN, either INNER or OUTER, will result in a

new relation d⁴namicall⁴ built for solving just that JOIN.

As a direct consequence of that, it’s eas⁴ to understand that where the

ORM will be able to best work for ⁴ou is for what’s called CRUD appli-

cations: Create, Read, Update and Delete. The Read part should then

onl⁴ be limited to a ver⁴ simple SELECT statement targeting a single ta-

ble. If ⁴ou compare non-trivial output lists ⁴ou can measure the impact

of retrievingmore columns than necessar⁴ on quer⁴ performances. Now,

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǘ

if ⁴our ORM is including all the known fields in its projections (or output
list), then itwill force ⁴ourRDBMS to fetch external data (anddecompress)

it before sending it, ma⁴be onl⁴ to compress it again if ⁴ou’re using SSL in
between the RDBMS and ⁴our application. Also, just think about network

bandwidth usage and remember than we’re measuring simple primary
key based lookup queries in fractions of amillisecond.

So an⁴ column ⁴ou retrieve from the RDBMS and that ⁴ou end-up not us-

ing is pure waste of precious resources, a first scalabilit⁴ killer.

Even when ⁴our ORM of choice is well able to onl⁴ fetch the data ⁴ou’re

asking for, then ⁴ou have to somehow manage the exact list of columns

⁴ouwant ineachsituation, andavoidusingasimpleabstractmagicmethod

that will automaticall⁴ compute the fields list for ⁴ou.

The next part of the CRUD queries are simple INSERT, UPDATE and DELETE

statements. First, all those commands accept joins and sub-select when

⁴ou’re using an advanced RDBMS, such as PostgreSQL. Then again, for

example PostgreSQL implements the RETURNING clause, allowing ⁴ou to

return to the client an⁴ data that’s just been edited, such as default (t⁴p-
icall⁴ sequence numbers for surrogate ke⁴s) and other values computed
automaticall⁴ on the RDBMS (t⁴picall⁴ with BEFORE <action> triggers).

Is ⁴ourORM aware of that? What’s the s⁴ntax there to benefit from that?

In the general case, a relation is either a table, the result of calling a Set
REturning Function, or the result of an⁴ quer⁴. It’s common practice

when using an ORM to build a relational mapping in between defined

tables and somemodel classes, or some other helper stubs.

If ⁴ou consider the whole SQL semantics in their generalities, then the re-
lational mapper should reall⁴ be able to map an⁴ quer⁴ against a class.

You would then presumabl⁴ have to build a new class for each quer⁴ ⁴ou

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǙ

want to run.

The legend of the Sufficientl⁴ Smart Compiler applies to ORMs too. For

more details about what that legend is, read On Being Sufficientl⁴ Smart

b⁴ James Hague.

The idea when applied to our ver⁴ case is that ⁴ou trust ⁴ourORM to do a

better job than ⁴ou at writing efficient SQL queries, even when ⁴ou’re not

giving it enough information to even work out the exact set of data ⁴ou

are interested into.

It’s true that at times, SQL can get quite complex. You’re not going to get

an⁴where near simpler b⁴ using an API to SQL generator that ⁴ou can’t

control, though.

Ater having said all that against the t⁴pical ORM, something needs to be

said against the alternatives.

Building SQL queries as a string is not scalable. You want to be able to

compose several restrictions (the WHERE clauses) and d⁴namicall⁴ add

some joins right intoa subquer⁴ just so that ⁴oucanoptionall⁴ fetch some

more detailed data, etc.

M⁴ current thinking is that the tool ⁴ou reall⁴ want to have is not anORM,

it’s a nice wa⁴ to compose a SQL quer⁴ from a programmatic interface.

There’s aPostgreSQLdriver proposingexactl⁴ the right abstraction to that

problem, it’s the Common Lisp librar⁴ Postmodern with the S-SQL solu-

tion. Of course, Lisp lends itself reall⁴ well to allow for eas⁴ to program

composable components.

Actuall⁴ in twocases⁴oucan relaxanduse⁴ourORM,provided that ⁴ou’re

willing to accept the following compromise: as soon as possible ⁴ou will

need to edit ⁴our ORM usage out of ⁴our code base.

• Time To Market; When ⁴ou’re reall⁴ in a hurr⁴ and want to gain market

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǚ

share as soon as possible, the onl⁴ wa⁴ to get there is to release a first

version of ⁴our application and idea. If ⁴our team is more proficient at

using an ORM when compared to hand crating SQL queries, then b⁴ all

means just do that. You have to reali⁵e, though, that as soon as ⁴ou’re

successful with ⁴our application, one of the first scalabilit⁴ problems

⁴ouwill have to solve is going to be related to ⁴ourORMproducing reall⁴

bad queries, and ⁴our usage of the ORM having painted ⁴ou into a cor-

ner and bad code design decisions. But if ⁴ou’re there, ⁴ou’re successful

enough to spend some refactoringmone⁴ and remove an⁴ dependenc⁴

toward the ORM, right?

