2 Modules and libraries
e

2.1 The import system

In order to use modules and libraries, you have to import them.

The Zen of Python

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.



2.1. THE IMPORT SYSTEM 12

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

The import system is quite complex, but you probably already know the basics.

Here, I’ll show you some of the internals of this subsystem.

The sys module contains a lot of information about Python’s import system. First
of all, the list of modules currently imported is available through the sys.modules
variable. It’s a dictionary where the key is the module name and the value is the
module object.

>>> sys.modules['os"']

<module 'os' from '/usr/lib/python2.7/0s.pyc'>

Some modules are built-in; these are listed in sys.builtin module names. Built-
in modules can vary depending on the compilation options passed to the Python

build system.

When importing modules, Python relies on a list of paths. This list is stored in the
sys.path variable and tells Python where to look for modules to load. You can
change this list in code, adding or removing paths as necessary, or you can modify
the PYTHONPATH environment variable to add paths without writing Python code at
all. The following approaches are almost equivalent ':

>>> import sys

>>> sys.path.append('/foo/bar")

$ PYTHONPATH=/foo/bar python

>>> import sys

'Almost because the path will not be placed at the same level in the list, though it may not matter
depending on your use case.


bjpcjp

bjpcjp

bjpcjp


2.1. THE IMPORT SYSTEM 13

>>> '/foo/bar' in sys.path

True

The order in sys.path is important, since the list will be iterated over to find the

requested module.

It is also possible to extend the import mechanism using custom importers. This is
the technique that Hy * uses to teach Python how to import files other than standard

.py or .pyc files.

The import hook mechanism, as it is called, is defined by PEP 302 °. It allows you
to extend the standard import mechanism and apply preprocessing to it. You can

also add a custom module finder by appending a factory class to sys.path_hooks.

The modulefinder objectmusthavea find _module(fullname, path=None) method
that returns a loader object. The load object also must have a Load module(fulln

ame) responsible for loading the module from a source file.

To illustrate, here’s how Hy uses a custom importer to import source files ending
with . hy instead of . py:

Example 2.1 Hy module importer

class MetaImporter(object):
def find on path(self, fullname):
fls = ["%s/ init_ .hy", "%s.hy"]
dirpath = "/".join(fullname.split("."))

for pth in sys.path:
pth = os.path.abspath(pth)
for fp in fls:
composed path = fp % ("%s/%s" % (pth, dirpath))

if os.path.exists(composed path):

’Hy is a Lisp implementation on top of Python, discussed in Section 9.1
*New Import Hooks, implemented since Python 2.3


bjpcjp

bjpcjp

bjpcjp


2.1. THE IMPORT SYSTEM 14

return composed path

def find module(self, fullname, path=None):
path = self.find on path(fullname)
if path:
return MetalLoader(path)

sys.meta path.append(MetaImporter())

Once the path is determined to both be valid and point to a module, a MetaLoader

object is returned:

Hy module loader

class Metaloader(object):
def init (self, path):
self.path = path

def is package(self, fullname):
dirpath = "/".join(fullname.split("."))
for pth in sys.path:
pth = os.path.abspath(pth)
composed path = "%s/%s/ init .hy" % (pth, dirpath)
if os.path.exists(composed path):
return True

return False

def load module(self, fullname):
if fullname in sys.modules:

return sys.modules[fullname]

if not self.path:



2.1. THE IMPORT SYSTEM 15

return
sys.modules[fullname] = None
mod = import file to module(fullname,

self.path) @

ispkg = self.is package(fullname)

mod. file = self.path
mod. loader = self
mod. name = fullname
if ispkg:

mod. path = []

fullname

mod. package

else:

mod. package = fullname.rpartition('."')[0O]

sys.modules[fullname] = mod

return mod

® import file to modulereadsaHy source file, compilesit to Python code, and

returns a Python module object.

The uprefix module is another good example of this feature in action. Python 3.0
through 3.2 didn’t have the u prefix for denoting Unicode strings featured in Python 2
% this module ensures compatibility between 2.x and 3.x by removing the u prefix

from strings before compilation.

*It was added back in Python 3.3.


bjpcjp


2.2. STANDARD LIBRARIES 16

2.2 Standard libraries

Python comes with a huge standard library packed with tools and features for any
purpose you can think of. Newcomers to Python who are used to having to write
their own functions for basic tasks are often shocked to find that the language itself

ships with such functionality built in and ready for use.

