
ǘ Virtual environments

When dealing with P⁴thon applications, there’s alwa⁴s a time where ⁴ou’ll have

to deplo⁴, use and/or test ⁴our application. But doing that can be reall⁴ painful,

because of the external dependencies. There’s a lot of reasons for which that ma⁴

fail to deplo⁴ or operate on ⁴our operation s⁴stem, such as:

• Your s⁴stem does not have the librar⁴ ⁴ou need packaged.

• Your s⁴stem does not have the right version of the librar⁴ ⁴ou need packaged.

• You need two different versions of the same librar⁴ for two different applications.

This can happen right at the time ⁴ou deplo⁴ ⁴our application, or later on while

running. UpgradingaP⁴thon librar⁴ installed via ⁴our s⁴stemmanagermightbreak

⁴our application in a snap without warning ⁴ou.

The solution to this problem is to use a librar⁴ director⁴ per application, containing

its dependencies. This director⁴ will be used rather than the s⁴stem installed ones

to load the needed P⁴thonmodules.

The toolvirtualenvhandles thesedirectoriesautomaticall⁴ for ⁴ou. Once installed,

⁴ou just need to run it with a destination director⁴ as argument.

$ virtualenv myvenv

Using base prefix '/usr'

New python executable in myvenv/bin/python3

bjpcjp

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǚǙ

Also creating executable in myvenv/bin/python

Installing Setuptools........................done.

Installing Pip...............................done.

Once ran, virtualenv creates a lib/pythonX.Y director⁴ and uses it to install setu

ptools and pip, that will be necessar⁴ to install further P⁴thon packages.

You can now activate the virtualenv b⁴ "sourcing" the activate command:

$ source myvenv/bin/activate

Once ⁴ou do that, ⁴our shell promptwill be prefixed b⁴ the name of ⁴our virtual en-

vironment. Calling pythonwill call the P⁴thon that has been copied into the virtual

environment. You can check that its working b⁴ reading the sys.path variable; it

will have ⁴our virtual environment director⁴ as its first component.

You can stop and leave the virtual environment at an⁴ time b⁴ calling the deactiv

ate command:

$ deactivate

That’s it.

Alsonot that ⁴ou’re not force to run activate if ⁴ouwant touse theP⁴thon installed

in ⁴our virtual environment just once. Calling the python binar⁴ will also work:

$ myvenv/bin/python

Now, while we’re in our activated virtual environment, we don’t have access to an⁴

of the module installed and available on the s⁴stem. That’s good, but we probabl⁴

need to install them. To do that, ⁴ou just have to use the standard pip command,

and that will install the packages in the right place, without changing an⁴thing to

⁴our s⁴stem:

$ source myvenv/bin/activate

(myvenv) $ pip install six

bjpcjp

bjpcjp

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǚǚ

Downloading/unpacking six

Downloading six-1.4.1.tar.gz

Running setup.py egg_info for package six

Installing collected packages: six

Running setup.py install for six

Successfully installed six

Cleaning up...

And voilà. We can install all the librarieswe need and then run our application from

this virtual environment, without breaking our s⁴stem. It’s then easil⁴ imaginable

to script this to automati⁵e the installation of a virtual environment based on a list

of a dependenc⁴ with something along these lines:

Example ǘ.ǔ Automatic virtual environment creation

virtualenv myappvenv

source myappvenv/bin/activate

pip install -r requirements.txt

deactivate

In certain situation, it’s still useful to have access to ⁴our s⁴stem installed packages.

You can enable themwhen creating ⁴our virtual environment b⁴ passing the --sys

tem-site-packages flag to the virtualenv command.

As ⁴ou might guess, virtual environments are utterl⁴ useful for automated run of

unit test suite. This is a reall⁴ common pattern, so common that a special tool has

been built to solve it, called tox (discussed in Section Ǚ.ǚ).

More recentl⁴, the PEP ǗǓǘ ¹ which defines a virtual environment mechanism has

been accepted and implemented in P⁴thon ǖ.ǖ. Indeed, the usage of virtual envi-

¹Python Virtual Environments, ǔǖth June ǕǓǔǔ, Carl Me⁴er

bjpcjp

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǚǛ

ronment became so popular that it is now part of the standard P⁴thon librar⁴.

The venvmodule is now part of P⁴thon ǖ.ǖ and above, and allows to handle virtual

environment without using the virtualenv package or an⁴ other one. You can call

it using the -m flag of P⁴thon, which loads a module:

$ python3.3 -m venv

usage: venv [-h] [--system-site-packages] [--symlinks] [--clear] [--upgrade ←֓

]

ENV_DIR [ENV_DIR ...]

venv: error: the following arguments are required: ENV_DIR

Building virtual environment is then reall⁴ simple:

$ python3.3 -m venv myvenv

And that’s it. Inside myvenv, ⁴ou will find a pyvenv.cfg, the configuration file for

this environment. It doesn’t have a lot of configuration option b⁴ default. You’ll

recogni⁵e include-system-site-package, whose purpose is the same as the --sys

tem-site-packages of virtualenv that we described earlier.