• CRUD Application; the real thing, where ⁴ou are onl⁴ editing a single

tuple at a time, and ⁴ou don’t reall⁴ care about performances. Like for

the basic admin application interface.

Are thereanyprosor cons tochoosingPostgreSQLoverotherdatabases
when working with Python?

Here are m⁴ top reasons for choosing PostgreSQL as a developer:

• Communit⁴ support: the PostgreSQL communit⁴ reall⁴ is welcoming to

new users, and will t⁴picall⁴ spend the time it takes to full⁴ understand

⁴our question before to answer the best possible answer. The mailing

lists are still the best wa⁴ to communicate with the communit⁴. See

PostgreSQL Mailing Lists for details.

• Data integrit⁴ and durabilit⁴: an⁴ data ⁴ou send to PostgreSQL is safe in
its definition and ⁴our abilit⁴ to fetch it again later.

• Data T⁴pes, function, operators, arra⁴s and ranges: PostgreSQL has a

ver⁴ rich set of data t⁴pes that are reall⁴ useful and come with a host

of operators and functions to process them. It’s even possible to de-

normali⁵e using arrays or JSON data t⁴pes, and still be able to write

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǛ

advanced queries including joins against those. For example, did ⁴ou

know about the ~ regular expression operator? and the regexp_split_

to_array and regexp_split_to_table functions?

• The planner and optimi⁵er: ⁴ou have to tr⁴ to push the limits ⁴ou know

about those to reall⁴ understand how complex and powerful the⁴ are.

I’ve repeatedl⁴ seen Ǖ to ǖ pages long queries run to complement in a

small number of milliseconds.

• Transactional DDL: it’s possible to ROLLBACK almost an⁴ command. Tr⁴

it now, just open ⁴our psql shell against a database ⁴ou have and t⁴pe

in BEGIN;DROP TABLE foo;ROLLBACK; where ⁴ou replace foo with the

name of a table that exists in ⁴our local instance. Ama⁵ing, right?

• INSERT INTO ...RETURNING: ⁴ou can return an⁴thing from the INSERT

statement directl⁴, like for example the id value that got derived from

a sequence. You win a network round-trip and get the result with the

same protocol and tools as when issuing a SELECT statement.

• WITH (DELETE FROM ...RETURNING *) INSERT INTO ...SELECT: Post-

greSQLsupportCommonTableExpression inqueries,whichareknown
asWITH queries, and thanks to its support for the RETURNING clause, it

also supports DML commands there. That’s just awesome, rith?

• WindowFunctions, CREATE AGGREGATE: if ⁴oudon’t knowwhat awindow

function is, go read about it in the PostgreSQL Manual or in m⁴ blog at

Understanding Window Functions. Then ⁴ou have to realise that Post-

greSQL allows ⁴ou to use an⁴ existing aggregate as a window function,

and allows ⁴ou to d⁴namicall⁴ define new aggregates online in SQL.

• PL/P⁴thon (and others such as C, SQL, Javascript or Lua): ⁴ou can run

⁴our own code on the server, right where the data is, so that ⁴ou don’t

have to fetch it over the network just to process it then send it back in a

quer⁴ to do the next level of JOIN. Whatever it is, ⁴ou can do it all on the

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǜ

server.

• Specific Indexing (GiST, GIN, SP-GiST, partial & functional): did ⁴ou know

that ⁴ou can create P⁴thon functions to process ⁴our data from within

PostgreSQL, then index the result of calling that function? So that when

⁴ou issue a quer⁴ with a WHERE clause calling that function, it’s called

onl⁴ once with the data from the quer⁴, then it’s matched directl⁴ with

the contents of the index? PostgreSQL implements index frameworks

for non sortable data t⁴pes, like Ǖ dimensional t⁴pes (ranges, geometr⁴,

etc); and for container data t⁴pes. Lots of cases are alread⁴ supported

out of the box, and a hostmore thanks to the Extension s⁴stem. Have a

look at the Additional Supplied Modules and the PostgreSQL Extension

Network.

• Extensions: such extensions include hstore, a full blown ke⁴ value store
with flexible indexing, ltree for indexing nested tags, pg_trgm as a poor

man’s full text search solution, that supports indexing regular expres-

sion searches and unanchored LIKE queries, ipǗr for quick searches of
an IP address in a range, and a lot more.

• Foreign DataWrappers: the foreign data wrappers are a whole class of
extensions, implementing the SQL/MED standard (Management of Ex-

ternal Data). The idea is to embed a connection driver right into the

PostgreSQL server then expose it through the CREATE SERVER command.

PostgreSQL provides an API to foreign data wrapper authors that al-
lows them to implement read and write access to the remote data, and

also where clauses push-down for efficient joining capabilities. You can

even use the advanced SQL capabilities of PostgreSQL against data that

⁴oumaintain with another piece of technolog⁴!

