
Distribution

It’s a safe bet ⁴ou’ll want to distribute ⁴our sotware at some point. As tempted as

⁴oumight be to just ⁵ip up ⁴our code and upload it to the Internet, P⁴thon provides

tools to help ⁴ou make sure ⁴our end users will have no trouble getting ⁴our sot-

ware to work. You should alread⁴ be familiar with using setup.py to install P⁴thon

applications and libraries, but ⁴ou’ve probabl⁴ never delved into how it actuall⁴

works behind the scenes, or how to make a setup.py of ⁴our own.

4.1 A bit of history

distutils has been part of the standard P⁴thon librar⁴ since . It was originall⁴

developed b⁴ GregWard, who sought to create an eas⁴ wa⁴ for developers to auto-

mate the installation process for their end users:

Example . setup.py using distutils

#!/usr/bin/python

from distutils.core import setup

setup(name="rebuildd",

description="Debian packages rebuild tool",

author="Julien Danjou",

author_email="acid@debian.org",

. . A BIT OF HISTORY

url="http://julien.danjou.info/software/rebuildd.html",

packages=['rebuildd'])

And that’s it. All users have to do to build or install ⁴our sotware is run setup.py

with the appropriate command. If ⁴our distribution includes Cmodules in addition

to native P⁴thon ones, it can even handle those automaticall⁴ as well.

Developmentondistutilswasabandoned in ; since then, otherdeveloperspicked

up where it let off, building their own tools based on it. One of the most notable

successors to distutils is the packaging librar⁴ known as setuptools, which offered

more frequent updates and advanced features such as automatic dependenc⁴ han-

dling, the Egg distribution format, and the easy_install command. Since distutils

was still the canonicalmeans of packaging sotware includedwith theP⁴thonStan-

dard Librar⁴, setuptools also provided a degree of backwards compatibilit⁴ with it.

Example . setup.py using setuptools

#!/usr/bin/env python

import setuptools

setuptools.setup(

name="pymunincli",

version="0.2",

author="Julien Danjou",

author_email="julien@danjou.info",

description="munin client library",

license="GPL",

url="http://julien.danjou.info/software/pymunincli/",

packages=['munin'],

classifiers=[

"Development Status :: 2 - Pre-Alpha",

"Intended Audience :: Developers",

. . A BIT OF HISTORY

"Intended Audience :: Information Technology",

"License :: OSI Approved :: GNU General Public License (GPL)",

"Operating System :: OS Independent",

"Programming Language :: Python"

],

)

Eventuall⁴, developmenton setuptools sloweddown, andpeoplebegan to consider

it a dead project like the original distutils. It wasn’t long before another group of

developers forked it to create a new librar⁴ called distribute, which offered several

advantagesover setuptools, including fewerbugsandP⁴thon support. All thebest

stories have a twist ending, though, and this one’s no different: in March , the

teams behind setuptools and distribute decided to merge their code bases under

the aegis of the original setuptools project. So distribute is now deprecated, and

setuptools is oncemore the canonicalwa⁴ tohandle advancedP⁴thon installations.

While all this was happening, another project known as distutils was developed

with the intentionof replacingdistutils in theP⁴thonStandardLibrar⁴outright. One

of its most notable differences from both distutils and setuptoolswas that it stored

package metadata in a plain text file, setup.cfg, which was both easier for devel-

opers to write and easier for external tools to read. However, it also retained some

of the failings of distutils, such as its obtuse command-based design, and lacked

support for things like entr⁴ points and native script execution on Windows - both

features provided b⁴ setuptools. For these and other reasons, plans to include dis-

tutils in the P⁴thon . Standard Librar⁴ as packaging fell through, and the project

was abandoned in .

However, packaging still has a chance to rise from the ashes through distlib, an up-

and-coming effort to replace distutils which - hopefull⁴ - will become part of the

Standard Librar⁴ in . . It includes the best features from packaging and imple-

ments the basic groundwork described in the packaging-related PEPs.

. . PACKAGINGWITH PBR

So, to recap:

• distutils is part of the P⁴thon standard librar⁴ and can handle simple package in-

stallations.

• setuptools, the standard for advanced package installations, was at first depre-

cated but is now back in active development.

• distribute has beenmerged back into setuptools as of version . .

• distutils (a.k.a. packaging) has been abandoned.

• distlib might replace distutils in the future.

