1 Starting your project
e

1.1 Python versions

One of the first questions you’re likely to ask is "which versions of Python should
my software support?". It’s well worth asking, since each new version of Python
introduces new features and deprecates old ones. Furthermore, there’s a huge gap
between Python 2.x and Python 3.x: there are enough changes between the two
branches of the language that it can be hard to keep code compatible with both,
as we’ll see in more detail later, and it can be hard to tell which version is more

appropriate when you’re starting a new project. Here are some short answers:

« Versions 2.5 and older are pretty much obsolete by now, so you don’t have to
worry about supporting them at all. If you’re intent on supporting these older ver-
sions anyway, be warned that you’ll have an even harder time ensuring that your
program supports Python 3.x as well. Though you might still run into Python 2.5

on some older systems; if that’s the case for you, sorry!

« Version 2.6 is still viable; you’ll find it in some older versions of operating systems
such as Red Hat Enterprise Linux. It’s not hard to support Python 2.6 as well as
newer versions, but if you don’t think your program will need to run on 2.6, don’t

stress yourself trying to accommodate it.

« Version 2.7 is and will remain the last version of Python 2.x. It’s a good idea to

1.2. PROJECT LAYOUT 2

make it your main target, or one of your main targets, since a lot of software, li-
braries, and developers still make use of it. Python 2.7 should continue to be sup-

ported until around 2016, so odds are it’s not going away anytime soon.

« Version 3.0, 3.1, and 3.2 were released in quick succession and as such haven’t
seen much adoption. If your code already supports 2.7, there’s not much pointin

supporting these versions as well.

« Version 3.3 and 3.4 are the most recent distributed editions of Python 3 and the
ones you should focus on supporting. Python 3.3 and 3.4 represent the future of
the language, so unless you’re focusing on compatibility with older versions, you

should make sure your code runs on these versions as well.

In summary: support 2.6 only if you have to (or are looking for a challenge), def-
initely support 2.7, and if you want to guarantee that your software will continue
to run for the foreseeable future, support 3.3 and above as well. You can safely ig-
nore other versions, though that’s not to say it’s impossible to support them all: the

CherryPy project supports all versions of Python from 2.3 onward.

Techniques for writing programs that support both Python 2.7 and 3.3 will be dis-
cussed in Chapter 13. You might spot some of these techniques in the sample code
as you read: all of the code that you’ll see in this book has been written to support

both major versions.

1.2 Project layout

Your project structure should be fairly simple. Use packages and hierarchy wisely:
a deep hierarchy can be a nightmare to navigate, while a flat hierarchy tends to

become bloated.

One common mistake is leaving unit tests outside the package directory. These

tests should definitely be included in a sub-package of your software so that:

1.2. PROJECT LAYOUT 3

« they don’t get automatically installed as a tests top-level module by setuptools

(or some other packaging library).

« they can be installed and eventually used by other packages to build their own

unit tests.

The following diagram illustrates what a standard file hierarchy should look like:

conf.py

quickstart.rst

docs

A

index.rst

__init__py

/

foobar » cli.py

// setup.py storage .py __init__.py
foobar /
[T g

\ README rst tests ——® test_slorage.py

requirements.txt test_cli.py

test-requirements.txt

Figure 1.1: Standard package directory

setup.py is the standard name for Python installation script. When run, it installs

your package using the Python distribution utilities (distutils). You can also pro-

1.2. PROJECT LAYOUT 4

vide important information to users in README. rst (or README . txt, or whatever file-
name suits your fancy). requirements.txt should list your Python package’s de-
pendencies - i.e., all of the packages that a tool such as pip should install to make
your package work. You can also include test-requirements. txt, which lists only
the dependencies required to run the test suite. Finally, the docs directory should
contain the package’s documentation in reStructuredText format, that will be con-

sumed by Sphinx (see Section 3.1).

Packages often have to provide extra data, such as images, shell scripts, and so
forth. Unfortunately, there’s no universally accepted standard for where these files

should be stored. Just put them wherever makes the most sense for your project.
The following top-level directories also frequently appear:

Most of the time, the following extra top level directories are used:

etc is for sample configuration files.

tools is for shell scripts or related tools.

bin is for binary scripts you’ve written that will be installed by setup. py.

data is for other kinds of data, such as media files.

A design issue | often encountered is to create files or modules based on the type
of code they will store. Having a functions.py or exceptions.py file is a terrible
approach. It doesn’t help anything at all with code organization and forces a reader
to jump between files for no good reason. Organize your code based on features,
not type.