• LISTEN/NOTIFY: PostgreSQL implementsanas⁴nchronousserver-to-client

protocol called LISTEN/NOTIFY. The applicationma⁴ receive unsolicited

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǗǓ

messages from the server when something interesting happens, for ex-

ample an UPDATE of some data. The NOTIFY command accepts a data

pa⁴load so that ⁴ou can e.g. notif⁴ ⁴our cache application theobject id’s

to purge when the object just has been removed or updated. Of course,

the notification onl⁴ happens if the transaction actuall⁴ did a successful

COMMIT.

• COPYStreamingprotocol: PostgreSQL implements a streamingprotocol
and uses it to implement its full⁴ integrated replication solution. Now,

that protocol is quite eas⁴ to use from an application and allows im-

pressive performance boosts. As soon as ⁴ou’reworking onmore than a

do⁵en row at a time, sometimes before, thing about using COPY against

a temporary table then issuing a single statement joining to that tem-

porar⁴ table: PostgreSQL knows how to join against other tables in all

data modif⁴ing statements (insert, update, delete), and batch opera-

tion usuall⁴ are wa⁴ faster.

ǔǖ Python ǖ support strategies

As far as I’m aware, P⁴thon ǖ is still not the default P⁴thon interpreter in an⁴ s⁴stem

that I’m aware of at the moment, despite having been released in December ǕǓǓǛ

– five ⁴ears ago!

The problem, as ⁴ou know, is that P⁴thon ǖ broke compatibilit⁴ with P⁴thon Ǖ. At

the time that P⁴thon ǖ.Ǔ arrived, the gap between it and P⁴thon Ǖ.Ǚ was so huge

that people weren’t even beginning to think about bridging it. Scared. Shrugging.

But then things changed: P⁴thon Ǖ.ǚ back-ported a lot of features from P⁴thon ǖ.ǔ,

narrowing the gap. Much sanit⁴ returned through subsequent versions of P⁴thon,

and I am happ⁴ to state that it is now possible to support both P⁴thon Ǖ.ǚ and

P⁴thon ǖ.ǖ… almost without difficult⁴!

There is official documentation on porting applications, but I wouldn’t recommend

following it to the letter. It talks a lot about the Ǖtoǖ tool – which converts P⁴thon Ǖ

code to P⁴thon ǖ – and contains proposals like starting a special P⁴thon ǖ branch

for ⁴our project.

In m⁴ opinion, this is terrible advice nowada⁴s. It ma⁴ have been the most appro-

priate advice a few ⁴ears ago, but considering the current state of "compatibilit⁴"

between P⁴thon Ǖ.ǚ and P⁴thon ǖ.ǖ, it’s better to forget about this approach.

CHAPTER ǔǖ. PYTHON ǖ SUPPORT STRATEGIES ǕǗǕ

Note

Note that a 3to2 tool also exists – but for the same reason given above, I wouldn’t encour-

age its use.

Firstl⁴, Ǖtoǖ doesn’t do alwa⁴s the right thing – it’s not magic. It onl⁴ deals with

s⁴ntax changes, which covers a lot; but it doesn’t maintain backward compatibilit⁴

with P⁴thon Ǖ – and in an⁴ case, ⁴ou’ll have to handle semantic changesmanuall⁴.

Secondl⁴, running Ǖtoǖ is damn slow; and for this reason it’s unlikel⁴ to be a good

long-term solution. Some guides even suggest running it at setup.py time, which is

somewhat ha⁵ardous.

Somedocumentation recommendsusingdifferentprojectbranches to supportP⁴thon Ǖ

and P⁴thon ǖ. Experience shows that this can be terrible tomanage, and that users

will get confused about which version the⁴ should use. Even worse, ⁴ou will get

confused when the⁴ start submitting bug reports without explicitl⁴ stating which

branch the⁴ are using.

A better method is to use a single code base that is both P⁴thon Ǖ and P⁴thon ǖ

compatible. This is on what we put our effort on with OpenStack.

In the end, theonl⁴wa⁴ tobe sure that ⁴our codeworksunderbothP⁴thonversions

is to have unit testing. Without unit testing, it is impossible to know if ⁴our code

will work in both contexts and across versions. If ⁴ou do not have an⁴ test in ⁴our

application ¹ the first thing todo is to increase ⁴our code coveragedramaticall⁴; ⁴ou

ma⁴ want to jump to Chapter Ǚ right ahead.

Tox is a great tool for automating tests run against multiple P⁴thon versions, and

we’ll talk about it in Section Ǚ.ǚ.

Once ⁴ou have unit tests and tox set up, it’s eas⁴ enough to run ⁴our tests against

both P⁴thon versions using:

¹I have heard that such projects exist.

ǔǖ.ǔ. LANGUAGE AND STANDARD LIBRARY ǕǗǖ

tox -e py27,py33

See what’s broken, fix it, and launch tox again. Repeat until all tests pass. If ⁴ou’re

doing it correctl⁴, thenumberof errorswill decrease slowl⁴but steadil⁴, to thepoint

where all of ⁴our code base will be full⁴ P⁴thon Ǖ and ǖ compatible.

If ⁴ou have a C module written for P⁴thon that ⁴ou would like to port, I’m sorr⁴ to

inform ⁴ou that there’s not much to sa⁴ – other than to tell ⁴ou to read the doc-

umentation and port ⁴our code. It ma⁴ be a useful option to rewrite using cffi if

possible.