Whenever you’re about to write your own function to handle a simple task, please
stop and look through the standard library first. My advice is to skim through the
whole thing at least once so that next time you need a function, you’ll already know

whether what you need already exists in the standard library.

We’ll talk about some of these modules in later sections, such as functools and
itertools, but here’s a few of the standard modules that you should definitely know

about:

atexit allows you to register functions to call when your program exits.

argparse provides functions for parsing command line arguments.

bisect provides bisection algorithms for sorting lists (see Section 10.3).

calendar provides a number of date-related functions.

codecs provides functions for encoding and decoding data.

collections provides a variety of useful data structures.

copy provides functions for copying data.

csv provides functions for reading and writing CSV files.

datetime provides classes for handling dates and times.

« fnmatch provides functions for matching Unix-style filename patterns.


bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp


2.2. STANDARD LIBRARIES 17

glob provides functions for matching Unix-style path patterns.

io provides functions for handling I/0 streams. In Python 3, it also contains Strin-
glO (which is in the module of the same name in Python 2), which allows you to

treat strings as files.

« json provides functions for reading and writing data in JSON format.

logging provides access to Python’s own built-in logging functionality.

multiprocessing allows you to run multiple subprocesses from your application,

while providing an APl that makes them look like threads.

operator provides functions implementing the basic Python operators which you

can use instead of having to write your own lambda expressions (see Section 8.3).
os provides access to basic OS functions.

random provides functions for generating pseudo-random numbers.

re provides regular expression functionality.

select provides access to the select() and poll() functions for creating event loops.
shutil provides access to high-level file functions.

signal provides functions for handling POSIX signals.

tempfile provides functions for creating temporary files and directories.
threading provides access to high-level threading functionality.

urllib (and urllib2 and urlparse in Python 2.x) provides functions for handling

and parsing URLs.

uuid allows you to generate UUIDs (Universally Unique Identifiers).


bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp


2.3. EXTERNAL LIBRARIES 18

Use this list as a quick reference to help you keep track of which library modules do
what. If you can memorize even part of it, all the better. The less time you have to
spend looking up library modules, the more time you can spend writing the code

you actually need.

Tip

f The entire standard library is written in Python, so there’s nothing stopping you from look-
ing at the source code of its modules and functions. When in doubt, crack open the code
and see what it does for yourself. Even if the documentation has everything you need to

know, there’s always a chance you could learn something useful.

2.3 External libraries

Have you ever unwrapped an awesome birthday gift or Christmas present only to
find out that whoever gave it to you forgot to buy batteries for it? Python’s "bat-
teries included" philosophy is all about keeping that from happening to you as a
programmer: the idea is that, once you have Python installed, you have everything

you need to make anything you want.

Unfortunately, there’s no way the people behind Python can predict everything you
might want to make. And even if they could, most people won’t want to deal with
a multi-gigabyte download when all they want to do is write a quick script for re-
naming files. The bottom line is, even with all its extensive functionality, there are
some things the Python Standard Library just doesn’t cover. But that doesn’t mean
that there are things you simply can’t do with Python - it just means that there are

things you’ll have to do using external libraries.

The Python Standard Library is safe, well-charted territory: its modules are heavily
documented, and enough people use it on a regular basis that you can be sure it

won’t break messily when you try to use it - and in the unlikely event that it does,


bjpcjp


2.3. EXTERNAL LIBRARIES 19

you can be sure someone will fix it in short order. External libraries, on the other
hand, are the parts of the map labeled "here there be dragons": documentation
may be sparse, functionality may be buggy, and updates may be sporadic or even
nonexistent. Any serious project will likely need functionality that only external li-

braries can provide, but you need to be mindful of the risks involved in using them.

Here’s a tale from the trenches. OpenStack uses SQLAlchemy, a database toolkit for
Python; if you’re familiar with SQL, you know that database schemas can change
over time, so we also made use of sglalchemy-migrate to handle our schema migra-
tion needs. And it worked...until it didn’t. Bugs started piling up, and nothing was
getting done about them. Furthermore, OpenStack was getting interested in sup-
porting Python 3 at the time, but there was no sign that sqlalchemy-migrate was
going to support it as well. It was clear by that point that sqlalchemy-migrate was
effectively dead and we needed to switch to something else. At the time of this writ-
ing, OpenStack projects are migrating towards using Alembic instead; not without

some effort, but fortunately without much pain.