Also, don’t create a directory and just an __init .py file init, e.g. don’t create
hooks/ init .py where hooks.py would have been enough. If you create a di-
rectory, it should contains several other Python files that belongs to the category/-

module the directory represents.

1.3. VERSION NUMBERING 5

1.3 Version numbering

As you might already know, there’s an ongoing effort to standardize package meta-

data in the Python ecosystem. One such piece of metadata is version number.

PEP 440 introduces a version format that every Python package, and ideally every
application, should follow. This way, other programs and packages will be able to

easily and reliably identify which versions of your package they require.

PEP 440 defines the following regular expression format for version numbering:

N[.N]+[{a|b|c|rc}N][.postN][.devN]

This allows for standard numbering like 1.2 or 1.2.3. But note:

« 1.2is equivalent to 1.2.0; 1.3.4 is equivalent to 1.3.4.0, and so forth.
« Versions matching N[.NJ+ are considered final releases.

« Date-based versions such as 2013.06.22 are considered invalid. Automated tools
designed to detect PEP 440-format version numbers will (or should) raise an error

if they detect a version number greater than or equal to 1980.
Final components can also use the following format:

« N[.NJ+aN (e.g. 1.2al) denotes an alpha release, a version that might be unstable

and missing features.

« NLNJ+bN (e.g. 2.3.1b2) denotes a beta release, a version that might be feature-
complete but still buggy.

« NL.NJ+cN or N[.NJ+rcN (e.g. 0.4rc1) denotes a (release) candidate, a version that
might be released as the final product unless significant bugs emerge. While the rc
and c suffixes have the same meaning, if both are used, rc releases are considered

to be newer than c releases.

1.3. VERSION NUMBERING 6

These suffixes can also be used:

« .postN (e.g. 1.4.post2) indicates a post release. These are typically used to ad-
dress minor errors in the publication process (e.g. mistakes in release notes). You
shouldn’t use .postN when releasing a bugfix version; instead, you should incre-

ment the minor version number.

« .devN (e.g. 2.3.4.dev3) indicates a developmental release. This suffix is discour-
aged because it is harder for humans to parse. It indicates a prerelease of the
version that it qualifies: e.g. 2.3.4.dev3 indicates the third developmental version

of the 2.3.4 release, prior to any alpha, beta, candidate or final release.

This scheme should be sufficient for most common use cases.

Note

You might have heard of Semantic Versioning, which provides its own guidelines for ver-
f sion numbering. This specification partially overlaps with PEP 440, but unfortunately,
they’re not entirely compatible. For example, Semantic Versioning’s recommendation for
prerelease versioning uses a scheme such as 1.0.0-alpha+001 that is not compliant with

PEP 440.

If you need to handle more advanced version numbers, you should note that PEP
426 defines source label, a field that you can use to carry any version string, and

then build a version number consistent with PEP requirements.

Many DVCS ' platforms, such as Git and Mercurial, are able to generate version num-
bers using an identifying hash >. Unfortunately, this system isn’t compatible with
the scheme defined by PEP 440: for one thing, identifying hashes aren’t orderable.
However, it’s possible to use a source label field to hold such a version number and

use it to build a PEP 440-compliant version number.

'Distributed Version Control System
*For Git, refer to git-describe(1).

1.4. CODING STYLE & AUTOMATED CHECKS 7

Tip
pbr 9, which will be discussed in Section 4.2, is able to automatically build version numbers

based on the Git revision of a project.

aPython Build Reasonableness

1.4 Coding style & automated checks

Yes, coding style is a touchy subject, but we still need to talk about it.

Python has an amazing quality ® that few other languages have: it uses indentation
to define blocks. At first glance, it seems to offer a solution to the age-old ques-
tion of "where should | put my curly braces?"; unfortunately, it introduces a new

guestion in the process: "how should | indent?"

And so the Python community, in their vast wisdom, came up with the PEP 8 * stan-

dard for writing Python code. The list of guidelines boils down to:

Use 4 spaces per indentation level.

Limit all lines to a maximum of 79 characters.

Separate top-level function and class definitions with two blank lines.

Encode files using ASCIl or UTF-8.

« One module import per import statement and per line, at the top of the file, after
comments and docstrings, grouped first by standard, then third-party, and finally

local library imports.

« No extraneous whitespaces between parentheses, brackets, or braces, or before

commas.