In the following sections I will discuss some points ⁴ouwill encounter while porting

betweenP⁴thonversions. Iwill assume that ⁴oualread⁴haveaP⁴thon Ǖ codebase.

Whilemostofwhat followscould in theor⁴alsobeapplied to theportingof aP⁴thon

ǖ project to P⁴thon Ǖ, I have never personall⁴ encountered such a case.

13.1 Language and standard library

The language hasn’t changed radicall⁴; I’m sure ⁴ou’ve alread⁴ taken a look. This

book won’t cover the entire list of changes – it would be much too boring, and in

an⁴ case can be found online. The book Porting to P⁴thon ǖ gives a prett⁴ good

overview of what ⁴ouma⁴ need to change in order to support P⁴thon ǖ.

If ⁴ou haven’t ⁴et taken a look at the language changes made in P⁴thon ǖ, I invite

⁴ou to do so. It’s a great language, with a lot less corner cases, and much cleaner

interfaces on various object bases. You’ll love P⁴thon ǖ.

But it raises strong compatibilit⁴ problems. The s⁴ntax changes to some state-

ments (e.g. exception catching) have removed old P⁴thon version compatibilities,

and the⁴ can be a pain to tackle if ⁴ou used them. The hacking tool that we’ll dis-

cuss in section Section ǔ.Ǘ can help ⁴ou to fix these incompatible usages, and stop

ǔǖ.ǔ. LANGUAGE AND STANDARD LIBRARY ǕǗǗ

⁴ou from adding more.

Whensupportingmultiple versionsofP⁴thon, ⁴oushouldn’t tr⁴ to supportan⁴thing

older than Ǖ.Ǚ and ǖ.ǖ at the same time. P⁴thon Ǖ.Ǚ is the first version which has

enough compatibilit⁴ with P⁴thon ǖ to be eas⁴ enough to port forward.

The changes that might impact ⁴ou the most are in the area of string handling. In

P⁴thon ǖ what was called unicode is now str. That means that ever⁴ string is Uni-

code – i.e. that u’foobar' ² and 'foobar'mean the same thing.

Figure ǔǖ.ǔ: P⁴thon Ǖ base classes

²The u prefix was removed in P⁴thon ǖ.Ǔ but reintroduced in P⁴thon ǖ.ǖ – see PEP ǗǔǗ

ǔǖ.ǔ. LANGUAGE AND STANDARD LIBRARY ǕǗǘ

Figure ǔǖ.Ǖ: P⁴thon ǖ base classes

Classes implementing unicode should rename that function to str, since the former

isn’t used an⁴more; ⁴ou can automate this with a class decorator along these lines:

-*- encoding: utf-8 -*-

import six

This backports your Python 3 __str__ for Python 2

def unicode_compat(klass):

if not six.PY3:

klass.__unicode__ = klass.__str__

klass.__str__ = lambda self: self.__unicode__().encode('utf-8')

return klass

@unicode_compat

class Square(object):

def __str__(self):

ǔǖ.Ǖ. EXTERNAL LIBRARIES ǕǗǙ

return u"■ " + str(id(self))

Thatwa⁴⁴ou implement just onemethod for all P⁴thonversions returningUnicode,

and the decorator handles the compatibilit⁴ issue.

Another trick that can be hand⁴ when dealing with P⁴thon and Unicode is to use

the unicode_literals function, which is available starting with P⁴thon Ǖ.Ǚ ³.

>>> 'foobar'

'foobar'

>>> from __future__ import unicode_literals

>>> 'foobar'

u'foobar'

Various functions no longer return lists, instead returning iterable objects (such as

range); in addition, dictionar⁴ methods like keys or items now return iterable ob-

jects, and functions like iterkeys and iteritems have been removed. This is a big

change, but six (discussed in Section ǔǖ.ǖ) can help ⁴ou with handling it.

Obviousl⁴, the standard librar⁴ has evolved between P⁴thon Ǖ and P⁴thon ǖ, but

that shouldn’t be a huge concern. Some modules have been renamed or moved,

but in the end the result is a clearer la⁴out. There’s no official listing that I’m aware

of, but ⁴ou can find a prett⁴ good list here, or use a search engine.

The sixmodule,whichwewill discuss inSection ǔǖ.ǖ,will alsohelpa lotwhen tr⁴ing

to maintain compatibilit⁴ between P⁴thon Ǖ & ǖ.

13.2 External libraries

Your first enemies are the external libraries ⁴ou depend on. If ⁴ou read m⁴ advice

in Section Ǖ.ǖ and followed m⁴ check-list, ⁴ou won’t have a problem here – since

³Another reason not to support older versions?

ǔǖ.ǖ. USING SIX ǕǗǚ

that check-list included a P⁴thon ǖ support requirement. However, ⁴ou ma⁴ have

started a project earlier and have alread⁴ made the mistake.

