
Ǖ Modules and libraries

2.1 The import system

In order to use modules and libraries, ⁴ou have to import them.

The Zen of Python
>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.



Ǖ.ǔ. THE IMPORT SYSTEM ǔǕ

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

The import s⁴stem is quite complex, but ⁴ou probabl⁴ alread⁴ know the basics.

Here, I’ll show ⁴ou some of the internals of this subs⁴stem.

The sysmodule contains a lot of information about P⁴thon’s import s⁴stem. First

of all, the list of modules currentl⁴ imported is available through the sys.modules

variable. It’s a dictionar⁴ where the ke⁴ is the module name and the value is the

module object.

>>> sys.modules['os']

<module 'os' from '/usr/lib/python2.7/os.pyc'>

Some modules are built-in; these are listed in sys.builtin_module_names. Built-

in modules can var⁴ depending on the compilation options passed to the P⁴thon

build s⁴stem.

When importing modules, P⁴thon relies on a list of paths. This list is stored in the

sys.path variable and tells P⁴thon where to look for modules to load. You can

change this list in code, adding or removing paths as necessar⁴, or ⁴ou can modif⁴

the PYTHONPATH environment variable to add paths without writing P⁴thon code at

all. The following approaches are almost equivalent ¹:

>>> import sys

>>> sys.path.append('/foo/bar')

$ PYTHONPATH=/foo/bar python

>>> import sys

¹Almost because the pathwill not be placed at the same level in the list, though itma⁴ notmatter
depending on ⁴our use case.

bjpcjp

bjpcjp

bjpcjp



Ǖ.ǔ. THE IMPORT SYSTEM ǔǖ

>>> '/foo/bar' in sys.path

True

The order in sys.path is important, since the list will be iterated over to find the

requested module.

It is also possible to extend the import mechanism using custom importers. This is

the technique thatHy ² uses to teachP⁴thonhowto import filesother thanstandard

.py or .pyc files.

The import hook mechanism, as it is called, is defined b⁴ PEP ǖǓǕ ³. It allows ⁴ou

to extend the standard import mechanism and appl⁴ preprocessing to it. You can

also add a custommodule finder b⁴ appending a factor⁴ class to sys.path_hooks.

Themodule finderobjectmusthaveafind_module(fullname, path=None)method

that returns a loader object. The load object also must have a load_module(fulln

ame) responsible for loading the module from a source file.

To illustrate, here’s how Hy uses a custom importer to import source files ending

with .hy instead of .py:

Example Ǖ.ǔ Hymodule importer

class MetaImporter(object):

def find_on_path(self, fullname):

fls = ["%s/__init__.hy", "%s.hy"]

dirpath = "/".join(fullname.split("."))

for pth in sys.path:

pth = os.path.abspath(pth)

for fp in fls:

composed_path = fp % ("%s/%s" % (pth, dirpath))

if os.path.exists(composed_path):

²Hy is a Lisp implementation on top of P⁴thon, discussed in Section ǜ.ǔ
³New Import Hooks, implemented since P⁴thon Ǖ.ǖ

bjpcjp

bjpcjp

bjpcjp



Ǖ.ǔ. THE IMPORT SYSTEM ǔǗ

return composed_path

def find_module(self, fullname, path=None):

path = self.find_on_path(fullname)

if path:

return MetaLoader(path)

sys.meta_path.append(MetaImporter())

Once the path is determined to both be valid and point to a module, a MetaLoader

object is returned:

Hymodule loader

class MetaLoader(object):

def __init__(self, path):

self.path = path

def is_package(self, fullname):

dirpath = "/".join(fullname.split("."))

for pth in sys.path:

pth = os.path.abspath(pth)

composed_path = "%s/%s/__init__.hy" % (pth, dirpath)

if os.path.exists(composed_path):

return True

return False

def load_module(self, fullname):

if fullname in sys.modules:

return sys.modules[fullname]

if not self.path:



Ǖ.ǔ. THE IMPORT SYSTEM ǔǘ

return

sys.modules[fullname] = None

mod = import_file_to_module(fullname,

self.path) ②1

ispkg = self.is_package(fullname)

mod.__file__ = self.path

mod.__loader__ = self

mod.__name__ = fullname

if ispkg:

mod.__path__ = []

mod.__package__ = fullname

else:

mod.__package__ = fullname.rpartition('.')[0]

sys.modules[fullname] = mod

return mod

②1 import_file_to_module reads aHy source file, compiles it to P⁴thon code, and

returns a P⁴thonmodule object.

The uprefix module is another good example of this feature in action. P⁴thon ǖ.Ǔ

throughǖ.Ǖdidn’thave theuprefix fordenotingUnicodestrings featured inP⁴thon Ǖ

⁛; this module ensures compatibilit⁴ between Ǖ.x and ǖ.x b⁴ removing the u prefix

from strings before compilation.

⁛It was added back in P⁴thon ǖ.ǖ.

bjpcjp



Ǖ.Ǖ. STANDARD LIBRARIES ǔǙ

2.2 Standard libraries

P⁴thon comes with a huge standard librar⁴ packed with tools and features for an⁴

purpose ⁴ou can think of. Newcomers to P⁴thon who are used to having to write

their own functions for basic tasks are oten shocked to find that the language itself

ships with such functionalit⁴ built in and read⁴ for use.

Whenever ⁴ou’re about to write ⁴our own function to handle a simple task, please

stop and look through the standard librar⁴ first. M⁴ advice is to skim through the

whole thing at least once so that next time ⁴ou need a function, ⁴ou’ll alread⁴ know

whether what ⁴ou need alread⁴ exists in the standard librar⁴.