There are other packaging libraries out there, though these five are the ones ⁴ou’ll

encounter themost inpractice. Be carefulwhen lookingup informationabout them

on the Internet: there’s plent⁴ of documentation out there that’s outdated due to

the complicated histor⁴ outlined above. The official documentation is, at least, up

to date.

The short version of all this is, setuptools is the distribution librar⁴ to use for the

time being, but keep an e⁴e out for distlib in the future.

4.2 Packaging with pbr

Now that I’ve spent some pages making ⁴our head confused with a lot of distribu-

tion tools, let’s talk, about another tool and alternative, called pbr.

You probabl⁴ alread⁴ have written some package and tried to write a setup.py, ei-

ther b⁴ cop⁴ing one from some other project, or b⁴ skimming through the docu-

mentation. It isn’t an obvious task, as the various problem we discussed earlier

about which tool to use are usuall⁴ a first obstacle. In this section I want to intro-

duce ⁴ou to pbr, a tool ⁴ou should use to write ⁴our next setup.py so ⁴ou’ll never

have to lose ⁴our time on that part again.

. . PACKAGINGWITH PBR

pbr stands for Python Build Reasonableness. The project has been started inside

OpenStack as a set of tools around setuptools to facilitate installation and deplo⁴-

ment of packages. It takes inspiration from distutils , using a setup.cfg file to de-

scribe the packager’s intents.

This is how a setup.py using pbr looks like:

import setuptools

setuptools.setup(setup_requires=['pbr'], pbr=True)

Two lines of code – it’s that simple. The actual metadata that the setup requires is

stored in setup.cfg:

[metadata]

name = foobar

author = Dave Null

author-email = foobar@example.org

summary = Package doing nifty stuff

license = MIT

description-file =

README.rst

home-page = http://pypi.python.org/pypi/foobar

requires-python = >=2.6

classifier =

Development Status :: 4 - Beta

Environment :: Console

Intended Audience :: Developers

Intended Audience :: Information Technology

License :: OSI Approved :: Apache Software License

Operating System :: OS Independent

Programming Language :: Python

bjpcjp

. . THEWHEEL FORMAT

[files]

packages =

foobar

Sound familiar? That’s right – this particular wa⁴ of doing things was directl⁴ in-

spired b⁴ distutils .

pbr also offers other features such as:

• automatic dependenc⁴ installation based on requirements.txt

• automatic documentation using Sphinx

• automatic generation of AUTHORS and ChangeLog files based on git histor⁴

• automatic creation of file lists for git

• version management based on git tags

And all this with little to no effort on ⁴our part. pbr is well-maintained and in ver⁴

activedevelopment, so if ⁴ouhavean⁴plans todistribute⁴our sotware, ⁴oushould

seriousl⁴ consider including pbr in those plans.

4.3 TheWheel format

For most of P⁴thon’s existence, there’s been no official standard distribution for-

mat. While different distribution tools still generall⁴ use some kind of common

archive format – even the Egg format introducedb⁴ setuptools is just a ⁵ip filewith a

different extension – their metadata and package structures are incompatible with

each other. This problem was compounded when an official installation standard

was finall⁴ defined in PEP , which was also incompatible with existing formats.

. . THEWHEEL FORMAT

To solve these problems, PEP was written to define a new standard for P⁴thon

distribution packages calledWheel. The reference implementation of this format is

available as a tool, also called wheel.

Wheel is supported b⁴ pip starting with version . . If ⁴ou’re using setuptools and
have the wheel package installed, it is automaticall⁴ integrated as a command:

python setup.py bdist_wheel

This will create a .whl file in the dist director⁴. Like with the Egg format, a Wheel

archive is just a ⁵ip file with a different extension, except Wheel archives don’t re-

quire installation – ⁴ou can load and run ⁴our code just b⁴ adding a slash followed

b⁴ the name of ⁴our module:

$ python wheel-0.21.0-py2.py3-none-any.whl/wheel -h

usage: wheel [-h]

{keygen,sign,unsign,verify,unpack,install,install-scripts, ←֓

convert,help}

...

positional arguments:

[...]

Youmight be surprised to learn this isn’t a feature introduced b⁴ theWheel format.