All of this builds up to one important question: "how can | be sure | won’t fall into
thissametrap?". Unfortunately, you can’t: programmers are people, too, and there’s
no way you can know for sure whether a library that’s zealously maintained today
will still be like that in a few months. However, here at OpenStack, we use the fol-
lowing checklist to help tip the odds in our favor (and | encourage you to do the

same!):

« Python 3 compatibility. Even if you’re not targeting Python 3 right now, odds are
good that you will somewhere down the line, so it’s a good idea to check that your

chosen libraryis already Python 3-compatible and committed to staying that way.

« Active development. GitHub and Ohloh usually provide enough information to

determine whether a given library is still being worked on by its maintainers.

« Active maintenance. Even if a library is "finished" (i.e. feature-complete), the


bjpcjp

bjpcjp


2.3. EXTERNAL LIBRARIES 20

maintainers should still be working on ensuring it remains bug-free. Check the

project’s tracking system to see how quickly the maintainers respond to bugs.

« Packaged with OS distributions. If a library is packaged with major Linux distri-
butions, that means other projects are depending on it - so if something goes
wrong, you won’t be the only one complaining. It’s also a good idea to check this
if you plan to release your software to the public: it’ll be easier to distribute if its

dependencies are already installed on the end user’s machine.

« APl compatibility commitment. Nothing’s worse than having your software sud-
denly break because a library itdepends on changed its entire API. You might want
to check whether your chosen library has had anything like this happen in the
past.

Applying this checklist to dependencies is also a good idea, though it might be a
huge undertaking. If you know your application is going to depend heavily on a
particular library, you should at least apply this checklist to each of that library’s

dependencies.

No matter what libraries you end up using, you need to treat them like you would
any other tools: as useful devices that could potentially do some serious damage.
It won’t always be the case, but ask yourself: if you had a hammer, would you carry
it through your entire house, possibly breaking your stuff by accident as you went
along? Or would you keep it in your tool shed or garage, away from your fragile

valuables and right where you actually need it?

It’s the same thing with external libraries: no matter how useful they are, you need
to be wary of letting them get their hooks into your actual source code. Otherwise,
if something goes wrong and you need to switch libraries, you might have to rewrite
huge swaths of your program. A betteridea is to write your own APl - a wrapper that
encapsulates your external libraries and keeps them out of your source code. Your

program never has to know what external librariesit’s using; only what functionality



2.4. FRAMEWORKS 21

your API provides. Need to use a different library? All you have to change is your
wrapper: as long as it still provides the same functionality, you won’t have to touch
your codebase at all. There might be exceptions, butthere shouldn’t be many: most
libraries are designed to solve a tightly focused range of problems and can therefore

be easily isolated.

Later, in Section 4.7.3, we’ll also look at how you can use entry points to build driver
systems that will allow you to treat parts of your projects as modules that can be

switched out at will.

2.4 Frameworks

There are various Python frameworks available for various kinds of Python appli-
cations: if you’re writing a Web application, you could use Django, Pylons, Turbo-
Gears, Tornado, Zope, or Plone; if you’re looking for an event-driven framework,

you could use Twisted or Circuits; and so on.

The main difference between frameworks and external libraries is that applications
make use of frameworks by building on top of them: your code will extend the
framework rather than vice versa. Unlike a library, which is basically an add-on you
can bring in to give your code some extra oomph, a framework forms the chassis of
your code: everything you do is going to build on that chassis in some way, which
can be a double-edged sword. There are plenty of upsides to using frameworks,
such as rapid prototyping and development, but there are also some noteworthy
downsides, such as lock-in. You need to take these considerations into account

when you decide whether to use a framework.

The recommended method for choosing a framework for a Python application is
largely the same as the one described earlier for external libraries - which only makes
sense, as frameworks are distributed as bundles of Python libraries. Sometimes

they also include tools for creating, running, and deploying applications, but that


bjpcjp


2.5. INTERVIEW WITH DOUG HELLMANN 22

doesn’t change the criteria you should apply. We’ve already established that re-
placing an external library after you’ve already written code that makes use of it is
a pain, but replacing a framework is a thousand times worse, usually requiring a

complete rewrite of your program from the ground up.

Justto give an example, the Twisted framework mentioned earlier still doesn’t have
full Python 3 support: if you wrote a program using Twisted a few years back and
want to update it to run on Python 3, you’re out of luck unless either you rewrite
your entire program to use a different framework or someone finally gets around to

upgrading it with full Python 3 support.