We’ll talk about some of these modules in later sections, such as functools and
itertools, but here’s a few of the standardmodules that ⁴ou should definitel⁴ know

about:

• atexit allows ⁴ou to register functions to call when ⁴our program exits.

• argparse provides functions for parsing command line arguments.

• bisect provides bisection algorithms for sorting lists (see Section ǔǓ.ǖ).

• calendar provides a number of date-related functions.

• codecs provides functions for encoding and decoding data.

• collections provides a variet⁴ of useful data structures.

• copy provides functions for cop⁴ing data.

• csv provides functions for reading and writing CSV files.

• datetime provides classes for handling dates and times.

• fnmatch provides functions for matching Unix-st⁴le filename patterns.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp



Ǖ.Ǖ. STANDARD LIBRARIES ǔǚ

• glob provides functions for matching Unix-st⁴le path patterns.

• io provides functions for handling I/O streams. In P⁴thon ǖ, it also contains Strin-
gIO (which is in the module of the same name in P⁴thon Ǖ), which allows ⁴ou to

treat strings as files.

• json provides functions for reading and writing data in JSON format.

• logging provides access to P⁴thon’s own built-in logging functionalit⁴.

• multiprocessing allows ⁴ou to runmultiple subprocesses from ⁴our application,

while providing an API that makes them look like threads.

• operatorprovides functions implementing the basic P⁴thon operatorswhich ⁴ou

can use instead of having towrite ⁴our own lambda expressions (see Section Ǜ.ǖ).

• os provides access to basic OS functions.

• random provides functions for generating pseudo-random numbers.

• re provides regular expression functionalit⁴.

• select provides access to the select() and poll() functions for creating event loops.

• shutil provides access to high-level file functions.

• signal provides functions for handling POSIX signals.

• tempfile provides functions for creating temporar⁴ files and directories.

• threading provides access to high-level threading functionalit⁴.

• urllib (and urllibǕ and urlparse in P⁴thon Ǖ.x) provides functions for handling

and parsing URLs.

• uuid allows ⁴ou to generate UUIDs (Universall⁴ Unique Identifiers).

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp



Ǖ.ǖ. EXTERNAL LIBRARIES ǔǛ

Use this list as a quick reference to help ⁴ou keep track of which librar⁴modules do

what. If ⁴ou can memori⁵e even part of it, all the better. The less time ⁴ou have to

spend looking up librar⁴ modules, the more time ⁴ou can spend writing the code

⁴ou actuall⁴ need.

Tip

The entire standard library is written in Python, so there’s nothing stopping you from look-

ing at the source code of its modules and functions. When in doubt, crack open the code

and see what it does for yourself. Even if the documentation has everything you need to

know, there’s always a chance you could learn something useful.

2.3 External libraries

Have ⁴ou ever unwrapped an awesome birthda⁴ git or Christmas present onl⁴ to

find out that whoever gave it to ⁴ou forgot to bu⁴ batteries for it? P⁴thon’s "bat-

teries included" philosoph⁴ is all about keeping that from happening to ⁴ou as a

programmer: the idea is that, once ⁴ou have P⁴thon installed, ⁴ou have ever⁴thing

⁴ou need to make an⁴thing ⁴ou want.

Unfortunatel⁴, there’s nowa⁴ the people behind P⁴thon can predict everything ⁴ou

might want to make. And even if the⁴ could, most people won’t want to deal with

a multi-gigab⁴te download when all the⁴ want to do is write a quick script for re-

naming files. The bottom line is, even with all its extensive functionalit⁴, there are

some things the P⁴thon Standard Librar⁴ just doesn’t cover. But that doesn’tmean

that there are things ⁴ou simpl⁴ can’t do with P⁴thon – it just means that there are

things ⁴ou’ll have to do using external libraries.

The P⁴thon Standard Librar⁴ is safe, well-charted territor⁴: its modules are heavil⁴

documented, and enough people use it on a regular basis that ⁴ou can be sure it

won’t break messil⁴ when ⁴ou tr⁴ to use it – and in the unlikel⁴ event that it does,

bjpcjp



Ǖ.ǖ. EXTERNAL LIBRARIES ǔǜ

⁴ou can be sure someone will fix it in short order. External libraries, on the other

hand, are the parts of the map labeled "here there be dragons": documentation

ma⁴ be sparse, functionalit⁴ ma⁴ be bugg⁴, and updates ma⁴ be sporadic or even

nonexistent. An⁴ serious project will likel⁴ need functionalit⁴ that onl⁴ external li-

braries can provide, but ⁴ou need to bemindful of the risks involved in using them.

Here’s a tale from the trenches. OpenStackuses SQLAlchem⁴, adatabase toolkit for

P⁴thon; if ⁴ou’re familiar with SQL, ⁴ou know that database schemas can change

over time, sowealsomadeuse of sqlalchem⁴-migrate to handle our schemamigra-

tion needs. And it worked…until it didn’t. Bugs started piling up, and nothing was

getting done about them. Furthermore, OpenStack was getting interested in sup-

porting P⁴thon ǖ at the time, but there was no sign that sqlalchem⁴-migrate was

going to support it as well. It was clear b⁴ that point that sqlalchem⁴-migrate was

effectivel⁴ dead andweneeded to switch to something else. At the timeof thiswrit-

ing, OpenStack projects are migrating towards using Alembic instead; not without

some effort, but fortunatel⁴ without much pain.