P⁴thon can also run regular ⁵ip files as well, just like with Java’s .jar files:

python foobar.zip

This is equivalent to:

PYTHONPATH=foobar.zip python -m __main__

In other words, the __main__ module for ⁴our program will automaticall⁴ be im-

ported from __main__.py. It’s also possible to import __main__ from amodule ⁴ou

. . PACKAGE INSTALLATION

specif⁴ b⁴ appending a slash followed b⁴ its name, just like with Wheel:

python foobar.zip/mymod

This is equivalent to:

PYTHONPATH=foobar.zip python -m mymod.__main__

One of the advantages ofWheel is that its naming conventions allow ⁴ou to specif⁴

whether ⁴our distribution is intended for a specific architecture and/or P⁴thon im-

plementation (CP⁴thon, P⁴P⁴, J⁴thon, etc.). This is particularl⁴ useful if ⁴ou need

to distribute modules written in C.

4.4 Package installation

setuptools introduced the firstuseful command for installingpackages, easy_install.

It allows ⁴ou to install P⁴thon modules from Egg archives with a single command;

unfortunatel⁴, easy_install has suffered a bad reputation from the beginning due to

someof itsmorequestionable behaviors, such as ignoringbest practices for s⁴stem

administration and its lack of uninstall functionalit⁴.

The pip project offers a much better wa⁴ to handle package installations. It’s ac-

tivel⁴ developed, well-maintained, and will be included with P⁴thon starting in .

¹. It can install or uninstall packages fromP⁴PI, a tarball, or aWheel (seeSection .)

archive.

Its usage is simple:

$ pip install --user voluptuous

Downloading/unpacking voluptuous

Downloading voluptuous-0.8.3.tar.gz

Storing download in cache at ./.cache/pip/https%3A%2F%2Fpypi.python.org%2 ←֓

Fpackages%2Fsource%2Fv%2Fvoluptuous%2Fvoluptuous-0.8.3.tar.gz

¹See PEP and the ensurepipmodule

. . PACKAGE INSTALLATION

Running setup.py egg_info for package voluptuous

WARNING: Could not locate pandoc, using Markdown long_description.

Requirement already satisfied (use --upgrade to upgrade): distribute in / ←֓

usr/lib/python2.7/dist-packages (from voluptuous)

Installing collected packages: voluptuous

Running setup.py install for voluptuous

WARNING: Could not locate pandoc, using Markdown long_description.

Successfully installed voluptuous

Cleaning up...

You can also provide a --user option that makes pip install the package in ⁴our

home director⁴. This avoids polluting ⁴our operating s⁴stem directories with pack-

ages installed s⁴stem-wide.

Tip

If you’re using pip to install the same packages over and over, you can make it use a

local cache instead of downloading the packages each time. Just set the environment

variable PIP_DOWNLOAD_CACHE to a directory: pip will then use it to store downloaded

tarballs and will check that location for packages before downloading them. This is very

useful when using tox (see Section 6.7), which needs to download packages to build virtual

environments. You can also add the download-cache option to your ~/.pip/pip.

conf file.

You can list the packages that are currentl⁴ installed b⁴ using the pip freeze com-

mand:

$ pip freeze

Babel==1.3

Jinja2==2.7.1

. . SHARING YOURWORKWITH THEWORLD

commando=0.3.4

…

All other installation tools are being deprecated in favor of pip, so ⁴ou shouldn’t

have an⁴ trouble if ⁴ou treat it as ⁴our one-stop shop for all ⁴our packagemanage-

ment needs.

4.5 Sharing your work with the world

Once ⁴ou have a proper setup.py file, it’s eas⁴ to build a source tarball that ⁴ou can

distribute. Just use the sdist command:

Example . Using setup.py sdist

$ python setup.py sdist

running sdist

[pbr] Writing ChangeLog

[pbr] Generating AUTHORS

running egg_info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top_level.txt

writing dependency_links to ceilometer.egg-info/dependency_links.txt

writing entry points to ceilometer.egg-info/entry_points.txt

[pbr] Processing SOURCES.txt

[pbr] In git context, generating filelist from git

warning: no previously-included files matching '*.pyc' found anywhere in ←֓

distribution

writing manifest file 'ceilometer.egg-info/SOURCES.txt'

running check

copying setup.cfg -> ceilometer-2014.1.a6.g772e1a7

. . SHARING YOURWORKWITH THEWORLD

Writing ceilometer-2014.1.a6.g772e1a7/setup.cfg

[…]

Creating tar archive

removing 'ceilometer-2014.1.a6.g772e1a7' (and everything under it)

This will create a tarball under the dist director⁴ of ⁴our source tree that contains

all ⁴our packages and can be used to install ⁴our sotware. As seen in Section . ,

⁴ou can also buildWheel archives using the bdist_wheel command.

