
ǔ Starting your project

1.1 Python versions

One of the first questions ⁴ou’re likel⁴ to ask is "which versions of P⁴thon should

m⁴ sotware support?". It’s well worth asking, since each new version of P⁴thon

introduces new features and deprecates old ones. Furthermore, there’s a huge gap
between P⁴thon Ǖ.x and P⁴thon ǖ.x: there are enough changes between the two

branches of the language that it can be hard to keep code compatible with both,

as we’ll see in more detail later, and it can be hard to tell which version is more

appropriate when ⁴ou’re starting a new project. Here are some short answers:

• Versions Ǖ.ǘ and older are prett⁴ much obsolete b⁴ now, so ⁴ou don’t have to

worr⁴ about supporting themat all. If ⁴ou’re intent on supporting these older ver-

sions an⁴wa⁴, be warned that ⁴ou’ll have an even harder time ensuring that ⁴our

program supports P⁴thon ǖ.x as well. Though ⁴ou might still run into P⁴thon Ǖ.ǘ

on some older s⁴stems; if that’s the case for ⁴ou, sorr⁴!

• Version Ǖ.Ǚ is still viable; ⁴ou’ll find it in some older versions of operating s⁴stems

such as Red Hat Enterprise Linux. It’s not hard to support P⁴thon Ǖ.Ǚ as well as

newer versions, but if ⁴ou don’t think ⁴our programwill need to run on Ǖ.Ǚ, don’t

stress ⁴ourself tr⁴ing to accommodate it.

• Version Ǖ.ǚ is and will remain the last version of P⁴thon Ǖ.x. It’s a good idea to

ǔ.Ǖ. PROJECT LAYOUT Ǖ

make it ⁴our main target, or one of ⁴our main targets, since a lot of sotware, li-

braries, and developers still make use of it. P⁴thon Ǖ.ǚ should continue to be sup-

ported until around ǕǓǔǙ, so odds are it’s not going awa⁴ an⁴time soon.

• Version ǖ.Ǔ, ǖ.ǔ, and ǖ.Ǖ were released in quick succession and as such haven’t

seenmuch adoption. If ⁴our code alread⁴ supports Ǖ.ǚ, there’s not much point in

supporting these versions as well.

• Version ǖ.ǖ and ǖ.Ǘ are the most recent distributed editions of P⁴thon ǖ and the

ones ⁴ou should focus on supporting. P⁴thon ǖ.ǖ and ǖ.Ǘ represent the future of

the language, so unless ⁴ou’re focusing on compatibilit⁴ with older versions, ⁴ou

should make sure ⁴our code runs on these versions as well.

In summar⁴: support Ǖ.Ǚ onl⁴ if ⁴ou have to (or are looking for a challenge), def-

initel⁴ support Ǖ.ǚ, and if ⁴ou want to guarantee that ⁴our sotware will continue

to run for the foreseeable future, support ǖ.ǖ and above as well. You can safel⁴ ig-

nore other versions, though that’s not to sa⁴ it’s impossible to support themall: the

Cherr⁴P⁴ project supports all versions of P⁴thon from Ǖ.ǖ onward.

Techniques for writing programs that support both P⁴thon Ǖ.ǚ and ǖ.ǖ will be dis-

cussed in Chapter ǔǖ. Youmight spot some of these techniques in the sample code

as ⁴ou read: all of the code that ⁴ou’ll see in this book has been written to support

both major versions.

1.2 Project layout

Your project structure should be fairl⁴ simple. Use packages and hierarch⁴ wisel⁴:

a deep hierarch⁴ can be a nightmare to navigate, while a flat hierarch⁴ tends to

become bloated.

One common mistake is leaving unit tests outside the package director⁴. These

tests should definitel⁴ be included in a sub-package of ⁴our sotware so that:

ǔ.Ǖ. PROJECT LAYOUT ǖ

• the⁴ don’t get automaticall⁴ installed as a tests top-level module b⁴ setuptools
(or some other packaging librar⁴).

• the⁴ can be installed and eventuall⁴ used b⁴ other packages to build their own

unit tests.

