6 Unit testing

Breaking news! It’s 2013 and there are still people who don’t have a policy of test-
ing their projects. Now, the purpose of this book is not to convince you to jump in
and start unit testing. If you need to be convinced, | suggest you start by reading
about the benefits of test-driven development. Writing code that is not tested is

essentially useless, as there’s no way to conclusively prove that it works.

This section will cover the Python tools you can use to construct a great suite of
tests. We’ll talk about how you can utilise them to enhance your software, making

it rock-solid and regression free!

6.1 The basics

Contrary to what you may believe, the writing and running of unit tests is really
simplein Python. It’s notintrusive or disruptive, and it’s going to help you and other

developers a lot in maintaining your software.

Your tests should be stored inside a tests submodule of your application or library.
This allows you to ship the tests as part of your module, so that they can be run or
reused by anyone - even once your software is installed - without necessarily using
the source package. This also prevents them from being installed by mistake in a

top-level tests module.

6.1. THE BASICS 83

It’s usually simpler to use a hierarchy in your test tree that mimics the hierarchy you
have in your module tree. This means that the tests covering the code of mylib/foo
bar.py should be inside mylib/tests/test foobar.py; this makes things simpler

when looking for the tests relating to a particular file.

Example 6.1 A really simple test in test_true.py

def test true():

assert True

This is the most simple unit test that can be written. To run it, you simply need to

load the test_true.py file and run the test true function defined within.

Obviously, following these steps for all of your test files and functions would be a
pain. This is where the nose package comes to the rescue - once installed, it pro-
videsthe nosetests command, which loads every file whose name starts with test

and then executes all functions within that start with test .

Therefore, with the test_true.pyfilein oursourcetree, running nosetests will give

us the following output:

$ nosetests -v

test true.test true ... ok

Ran 1 test in 0.003s

0K

On the other hand, as soon as a test fails, the output changes to indicate the failure,
accompanied by the whole traceback.

% nhosetests -v

test true.test true ... ok

test true.test false ... FAIL

6.1. THE BASICS 84

FAIL: test true.test false

Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in <«
runTest
self.test(*self.arg)
File "/home/jd/test true.py", line 5, in test false
assert False

AssertionError

Ran 2 tests in 0.003s

FAILED (failures=1)

A test fails as soon as an AssertionError exception is raised; assert does indeed
raise an AssertionError as soon as its argument is evaluated to something false

(False, None, 0...). If any other exception is raised, the test also errors out.

Simple, isn’t it? While simplistic, this approach is used by a lot of small projects,
and works very well. They don’t require tools or libraries other than than nose, and

relying on assert is good enough.

However, as you start to write more sophisticated tests, you’ll start to become frus-
trated by things like the use of assert. Consider the following test:

def test key():

a = [Ial’ |b|]
b=1['b']
assert a ==

When running nosetests, it gives the following output:

6.1. THE BASICS 85

$ nosetests -v

test complicated.test key ... FAIL

FAIL: test complicated.test key
Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in <«
runTest
self.test(*self.arg)
File "/home/jd/test complicated.py", line 4, in test key
assert a ==

AssertionError

Ran 1 test in 0.001s

FAILED (failures=1)

Alright, so a and b are different and this test doesn’t pass. But how are they differ-
ent? assert doesn’t give us this information, just states that the assertion is wrong

- not particularly useful.

Also, with such a basic zero framework approach, advanced usage such as skipping

tests or executing actions before or after running every test can become painful.

Thisis where the unittest package comes in handy. It provides tools that will help
covering all of that - and good news is that unittest is part of the Python standard

library.

6.1. THE BASICS 86

Warning
unittest has been largely improved starting with Python 2.7, so if you are supporting
earlier version of Python you may want to use its backport named unittest2. If you
need to support Python 2.6, you can then use the following snippet to import the correct
module for any Python versions at runtime:
try:

import unittest2 as unittest

except ImportError:

import unittest

If we rewrite the previous example using unittest, this is what it will look like:

import unittest

class TestKey(unittest.TestCase):
def test key(self):
a=1['a', 'b'l]
b=1['b"l]
self.assertEqual(a, b)

As you can see, the implementation isn’t much more complicated. All you have to
do is create a class that inherits from unittest.TestCase, and write a method that
runs a test. Instead of using assert, we rely on a method provided by unittest.
TestCase that provides an equality tester. When run, it outputs the following:

$ nosetests -v

test key (test complicated.TestKey) ... FAIL

FAIL: test key (test complicated.TestKey)

Traceback (most recent call last):

6.1. THE BASICS 87

File "/home/jd/Source/python-book/test complicated.py", line 7, in <«
test key
self.assertEqual(a, b)

AssertionError: Lists differ: ['a', 'b'] '= ['b']

First differing element 0:
a

b

First list contains 1 additional elements.
First extra element 1:

b

- [Ial’ Ibl]
+ ['b']

Ran 1 test in 0.001s

FAILED (failures=1)

As you can see, the output is much more useful. An assertion error is still raised,
and the test is still being failed, but at least we have real information about why it’s
failing, which can help us to fix the problem. This is why you should definitely never
use assert when writing test cases. Anyone who tries to hack your code and ends
up failing a test will definitely thank you for having not used assert, and having

thereby providing him/her with debugging information right away.

unittest provides a few test functions that you can use to specialize your tests,
suchas: assertDictEqual,assertEqual,assertTrue,assertFalse,assertGreater,

assertGreaterEqual, assertIn, assertls, assertIsIntance, assertIsNone, asser

6.1. THE BASICS 88

tIsNot, assertIsNotNone, assertItemsEqual, assertlLess, assertLessEqual, asse
rtListEqual,assertMultiLineEqual,assertNotAlmostEqual,assertNotEqual,ass
ertTupleEqual, assertRaises, assertRaisesRegexp, assertRegexpMatches, etc. It

would be a good idea to go through pydoc unittest and discover them all.