The final step is to make things eas⁴ on ⁴our end users b⁴ setting things up where

⁴ourpackagecanbe installedusingpip. Thismeanspublishing ⁴ourproject toP⁴PI.

Since ⁴ou’ll probabl⁴ make mistakes if this is ⁴our first time, it pa⁴s to test out the

publishing process in a safe sandbox rather than on the production server. You can

use the P⁴PI staging server for this purpose: it replicates all the functionalit⁴ of the

main index, but it’s used solel⁴ for testing purposes.

The first step is to register ⁴our project on the test server. Start b⁴ opening ⁴our ~/

.pypirc file and adding these lines:

[distutils]

index-servers =

testpypi

[testpypi]

username = <your username>

password = <your password>

repository = https://testpypi.python.org/pypi

Now ⁴ou can register ⁴our project in the index:

$ python setup.py register -r testpypi

. . SHARING YOURWORKWITH THEWORLD

running register

running egg_info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top_level.txt

writing dependency_links to ceilometer.egg-info/dependency_links.txt

writing entry points to ceilometer.egg-info/entry_points.txt

[pbr] Reusing existing SOURCES.txt

running check

Registering ceilometer to https://testpypi.python.org/pypi

Server response (200): OK

Finall⁴, ⁴ou can upload a source distribution tarball:

% python setup.py sdist upload -r testpypi

running sdist

[pbr] Writing ChangeLog

[pbr] Generating AUTHORS

running egg_info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top_level.txt

writing dependency_links to ceilometer.egg-info/dependency_links.txt

writing entry points to ceilometer.egg-info/entry_points.txt

[pbr] Processing SOURCES.txt

[pbr] In git context, generating filelist from git

warning: no previously-included files matching '*.pyc' found anywhere in ←֓

distribution

writing manifest file 'ceilometer.egg-info/SOURCES.txt'

running check

creating ceilometer-2014.1.a6.g772e1a7

. . SHARING YOURWORKWITH THEWORLD

[…]

copying setup.cfg -> ceilometer-2014.1.a6.g772e1a7

Writing ceilometer-2014.1.a6.g772e1a7/setup.cfg

Creating tar archive

removing 'ceilometer-2014.1.a6.g772e1a7' (and everything under it)

running upload

Submitting dist/ceilometer-2014.1.a6.g772e1a7.tar.gz to https://testpypi. ←֓

python.org/pypi

Server response (200): OK

As well as aWheel archive:

$ python setup.py bdist_wheel upload -r testpypi

running bdist_wheel

running build

running build_py

running egg_info

writing requirements to ceilometer.egg-info/requires.txt

writing ceilometer.egg-info/PKG-INFO

writing top-level names to ceilometer.egg-info/top_level.txt

writing dependency_links to ceilometer.egg-info/dependency_links.txt

writing entry points to ceilometer.egg-info/entry_points.txt

[pbr] Reusing existing SOURCES.txt

installing to build/bdist.linux-x86_64/wheel

running install

running install_lib

creating build/bdist.linux-x86_64/wheel

[…]

. . SHARING YOURWORKWITH THEWORLD

creating build/bdist.linux-x86_64/wheel/ceilometer-2014.1.a6.g772e1a7.dist- ←֓

info/WHEEL

running upload

Submitting /home/jd/Source/ceilometer/dist/ceilometer-2014.1.a6.g772e1a7- ←֓

py27-none-any.whl to https://testpypi.python.org/pypi

Server response (200): OK

You should now be able to search for ⁴our package on the P⁴Pi staging server and

see whether it uploaded properl⁴. You can also tr⁴ installing it using pip, specif⁴ing

the test server using the -i option:

$ pip install -i https://testpypi.python.org/pypi ceilometer

If ever⁴thing checks out, ⁴ou can continue to the next step: uploading ⁴our project

to the main P⁴PI server. Just add ⁴our credentials and the details for the server to

⁴our ~/.p⁴pircˋ file:

[distutils]

index-servers =

pypi

testpypi

[pypi]

username = <your username>

password = <your password>

[testpypi]

repository = https://testpypi.python.org/pypi

username = <your username>

password = <your password>

. . INTERVIEWWITH NICK COGHLAN

Running register and uploadwith the -r pypi switchwill now upload ⁴our package

to P⁴PI proper.