Unfortunatel⁴ there isn’t an⁴ magic trick than can resolve the problem. Luckil⁴, if

⁴ou followedm⁴ other advice, ⁴ou isolated this librar⁴ enough that it is not spread

across ⁴our whole code base; so ⁴ou can think about replacing it. Indeed, this ma⁴

be ⁴our best move if the librar⁴ does not show a strong possibilit⁴ of supporting

P⁴thon ǖ. However, small and medium-si⁵ed libraries might be more easil⁴ ported

to P⁴thon ǖ than big frameworks, so ⁴ouma⁴ want to cut ⁴our teeth on them.

When looking for packages on P⁴PI, ⁴ou can check for the trove classifiers "Pro-

gramming Language :: Python :: Ǖ" and "Programming Language :: Python :: ǖ",

which indicate which version of P⁴thon the package supports. However, be careful

that these ma⁴ not be up to date.

One of the external librar⁴ choicesmade at the beginning of the OpenStack project

was eventlet, a concurrent networking librar⁴. It has no support for P⁴thon ǖ, and

still tries to support P⁴thon Ǖ.ǘ –which, as ⁴ou imagine, does not facilitate an⁴ tran-

sition. This choice was made a long time ago in OpenStack, before an⁴ kind of

checks for P⁴thon ǖ compatibilit⁴ were done; and we alread⁴ know that this mod-

ule is going a big issue in themonths ahead. As of ⁴et, we have no concrete plan on

how to fix it.

Don’t make the samemistake!

13.3 Using six

Aswehaveseen, P⁴thon ǖbreakscompatibilit⁴withearlier versionsandshits things

around. However, the basics of the language haven’t changed, so it is possible to

have a sort of transition la⁴er; amodule that can implement forward and backward

compatibilit⁴ – a bridge between P⁴thon Ǖ and P⁴thon ǖ.

This module exists, and it’s called six – because two times three equals six.

ǔǖ.ǖ. USING SIX ǕǗǛ

The first thing that six provides is the six.PYǖ variable. This is a boolean which in-

dicates whether we are running P⁴thon ǖ or not. This is the pivot variable for an⁴ of

⁴our code base that has two versions, one for P⁴thon Ǖ and one for P⁴thon ǖ. How-

ever, be careful not to abuse it; scattering ⁴our code base with if six.PYǖ is going to

be difficult to work with later.

As we discussed in Section Ǜ.ǔ, which concerned generators, P⁴thon ǖ has a great

featurewhereb⁴ iterableobjectsare returned insteadof lists. Thatmeans thatmeth-

ods like dict.iteritems are gone, and that dict.items returns an iterator rather than a

list. Obviousl⁴ this can break ⁴our code. six provides six.iteritems for such cases, so

that all ⁴ou have to do is to replace the following code:

for k, v in mydict.iteritems():

print(k, v)

with:

import six

for k, v in six.iteritems(mydict):

print(k, v)

And voilà, P⁴thon ǖ compliance achieved in a snap! six provides a lot of similar

helper functions that can increase compatibilit⁴ across P⁴thon versions.

The raise s⁴ntaxalso changed inP⁴thonǖ ⁛, so re-raisingexceptions shouldbedone
using six.reraise.

If ⁴ou are using metaclasses, P⁴thon ǖ has also changed this completel⁴. Six has a

nice trick for handling the transition – for example, if ⁴ou are using the abc abstract
base classes metaclass, here’s how ⁴ou would use six:

import abc

from six import with_metaclass

⁛It now onl⁴ accepts one argument, an exception.

ǔǖ.ǖ. USING SIX ǕǗǜ

class MyClass(with_metaclass(abc.ABCMeta, object)):

pass

One cannot discuss P⁴thon ǖwithout touching on the string and unicodemess that

it solved. In P⁴thon Ǖ, the basic t⁴pe for string is str which can handle onl⁴ ba-

sic ASCII strings, and the t⁴pe unicode, added later, handles real string of text. In

P⁴thon ǖ, the basic t⁴pe is still str, but it shares the properties of the P⁴thon Ǖ

unicode class and can handle advanced encodings. The bytes t⁴pe replaces the

str t⁴pe for handling basic characters stream.

six provides a nice set of functions and constants to handle the transition, such

as six.u and six.string_types. The same compatibilit⁴ is provided for integers, with

six.integer_types that will handle the long t⁴pe that has been removed fromP⁴thon

ǖ.

As discussed in Section ǔǖ.ǔ, some modules have moved, and six provides a nice

module called six.moves that handles a lot of these moves transparentl⁴.

For example, the ConfigParser module in P⁴thon ǖ has been renamed to config-

parser. Code using ConfigParser under P⁴thon Ǖ:

from ConfigParser import ConfigParser

conf = ConfigParser()

can be ported andmade compatible with both major P⁴thon versions:

from six.moves.configparser import ConfigParser

conf = ConfigParser()

ǔǖ.ǖ. USING SIX ǕǘǓ

Tip

It is also possible to add your own moves via six.add_move to handle other transitions.