All of this builds up to one important question: "how can I be sure I won’t fall into

this sametrap?". Unfortunatel⁴, ⁴oucan’t: programmersarepeople, too, and there’s

no wa⁴ ⁴ou can know for sure whether a librar⁴ that’s ⁵ealousl⁴ maintained toda⁴

will still be like that in a few months. However, here at OpenStack, we use the fol-

lowing checklist to help tip the odds in our favor (and I encourage ⁴ou to do the

same!):

• P⁴thon ǖ compatibilit⁴. Even if ⁴ou’re not targeting P⁴thon ǖ right now, odds are

good that ⁴ouwill somewhere down the line, so it’s a good idea to check that ⁴our

chosen librar⁴ is alread⁴P⁴thon ǖ-compatible andcommitted to sta⁴ing thatwa⁴.

• Active development. GitHub and Ohloh usuall⁴ provide enough information to

determine whether a given librar⁴ is still being worked on b⁴ its maintainers.

• Active maintenance. Even if a librar⁴ is "finished" (i.e. feature-complete), the

bjpcjp

bjpcjp



Ǖ.ǖ. EXTERNAL LIBRARIES ǕǓ

maintainers should still be working on ensuring it remains bug-free. Check the

project’s tracking s⁴stem to see how quickl⁴ the maintainers respond to bugs.

• Packaged with OS distributions. If a librar⁴ is packaged with major Linux distri-

butions, that means other projects are depending on it – so if something goes

wrong, ⁴ou won’t be the onl⁴ one complaining. It’s also a good idea to check this

if ⁴ou plan to release ⁴our sotware to the public: it’ll be easier to distribute if its

dependencies are alread⁴ installed on the end user’s machine.

• API compatibilit⁴ commitment. Nothing’s worse than having ⁴our sotware sud-

denl⁴breakbecausea librar⁴ it dependsonchanged its entireAPI. Youmightwant

to check whether ⁴our chosen librar⁴ has had an⁴thing like this happen in the

past.

Appl⁴ing this checklist to dependencies is also a good idea, though it might be a

huge undertaking. If ⁴ou know ⁴our application is going to depend heavil⁴ on a

particular librar⁴, ⁴ou should at least appl⁴ this checklist to each of that librar⁴’s

dependencies.

No matter what libraries ⁴ou end up using, ⁴ou need to treat them like ⁴ou would

an⁴ other tools: as useful devices that could potentiall⁴ do some serious damage.

It won’t alwa⁴s be the case, but ask ⁴ourself: if ⁴ou had a hammer, would ⁴ou carr⁴

it through ⁴our entire house, possibl⁴ breaking ⁴our stuff b⁴ accident as ⁴ou went

along? Or would ⁴ou keep it in ⁴our tool shed or garage, awa⁴ from ⁴our fragile

valuables and right where ⁴ou actuall⁴ need it?

It’s the same thing with external libraries: no matter how useful the⁴ are, ⁴ou need

to be war⁴ of letting them get their hooks into ⁴our actual source code. Otherwise,

if something goeswrong and ⁴ouneed to switch libraries, ⁴oumight have to rewrite

huge swaths of ⁴our program. Abetter idea is towrite ⁴our ownAPI – awrapper that

encapsulates ⁴our external libraries and keeps them out of ⁴our source code. Your

programneverhas toknowwhatexternal libraries it’s using; onl⁴what functionalit⁴



Ǖ.Ǘ. FRAMEWORKS Ǖǔ

⁴our API provides. Need to use a different librar⁴? All ⁴ou have to change is ⁴our

wrapper: as long as it still provides the same functionalit⁴, ⁴ouwon’t have to touch

⁴our codebaseat all. Theremightbeexceptions, but there shouldn’t beman⁴: most

libraries aredesigned to solvea tightl⁴ focused rangeofproblemsandcan therefore

be easil⁴ isolated.

Later, in Section Ǘ.ǚ.ǖ, we’ll also look at how⁴ou canuse entr⁴ points to build driver

s⁴stems that will allow ⁴ou to treat parts of ⁴our projects as modules that can be

switched out at will.

2.4 Frameworks

There are various P⁴thon frameworks available for various kinds of P⁴thon appli-

cations: if ⁴ou’re writing a Web application, ⁴ou could use Django, P⁴lons, Turbo-

Gears, Tornado, Zope, or Plone; if ⁴ou’re looking for an event-driven framework,

⁴ou could use Twisted or Circuits; and so on.

Themain difference between frameworks and external libraries is that applications

make use of frameworks b⁴ building on top of them: ⁴our code will extend the

framework rather than vice versa. Unlike a librar⁴, which is basicall⁴ an add-on ⁴ou

can bring in to give ⁴our code some extra oomph, a framework forms the chassis of

⁴our code: ever⁴thing ⁴ou do is going to build on that chassis in some wa⁴, which

can be a double-edged sword. There are plent⁴ of upsides to using frameworks,

such as rapid protot⁴ping and development, but there are also some noteworth⁴

downsides, such as lock-in. You need to take these considerations into account

when ⁴ou decide whether to use a framework.

The recommended method for choosing a framework for a P⁴thon application is

largel⁴ the sameas theonedescribedearlier for external libraries -whichonl⁴makes

sense, as frameworks are distributed as bundles of P⁴thon libraries. Sometimes

the⁴ also include tools for creating, running, and deplo⁴ing applications, but that

bjpcjp



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǕǕ

doesn’t change the criteria ⁴ou should appl⁴. We’ve alread⁴ established that re-

placing an external librar⁴ ater ⁴ou’ve alread⁴ written code that makes use of it is

a pain, but replacing a framework is a thousand times worse, usuall⁴ requiring a

complete rewrite of ⁴our program from the ground up.