4.6 Interview with Nick Coghlan

Nick is a P⁴thon core developer working at Red Hat. He has written several PEP

proposals, includingPEP (Metadata for PythonSotwarePackages .) forwhich

he is acting as BDFL ² delegate.

The number of packaging solutions (distutils, setuptools, distutils2,
distlib, bento, pbr, etc.) for Python is quite impressive. In your opin-
ion, what are the (possibly historical) reasons for such fragmentation
and divergence?

The short answer is that sotware publication, distribution, and integra-

tion is a complex problem with plent⁴ of room for multiple solutions tai-

lored for different use cases. The long answer can be found in the P⁴thon

Packaging User Guide. In m⁴ recent talks on this, I have noted that the

problem ismainl⁴ one of age and the aforementioned tools being born in

a somewhat different era of sotware distribution.

setuptools is thede facto standard forPythondistributionsnowadays.
Is there anything you think users should be aware ofwhen using it (or
not)?

setuptools is quite reasonableasabuild s⁴stem, especiall⁴ forpureP⁴thon

²"Benevolent Dictator For Life," title given to Guido van Rossum, author of P⁴thon

bjpcjp

bjpcjp

. . INTERVIEWWITH NICK COGHLAN

projects, or those with onl⁴ simple C extensions. It also offers a powerful

s⁴stem for plugin registration and good cross-platform script generation.

While effective, the multi-version support in pkg_resources is also a bit

quirk⁴ and trick⁴ to use properl⁴. Unless there’s a reall⁴ compelling rea-

son to have conflicting versions in the same environment, it’smuch easier

to just use virtualenv or zc.buildout.

PEP , which defines a newmetadata format for Python packages,
is still fairly recent and not yet approved. Is it on good track? What
motivated it in the first place, howdo you think it’ll tackle the current
problems?

PEP originall⁴ startedaspartof theWheel formatdefinition, butDaniel

Holth eventuall⁴ reali⁵ed that Wheel could work with the existing meta-

data format defined b⁴ setuptools. PEP is thus a consolidation of the

existing setuptools metadata with some of the ideas from distutils and

other packaging s⁴stems (like RPM and npm), and also addresses some of

the frustrations encountered with existing tools (like cleanl⁴ separating

different kinds of dependencies).

If PEP is accepted, what kinds of tools would you to see built to
take advantage of what it offers?

The main gains will be a REST API on P⁴PI offering full metadata access,

as well as (hopefull⁴) the abilit⁴ to automaticall⁴ generate distribution

polic⁴-compliant packages from upstreammetadata.

TheWheel format is fairly recent andnotwidely used yet, but it seems
promising. Is there any reason it isn’t part of the Standard Library, or
are there already plans to include it?

It turns out the Standard Librar⁴ isn’t reall⁴ a suitable place for packaging

standards: it evolves too slowl⁴, and an addition to a later version of the

. . ENTRY POINTS

Standard Librar⁴ can’t be used with earlier versions of P⁴thon. So, at the

P⁴thon language summit earlier this ⁴ear, we tweaked the PEP process to

allow distutils-sig tomanage the full approval c⁴cle for packaging-related

PEPs. python-dev will onl⁴ be involved for proposals that involve chang-

ing CP⁴thon directl⁴ (like pip bootstrapping).

What kind of future do you envision that would push developers to
build and distributeWheel packages?

pip is adopting it at as an alternative to the Egg format, allowing local

caching of builds for fast virtual environment creation, and P⁴PI allows

uploads of Wheel archives for Windows and Mac OS X. We still have some

tweaks to make before it will be suitable for use on Linux.

4.7 Entry points

Youma⁴havealread⁴used setuptoolsentr⁴pointswithoutknowingan⁴thingabout

them. If ⁴ou haven’t ⁴et decided to use setuptools (or pbr, see Section .) to pro-

vide a setup.py file with ⁴our sotware, here are a few features that might help ⁴ou

make up ⁴our mind.

Sotwaredistributedusing setuptools includes importantmetadatadescribing things

such as its required dependencies and –more relevantl⁴ to this topic – a list of "en-

tr⁴ points." These entr⁴ points can be used b⁴ other P⁴thon programs to d⁴nami-

call⁴ discover features that a package provides.