Themechanism toactivate the virtual environment is the sameasdescribedearlier,

"sourcing" the activate script:

$ source myvenv/bin/activate

(myvenv) $

Also here, ⁴ou can call deactivate to leave the virtual environment.

The downside of this venv module is that it doesn’t install setuptools nor pip b⁴

default. We will have to bootstrap the environment b⁴ ourself, contrar⁴ to virtual

env that does that for us.

Example ǘ.Ǖ Boostraping a venv environment

(myvenv) $ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ ←֓

ez_setup.py -O - | python

bjpcjp

bjpcjp

bjpcjp

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǚǜ

-2013-09-02 22:26:07-- https://bitbucket.org/pypa/setuptools/raw/bootstrap ←֓

/ez_setup.py

Resolving bitbucket.org (bitbucket.org)... 131.103.20.168, 131.103.20.167

Connecting to bitbucket.org (bitbucket.org)|131.103.20.168|:443... ←֓

connected.

HTTP request sent, awaiting response... 200 OK

Length: 11835 (12K) [text/plain]

Saving to: ‘STDOUT’

100%[==>] 11,835 --.-K/s ←֓

in 0s

2013-09-02 22:26:08 (184 MB/s) - written to stdout [11835/11835]

Downloading https://pypi.python.org/packages/source/s/setuptools/setuptools ←֓

-1.1.tar.gz

Extracting in /tmp/tmp228fqm

Now working in /tmp/tmp228fqm/setuptools-1.1

Installing Setuptools

running install

running bdist_egg

running egg_info

writing dependency_links to setuptools.egg-i

[…]

Adding setuptools 1.1 to easy-install.pth file

Installing easy_install script to /home/jd/myvenv/bin

Installing easy_install-3.3 script to /home/jd/myvenv/bin

Installed /home/jd/myvenv/lib/python3.3/site-packages/setuptools-1.1-py3.3. ←֓

egg

CHAPTER ǘ. VIRTUAL ENVIRONMENTS ǛǓ

Processing dependencies for setuptools==1.1

Finished processing dependencies for setuptools==1.1

We can then install pip via easy_install:

(myvenv) $ easy_install pip

Searching for pip

Reading https://pypi.python.org/simple/pip/

Best match: pip 1.4.1

Downloading https://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.gz# ←֓

md5=6afbb46aeb48abac658d4df742bff714

Processing pip-1.4.1.tar.gz

Writing /tmp/easy_install-hxo3b0/pip-1.4.1/setup.cfg

Running pip-1.4.1/setup.py -q bdist_egg --dist-dir /tmp/easy_install-hxo3b0 ←֓

/pip-1.4.1/egg-dist-tmp-efgi80

warning: no files found matching '*.html' under directory 'docs'

warning: no previously-included files matching '*.rst' found under ←֓

directory 'docs/_build'

no previously-included directories found matching 'docs/_build/_sources'

Adding pip 1.4.1 to easy-install.pth file

Installing pip script to /home/jd/myvenv/bin

Installing pip-3.3 script to /home/jd/myvenv/bin

Installed /home/jd/myvenv/lib/python3.3/site-packages/pip-1.4.1-py3.3.egg

Processing dependencies for pip

Finished processing dependencies for pip

We can then use pip to install an⁴ further package we would need.

So while P⁴thon ǖ.ǖ includes venv b⁴ default, one has to admit that it has this little

drawback to not come with what ⁴ou would expect b⁴ default. It’s eas⁴ enough to

write a tool using the venv librar⁴ that wouldmimic the default behaviour of virtu

CHAPTER ǘ. VIRTUAL ENVIRONMENTS Ǜǔ

alenv, but on the other side, there’s little point working on that unless ⁴ou are onl⁴

targeting P⁴thon ǖ.ǖ and above. On the other hand, the pipbootstrapping code has

beenmerged into P⁴thon ǖ.Ǘ, meaning that this bootstrap problem is solved b⁴ the

latest P⁴thon version.

An⁴wa⁴, since like most projects, ⁴ou probabl⁴ target P⁴thon Ǖ and P⁴thon ǖ, re-

l⁴ing onl⁴ on the venvmodule isn’t reall⁴ an option. Sticking with virtualenv for

now is probabl⁴ the best solution. Considering that the⁴ both function in an iden-

tical manner, this shouldn’t be a problem.