Just to giveanexample, theTwisted frameworkmentionedearlier still doesn’t have

full P⁴thon ǖ support: if ⁴ou wrote a program using Twisted a few ⁴ears back and

want to update it to run on P⁴thon ǖ, ⁴ou’re out of luck unless either ⁴ou rewrite

⁴our entire program to use a different framework or someone finall⁴ gets around to

upgrading it with full P⁴thon ǖ support.

Some frameworks are lighter than others. For one comparison, Django has its own

built-in ORM functionalit⁴; Flask, on the other hand, has nothing of the sort. The

less a framework tries to do for ⁴ou, the fewer problems ⁴ou’ll havewith it in the fu-

ture; however, each feature a framework lacks is another problem for ⁴our to solve,

either b⁴ writing ⁴our own code or going through the hassle of hand-picking an-

other librar⁴ to handle it. It’s ⁴our choice which scenario ⁴ou’d rather deal with,

but choose wisel⁴: migrating awa⁴ from a framework when things go sour can be a

Herculean task, and even with all its other features, there’s nothing in P⁴thon that

can help ⁴ou with that.

2.5 Interview with Doug Hellmann

I’ve had the chance to work with Doug Hellmann these past fewmonths. He’s a se-

nior developer at DreamHost and a fellow contributor to theOpenStack project. He

launched the website P⁴thon Module of the Week a while back, and he’s also writ-

ten an excellent book called The Python Standard Library By Example. He is also a

P⁴thon core developer. I’ve askedDoug a fewquestions about the Standard Librar⁴

and designing libraries and applications around it.



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN Ǖǖ

WhenyoustartwritingaPythonapplication fromscratch,what’syour
first move? Is it different from hacking an existing application?

The steps are similar in the abstract, but the details change. There tend

to be more differences between m⁴ approach to working on applications

and libraries than there are for new versus existing projects.

When I want to change existing code, especiall⁴ when it has been created

b⁴ someone else, I start b⁴ digging in to figure out how itworks andwhere

m⁴ change would need to go. I ma⁴ add logging or print statements, or

use pdb, and run the app with test data to make sure I understand what

it is doing. I usuall⁴ make the change and test it b⁴ hand, then add an⁴

automated tests before contributing a patch.

I take the same explorator⁴ approach when I create a new application. I

create some code and run it b⁴ hand, then write tests to make sure I’ve

covered all of the edge cases ater I have the basic aspect of a feature

working. Creating the tests ma⁴ also lead to some refactoring to make

the code easier to work with.

That was definitel⁴ the case with smiley. I started b⁴ experimenting with

P⁴thon’s traceAPIusing some throw-awa⁴ scripts, beforebuilding the real

application. M⁴original vision for smile⁴ includedonepiece to instrument

and collect data from another running application, and a second piece to

collect the data sent over the network and save it. In the course of adding

a couple of different reporting features, I reali⁵ed that the processing for

repla⁴ing the data that had been collected was almost identical to the

bjpcjp



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǕǗ

processing for collecting it in the first place. I refactored a few classes,

and was able to create a base class for the data collection, database ac-

cess, and report generator. Making those classes conform to the same API

allowedme to easil⁴ create a version of the data collection app thatwrote

directl⁴ to the database instead of sending information over the network.

While designing an app, I think about how the user interface works, but

for libraries, I focus on how a developer will use the API. Thinking about

how towrite programswith the new librar⁴ can bemade easier b⁴writing

the tests first, instead of ater the librar⁴ code. I usuall⁴ create a series of

example programs in the form of tests, and then build the librar⁴ to work

that wa⁴.

I have also found that writing the documentation for a librar⁴ before writ-

ing an⁴ code at all givesme awa⁴ to think through the features andwork-

flows for using it without committing to the implementation details. It

also lets me record the choices I made in the design so the reader under-

stands not just how to use the librar⁴ but the expectations I had while

creating it. That was the approach I took with stevedore.

I knew I wanted stevedore to provide a set of classes for managing plu-

gins for applications. During the design phase, I spent some time think-

ing about common patterns I had seen for consuming plugins and wrote

a few pages of rough documentation describing how the classes would

be used. I reali⁵ed that if I put most of the complex arguments into the

class constructors, the map()methods could be almost interchangeable.

Those design notes fed directl⁴ into the introduction for stevedore’s of-

ficial documentation, explaining the various patterns and guidelines for

using plugins in an application.

What’s the process for getting a module into the Python Standard Li-
brary?

bjpcjp



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN Ǖǘ

The full process and guidelines can be found in the P⁴thon Developer’s

Guide.

Before a module can be added to the P⁴thon Standard Librar⁴, it needs

to be proven to be stable and widel⁴ useful. The module should provide

something that is eitherhard to implementcorrectl⁴or souseful thatman⁴

developers have created their ownvariations. TheAPI shouldbe clear and

the implementation should not have dependencies on modules outside

the Standard Librar⁴.

The first step to proposing a newmodule is bringing it up within the com-

munit⁴ via the python-ideas list to informall⁴ gauge the level of interest.

Assuming the response is positive, the next step is to create a P⁴thon En-

hancement Proposal (PEP), which includes themotivation for adding the

module and some implementation details of how the transition will hap-

pen.