The six librar⁴might not be enough or cover all ⁴our use case. In this case, building

a compatibilit⁴ module encapsulating six itself might be worth it. B⁴ isolating the

this in one particular module, ⁴ou are assuring that ⁴ou’ll be able to enhance it for

future version of P⁴thon, or dispose (part of) it when ⁴ou’ll want to stop supporting

a particular version of P⁴thon. Also note that six is open source and that ⁴ou can

contribute to it rather than maintaining ⁴our own hacks.

The last thing I’llmention, is themoderni⁵emodule. It’s a thinwrapper around Ǖtoǖ

that "moderni⁵es" code b⁴ porting to P⁴thon ǖ; but rather than convert the s⁴ntax

to P⁴thon ǖ code onl⁴, it uses the sixmodule. It’s a better choice than the standard

Ǖtoǖ tool, and get ⁴our port off to a strong start b⁴ carr⁴ing out most of the grunt

work for ⁴ou. It’s worth a shot.

ǔǗ Write less, codemore

In this section I’ve compiled a few of the more advanced features that I find inter-

esting – the⁴’ll help ⁴ou to write better code.

14.1 Single dispatcher

I oten like to sa⁴ that P⁴thon is a good subset of Lisp, and as time passes I find this

to bemore andmore true. Recentl⁴ I stumbled across the PEP ǗǗǖ, which describes

a wa⁴ to dispatch generic functions in a similar manner to that provided b⁴ CLOS,

the Common Lisp Object S⁴stem.

If ⁴ou’re familiar with Lisp, this won’t be new to ⁴ou. The Lisp object s⁴stem, which

is one of the basic components of Common Lisp, provides a goodwa⁴ to define and

handle method dispatching. I’ll show ⁴ou how generic methods work in Lisp first –

even if onl⁴ for the pleasure of including Lisp code in a book on P⁴thon!

To begin with, let’s define a few ver⁴ simple classes, without an⁴ parent classes or

attributes

(defclass snare-drum ()

())

(defclass cymbal ()

())

ǔǗ.ǔ. SINGLE DISPATCHER ǕǘǕ

(defclass stick ()

())

(defclass brushes ()

())

This defines a few classes: snare-drum, symbal, stick and brushes, without an⁴

parent class nor attribute. These classes compose a drum kit, and we can combine

them to pla⁴ sound. So we define a play method that takes two arguments, and

returns a sound (as a string).

(defgeneric play (instrument accessory)

(:documentation "Play sound with instrument and accessory."))

This onl⁴ defines a genericmethod: it isn’t attached to an⁴ class, and so cannot ⁴et

be called. At this stage, we’ve onl⁴ informed the object s⁴stem that the method is

generic and can be called with various arguments. Now we’ll implement versions

of this method that simulate pla⁴ing our snare-drum.

(defmethod play ((instrument snare-drum) (accessory stick))

"POC!")

(defmethod play ((instrument snare-drum) (accessory brushes))

"SHHHH!")

Now we’ve defined concrete methods in code. The⁴ take two arguments: instru

ment, which is an instance of snare-drum; and accessory, which is an instance of

stick or brushes.

At this stage, ⁴ou should see the first major difference between this s⁴stem and the

P⁴thon (or similar) object s⁴stems: the method isn’t tied to an⁴ particular class.

The methods are generic, and an⁴ class can implement them.

ǔǗ.ǔ. SINGLE DISPATCHER Ǖǘǖ

Let’s tr⁴ it.

* (play (make-instance 'snare-drum) (make-instance 'stick))

"POC!"

* (play (make-instance 'snare-drum) (make-instance 'brushes))

"SHHHH!"

* (play (make-instance 'cymbal) (make-instance 'stick))

debugger invoked on a SIMPLE-ERROR in thread

#<THREAD "main thread" RUNNING {1002ADAF23}>:

There is no applicable method for the generic function

#<STANDARD-GENERIC-FUNCTION PLAY (2)>

when called with arguments

(#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>).

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):

0: [RETRY] Retry calling the generic function.

1: [ABORT] Exit debugger, returning to top level.

((:METHOD NO-APPLICABLE-METHOD (T)) #<STANDARD-GENERIC-FUNCTION PLAY (2)> ←֓

#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>) [fast-method]

As ⁴ou can see, which function is called depends on the class of the arguments – the

object s⁴stems dispatch the function calls to the right function for us, depending

which classes we pass as arguments. If we call play with instances that are not

known to the object s⁴stem, an error will be thrown.

Inheritance is also supported and, the (more powerful and less error prone) equiv-

alent of P⁴thon’s super() is available via (call-next-method).

ǔǗ.ǔ. SINGLE DISPATCHER ǕǘǗ

(defclass snare-drum () ())

(defclass cymbal () ())

(defclass accessory () ())

(defclass stick (accessory) ())

(defclass brushes (accessory) ())

(defmethod play ((c cymbal) (a accessory))

"BIIING!")