Some frameworks are lighter than others. For one comparison, Django has its own
built-in ORM functionality; Flask, on the other hand, has nothing of the sort. The
less a framework tries to do for you, the fewer problems you’ll have with it in the fu-
ture; however, each feature a framework lacks is another problem for your to solve,
either by writing your own code or going through the hassle of hand-picking an-
other library to handle it. It’s your choice which scenario you’d rather deal with,
but choose wisely: migrating away from a framework when things go sour can be a
Herculean task, and even with all its other features, there’s nothing in Python that
can help you with that.

2.5 Interview with Doug Hellmann

I’'ve had the chance to work with Doug Hellmann these past few months. He’s a se-
nior developer at DreamHost and a fellow contributor to the OpenStack project. He
launched the website Python Module of the Week a while back, and he’s also writ-
ten an excellent book called The Python Standard Library By Example. He is also a
Python core developer. I’'ve asked Doug a few questions about the Standard Library

and designing libraries and applications around it.



2.5. INTERVIEW WITH DOUG HELLMANN

When you start writing a Python application from scratch, what’s your

first move? Is it different from hacking an existing application?

The steps are similar in the abstract, but the details change. There tend
to be more differences between my approach to working on applications

and libraries than there are for new versus existing projects.

When | want to change existing code, especially when it has been created
by someone else, | start by digging in to figure out how it works and where
my change would need to go. | may add logging or print statements, or
use pdb, and run the app with test data to make sure | understand what
it is doing. | usually make the change and test it by hand, then add any

automated tests before contributing a patch.

| take the same exploratory approach when | create a new application. |
create some code and run it by hand, then write tests to make sure I've
covered all of the edge cases after | have the basic aspect of a feature
working. Creating the tests may also lead to some refactoring to make
the code easier to work with.

That was definitely the case with smiley. | started by experimenting with
Python’s trace APl using some throw-away scripts, before building the real
application. My original vision for smiley included one piece toinstrument
and collect data from another running application, and a second piece to
collect the data sent over the network and save it. In the course of adding
a couple of different reporting features, | realized that the processing for

replaying the data that had been collected was almost identical to the

23


bjpcjp


2.5. INTERVIEW WITH DOUG HELLMANN

processing for collecting it in the first place. | refactored a few classes,
and was able to create a base class for the data collection, database ac-
cess, and report generator. Making those classes conform to the same API
allowed me to easily create a version of the data collection app that wrote

directly to the database instead of sending information over the network.

While designing an app, | think about how the user interface works, but
for libraries, | focus on how a developer will use the API. Thinking about
how to write programs with the new library can be made easier by writing
the tests first, instead of after the library code. | usually create a series of
example programs in the form of tests, and then build the library to work

that way.

| have also found that writing the documentation for a library before writ-
ing any code at all gives me a way to think through the features and work-
flows for using it without committing to the implementation details. It
also lets me record the choices | made in the design so the reader under-
stands not just how to use the library but the expectations | had while

creating it. That was the approach | took with stevedore.

| knew | wanted stevedore to provide a set of classes for managing plu-
gins for applications. During the design phase, | spent some time think-
ing about common patterns | had seen for consuming plugins and wrote
a few pages of rough documentation describing how the classes would
be used. | realized that if | put most of the complex arguments into the
class constructors, the map () methods could be almost interchangeable.
Those design notes fed directly into the introduction for stevedore’s of-
ficial documentation, explaining the various patterns and guidelines for

using plugins in an application.

What’s the process for getting a module into the Python Standard Li-
brary?

24


bjpcjp


2.5. INTERVIEW WITH DOUG HELLMANN

The full process and guidelines can be found in the Python Developer’s
Guide.

Before a module can be added to the Python Standard Library, it needs
to be proven to be stable and widely useful. The module should provide
somethingthatiseither hard toimplement correctly or so useful that many
developers have created theirown variations. The APl should be clearand
the implementation should not have dependencies on modules outside
the Standard Library.

The first step to proposing a new module is bringing it up within the com-
munity via the python-ideas list to informally gauge the level of interest.
Assuming the response is positive, the next step is to create a Python En-
hancement Proposal (PEP), which includes the motivation for adding the
module and some implementation details of how the transition will hap-

pen.

Because package management and discovery tools have become so reli-
able, especially pip and the Python Package Index (PyPl), it may be more
practical to maintain a new library outside of the Python Standard Library.
A separate release allows for more frequent updates with new features
and bugfixes, which can be especially important for libraries addressing

new technologies or APIs.

What are the top three modules from the Standard Library that you

wish people knew more about and would start using?