Because package management and discover⁴ tools have become so reli-

able, especiall⁴ pip and the P⁴thon Package Index (P⁴PI), it ma⁴ be more

practical tomaintainanew librar⁴outsideof theP⁴thonStandardLibrar⁴.

A separate release allows for more frequent updates with new features

and bugfixes, which can be especiall⁴ important for libraries addressing

new technologies or APIs.

What are the top three modules from the Standard Library that you
wish people knewmore about and would start using?

I’ve been doing a lot of work with d⁴namicall⁴ loaded extensions for ap-

plications recentl⁴. I use the abcmodule to define the APIs for those ex-

tensions as abstract base classes to help extension authors understand

which methods of the API are required and which are optional. Abstract

base classes are built into some other OOP languages, but I’ve found a lot

of P⁴thon programmers don’t know we have them as well.

bjpcjp



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǕǙ

The binar⁴ search algorithm in the bisect module is a good example of

a feature that is widel⁴ useful and oten implemented incorrectl⁴, which

makes it a great fit for the Standard Librar⁴. I especiall⁴ like the fact that

it can search sparse lists where the search value ma⁴ not be included in

the data.

Thereare someusefuldata structures in thecollectionsmodule thataren’t

used as oten as the⁴ could be. I like to usenamedtuple for creating small

class-like data structures that just need to hold data but don’t have an⁴

associated logic. It’s ver⁴ eas⁴ to convert from a namedtuple to a regular

class if logic does need to be added later, since namedtuple supports ac-

cessing attributes b⁴ name. Another interesting data structure is Chain-
Map, which makes a good stackable namespace. ChainMap can be used

to create contexts for rendering templates ormanaging configuration set-

tings from different sources with clearl⁴ defined precedence.

A lot of projects, including OpenStack, or external libraries, roll their
ownabstractionsontopof theStandardLibrary. I’mparticularly think-
ing about things like date/time handling, for example. What would
be your advice on that? Should programmers stick to the Standard
Library, roll their own functions, switch to some external library, or
start sending patches to Python?

All of the above! I prefer to avoid reinventing the wheel, so I advocate

strongl⁴ for contributing fixes and enhancements upstream to projects

that canbeusedasdependencies. On theotherhand, sometimes itmakes

sense to create another abstraction and maintain that code separatel⁴,

either within an application or as a new librar⁴.

The example ⁴ou raise, the timeutilsmodule in OpenStack, is a fairl⁴ thin

wrapper around P⁴thon’s datetime module. Most of the functions are

short and simple, but b⁴ creating a module with the most common oper-

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN Ǖǚ

ations, we can ensure the⁴ are handled consistentl⁴ throughout all Open-

Stack projects. Because a lot of the functions are application-specific, in

the sense that the⁴ enforce decisions about things like timestamp format

strings orwhat "now"means, the⁴ are not good candidates for patches to

P⁴thon’s librar⁴or tobe releasedasageneralpurpose librar⁴andadopted

b⁴ other projects.

In contrast, I have been working to move the API services in OpenStack

awa⁴ from the WSGI framework created in the earl⁴ da⁴s of the project

andontoa third-part⁴webdevelopment framework. Therearea lot of op-

tions for creatingWSGI applications in P⁴thon, and while wema⁴ need to

enhance one to make it completel⁴ suitable for OpenStack’s API servers,

contributing those reusable changes upstream is preferable to maintain-

ing a "private" framework.

Doyouhave any particular recommendations onwhat to dowhen im-
porting and using a lot ofmodules, from the Standard Library or else-
where?

I don’t have a hard limit, but if I have more than a handful of imports, I

reconsider the design of the module and think about splitting it up into a

package. The split ma⁴ happen sooner for a lower level module than for

a high-level or application module, since at a higher level I expect to be

joining more pieces together.

RegardingPython ǖ,what are themodules that areworthmentioning
andmight make developers more interested in looking into it?

The number of third-part⁴ libraries supporting P⁴thon ǖ has reached crit-

ical mass. It’s easier than ever to build new libraries and applications for

P⁴thon ǖ, and maintaining support for P⁴thon Ǖ.ǚ is also easier thanks to

the compatibilit⁴ features added to ǖ.ǖ. Themajor Linux distributions are

working on shipping releases with P⁴thon ǖ installed b⁴ default. An⁴one



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǕǛ

starting a new project in P⁴thon should look seriousl⁴ at P⁴thon ǖ unless

the⁴ have a dependenc⁴ that hasn’t been ported. At this point, though, li-

braries that don’t run on P⁴thon ǖ could almost be classified as "unmain-

tained."

Manydeveloperswrite all their code into anapplication, but there are
caseswhere it would beworth the effort to branch their code out into
a Python library. In term of design, planning ahead, migration, etc.,
what are the best ways to do this?

Applications are collections of "glue code" holding libraries together for

a specific purpose. Designing based on implementing those features as a

librar⁴ first and then building the application ensures that code is prop-

erl⁴ organi⁵ed into logical units, which in turn makes testing simpler. It

also means the features of an application are accessible through the li-

brar⁴ and can be remixed to create other applications. Failing to take this

approach means the features of the application are tightl⁴ bound to the

user interface, which makes them harder to modif⁴ and reuse.

Whatadvicewouldyougive topeopleplanning tostart theirownPython
libraries?

