
ǖ Documentation

As I’ve alread⁴ touched upon, documentation is one of the most important parts

of writing sotware. Unfortunatel⁴, there are still a lot of projects out there that

doesn’t provide proper documentation. Writing documentation is seen as a com-

plicated and daunting task, but it doesn’t have to be: with the tools that are avail-

able to P⁴thon programmers, documenting ⁴our code can be just as eas⁴ aswriting

it in the first place.

One of the biggest culprits behind wh⁴ documentation is either sparse or nonexis-

tent is that man⁴ people assume that the onl⁴ wa⁴ to document code is b⁴ hand.

Even if ⁴ou havemultiple people working on the same project, this means that one

or more of them is going to end up having to juggle contributing code with main-

taining documentation – and if ⁴ou ask an⁴ developer which job the⁴’d prefer, ⁴ou

can be sure the⁴’ll tell ⁴ou the⁴’d rather write sotware than write about sotware.

Sometimes thedocumentationprocess is even completel⁴ separate fromthedevel-

opment process, meaning that the documentation is written b⁴ people who have

never written so much as a line of the actual code. Furthermore, an⁴ documenta-

tion produced this wa⁴ is likel⁴ to be out-of-date: whether the documentation is

handled b⁴ the programmers themselves or b⁴ dedicated writers, it’s almost im-

possible for manual documentation to keep up with the pace of development.

Thebottom line is, themoredegreesof separation there arebetween⁴our codeand

⁴our documentation, the harder it will be to keep the latter properl⁴ maintained.

bjpcjp



CHAPTER ǖ. DOCUMENTATION Ǘǔ

So wh⁴ keep ⁴our code and documentation separate at all? It’s not onl⁴ possible

to put ⁴our documentation directl⁴ in ⁴our code itself, but it’s also eas⁴ to convert

that documentation into eas⁴-to-read HTML and PDF files.

The de facto standard documentation format for P⁴thon is reStructuredText, or reST

for short. It’s a lightweight markup language (like the famous Markdown) that’s as

eas⁴ to read and write for humans as it is for computers. Sphinx is the most com-

monl⁴ used tool for working with this format: it can read reST-formatted content

and output documentation in a variet⁴ of other formats.

Your project documentation should include:

• The problem ⁴our project is intended to solve, in one or two sentences.

• The license ⁴our project is distributed under. If ⁴our sotware is open source, ⁴ou

should also include this information in a header in each code file: just because

⁴ou’ve uploaded ⁴our code to the Internet doesn’t mean that people will know

what the⁴’re allowed to do with it.

• A small example of how it works.

• Installation instructions.

• Links to communit⁴ support, mailing list, IRC, forums, etc.

• A link to ⁴our bug tracker s⁴stem.

• A link to ⁴our source code so that developers can download and start delving into

it right awa⁴.

You should also include a README.rst file that explainswhat ⁴our project does. This

READMEwill bedispla⁴edon⁴ourGitHuborP⁴PI project page; both sites knowhow

to handle reST formatting.



ǖ.ǔ. GETTING STARTEDWITH SPHINX AND REST ǗǕ

Tip

If you’re using GitHub, you can also add a CONTRIBUTING.rst file that will be displayed

when someone creates a pull request. It should provide a checklist for them to follow

before they submit the request, e.g. follow PEP 8 or don’t forget to run the unit tests.

Tip

Read The Docs allows you to build and publish your documentation online automatically.

Signing up and configuring a project is a straightforward process: it searches for your

Sphinx configuration file, builds your documentation, and makes it available for your users

to access. It’s a great companion to code hosting sites.

3.1 Getting started with Sphinx and reST

First of all, ⁴ou should run sphinx-quickstart in ⁴our project’s top-level director⁴.

This will create the director⁴ structure Sphinx expects to find, along with two files

in the doc/source folder: conf.py, which contains Sphinx's configuration settings

(and is absolutel⁴ required for Sphinx to work), and index.rst, which will serve as

the front page of ⁴our documentation.

You can then build ⁴our documentation in HTML format b⁴ calling sphinx-build

with ⁴our source director⁴ and output director⁴ as arguments:

$ sphinx-build doc/source doc/build

import pkg_resources

Running Sphinx v1.2b1

loading pickled environment... done

No builder selected, using default: html

building [html]: targets for 1 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

bjpcjp



ǖ.Ǖ. SPHINX MODULES Ǘǖ

preparing documents... done

writing output... [100%] index

writing additional files... genindex search

copying static files... done

dumping search index... done

dumping object inventory... done

build succeeded.