I’'ve been doing a lot of work with dynamically loaded extensions for ap-
plications recently. | use the abc module to define the APIs for those ex-
tensions as abstract base classes to help extension authors understand
which methods of the API are required and which are optional. Abstract
base classes are built into some other OOP languages, but I've found a lot

of Python programmers don’t know we have them as well.


bjpcjp


2.5. INTERVIEW WITH DOUG HELLMANN

The binary search algorithm in the bisect module is a good example of
a feature that is widely useful and often implemented incorrectly, which
makes it a great fit for the Standard Library. | especially like the fact that
it can search sparse lists where the search value may not be included in
the data.

There are some useful data structuresin the collections module thataren’t
used as often as they could be. | like to use namedtuple for creating small
class-like data structures that just need to hold data but don’t have any
associated logic. It’s very easy to convert from a namedtuple to a regular
class if logic does need to be added later, since namedtuple supports ac-
cessing attributes by name. Another interesting data structure is Chain-
Map, which makes a good stackable namespace. ChainMap can be used
to create contexts for rendering templates or managing configuration set-

tings from different sources with clearly defined precedence.

A lot of projects, including OpenStack, or external libraries, roll their
own abstractions on top of the Standard Library. I’m particularly think-
ing about things like date/time handling, for example. What would
be your advice on that? Should programmers stick to the Standard
Library, roll their own functions, switch to some external library, or

start sending patches to Python?

All of the above! I prefer to avoid reinventing the wheel, so | advocate
strongly for contributing fixes and enhancements upstream to projects
thatcanbe used asdependencies. Ontheotherhand, sometimesit makes
sense to create another abstraction and maintain that code separately,

either within an application or as a new library.

The example you raise, the timeutils module in OpenStack, is a fairly thin
wrapper around Python’s datetime module. Most of the functions are

short and simple, but by creating a module with the most common oper-

26


bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp


2.5. INTERVIEW WITH DOUG HELLMANN

ations, we can ensure they are handled consistently throughout all Open-
Stack projects. Because a lot of the functions are application-specific, in
the sense that they enforce decisions about things like timestamp format
strings or what "now" means, they are not good candidates for patches to
Python’s library orto be released as a general purpose library and adopted

by other projects.

In contrast, | have been working to move the API services in OpenStack
away from the WSGI framework created in the early days of the project
and onto a third-party web development framework. There are alot of op-
tions for creating WSGI applications in Python, and while we may need to
enhance one to make it completely suitable for OpenStack’s API servers,
contributing those reusable changes upstream is preferable to maintain-

ing a "private" framework.

Do you have any particular recommendations on what to do when im-
porting and using a lot of modules, from the Standard Library or else-

where?

| don’t have a hard limit, but if | have more than a handful of imports, |
reconsider the design of the module and think about splitting it up into a
package. The split may happen sooner for a lower level module than for
a high-level or application module, since at a higher level | expect to be

joining more pieces together.

Regarding Python 3, what are the modules that are worth mentioning

and might make developers more interested in looking into it?

The number of third-party libraries supporting Python 3 has reached crit-
ical mass. It’s easier than ever to build new libraries and applications for
Python 3, and maintaining support for Python 2.7 is also easier thanks to
the compatibility features added to 3.3. The major Linux distributions are

working on shipping releases with Python 3 installed by default. Anyone

27



2.5. INTERVIEW WITH DOUG HELLMANN

starting a new project in Python should look seriously at Python 3 unless
they have a dependency that hasn’t been ported. At this point, though, li-
braries that don’t run on Python 3 could almost be classified as "unmain-

tained."

Many developers write all their code into an application, but there are
cases where it would be worth the effort to branch their code out into
a Python library. In term of design, planning ahead, migration, etc.,

what are the best ways to do this?

Applications are collections of "glue code" holding libraries together for
a specific purpose. Designing based on implementing those features as a
library first and then building the application ensures that code is prop-
erly organized into logical units, which in turn makes testing simpler. It
also means the features of an application are accessible through the li-
brary and can be remixed to create other applications. Failing to take this
approach means the features of the application are tightly bound to the

user interface, which makes them harder to modify and reuse.

What advice would you give to people planning to start their own Python
libraries?

| always recommend designing libraries and APIs from the top down, ap-
plying design criteria such as the Single Responsibility Principle (SRP) at
each layer. Think about what the caller will want to do with the library,
and create an API that supports those features. Think about what values
can be stored in an instance and used by the methods versus what needs
to be passed to each method every time. Finally, think about the imple-
mentation and whether the underlying code should be organized differ-

ently from the public API.