In the following sections, wewill discuss howwe can use entr⁴ points to add exten-

sibilit⁴ to our sotware.

. . ENTRY POINTS

4.7.1 Visualising entry points

The easiest wa⁴ to visuali⁵e the entr⁴ points available in a package is to use a pack-

age called entry_point_inspector.

When installed, it provides a command called epi that ⁴ou can run from ⁴our ter-

minal to interactivel⁴ discover the entr⁴ points provided b⁴ installed packages:

Example . Result of epi group list

+--------------------------+

| Name |

+--------------------------+

| console_scripts |

| distutils.commands |

| distutils.setup_keywords |

| egg_info.writers |

| epi.commands |

| flake8.extension |

| setuptools.file_finders |

| setuptools.installation |

+--------------------------+

Example . shows thatwehaveman⁴differentpackages that provideentr⁴points.

You’ll alsonotice this list includes console_scripts, whichwe’ll discuss inSection . . .

Example . Result of epi group show console_scripts

+----------+----------+--------+--------------+-------+

| Name | Module | Member | Distribution | Error |

+----------+----------+--------+--------------+-------+

| coverage | coverage | main | coverage 3.4 | |

+----------+----------+--------+--------------+-------+

. . ENTRY POINTS

Example . shows us that an entr⁴ point named coverage refers to the member

main of themodule coverage. This entr⁴ point is provided b⁴ the package coverage

. . We can obtain more information b⁴ using epi ep show:

Example . Result of epi ep show console_scripts coverage

+--------------+----------------------------------+

| Field | Value |

+--------------+----------------------------------+

| Module | coverage |

| Member | main |

| Distribution | coverage 3.4 |

| Path | /usr/lib/python2.7/dist-packages |

| Error | |

+--------------+----------------------------------+

The tool we’re using here is just a thin la⁴er on top of a more complete P⁴thon li-

brar⁴ which can help us discover entr⁴ points for an⁴ P⁴thon librar⁴ or program.

Entr⁴ points are useful for various things, including console scripts and d⁴namic

code discover⁴, as we’re going to see in the next few sections.

4.7.2 Using console scripts

WhenwritingaP⁴thonapplication, ⁴oualmost alwa⁴shave toprovidea launchable

program – a P⁴thon script that the end user can actuall⁴ run. This program needs

to be installed inside a director⁴ somewhere in the s⁴stem path.

Most projects will have something along the lines of this:

#!/usr/bin/python

import sys

import mysoftware

. . ENTRY POINTS

mysoftware.SomeClass(sys.argv).run()

This is actuall⁴ a best-case scenario: man⁴ projects have a much longer script in-

stalled in the s⁴stem path. But using such scripts has somemajor issues:

• There’s no wa⁴ the⁴ can knowwhere the P⁴thon interpreter is or which version it

will be.

• The⁴ leak binar⁴ code that can’t be imported b⁴ sotware or unit tests.

• There’s no eas⁴ wa⁴ to define where to install them.

• It’s not obvious how to install this in a portable wa⁴ (Unix vs Windows for exam-

ple).

setuptools has a feature that helps us circumvent these problems: console_scripts.

console_scripts is an entr⁴ point that can be used to make setuptools install a tin⁴

program in the s⁴stempathwhich then calls a specific function in one of ⁴ourmod-

ules.

Let’s imagine a foobar program that consists of a client and a server. Each part is

written in its ownmodule – foobar.client and foobar.server, respectivel⁴:

foobar/client.py
def main():

print("Client started")

foobar/server.py
def main():

print("Server started")

Of course, our program doesn’t reall⁴ do much of an⁴thing – our client and server

don’t even talk to each other. For the purposes of our example, though, all the⁴

need to do is print a message letting us know the⁴’ve started successfull⁴.

. . ENTRY POINTS

We can nowwrite the following setup.py file in the root director⁴:

setup.py
from setuptools import setup

setup(

name="foobar",

version="1",

description="Foo!",

author="Julien Danjou",

author_email="julien@danjou.info",

packages=["foobar"],

entry_points={

"console_scripts": [

"foobard = foobar.server:main",

"foobar = foobar.client:main",

],

},

)

We define our entr⁴ points using the format package.subpackage:function.