Now ⁴ou can open doc/build/index.html in ⁴our favorite browser and read ⁴our

documentation.

Tip

If you are using setuptools or pbr (see Section 4.2) for packaging, Sphinx extends them

to support the command setup.py build_sphinx, which will run sphinx-build

automatically. The pbr integration of Sphinx has some saner defaults, such as outputting

the documentation in the doc subdirectory.

index.rst is where ⁴our documentation begins, but it doesn’t have to end there:

reST supports includes, so there’s nothing stopping ⁴ou from dividing ⁴our docu-

mentationup intomultiple files. Don’tworr⁴ toomuchabout s⁴ntax and semantics

to startwith: it’s true that reST offers a lot of formatting possibilities, but ⁴ou’ll have

plent⁴ of time to dive into the reference later. The complete reference explains how

to create titles, bulleted lists, tables, andmore.

3.2 Sphinx modules

Sphinx is highl⁴ extensible: its basic functionalit⁴ onl⁴ supports manual documen-

tation, but it comes with a number of useful modules which enable automatic doc-

umentation and other features. For example, sphinx.ext.autodoc extracts reST-

formatted docstrings from ⁴ourmodules and generates .rst files for inclusion. sph

bjpcjp



ǖ.Ǖ. SPHINX MODULES ǗǗ

inx-quickstart will ask ⁴ou if ⁴ou want to activate this module when ⁴ou run it –

alternatel⁴, ⁴ou can edit ⁴our conf.py file and add it as an extension:

extensions = ['sphinx.ext.autodoc']

Note that autodocwill not automaticall⁴ recogni⁵e and include ⁴our modules. You

need to explicitl⁴ indicate which modules ⁴ou want to be documented b⁴ adding

something like this to one of ⁴our .rst files:

.. automodule:: foobar

:members: ②1

:undoc-members: ②2

:show-inheritance: ②3

②1 Request that all documentedmembers be printed (optional)

②2 Request that all undocumentedmembers be printed (optional)

②3 Show inheritance (optional)

Also note:

• If ⁴ou don’t include an⁴ directives, Sphinx won’t generate an⁴ output.

• If ⁴ouonl⁴ specif⁴:members:, undocumentednodeson⁴ourmodule/class/method

tree will be skipped, even if all their members are documented. For example, if

⁴ou document the methods of a class but not the class itself, :members: will ex-

clude both the class and itsmethods entirel⁴. To keep this fromhappening, ⁴ou’d

either have to write a docstring for the class or specif⁴ :undoc-members: as well.

• Your module needs to be where P⁴thon can import it. Adding ., .., and/or ../..

to sys.path can help with this.

bjpcjp



ǖ.Ǖ. SPHINX MODULES Ǘǘ

autodoc gives ⁴ou the power to includemost of ⁴our documentation in ⁴our actual

source code. You can even pick and choose which modules and methods to doc-

ument – it’s not an "all-or-nothing" solution. B⁴ maintaining ⁴our documentation

directl⁴ alongside ⁴our source code, ⁴ou can easil⁴ ensure it sta⁴s up-to-date.

If ⁴ou’re writing a P⁴thon librar⁴, ⁴ou’ll usuall⁴ want to format ⁴our API documen-

tationwith a table of contents containing links to individual pages for eachmodule.

The sphinx.ext.autogenmodule was created specificall⁴ to handle this common

use case. First, ⁴ou need to enable it in conf.py:

extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary']

Now ⁴ou can add something like the following to an .rst file to automaticall⁴ gen-

erate a TOC for the specified modules:

.. autosummary::

mymodule

mymodule.submodule

This will create files called generated/mymodule.rst and generated/mymodule.sub

module.rst containing the autodoc directives described earlier. Using this same

format, ⁴ou can specif⁴ which parts of ⁴our module API ⁴ou want included in ⁴our

documentation.

Tip

In large projects, it can be tedious to add modules to this list by hand. Just remember

that conf.py is an ordinary Python source file: there’s nothing stopping you from writing

your own code in it, including code that automatically builds .rst files indicating which

modules to document.

Another useful feature of Sphinx is the abilit⁴ to run doctest on ⁴our examples auto-

maticall⁴ when ⁴ou build ⁴our documentation. doctest is a standard P⁴thon mod-



ǖ.Ǖ. SPHINX MODULES ǗǙ

ule which searches ⁴our documentation for code snippets and runs them to test

whether the⁴ accuratel⁴ reflect what ⁴our code actuall⁴ does. Ever⁴ paragraph

starting with >>> (i.e. the primar⁴ prompt) is treated as a code snippet to test:

To print something to the standard output, use the :py:func:`print` ←֓

function.