I alwa⁴s recommend designing libraries and APIs from the top down, ap-

pl⁴ing design criteria such as the Single Responsibilit⁴ Principle (SRP) at

each la⁴er. Think about what the caller will want to do with the librar⁴,

and create an API that supports those features. Think about what values

can be stored in an instance and used b⁴ the methods versus what needs

to be passed to each method ever⁴ time. Finall⁴, think about the imple-

mentation and whether the underl⁴ing code should be organi⁵ed differ-

entl⁴ from the public API.

SQLAlchemy is an excellent example of appl⁴ing those guidelines. The

declarative ORM, data mapping, and expression generation la⁴ers are all



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN Ǖǜ

separate. Adeveloper candecide the right level of abstraction for entering

the API and using the librar⁴ based on their needs rather than constraints

imposed b⁴ the librar⁴’s design.

What are the most common programming errors that you encounter
while reading random Python developers' code?

A big area where P⁴thon’s idioms are different from other languages is

loopingand iteration. Forexample, oneof themost commonanti-patterns

I see is using a for loop to filter one list b⁴ appending items to a new list

and then processing the result in a second loop (possibl⁴ ater passing the

list as an argument to a function). I almost alwa⁴s suggest converting fil-

tering loops like that to generator expressions because the⁴ are more ef-

ficient and easier to understand. It’s also common to see lists being com-

bined so their contents can be processed together in some wa⁴, rather

than using itertools.chain().

There are also somemore subtle things I suggest in code reviews, like us-

ing a dict() as a lookup table instead of a long if:then:else block; mak-

ing sure functions alwa⁴s return the same t⁴pe of object (e.g., an empt⁴

list instead of None); reducing the number of arguments to a function b⁴

combining related values into an object with either a tuple or a new class;

and defining classes to use in public APIs instead of rel⁴ing on dictionar-

ies.

Doyouhaveaconcreteexample, somethingyou’veeitherdoneorwit-
nessed, of picking up a "wrong" dependency?

Recentl⁴, I had a case inwhich a new release ofpyparsingdroppedP⁴thon

Ǖ support and causedme a little trouble with a librar⁴ I maintain. The up-

date to p⁴parsing was a major revision, and was clearl⁴ labeled as such,

but because I had not constrained the version of the dependenc⁴ in the

settings for cliff , the new release of p⁴parsing caused issues for some of



Ǖ.ǘ. INTERVIEWWITH DOUG HELLMANN ǖǓ

cliff 's consumers. The solution was to provide different version bounds

for P⁴thon Ǖ and P⁴thon ǖ in the dependenc⁴ list for cliff. This situation

highlighted the importance of both understanding dependenc⁴ manage-

ment and ensuring proper test configurations for continuous integration

testing.

What’s your take on frameworks?

Frameworks are like an⁴ other kind of tool. The⁴ can help, but ⁴ou need

to take care when choosing one to make sure that it’s right for the job at

hand.

B⁴ pulling out the common parts into a framework, ⁴ou can focus ⁴our

development efforts on the unique aspects of an application. The⁴ also

help ⁴ou bring an application to a useful state more quickl⁴ than if ⁴ou

started from scratch b⁴ providing a lot of bootstrapping code for doing

things like running in development mode and writing a test suite. The⁴

also encourage ⁴ou to be consistent in the wa⁴ ⁴ou implement the appli-

cation, which means ⁴ou end up with code that is easier to understand

andmore reusable.

Thereare somepotentialpitfalls towatchout forwhenworkingwith frame-

works, though. The decision to use a particular framework usuall⁴ im-

plies something about the design of the application itself. Selecting the

wrong framework can make an application harder to implement if those

design constraints do not align naturall⁴ with the application’s require-

ments. You ma⁴ end up fighting with the framework if ⁴ou tr⁴ to use dif-

ferent patterns or idioms than it recommends.



Ǖ.Ǚ. MANAGING API CHANGES ǖǔ

2.6 Managing API changes

When building an API, it’s rare to get ever⁴thing right the first tr⁴. Your API will have

to evolve, adding, removing, or changing the features it provides.

In the following paragraphs, we will discuss how to manage public API changes.

Public APIs are the APIs that ⁴ou expose to users of ⁴our librar⁴ or application; in-

ternal APIs are another concern, and since the⁴’re internal (i.e. ⁴our userswill never

have to deal with them), ⁴ou can do whatever ⁴ou want with them: break them,

twist them, or generall⁴ abuse them as ⁴ou see fit.

The two t⁴pes of API can be easil⁴ distinguished from each other. The P⁴thon con-

vention is to prefix private API s⁴mbols with an underscore: foo is public, but _bar

is private.

When building an API, the worst thing ⁴ou can do is to break it abruptl⁴. Linus Tor-

valds is (among other things) famous for having a ⁵ero tolerance polic⁴ on public

API breakage for the Linux kernel. Considering howman⁴ people rel⁴ on Linux, it’s

safe to sa⁴ he made a wise choice.

Unix platforms have a complex management s⁴stem for libraries, rel⁴ing on son-

ame[http://en.wikipedia.org/wiki/Soname]and fine-grainedversion identifiers. P⁴thon

doesn’t provide such a s⁴stem, nor an equivalent convention. It’s up to maintain-

ers to pick the right version numbers and policies. However, ⁴ou can still take the

Unix s⁴stem as inspiration for how to version ⁴our own libraries or applications.

Generall⁴, ⁴our version numbering should reflect changes in the API that will im-

pact users; most developers usemajor version increments to denote such changes,

but depending on how ⁴ou number ⁴our versions, ⁴ou can also use minor version

increments as well.