(defmethod play ((c cymbal) (b brushes))

(concatenate 'string "SSHHHH!" (call-next-method)))

In this example, we define the stick and brushes classes as subclasses of access

ory. The playmethoddefinedwill return the soundBIIING!, regardless of what kind

of accessor⁴ instance is used to pla⁴ the c⁴mbal – except if it’s a brushes instance;

themostprecisemethod isalwa⁴scalled. The(call-next-method) function isused

to call the closest parentmethod, and in this case that would be themethodwhich

returns "BIIING!".

* (play (make-instance 'cymbal) (make-instance 'stick))

"BIIING!"

* (play (make-instance 'cymbal) (make-instance 'brushes))

"SSHHHH!BIIING!"

Note that CLOS can define speciali⁵edmethodswhich appl⁴ to onl⁴ one instance of

a class- using the eql speciali⁵er.

But if ⁴ou’re reall⁴ curious about the man⁴ features CLOS provides, I suggest that

⁴ou read the brief guide to CLOS b⁴ Jeff Dalton as a starter.

ǔǗ.ǔ. SINGLE DISPATCHER Ǖǘǘ

P⁴thon implements a simpler version of this workflow with the singledispatch

function, which will is with P⁴thon ǖ.Ǘ as part of the functoolsmodule. Here’s the

rough equivalent of the Lisp program above:

import functools

class SnareDrum(object): pass

class Cymbal(object): pass

class Stick(object): pass

class Brushes(object): pass

@functools.singledispatch

def play(instrument, accessory):

raise NotImplementedError("Cannot play these")

@play.register(SnareDrum)

def _(instrument, accessory):

if isinstance(accessory, Stick):

return "POC!"

if isinstance(accessory, Brushes):

return "SHHHH!"

raise NotImplementedError("Cannot play these")

We define our four classes, and a base play function that raises NotImplemented

Error, indicating that b⁴ default we don’t know what to do. We can then write a

speciali⁵ed version of this function for a specific instrument, the SnareDrum. This

functioncheckswhichaccessor⁴ t⁴pehasbeenpassed, and returns theappropriate

sound – or raises NotImplementedError again if it doesn’t recognise the accessor⁴.

If we run the program, it should work as follows:

>>> play(SnareDrum(), Stick())

'POC!'

ǔǗ.ǔ. SINGLE DISPATCHER ǕǘǙ

>>> play(SnareDrum(), Brushes())

'SHHHH!'

>>> play(Cymbal(), Brushes())

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper

return dispatch(args[0].__class__)(*args, **kw)

File "/home/jd/sd.py", line 10, in play

raise NotImplementedError("Cannot play these")

NotImplementedError: Cannot play these

>>> play(SnareDrum(), Cymbal())

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper

return dispatch(args[0].__class__)(*args, **kw)

File "/home/jd/sd.py", line 18, in _

raise NotImplementedError("Cannot play these")

NotImplementedError: Cannot play these

Thesingledispatchmodulechecks theclassof the first argumentpassed, andcalls

the appropriate version of the play function. For the object class, the first-defined

version of the function is alwa⁴s the one which is run – so, if our instrument is an

instance of a class that we did not register, this base function will be called.

For those eager to tr⁴ it out, the singledispatch function is provided in P⁴thon Ǖ.Ǚ

to ǖ.ǖ, through the P⁴thon Package Index.

As we saw in the Lisp version of the code, CLOS provides amultiple dispatcher that

candispatchdependingon the t⁴peof anyof theargumentsdefined in themethod

protot⁴pe, not just the first one. Unfortunatel⁴, the P⁴thon dispatcher is named

singledispatch for a good reason: it onl⁴ knows how to dispatch based on the first

ǔǗ.Ǖ. CONTEXT MANAGERS Ǖǘǚ

argument. Guido van Rossum wrote a short article called multimethod about this

subject a few ⁴ears ago.

In addition, there’s no wa⁴ to call the parent function directl⁴ – no equivalent of

either (call-next-method) from Lisp, or the P⁴thon super() function. You’ll have

to use various tricks to b⁴pass this limitation.

To conclude: while I am reall⁴ glad that P⁴thon is heading in this direction, as it’s

a reall⁴ powerful wa⁴ to enhance an object s⁴stem, it still lacks a lot of the more

advanced features that CLOS provides out of the box.

14.2 Context managers

The with statement introduced in P⁴thon Ǖ.Ǚ is likel⁴ to remind old time Lispers of

the various with-*macros that are oten used in the language. P⁴thon provides a

similar-looking mechanism, with the use of objects which implement the context

management protocol.

Objects like those returned b⁴ open support this protocol; that’s wh⁴ ⁴ou can write

code along these lines:

with open("myfile", "r") as f:

line = f.readline()

The object returned b⁴ open has twomethods, one called __enter__ and one called

__exit__; these are called at the start of the with block and at the end of it, respec-

tivel⁴.

A simple implementation of a context object would be:

Example ǔǗ.ǔ Simple implementation of a context object

class MyContext(object):

def __enter__(self):

pass

ǔǗ.Ǖ. CONTEXT MANAGERS ǕǘǛ

def __exit__(self, exc_type, exc_value, traceback):

pass

It wouldn’t do an⁴thing, but is valid.