SQLAlchemy is an excellent example of applying those guidelines. The

declarative ORM, data mapping, and expression generation layers are all



2.5. INTERVIEW WITH DOUG HELLMANN

separate. Adeveloper can decide theright level of abstraction forentering
the APl and using the library based on their needs rather than constraints

imposed by the library’s design.

What are the most common programming errors that you encounter

while reading random Python developers' code?

A big area where Python’s idioms are different from other languages is
looping and iteration. For example, one of the most common anti-patterns
| see is using a for loop to filter one list by appending items to a new list
and then processing the resultin a second loop (possibly after passing the
list as an argument to a function). | almost always suggest converting fil-
tering loops like that to generator expressions because they are more ef-
ficient and easier to understand. It’s also common to see lists being com-
bined so their contents can be processed together in some way, rather

than using itertools.chain().

There are also some more subtle things | suggest in code reviews, like us-
ingadict() as alookup tableinstead of along if:then:else block; mak-
ing sure functions always return the same type of object (e.g., an empty
list instead of None); reducing the number of arguments to a function by
combining related values into an object with either a tuple or a new class;
and defining classes to use in public APIs instead of relying on dictionar-

ies.

Do you have a concrete example, something you’ve either done or wit-
nessed, of picking up a "wrong" dependency?

Recently, | had a case in which a new release of pyparsing dropped Python
2 support and caused me a little trouble with a library  maintain. The up-
date to pyparsing was a major revision, and was clearly labeled as such,
but because | had not constrained the version of the dependency in the

settings for cliff, the new release of pyparsing caused issues for some of

29



2.5. INTERVIEW WITH DOUG HELLMANN

cliff's consumers. The solution was to provide different version bounds
for Python 2 and Python 3 in the dependency list for cliff. This situation
highlighted the importance of both understanding dependency manage-
ment and ensuring proper test configurations for continuous integration

testing.
What’s your take on frameworks?

Frameworks are like any other kind of tool. They can help, but you need
to take care when choosing one to make sure that it’s right for the job at
hand.

By pulling out the common parts into a framework, you can focus your
development efforts on the unique aspects of an application. They also
help you bring an application to a useful state more quickly than if you
started from scratch by providing a lot of bootstrapping code for doing
things like running in development mode and writing a test suite. They
also encourage you to be consistent in the way you implement the appli-
cation, which means you end up with code that is easier to understand

and more reusable.

There are some potential pitfalls to watch out for when working with frame-
works, though. The decision to use a particular framework usually im-
plies something about the design of the application itself. Selecting the
wrong framework can make an application harder to implement if those
design constraints do not align naturally with the application’s require-
ments. You may end up fighting with the framework if you try to use dif-

ferent patterns or idioms than it recommends.

30



2.6. MANAGING API CHANGES 31

2.6 Managing API changes

When building an AP, it’s rare to get everything right the first try. Your APl will have

to evolve, adding, removing, or changing the features it provides.

In the following paragraphs, we will discuss how to manage public APl changes.
Public APIs are the APIs that you expose to users of your library or application; in-
ternal APIs are another concern, and since they’re internal (i.e. your users will never
have to deal with them), you can do whatever you want with them: break them,

twist them, or generally abuse them as you see fit.

The two types of API can be easily distinguished from each other. The Python con-
vention is to prefix private APl symbols with an underscore: foo is public, but bar

is private.

When building an API, the worst thing you can do is to break it abruptly. Linus Tor-
valds is (among other things) famous for having a zero tolerance policy on public
API breakage for the Linux kernel. Considering how many people rely on Linux, it’s

safe to say he made a wise choice.

Unix platforms have a complex management system for libraries, relying on son-
ame[http://en.wikipedia.org/wiki/Soname] and fine-grained version identifiers. Python
doesn’t provide such a system, nor an equivalent convention. It’s up to maintain-
ers to pick the right version numbers and policies. However, you can still take the
Unix system as inspiration for how to version your own libraries or applications.
Generally, your version numbering should reflect changes in the API that will im-
pact users; most developers use major version increments to denote such changes,
but depending on how you number your versions, you can also use minor version

increments as well.

Whatever else you decide to do, the first thing and most important step when mod-

ifying an APl is to heavily document the change. This includes:


bjpcjp

bjpcjp


2.6. MANAGING API CHANGES 32

« documenting the new interface
« documenting that the old interface is deprecated

« documenting how to migrate to the new interface

You shouldn’t remove the old interface right away; in fact, you should try to keep
the old interface for as long as possible. New users won’t use it since it’s explicitly
marked as deprecated. You should only remove the old interface when it’s too much

trouble to keep.