>>> print("foobar")

foobar

It’s eas⁴ to end up leaving ⁴our examples unchanged as ⁴our API evolves; doctest

helps ⁴ou make sure this doesn’t happen. If ⁴our documentation includes a step-

b⁴-step tutorial, doctest will help ⁴ou keep it up-to-date throughout development.

You can also use doctest for Documentation-Driven Development (DDD): write ⁴our

documentation and examples first, and then write ⁴our code to match ⁴our docu-

mentation.

Taking advantage of this feature is as simple as running sphinx-buildwith the spe-

cial doctest builder:

$ sphinx-build -b doctest doc/source doc/build

Running Sphinx v1.2b1

loading pickled environment... done

building [doctest]: targets for 1 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

running tests...

Document: index

---------------

1 items passed all tests:

1 tests in default

1 tests in 1 items.



ǖ.ǖ. EXTENDING SPHINX Ǘǚ

1 passed and 0 failed.

Test passed.

Doctest summary

===============

1 test

0 failures in tests

0 failures in setup code

0 failures in cleanup code

build succeeded.

Sphinx also provides a bev⁴ of other features, either out-of-the-box or through ex-

tension modules, including:

• Link between projects using

• HTML themes

• Diagrams and formulas

• Output to Texinfo and EPUB format

• Linking to external documentation

You might not need all this functionalit⁴ right awa⁴, but if ⁴ou ever need it in the

future, it’s good to know in advance that there are modules that can provide it.

3.3 Extending Sphinx

Sometimes the off-the-shelf solutions just aren’t enough. It’s one thing if ⁴ou’re

writing an API that’s going to be used from within P⁴thon, but what if ⁴ou’re writ-

ing, sa⁴, an HTTP REST API? Sphinx will onl⁴ document the P⁴thon side of ⁴our API,



ǖ.ǖ. EXTENDING SPHINX ǗǛ

forcing ⁴ou to write ⁴our REST API documentation b⁴ hand with all the problems

that entails.

The creators of WSME had other ideas. The⁴ developed a Sphinx extension called

sphinxcontrib-pecanwsmewhichanal⁴⁵esdocstringsandactualP⁴thoncode togen-

erate REST API documentation automaticall⁴. You can do the same thing for ⁴our

own projects: if ⁴ou can extract information from ⁴our code that could be useful in

⁴our documentation, it onl⁴ makes sense to automate the process.

Tip

You can use sphinxcontrib.httpdomain for other HTTP frameworks such as Flask, Bottle,

and Tornado.

M⁴ point here is that whenever ⁴ou know that ⁴ou could extract information from

⁴our code that could help to build documentation, ⁴ou should reall⁴ do that and

automati⁵e it. It is better than tr⁴ing to maintain a manuall⁴ written documenta-

tion, especiall⁴ when ⁴ou can leverage it with auto-publication tools like Read The

Docs.

To write a Sphinx extension, first ⁴ou need to write a module, preferabl⁴ as a sub-

module of sphinxcontrib (as long as ⁴our module is generic enough), and pick a

name for it. Sphinx expects this module to have one predefined function called

setup(app). The app object will contain the methods ⁴ou’ll use to connect ⁴our

code to Sphinx events and directives. The full list of methods is available in the

Sphinx extension API.

For example, sphinxcontrib-pecanwsme adds a single directive called rest-contr

oller using the setup(app) function. This added directive needs a full⁴ qualified

WSME controller class name to generate documentation for.

Example ǖ.ǔ Code from sphinxcontrib.pecanwsme.rest.setup

bjpcjp

bjpcjp



ǖ.ǖ. EXTENDING SPHINX Ǘǜ

def setup(app):

app.add_directive('rest-controller', RESTControllerDirective)

RESTControllerDirective is a directive class which has to have certain properties

and methods as described in the Sphinx extension API. The main method, run(),

will do the actual work of extracting documentation from ⁴our code.

The sphinx-contrib repositor⁴ has a bunch of small modules that can help ⁴ou de-

velop ⁴our own.

Note

Even though Sphinx is written in Python and targets it by default, there are extensions

available that allow it to support other languages as well. You can use Sphinx to document

your project in full even if it uses multiple languages at once.

bjpcjp


