5 Virtual environments

When dealing with Python applications, there’s always a time where you’ll have
to deploy, use and/or test your application. But doing that can be really painful,
because of the external dependencies. There’s a lot of reasons for which that may

fail to deploy or operate on your operation system, such as:

« Your system does not have the library you need packaged.
« Your system does not have the right version of the library you need packaged.

« You need two different versions of the same library for two different applications.

This can happen right at the time you deploy your application, or later on while
running. Upgrading a Python library installed via your system manager might break

your application in a snap without warning you.

The solution to this problem is to use a library directory per application, containing
its dependencies. This directory will be used rather than the system installed ones

to load the needed Python modules.

Thetoolvirtualenv handlesthese directories automatically foryou. Onceinstalled,
you just need to run it with a destination directory as argument.

$ virtualenv myvenv

Using base prefix '/usr'

New python executable in myvenv/bin/python3

bjpcjp

CHAPTER 5. VIRTUAL ENVIRONMENTS 76

Also creating executable in myvenv/bin/python
Installing Setuptools.............. ..ot done.
Installing Pip......cciiiiiiii it e e n done.

Once ran, virtualenv creates a lib/pythonX.Y directory and uses it to install setu

ptools and pip, that will be necessary to install further Python packages.

You can now activate the virtualenv by "sourcing" the activate command:

$ source myvenv/bin/activate

Once you do that, your shell prompt will be prefixed by the name of your virtual en-
vironment. Calling python will call the Python that has been copied into the virtual
environment. You can check that its working by reading the sys.path variable; it

will have your virtual environment directory as its first component.

You can stop and leave the virtual environment at any time by calling the deactiv
ate command:

$ deactivate

That’s it.

Also not that you’re notforcetorunactivateif you wantto use the Python installed
in your virtual environment just once. Calling the python binary will also work:

$ myvenv/bin/python

Now, while we’re in our activated virtual environment, we don’t have access to any
of the module installed and available on the system. That’s good, but we probably
need to install them. To do that, you just have to use the standard pip command,
and that will install the packages in the right place, without changing anything to
your system:

$ source myvenv/bin/activate

(myvenv) $ pip install six

bjpcjp

bjpcjp

CHAPTER 5. VIRTUAL ENVIRONMENTS 7

Downloading/unpacking six
Downloading six-1.4.1.tar.gz

Running setup.py egg info for package six

Installing collected packages: six

Running setup.py install for six

Successfully installed six

Cleaning up...

And voila. We caninstall all the libraries we need and then run our application from
this virtual environment, without breaking our system. It’s then easily imaginable
to script this to automatize the installation of a virtual environment based on a list

of a dependency with something along these lines:

Example 5.1 Automatic virtual environment creation

virtualenv myappvenv
source myappvenv/bin/activate
pip install -r requirements.txt

deactivate

In certain situation, it’s still useful to have access to your system installed packages.
You can enable them when creating your virtual environment by passing the - -sys

tem-site-packages flag to the virtualenv command.

As you might guess, virtual environments are utterly useful for automated run of
unit test suite. This is a really common pattern, so common that a special tool has

been built to solve it, called tox (discussed in Section 6.7).

More recently, the PEP 405 " which defines a virtual environment mechanism has

been accepted and implemented in Python 3.3. Indeed, the usage of virtual envi-

'Python Virtual Environments, 13th June 2011, Carl Meyer

bjpcjp

CHAPTER 5. VIRTUAL ENVIRONMENTS 78

ronment became so popular that it is now part of the standard Python library.

The venv module is now part of Python 3.3 and above, and allows to handle virtual
environment without using the virtualenv package or any other one. You can call
it using the -m flag of Python, which loads a module:

$ python3.3 -m venv

usage: venv [-h] [--system-site-packages] [--symlinks] [--clear] [--upgrade <«

]
ENV_DIR [ENV DIR ...]

venv: error: the following arguments are required: ENV DIR

Building virtual environment is then really simple:

$ python3.3 -m venv myvenv

And that’s it. Inside myvenv, you will find a pyvenv.cfg, the configuration file for
this environment. It doesn’t have a lot of configuration option by default. You’ll
recognize include-system-site-package, whose purpose is the same as the - -sys

tem-site-packages of virtualenv that we described earlier.