Example 2.2 A documented API change

class Car(object):
def turn left(self):

"""Turn the car left.

. deprecated:: 1.1

Use :func: turn’ instead with the direction argument set to left

self.turn(direction="'1left"')

def turn(self, direction):

"""Turn the car in some direction.

:param direction: The direction to turn to.

:type direction: str

# Write actual code here instead

pass

It’s a good idea to use Sphinx markup to highlight changes. When building the doc-

umentation, it will be clear to users that the function should not be used, and direct



2.6. MANAGING API CHANGES 33

access to the new function will be provided along with an explanation of how to mi-
grate old code. The downside of this approach is that you can’t rely on developers
to read your changelog or documentation when they upgrade to a newer version of

your Python package.

Python provides an interesting module called warnings that can help in this regard.
This module allows your code to issue various kinds of warnings, such as Pending
DeprecationWarning and DeprecationWarning. These warnings can be used to in-
form the developer that a function they’re calling is either deprecated or going to
be deprecated. This way, developers will be able to see that they’re using an old

interface and should do something about it. °

To go back to the previous example, we can make use of this and warn the user:

Example 2.3 A documented API change with warning

import warnings

class Car(object):
def turn left(self):

"""Turn the car left.

. deprecated:: 1.1
Use :func: turn® instead with the direction argument set to " «
left".
warnings.warn("turn_left is deprecated, use turn instead",
DeprecationWarning)

self.turn(direction="'1left")

def turn(self, direction):

°For those who work with C, this is a handy counterpart to the _attribute  ((deprecated))
GCC extension.


bjpcjp


2.6. MANAGING API CHANGES 34

"""Turn the car in some direction.

:param direction: The direction to turn to.

:type direction: str

# Write actual code here instead

pass

Should any code call the deprecated turn_1left function, a warning will be raised:

>>> Car().turn_left()

~_main_ :8: DeprecationWarning: turn left is deprecated, use turn instead

Note
Since Python 2.7, DeprecationWarning are not displayed by default. To disable this
filter, you need to call python with the -W all option. See the python manual page for

more information on the possible values for -W.

Having your code tell developers that their programs are using something that will
stop working eventuallyis a goodidea becauseit can also be automated. When run-
ning their test suites, developers can run python with the -W error option, which
transforms warnings into exceptions. That meansthatevery time an obsolete func-
tion is called, an error will be raised, and it will be easy for developers using your

library to know exactly where their code needs to be fixed.

Example 2.4 Running python -W error

>>> import warnings
>>> warnings.warn("This is deprecated", DeprecationWarning)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

DeprecationWarning: This is deprecated


bjpcjp


2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE 35

2.7 Interview with Christophe de Vienne

Christopheis a Python developer and the author of WSME, Web Services Made Easy.
Thisframework allows developers to define web servicesin a Pythonic way and sup-
ports a wide variety of APIs, allowing it to be plugged into many other web frame-

works.

What are the mistakes developers often make when designing a Python
API?

There are a few mistakes | try not to make when designing a Python API:

« Making it too complicated. As the saying goes, "Keep It Simple." (Some
people would say "Keep It Simple Stupid,” but | don’t think "simple" and
"stupid" are compatible.) Complicated APIs are hard to understand and
hard to document. You don’t have to make the actual library function-
ality simple as well, but it’s a smart idea. A good example is the Re-
quests library: compared to the various standard urllib libraries, the Re-
quests APl is very simple and natural, but it does complex things behind
the scenes. The urllib API, by contrast, is almost as complicated as the

things it does.

« Doing (visible) magic. When your API does things that your documen-
tation doesn’t explain, your end users are going to want to crack open
your code and see what’s going on under the hood. It’s okay if you’ve got
some magic happening behind the scenes, but your end users should

never see anything unnatural happening up front.



2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE

« Forgettingyour use cases. When writing code down in the depths of your
library, it’s easy to forget how your library will actually be used. Coming

up with good use cases makes it easier to design an API.

« Not writing unit tests. TDD is a very efficient way to write libraries, es-
pecially in Python. It forces the developer to assume the role of the end
user from the very beginning and maintain compatibility between ver-
sions. It’s also the only approach | know of that allows you to completely
rewrite a library. Even if it’s not always necessary, it’s good to have that

option.