Whatever else ⁴ou decide to do, the first thing andmost important stepwhenmod-

if⁴ing an API is to heavil⁴ document the change. This includes:

bjpcjp

bjpcjp



Ǖ.Ǚ. MANAGING API CHANGES ǖǕ

• documenting the new interface

• documenting that the old interface is deprecated

• documenting how to migrate to the new interface

You shouldn’t remove the old interface right awa⁴; in fact, ⁴ou should tr⁴ to keep

the old interface for as long as possible. New users won’t use it since it’s explicitl⁴

markedasdeprecated. Youshouldonl⁴ remove theold interfacewhen it’s toomuch

trouble to keep.

Example Ǖ.Ǖ A documented API change

class Car(object):

def turn_left(self):

"""Turn the car left.

.. deprecated:: 1.1

Use :func:`turn` instead with the direction argument set to left

"""

self.turn(direction='left')

def turn(self, direction):

"""Turn the car in some direction.

:param direction: The direction to turn to.

:type direction: str

"""

# Write actual code here instead

pass

It’s a good idea to use Sphinxmarkup to highlight changes. When building the doc-

umentation, it will be clear to users that the function should not be used, and direct



Ǖ.Ǚ. MANAGING API CHANGES ǖǖ

access to the new functionwill be provided alongwith an explanation of how tomi-

grate old code. The downside of this approach is that ⁴ou can’t rel⁴ on developers

to read ⁴our changelog or documentationwhen the⁴ upgrade to a newer version of

⁴our P⁴thon package.

P⁴thon provides an interestingmodule called warnings that can help in this regard.

This module allows ⁴our code to issue various kinds of warnings, such as Pending

DeprecationWarning and DeprecationWarning. These warnings can be used to in-

form the developer that a function the⁴’re calling is either deprecated or going to

be deprecated. This wa⁴, developers will be able to see that the⁴’re using an old

interface and should do something about it. ⁜

To go back to the previous example, we canmake use of this and warn the user:

Example Ǖ.ǖ A documented API change with warning

import warnings

class Car(object):

def turn_left(self):

"""Turn the car left.

.. deprecated:: 1.1

Use :func:`turn` instead with the direction argument set to " ←֓

left".

"""

warnings.warn("turn_left is deprecated, use turn instead",

DeprecationWarning)

self.turn(direction='left')

def turn(self, direction):

⁜For those who work with C, this is a hand⁴ counterpart to the __attribute__ ((deprecated))
GCC extension.

bjpcjp



Ǖ.Ǚ. MANAGING API CHANGES ǖǗ

"""Turn the car in some direction.

:param direction: The direction to turn to.

:type direction: str

"""

# Write actual code here instead

pass

Should an⁴ code call the deprecated turn_left function, a warning will be raised:

>>> Car().turn_left()

__main__:8: DeprecationWarning: turn_left is deprecated, use turn instead

Note

Since Python 2.7, DeprecationWarning are not displayed by default. To disable this

filter, you need to call python with the -W all option. See the python manual page for

more information on the possible values for -W.

Having ⁴our code tell developers that their programs are using something that will

stopworkingeventuall⁴ is agood ideabecause it canalsobeautomated. When run-

ning their test suites, developers can run python with the -W error option, which

transformswarnings intoexceptions. Thatmeans that ever⁴ timeanobsolete func-

tion is called, an error will be raised, and it will be eas⁴ for developers using ⁴our

librar⁴ to know exactl⁴ where their code needs to be fixed.

Example Ǖ.Ǘ Running python -W error

>>> import warnings

>>> warnings.warn("This is deprecated", DeprecationWarning)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

DeprecationWarning: This is deprecated

bjpcjp



Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǘ

2.7 Interview with Christophe de Vienne

Christophe is a P⁴thon developer and the author ofWSME,WebServicesMade Easy.

This frameworkallowsdevelopers todefinewebservices inaP⁴thonicwa⁴andsup-

ports a wide variet⁴ of APIs, allowing it to be plugged into man⁴ other web frame-

works.

Whatare themistakesdevelopersotenmakewhendesigningaPython
API?

There are a fewmistakes I tr⁴ not to make when designing a P⁴thon API:

• Making it too complicated. As the sa⁴ing goes, "Keep It Simple." (Some

peoplewould sa⁴ "Keep It Simple Stupid," but I don’t think "simple" and

"stupid" are compatible.) Complicated APIs are hard to understand and

hard to document. You don’t have to make the actual librar⁴ function-

alit⁴ simple as well, but it’s a smart idea. A good example is the Re-

quests librar⁴: compared to the various standardurllib libraries, theRe-
quests API is ver⁴ simple and natural, but it does complex things behind

the scenes. The urllib API, b⁴ contrast, is almost as complicated as the

things it does.

• Doing (visible) magic. When ⁴our API does things that ⁴our documen-

tation doesn’t explain, ⁴our end users are going to want to crack open

⁴our codeand seewhat’s goingonunder thehood. It’s oka⁴ if ⁴ou’ve got

some magic happening behind the scenes, but ⁴our end users should

never see an⁴thing unnatural happening up front.



Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǙ

• Forgetting ⁴ouruse cases. Whenwriting codedown in thedepthsof ⁴our

librar⁴, it’s eas⁴ to forget how ⁴our librar⁴ will actuall⁴ be used. Coming

up with good use cases makes it easier to design an API.

• Not writing unit tests. TDD is a ver⁴ efficient wa⁴ to write libraries, es-

peciall⁴ in P⁴thon. It forces the developer to assume the role of the end

user from the ver⁴ beginning and maintain compatibilit⁴ between ver-

sions. It’s also theonl⁴ approach I knowof that allows ⁴ou to completel⁴

rewrite a librar⁴. Even if it’s not alwa⁴s necessar⁴, it’s good to have that

option.