When do ⁴ou want to use context managers? The use of context management pro-

tocol might be appropriate if ⁴ou identif⁴ the following pattern in ⁴our object:

ǔ. Call method A;

Ǖ. Execute some code;

ǖ. Call method B.

Where it is expected that a call to method B must always be done ater a call
to A. The open function illustrates this pattern well – in this case, the constructor

that opens the file and allocates a file descriptor internall⁴ is method A. The close

method that releases the file descriptor corresponds to method B. Obviousl⁴, the

close function is alwa⁴s meant to be called ater ⁴ou instantiate the file object.

The contextlib standard librar⁴ provides contextmanager to ease the implemen-

tation of such a mechanism, b⁴ rel⁴ing on a generator to construct the __enter__

and __exit__ methods for ⁴ou. We can use this to implement our simple context

manager:

Example ǔǗ.Ǖ Simplest usage of contextlib.contextmanager

import contextlib

@contextlib.contextmanager

def MyContext():

yield

For example, I’ve been using this design pattern in Ceilometer for the pipeline in-

frastructurewe set up. Basicall⁴, a pipeline is a tube intowhich objects are put, and

ǔǗ.Ǖ. CONTEXT MANAGERS Ǖǘǜ

from which the⁴ are dispatched to various places. The steps to send data this wa⁴

are as follows:

ǔ. Call the publish(objects) method of a pipeline, with ⁴our objects as argu-

ments – as man⁴ times as ⁴ou need.

Ǖ. Once done, call the flush() method to indicate that ⁴ou’re done publishing

for now.

Note that if ⁴ounever call the flush()method, ⁴our objectswill never be sent down

the tube; or at least not completel⁴. It can be ver⁴ eas⁴ for a programmer to forget

about a flush() call, which breaks the programwithout giving an⁴ clues as towhat

might be wrong.

It’s much better if ⁴our API provides a context manager object that will not allow

the API user tomake this mistake. This can be done prett⁴ easil⁴ with the following

code:

Example ǔǗ.ǖ Using a context manager on a pipeline object

import contextlib

class Pipeline(object):

def _publish(self, objects):

Imagine publication code here

pass

def _flush(self):

Imagine flushing code here

pass

@contextlib.contextmanager

def publisher(self):

ǔǗ.Ǖ. CONTEXT MANAGERS ǕǙǓ

try:

yield self._publish

finally:

self._flush()

Now, when users of our API wants to publish something in our pipeline, the⁴ don’t

have to use _publish or _flush. The⁴ just request a publisher using the epon⁴m

function, and uses it.

pipeline = Pipeline()

with pipeline.publisher() as publisher:

publisher([1, 2, 3, 4])

When⁴ouprovide anAPI like this, there’s noplace for user error. Alwa⁴s use context

managers when ⁴ou see that it suits the design pattern.

In some contexts, it might be useful to use several context managers at the same

time – for example, opening two files at the same time to cop⁴ their content:

Example ǔǗ.Ǘ Opening two files at the same time

with open("file1", "r") as source:

with open("file2", "w") as destination:

destination.write(source.read())

Remember that the with statement supports having multiple arguments – so ⁴ou

should write:

Example ǔǗ.ǘ Opening two files at the same time with one with statement

with open("file1", "r") as source, open("file2", "w") as destination:

destination.write(source.read())

	Starting your project
	Python versions
	Project layout
	Version numbering
	Coding style & automated checks

	Modules and libraries
	The import system
	Standard libraries
	External libraries
	Frameworks
	Interview with Doug Hellmann
	Managing API changes
	Interview with Christophe de Vienne

	Documentation
	Getting started with Sphinx and reST
	Sphinx modules
	Extending Sphinx

	Distribution
	A bit of history
	Packaging with pbr
	The Wheel format
	Package installation
	Sharing your work with the world
	Interview with Nick Coghlan
	Entry points
	Visualising entry points
	Using console scripts
	Using plugins and drivers

	Virtual environments
	Unit testing
	The basics
	Fixtures
	Mocking
	Scenarios
	Test streaming and parallelism
	Coverage
	Using virtualenv with tox
	Testing policy
	Interview with Robert Collins

	Methods and decorators
	Creating decorators
	How methods work in Python
	Static methods
	Class method
	Abstract methods
	Mixing static, class, and abstract methods
	The truth about super

	Functional programming
	Generators
	List comprehensions
	Functional functions functioning

	The AST
	Hy
	Interview with Paul Tagliamonte

	Performances and optimizations
	Data structures
	Profiling
	Ordered list and bisect
	Namedtuple and slots
	Memoization
	PyPy
	Achieving zero copy with the buffer protocol
	Interview with Victor Stinner

	Scaling and architecture
	A note on multi-threading
	Multiprocessing vs multithreading
	Asynchronous and event-driven architecture
	Service-oriented architecture

	RDBMS and ORM
	Streaming data with Flask and PostgreSQL
	Interview with Dimitri Fontaine

	Python 3 support strategies
	Language and standard library
	External libraries
	Using six

	Write less, code more
	Single dispatcher
	Context managers