The following diagram illustrates what a standard file hierarch⁴ should look like:

Figure ǔ.ǔ: Standard package director⁴

setup.py is the standard name for P⁴thon installation script. When run, it installs

⁴our package using the P⁴thon distribution utilities (distutils). You can also pro-

ǔ.Ǖ. PROJECT LAYOUT Ǘ

vide important information to users in README.rst (or README.txt, orwhatever file-

name suits ⁴our fanc⁴). requirements.txt should list ⁴our P⁴thon package’s de-

pendencies – i.e., all of the packages that a tool such as pip should install to make

⁴our package work. You can also include test-requirements.txt, which lists onl⁴

the dependencies required to run the test suite. Finall⁴, the docs director⁴ should

contain the package’s documentation in reStructuredText format, that will be con-

sumed b⁴ Sphinx (see Section ǖ.ǔ).

Packages oten have to provide extra data, such as images, shell scripts, and so

forth. Unfortunatel⁴, there’s no universall⁴ accepted standard for where these files

should be stored. Just put themwherever makes the most sense for ⁴our project.

The following top-level directories also frequentl⁴ appear:

Most of the time, the following extra top level directories are used:

• etc is for sample configuration files.

• tools is for shell scripts or related tools.

• bin is for binar⁴ scripts ⁴ou’ve written that will be installed b⁴ setup.py.

• data is for other kinds of data, such as media files.

A design issue I oten encountered is to create files or modules based on the t⁴pe

of code the⁴ will store. Having a functions.py or exceptions.py file is a terrible
approach. It doesn’t help an⁴thing at all with code organi⁵ation and forces a reader

to jump between files for no good reason. Organi⁵e ⁴our code based on features,

not t⁴pe.

Also, don’t create a director⁴ and just an __init__.py file in it, e.g. don’t create

hooks/__init__.py where hooks.py would have been enough. If ⁴ou create a di-

rector⁴, it should contains several other P⁴thon files that belongs to the categor⁴/-

module the director⁴ represents.

ǔ.ǖ. VERSION NUMBERING ǘ

1.3 Version numbering

As ⁴oumight alread⁴ know, there’s an ongoing effort to standardi⁵e packagemeta-

data in the P⁴thon ecos⁴stem. One such piece of metadata is version number.

PEP ǗǗǓ introduces a version format that ever⁴ P⁴thon package, and ideall⁴ ever⁴

application, should follow. This wa⁴, other programs and packages will be able to

easil⁴ and reliabl⁴ identif⁴ which versions of ⁴our package the⁴ require.

PEP ǗǗǓ defines the following regular expression format for version numbering:

N[.N]+[{a|b|c|rc}N][.postN][.devN]

This allows for standard numbering like ǔ.Ǖ or ǔ.Ǖ.ǖ. But note:

• ǔ.Ǖ is equivalent to ǔ.Ǖ.Ǔ; ǔ.ǖ.Ǘ is equivalent to ǔ.ǖ.Ǘ.Ǔ, and so forth.

• Versions matching N[.N]+ are considered final releases.

• Date-based versions such as ǕǓǔǖ.ǓǙ.ǕǕ are considered invalid. Automated tools

designed to detect PEP ǗǗǓ-format version numberswill (or should) raise an error

if the⁴ detect a version number greater than or equal to ǔǜǛǓ.

Final components can also use the following format:

• N[.N]+aN (e.g. ǔ.Ǖaǔ) denotes an alpha release, a version that might be unstable

andmissing features.

• N[.N]+bN (e.g. Ǖ.ǖ.ǔbǕ) denotes a beta release, a version that might be feature-

complete but still bugg⁴.

• N[.N]+cN or N[.N]+rcN (e.g. Ǔ.Ǘrcǔ) denotes a (release) candidate, a version that

mightbe releasedas the final product unless significantbugs emerge. While the rc

and c suffixes have the samemeaning, if both are used, rc releases are considered

to be newer than c releases.

ǔ.ǖ. VERSION NUMBERING Ǚ

These suffixes can also be used:

• .postN (e.g. ǔ.Ǘ.postǕ) indicates a post release. These are t⁴picall⁴ used to ad-

dressminor errors in the publication process (e.g. mistakes in release notes). You

shouldn’t use .postN when releasing a bugfix version; instead, ⁴ou should incre-

ment the minor version number.