Considering the variety of frameworks WSME can sit on top of, what
kinds of API does it have to support?

There actually aren’t that many, since the frameworks it sits on are similar
in a lot of ways. They use decorators to expose functions and methods to
the outside world; they’re based on the WSG/ standard (so their request
objects look very similar); and they’ve all more or less used each other as
a source of inspiration. That said, we haven’t yet attempted to plugitinto

an asynchronous web framework such as Twisted.

The biggest difference I’'ve had to deal with is the way contextual informa-
tion is accessed. In a web framework, the context is mainly the request
and what can be deduced from or attached to it (identity, session data,
data connection, etc.), as well as a few global things like the global con-
figuration, connection pool, and so forth. Most web frameworks assume
they’re running on a multi-threaded server and treat all this information
as TSD (Thread-Specific Data). This allows them to access the current
request by simply importing a request proxy object from a module and
working with it. While it’s pretty straightforward to use, it implies a little

magic and makes global objects out of context-specific data.

36



2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE

The Pyramid framework doesn’t work like this, for example. Instead, the
context is explicitly injected into the code pieces that work with it. This is
why the views takes a "request" parameter, which wraps the WSGI envi-

ronment and gives access to the global context of the application.
What are their pros and cons?

An API style like the one used in Pyramid has the big advantage that it
allows a single program to run several completely distinct environments
in a very natural way. The downside is that its learning curve is a little

steeper.
How does Python make it easier or harder to design a library API?

The lack of a built-in way to define which parts are public and which parts

aren’tis both a (slight) problem and an advantage.

It’s a problem when it means developers don’t think as much as they should
about which parts are their APl and which parts aren’t. But with a little
discipline, documentation, and (if needed) tools like zope.interface, it

doesn’t stay a problem for long.

It’s an advantage when it makes it quicker and easier to refactor APIs while

keeping compatibility with previous versions.

What’s your rule of thumb about APl evolution, deprecation, removal,

etc.?

There are several criteria | weigh when making a decision:

« How difficult will it be for users of the library to adapt their code?
Considering that there are people relying on your API, any change you
make has to be worth the effort needed to adopt it. This ruleisintended
to prevent non-compatible changes to the parts of the API that are in
common use. That said, one of the advantages of Python is that it’s rel-

atively easy to refactor code to adopt an API change.

37



2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE

 Will maintenance be easier with the change? Simplifying the imple-
mentation, cleaning up the codebase, making the APl easier to use, hav-
ing more complete unit tests, making the API easier to understand at
first glance... all of these things will make your life as a maintainer eas-

ier.

« How much more (or less) consistent will my API be after the change?
If all of the API’s functions follow a similar pattern (such as requiring the
same parameter in the first position), it’s important to make sure that
new functions follow that pattern as well. Also, doing too many things
atonce is a great way to end up doing none of them right: keep your API

focused on what it’s meant to do.

« How will users benefit from this change? Last but not least, always

consider the users' point of view.

What advice do you have regarding APl documentation in Python?

Documentation makes it easy for newcomers to adopt your library. Ne-
glecting it will drive away a lot of potential users; not just beginners, ei-
ther. The problem is, documenting is difficult, so it gets neglected all the

time!

Document early and include your documentation build in continuous in-
tegration. Now that we have Read the Docs, there’s no excuse for not
having documentation built and published (at least for open-source soft-

ware).

Use docstrings to document classes and functions in your API. Follow the
PEP 257° guidelines so that developers won’t have to read your source
to understand what your APl does. Generate HTML documentation from

your docstrings, and don’t limit it to the API reference.

®Docstring Conventions, David Goodger, Guido van Rossum, 29 May 2001



2.7. INTERVIEW WITH CHRISTOPHE DE VIENNE

Give practical examples throughout. Have at least one "startup guide"
that will show newcomers how to build a working example. The first page
of the documentation should give a quick overview of your API’s basic and

representative use case.

Document the evolution of your APl in detail, version by version. (VCS logs

are not enough!)

Make your documentation accessible and, if possible, comfortable to read:

your users need to be able to find it easily and get the information they
need without feeling like they’re being tortured. Publishing your docu-
mentation through PyPI is one way to achieve this; publishing on Read
the Docs is also a good idea, since users will expect to find your documen-
tation there.

Finally, choose a theme that is both efficient and attractive. | chose the
"Cloud" Sphinx theme for WSME, but there are plenty of other themes out
there to choose from. You don’t have to be a web expert to produce nice-

looking documentation.

39