When ⁴ou run python setup.py install, setuptools will create a script that will

look like this:

Example . A console script generated b⁴ setuptools

#!/usr/bin/python

EASY-INSTALL-ENTRY-SCRIPT: 'foobar==1','console_scripts','foobar'

__requires__ = 'foobar==1'

import sys

from pkg_resources import load_entry_point

if __name__ == '__main__':

. . ENTRY POINTS

sys.exit(

load_entry_point('foobar==1', 'console_scripts', 'foobar')()

)

This code scans the entr⁴ points of the foobar package and retrieves the foobar

ke⁴ from the console_scripts categor⁴, which is used to locate and run the corre-

sponding function.

Using this technique will ensure that ⁴our code sta⁴s in ⁴our P⁴thon package and

can be imported (and tested) b⁴ other programs.

Tip

If you’re using pbr on top of setuptools, the generated script is simpler (and therefore

faster) than the default one built by setuptools as it will call the function you wrote in the

entry point without having to search the entry point list dynamically at runtime.

4.7.3 Using plugins and drivers

Entr⁴ pointsmake it eas⁴ to discover and d⁴namicall⁴ load code deplo⁴ed b⁴ other

packages. You can use pkg_resources to discover and load entr⁴ point files from

within ⁴our P⁴thon programs. (Youmight notice that this is the same package used

in the console script that setuptools creates, as seen in Example . .)

In this section, we’re going to create a cron-st⁴le daemon thatwill allow an⁴ P⁴thon

program to register a command to be run once ever⁴ few seconds b⁴ registering an

entr⁴ point in the group pytimed. The attribute this entr⁴ point points to should be

an object that returns number_of_seconds, callable.

Here’sour implementationofpycrondusingpkg_resources todiscoverentr⁴points:

pytimed.py

import pkg_resources

. . ENTRY POINTS

import time

def main():

seconds_passed = 0

while True:

for entry_point in pkg_resources.iter_entry_points('pytimed'):

try:

seconds, callable = entry_point.load()()

except:

Ignore failure

pass

else:

if seconds_passed % seconds == 0:

callable()

time.sleep(1)

seconds_passed += 1

This is a ver⁴ simple and naive implementation, but it’s sufficient for our example.

Now we can write another P⁴thon program that needs one of its functions called

on a periodic basis:

hello.py
def print_hello():

print("Hello, world!")

def say_hello():

return 2, print_hello

We register the function using the appropriate entr⁴ points:

setup.py
from setuptools import setup

. . ENTRY POINTS

setup(

name="hello",

version="1",

packages=["hello"],

entry_points={

"pytimed": [

"hello = hello:say_hello",

],

},)

Andnow ifwe run our pytimed script, we’ll see "Hello, world!" printed on the screen

ever⁴ seconds:

Example . Running p⁴timed

% python3

Python 3.3.2+ (default, Aug 4 2013, 15:50:24)

[GCC 4.8.1] on linux

Type "help", "copyright", "credits" or "license" for more ←֓

information.

>>> import pytimed

>>> pytimed.main()

Hello, world!

Hello, world!

Hello, world!

The possibilities this mechanism offers are huge: it allows ⁴ou to build driver s⁴s-

tems, hook s⁴stems, and extensions in an eas⁴ and generic wa⁴. Implementing this

mechanism b⁴ hand in ever⁴ program ⁴oumakewould be tedious, but fortunatel⁴,

there’s a P⁴thon librar⁴ that can take care of the boring parts for us.

. . ENTRY POINTS

stevedore provides support for d⁴namic plugins based on the exact same mech-

anism demonstrated in our previous examples. Our use case in this example isn’t

ver⁴ complicated, but we can still simplif⁴ it a bit using stevedore:

pytimed_stevedore.py

from stevedore.extension import ExtensionManager

import time

def main():

seconds_passed = 0

while True:

for extension in ExtensionManager('pytimed', invoke_on_load=True):

try:

seconds, callable = extension.obj

except:

Ignore failure

pass

else:

if seconds_passed % seconds == 0:

callable()

time.sleep(1)

seconds_passed += 1

Our example is still ver⁴ simple, but if ⁴ou look through the stevedore documenta-

tion, ⁴ou’ll see that ExtensionManager has a variet⁴ of subclasses that can handle

different situations, suchas loading specific extensionsbasedon their namesor the

result of a function.

bjpcjp