• .devN (e.g. Ǖ.ǖ.Ǘ.devǖ) indicates a developmental release. This suffix is discour-
aged because it is harder for humans to parse. It indicates a prerelease of the

version that it qualifies: e.g. Ǖ.ǖ.Ǘ.devǖ indicates the third developmental version

of the Ǖ.ǖ.Ǘ release, prior to an⁴ alpha, beta, candidate or final release.

This scheme should be sufficient for most common use cases.

Note

You might have heard of Semantic Versioning, which provides its own guidelines for ver-

sion numbering. This specification partially overlaps with PEP 440, but unfortunately,

they’re not entirely compatible. For example, Semantic Versioning’s recommendation for

prerelease versioning uses a scheme such as 1.0.0-alpha+001 that is not compliant with

PEP 440.

If ⁴ou need to handle more advanced version numbers, ⁴ou should note that PEP

ǗǕǙ defines source label, a field that ⁴ou can use to carr⁴ an⁴ version string, and

then build a version number consistent with PEP requirements.

Man⁴DVCS ¹platforms, suchasGit andMercurial, are able to generate versionnum-

bers using an identif⁴ing hash ². Unfortunatel⁴, this s⁴stem isn’t compatible with

the scheme defined b⁴ PEP ǗǗǓ: for one thing, identif⁴ing hashes aren’t orderable.

However, it’s possible to use a source label field to hold such a version number and

use it to build a PEP ǗǗǓ-compliant version number.

¹Distributed Version Control S⁴stem
²For Git, refer to git-describe(ǔ).

ǔ.Ǘ. CODING STYLE & AUTOMATED CHECKS ǚ

Tip

pbr ᵃ, which will be discussed in Section 4.2, is able to automatically build version numbers

based on the Git revision of a project.

ᵃPython Build Reasonableness

1.4 Coding style & automated checks

Yes, coding st⁴le is a touch⁴ subject, but we still need to talk about it.

P⁴thon has an ama⁵ing qualit⁴ ³ that few other languages have: it uses indentation

to define blocks. At first glance, it seems to offer a solution to the age-old ques-

tion of "where should I put m⁴ curl⁴ braces?"; unfortunatel⁴, it introduces a new

question in the process: "how should I indent?"

And so the P⁴thon communit⁴, in their vast wisdom, came upwith the PEP Ǜ ⁛ stan-

dard for writing P⁴thon code. The list of guidelines boils down to:

• Use Ǘ spaces per indentation level.

• Limit all lines to a maximum of ǚǜ characters.

• Separate top-level function and class definitions with two blank lines.

• Encode files using ASCII or UTF-Ǜ.

• Onemodule import per import statement and per line, at the top of the file, ater

comments and docstrings, grouped first b⁴ standard, then third-part⁴, and finall⁴

local librar⁴ imports.

• No extraneous whitespaces between parentheses, brackets, or braces, or before

commas.
³Your mileage ma⁴ var⁴.
⁛PEP Ǜ Style Guide for Python Code, ǘth Jul⁴ ǕǓǓǔ, Guido van Rossum, Barr⁴Warsaw, Nick Coghlan

ǔ.Ǘ. CODING STYLE & AUTOMATED CHECKS Ǜ

• Nameclasses inCamelCase; suffixexceptionswithError (if applicable); name func-

tions in lowercase with words separated_by_underscores; and use a leading un-

derscore for _private attributes or methods.

These guidelines reall⁴ aren’t hard to follow, and furthermore, the⁴ make a lot of

sense. Most P⁴thon programmers have no trouble sticking to them as the⁴ write

code.

However, errarehumanumest, and it’s still a pain to look through⁴our code tomake

sure it fits the PEP Ǜ guidelines. That’s what the pepǛ tool is there for: it can auto-

maticall⁴ check an⁴ P⁴thon file ⁴ou send its wa⁴.

Example ǔ.ǔ A pepǛ run

$ pep8 hello.py

hello.py:4:1: E302 expected 2 blank lines, found 1

$ echo $?