The mechanism to activate the virtual environmentis the same as described earlier,
"sourcing" the activate script:

$ source myvenv/bin/activate

(myvenv) $

Also here, you can call deactivate to leave the virtual environment.

The downside of this venv module is that it doesn’t install setuptools nor pip by
default. We will have to bootstrap the environment by ourself, contrary to virtual

env that does that for us.

Example 5.2 Boostraping a venv environment

(myvenv) $ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ <«
ez setup.py -0 - | python

bjpcjp

bjpcjp

bjpcjp

CHAPTER 5. VIRTUAL ENVIRONMENTS 79

-2013-09-02 22:26:07-- https://bitbucket.org/pypa/setuptools/raw/bootstrap «+
/ez_setup.py
Resolving bitbucket.org (bitbucket.org)... 131.103.20.168, 131.103.20.167

Connecting to bitbucket.org (bitbucket.org)|131.103.20.168|:443... <«
connected.
HTTP request sent, awaiting response... 200 OK

Length: 11835 (12K) [text/plain]
Saving to: ‘STDOUT’

100%(>] 11,835 --.-K/s ¢J

in 0Os

2013-09-02 22:26:08 (184 MB/s) - written to stdout [11835/11835]

Downloading https://pypi.python.org/packages/source/s/setuptools/setuptools «+
-1.1.tar.gz

Extracting in /tmp/tmp228fqgm

Now working in /tmp/tmp228fqm/setuptools-1.1

Installing Setuptools

running install

running bdist egg

running egg info

writing dependency links to setuptools.egg-i

[..]

Adding setuptools 1.1 to easy-install.pth file

Installing easy install script to /home/jd/myvenv/bin

Installing easy install-3.3 script to /home/jd/myvenv/bin

Installed /home/jd/myvenv/lib/python3.3/site-packages/setuptools-1.1-py3.3. «
€99

CHAPTER 5. VIRTUAL ENVIRONMENTS 80

Processing dependencies for setuptools==1.1

Finished processing dependencies for setuptools==1.1

We can then install pip via easy install:

(myvenv) $ easy install pip

Searching for pip

Reading https://pypi.python.org/simple/pip/

Best match: pip 1.4.1

Downloading https://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.gz# «
md5=6afbb46aeb48abac658d4df742bff714

Processing pip-1.4.1.tar.gz

Writing /tmp/easy install-hxo3b0/pip-1.4.1/setup.cfg

Running pip-1.4.1/setup.py -q bdist egg --dist-dir /tmp/easy install-hxo3b0 «
/pip-1.4.1/egg-dist-tmp-efgi80

warning: no files found matching '*.html' under directory 'docs’

warning: no previously-included files matching '*.rst' found under <
directory 'docs/ build'

no previously-included directories found matching 'docs/ build/ sources'

Adding pip 1.4.1 to easy-install.pth file

Installing pip script to /home/jd/myvenv/bin

Installing pip-3.3 script to /home/jd/myvenv/bin

Installed /home/jd/myvenv/lib/python3.3/site-packages/pip-1.4.1-py3.3.eqg
Processing dependencies for pip

Finished processing dependencies for pip

We can then use pip to install any further package we would need.

So while Python 3.3 includes venv by default, one has to admit that it has this little
drawback to not come with what you would expect by default. It’s easy enough to

write a tool using the venv library that would mimic the default behaviour of virtu

CHAPTER 5. VIRTUAL ENVIRONMENTS 81

alenv, but on the other side, there’s little point working on that unless you are only
targeting Python 3.3 and above. On the other hand, the pip bootstrapping code has
been merged into Python 3.4, meaning that this bootstrap problem is solved by the
latest Python version.

Anyway, since like most projects, you probably target Python 2 and Python 3, re-
lying only on the venv module isn’t really an option. Sticking with virtualenv for
now is probably the best solution. Considering that they both function in an iden-

tical manner, this shouldn’t be a problem.