*Your mileage may vary.
*PEP 8 Style Guide for Python Code, 5th July 2001, Guido van Rossum, Barry Warsaw, Nick Coghlan

1.4. CODING STYLE & AUTOMATED CHECKS 8

« Nameclassesin CamelCase; suffix exceptionswith Error (ifapplicable); name func-
tions in lowercase with words separated by underscores;and use a leading un-

derscore for private attributes or methods.

These guidelines really aren’t hard to follow, and furthermore, they make a lot of
sense. Most Python programmers have no trouble sticking to them as they write

code.

However, errare humanum est, and it’s still a pain to look through your code to make
sure it fits the PEP 8 guidelines. That’s what the pep8 tool is there for: it can auto-

matically check any Python file you send its way.

Example 1.1 A pep8run

$ pep8 hello.py

hello.py:4:1: E302 expected 2 blank lines, found 1
$ echo $7

1

pep8 indicates which lines and columns do not conform to PEP 8 and reports each
issue with a code. Violations of MUST statements in the specification are reported
as errors (starting with E), while minor problems are reported as warnings (starting
with W). The three-digit code following the letter indicates the exact kind of error
or warning; you can tell the general category at a glance by looking at the hundreds
digit. For example, errors starting with E2 indicate issues with whitespace; errors
starting with E3 indicate issues with blank lines; and warnings starting with W6 in-

dicate deprecated features being used.

The community still debates whether validating against PEP 8 code thatis not part
of the standard library is a good practice. | advise you to consider it and run a PEP 8
validation tool against your source code on a regular basis. An easy way to do this
is to integrate it into your test suite. While it may seem a bit extreme, it’s a good

way to ensure that you continue to respect the PEP 8 guidelines in the long term.

1.4. CODING STYLE & AUTOMATED CHECKS 9

We’ll discuss in Section 6.7 how you can integrate pep8 with tox to automate these

checks.

The OpenStack project has enforced PEP 8 conformance through automatic checks
since the beginning. While it sometimes frustrates newcomers, it ensures that the
codebase - which has grown to over 1.67 million lines of code - always looks the
same in every part of the project. This is very important for a project of any size
where there are multiple developers with differing opinions on whitespace order-
ing.

It’s also possible to ignore certain kinds of errors and warnings by using the --ignore

option:

Example 1.2 Running pep8 with --ignore

$ pep8 --ignore=E3 hello.py
$ echo $7?
0

This allows you to effectively ignore parts of the PEP 8 standard that you don’t want
to follow. If you’re running pep8on a existing code base, it also allows you to ignore

certain kinds of problems so you can focus on fixing issues one category at a time.

f Note
If you write C code for Python (e.g. modules), the PEP 7 standard describes the coding

style that you should follow.

Other tools also exist that check for actual coding errors rather than style errors.

Some notable examples include:

« pyflakes, which supports plugins

« pylint, which also checks PEP 8 conformance, performs more checks by default,

and supports plugins

1.4. CODING STYLE & AUTOMATED CHECKS 10

These tools all make use of static analysis - that is, they parse the code and analyze

it rather than running it outright.

If you choose to use pyflakes, note that it doesn’t check PEP 8 conformance on its
own - you’ll still need to run pep8 as well. To simplify things, a project called flake8
combines pyflakes and pep8into a single command. It also adds some new features

such as skipping checks on lines containing #noqa and extensibility via entry points.

In its quest for beautiful and unified code, the OpenStack project chose flake8 for all
of its code checks. However, as time passed, the hackers took advantage of flake8's
extensibility to test for even more potential issues with submitted code. The end
result of all this is a flake8 extension called hacking. It checks for errors such as
odd usage of except, Python 2/3 portability issues, import style, dangerous string

formatting, and possible localization issues.

If you’re starting a new project, | strongly recommend you use one of these tools and
rely on it for automatic checking of your code quality and style. If you already have
a codebase, a good approachiis to run them with most of the warnings disabled and

fix issues one category at a time.

While none of these tools may be a perfect fit for your project or your preferences,
using flake8 and hacking together is a good way to improve the quality of your code

and make it more durable. If nothing else, it’s a good start toward that goal.

Tip

f Many text editors, including the famous GNU Emacs and vim, have plugins available (such
as Flymake) that can run tools such as pep8 or flake8 directly in your code buffer, inter-
actively highlighting any part of your code that isn’t PEP 8-compliant. This is a handy way

to fix most style errors as you write your code.