1

pepǛ indicates which lines and columns do not conform to PEP Ǜ and reports each

issue with a code. Violations of MUST statements in the specification are reported

aserrors (startingwithE),whileminorproblemsare reportedaswarnings (starting
with W). The three-digit code following the letter indicates the exact kind of error

or warning; ⁴ou can tell the general categor⁴ at a glance b⁴ looking at the hundreds

digit. For example, errors starting with EǕ indicate issues with whitespace; errors

starting with Eǖ indicate issues with blank lines; and warnings starting withWǙ in-

dicate deprecated features being used.

The communit⁴ still debates whether validating against PEP Ǜ code that is not part

of the standard librar⁴ is a good practice. I advise ⁴ou to consider it and run a PEP Ǜ

validation tool against ⁴our source code on a regular basis. An eas⁴ wa⁴ to do this

is to integrate it into ⁴our test suite. While it ma⁴ seem a bit extreme, it’s a good

wa⁴ to ensure that ⁴ou continue to respect the PEP Ǜ guidelines in the long term.

ǔ.Ǘ. CODING STYLE & AUTOMATED CHECKS ǜ

We’ll discuss in Section Ǚ.ǚ how ⁴ou can integrate pepǛwith tox to automate these

checks.

TheOpenStack project has enforced PEP Ǜ conformance through automatic checks

since the beginning. While it sometimes frustrates newcomers, it ensures that the

codebase – which has grown to over ǔ.Ǚǚ million lines of code – alwa⁴s looks the

same in ever⁴ part of the project. This is ver⁴ important for a project of an⁴ si⁵e

where there are multiple developers with differing opinions on whitespace order-

ing.

It’s also possible to ignore certain kinds of errors andwarnings b⁴ using the --ignore

option:

Example ǔ.Ǖ Running pepǛwith --ignore

$ pep8 --ignore=E3 hello.py

$ echo $?

0

This allows ⁴ou to effectivel⁴ ignore parts of the PEP Ǜ standard that ⁴oudon’twant

to follow. If ⁴ou’re running pepǛ on a existing code base, it also allows ⁴ou to ignore

certain kinds of problems so ⁴ou can focus on fixing issues one categor⁴ at a time.

Note

If you write C code for Python (e.g. modules), the PEP 7 standard describes the coding

style that you should follow.

Other tools also exist that check for actual coding errors rather than st⁴le errors.

Some notable examples include:

• p⁴flakes, which supports plugins

• p⁴lint, which also checks PEP Ǜ conformance, performs more checks b⁴ default,

and supports plugins

ǔ.Ǘ. CODING STYLE & AUTOMATED CHECKS ǔǓ

These tools all make use of static anal⁴sis – that is, the⁴ parse the code and anal⁴⁵e

it rather than running it outright.

If ⁴ou choose to use pyflakes, note that it doesn’t check PEP Ǜ conformance on its

own – ⁴ou’ll still need to run pepǛ as well. To simplif⁴ things, a project called flakeǛ

combinespyflakesandpepǛ into a single command. It also adds somenew features

such as skipping checks on lines containing #noqa and extensibilit⁴ via entr⁴ points.

In its quest for beautiful andunified code, theOpenStackproject chose flakeǛ for all

of its code checks. However, as time passed, the hackers took advantage of flakeǛ's

extensibilit⁴ to test for even more potential issues with submitted code. The end

result of all this is a flakeǛ extension called hacking. It checks for errors such as

odd usage of except, P⁴thon Ǖ/ǖ portabilit⁴ issues, import st⁴le, dangerous string

formatting, and possible locali⁵ation issues.

If ⁴ou’re startinganewproject, I strongl⁴ recommend⁴ouuseoneof these toolsand

rel⁴ on it for automatic checking of ⁴our code qualit⁴ and st⁴le. If ⁴ou alread⁴ have

a codebase, a goodapproach is to run themwithmost of thewarnings disabled and

fix issues one categor⁴ at a time.

While none of these tools ma⁴ be a perfect fit for ⁴our project or ⁴our preferences,

using flakeǛ and hacking together is a goodwa⁴ to improve the qualit⁴ of ⁴our code

andmake it more durable. If nothing else, it’s a good start toward that goal.

Tip

Many text editors, including the famous GNU Emacs and vim, have plugins available (such

as Flymake) that can run tools such as pep8 or flake8 directly in your code buffer, inter-

actively highlighting any part of your code that isn’t PEP 8-compliant. This is a handy way

to fix most style errors as you write your code.