Considering the variety of frameworks WSME can sit on top of, what
kinds of API does it have to support?

There actuall⁴ aren’t thatman⁴, since the frameworks it sits on are similar

in a lot of wa⁴s. The⁴ use decorators to expose functions andmethods to

the outside world; the⁴’re based on the WSGI standard (so their request

objects look ver⁴ similar); and the⁴’ve all more or less used each other as

a source of inspiration. That said, we haven’t ⁴et attempted to plug it into

an as⁴nchronous web framework such as Twisted.

The biggest difference I’ve had to deal with is thewa⁴ contextual informa-

tion is accessed. In a web framework, the context is mainl⁴ the request

and what can be deduced from or attached to it (identit⁴, session data,

data connection, etc.), as well as a few global things like the global con-

figuration, connection pool, and so forth. Most web frameworks assume

the⁴’re running on a multi-threaded server and treat all this information

as TSD (Thread-Specific Data). This allows them to access the current

request b⁴ simpl⁴ importing a request prox⁴ object from a module and

working with it. While it’s prett⁴ straightforward to use, it implies a little

magic andmakes global objects out of context-specific data.



Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǚ

The P⁴ramid framework doesn’t work like this, for example. Instead, the

context is explicitl⁴ injected into the code pieces that work with it. This is

wh⁴ the views takes a "request" parameter, which wraps the WSGI envi-

ronment and gives access to the global context of the application.

What are their pros and cons?

An API st⁴le like the one used in P⁴ramid has the big advantage that it

allows a single program to run several completel⁴ distinct environments

in a ver⁴ natural wa⁴. The downside is that its learning curve is a little

steeper.

How does Pythonmake it easier or harder to design a library API?

The lack of a built-in wa⁴ to definewhich parts are public andwhich parts

aren’t is both a (slight) problem and an advantage.

It’s aproblemwhen itmeansdevelopersdon’t thinkasmuchas the⁴ should

about which parts are their API and which parts aren’t. But with a little

discipline, documentation, and (if needed) tools like zope.interface, it

doesn’t sta⁴ a problem for long.

It’s anadvantagewhen itmakes it quicker andeasier to refactor APIswhile

keeping compatibilit⁴ with previous versions.

What’s your ruleof thumbaboutAPI evolution, deprecation, removal,
etc.?

There are several criteria I weigh whenmaking a decision:

• How difficult will it be for users of the library to adapt their code?
Considering that there are people rel⁴ing on ⁴our API, an⁴ change ⁴ou

make has to beworth the effort needed to adopt it. This rule is intended

to prevent non-compatible changes to the parts of the API that are in

common use. That said, one of the advantages of P⁴thon is that it’s rel-

ativel⁴ eas⁴ to refactor code to adopt an API change.



Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǛ

• Will maintenance be easier with the change? Simplif⁴ing the imple-

mentation, cleaning up the codebase,making the API easier to use, hav-

ing more complete unit tests, making the API easier to understand at

first glance… all of these things will make ⁴our life as a maintainer eas-

ier.

• Howmuchmore (or less) consistentwillmy API be ater the change?
If all of the API’s functions follow a similar pattern (such as requiring the

same parameter in the first position), it’s important to make sure that

new functions follow that pattern as well. Also, doing too man⁴ things

at once is a great wa⁴ to end up doing none of them right: keep ⁴our API

focused on what it’s meant to do.

• How will users benefit from this change? Last but not least, alwa⁴s

consider the users' point of view.

What advice do you have regarding API documentation in Python?

Documentation makes it eas⁴ for newcomers to adopt ⁴our librar⁴. Ne-

glecting it will drive awa⁴ a lot of potential users; not just beginners, ei-

ther. The problem is, documenting is difficult, so it gets neglected all the

time!

Document earl⁴ and include ⁴our documentation build in continuous in-

tegration. Now that we have Read the Docs, there’s no excuse for not

having documentation built and published (at least for open-source sot-

ware).

Use docstrings to document classes and functions in ⁴our API. Follow the

PEP Ǖǘǚ⁝ guidelines so that developers won’t have to read ⁴our source

to understand what ⁴our API does. Generate HTML documentation from

⁴our docstrings, and don’t limit it to the API reference.

⁝Docstring Conventions, David Goodger, Guido van Rossum, Ǖǜ Ma⁴ ǕǓǓǔ



Ǖ.ǚ. INTERVIEWWITH CHRISTOPHE DE VIENNE ǖǜ

Give practical examples throughout. Have at least one "startup guide"

that will shownewcomers how to build aworking example. The first page

of thedocumentation should give aquick overviewof ⁴our API’s basic and

representative use case.

Document the evolution of ⁴our API in detail, version b⁴ version. (VCS logs

are not enough!)

Make⁴ourdocumentationaccessibleand, if possible, comfortable to read:

⁴our users need to be able to find it easil⁴ and get the information the⁴

need without feeling like the⁴’re being tortured. Publishing ⁴our docu-

mentation through P⁴PI is one wa⁴ to achieve this; publishing on Read

the Docs is also a good idea, since users will expect to find ⁴our documen-

tation there.

Finall⁴, choose a theme that is both efficient and attractive. I chose the

"Cloud" Sphinx theme forWSME, but there are plent⁴ of other themes out

there to choose from. You don’t have to be a web expert to produce nice-

looking documentation.