It’s also possible to deliberately fail a test right away using the fail(msg) method.
This can be convenient when you know that a particular part of your code will def-

initely raise an error if executed, but there isn’t a particular assertion to check for.

Example 6.2 Failing a test

import unittest

class TestFail(unittest.TestCase):
def test range(self):
for x in range(5):
if x > 4:

self.fail("Range returned a too big value: %d" % x)

It’s sometimes useful skip a test if it can’t be run - for example, you may wish to
run a test conditionally based on the presence or absence of a particular library. To
that end, you can raise the unittest.SkipTest exception. When the test is raised,
itis simply marked as having been skipped. The convenient method unittest.Tes
tCase.skipTest() can be used rather than raising the exception manually, as can

the unittest.skip decorator:

Example 6.3 Skipping tests

import unittest

try:
import mylib
except ImportError:

mylib = None

6.1. THE BASICS

class TestSkipped(unittest.TestCase):
@unittest.skip("Do not run this")
def test fail(self):

self.fail("This should not be run")

@unittest.skipIf(mylib is None, "mylib is not available")
def test mylib(self):
self.assertEqual(mylib.foobar(), 42)

def test skip at runtime(self):
if True:

self.skipTest("Finally I don't want to run it")

When executed, this test file will output the following:

$ python -m unittest -v test skip

test fail (test skip.TestSkipped) ... skipped 'Do not run this'
test mylib (test skip.TestSkipped) ... skipped 'mylib is not available'
test skip at runtime (test skip.TestSkipped) ... skipped "Finally I don't

want to run it"

Ran 3 tests in 0.000s

0K (skipped=3)

89

6.1. THE BASICS 90

Tip

As you may have noticed in Example 6.3, the unittest module provides a way to ex-
ecute a Python module that contains tests. It is less convenient than using nosetests,
as it does not discover test files on its own, but it can still be useful for running a particular

test module.

In many cases, there’s a need to execute a set of common actions before and after
running a test. unittest provides two particular methods called setUp and tearD
own that are executed each time one of the test methods of a class is about to, or

has been, called.

Example 6.4 Using setUp with unittest

import unittest

class TestMe(unittest.TestCase):
def setUp(self):
self.list = [1, 2, 3]

def test length(self):
self.list.append(4)
self.assertEqual(len(self.list), 4)

def test has one(self):
self.assertEqual(len(self.list), 3)
self.assertIn(l, self.list)

In this case, setUp is called before running test length and before running test
has_one. It can be really handy to create objects that are worked with during each
test; butyou need to be sure that they get recreated in a clean state before each test

method is called. This is really useful for creating test environments, often referred

6.2. FIXTURES 91

to as "fixtures" (see Section 6.2).

Tip

When using nosetests, you often might want to run only one particular test.
You can select which test you want to run by passing it as an argument — the
syntax is: path.to.your.module:ClassOfYourTest.test_ method. Be sure that there’s
a colon between the module path and the class name. You can also specify
path.to.your.module:ClassOfYourTest to execute an entire class, or path.to.your.module

to execute an entire module.

Tip
It's possible to run tests in parallel to speed things up. Simply add the - -processes=N
option to your nosetests invocation to spawn several nosetests processes. However,

testrepository is a better alternative — this is discussed in Section 6.5.

6.2 Fixtures

In unit testing, fixtures represent components that are set up before a test, and
cleaned up after the test is done. It’s usually a good idea to build a special kind
of component for them, as they are reused in a lot of different places. For exam-
ple, if you need an object which represents the configuration state of your applica-
tion, there’s a chance you may want it to be initialized before each test, and reset
to its default values when the test is done. Relying on temporary file creation also
requires that the file is created before the test starts, and deleted once the test is

done.

unittest only providesthe setUp and tearDown functions we already evoked. How-
ever,a mechanism exists to hook into these. The fixtures Python module (not part
of the standard library) provides an easy mechanism for creating fixture classes and

objects, such as the useFixture method.

6.3. MOCKING 92

The fixtures modules provides a few built-in fixtures, like fixtures.Environment
Variable - useful for adding or changing a variable in os.environ that will be reset

upon test exit.

Example 6.5 Using fixtures.EnvironmentVariable

import fixtures

import os

class TestEnviron(fixtures.TestWithFixtures):
def test environ(self):
fixture = self.useFixture(
fixtures.EnvironmentVariable("FOOBAR", "42"))
self.assertEqual(os.environ.get("FOOBAR"), "42")

def test environ no fixture(self):

self.assertEqual(os.environ.get("FOOBAR"), None)

When you can identify common patterns like these, it’s a good idea to create a fix-
ture that you can reuse over all your test cases. This greatly simplifies the logic, and

shows exactly what you are testing and in what manner.

Note
If you're wondering why the base class unittest.TestCase isn't used in the examples

in this section, it's because fixtures.TestWithFixtures inherits from it.

6.3 Mocking

Mock objects are simulated objects that mimic the behaviour of real application

objects, but in particular and controlled ways. These are especially useful in creat-

6.3. MOCKING 93

ing environments that describe precisely the conditions for which you would like to

test code.

If you are writing an HTTP client, it’s likely impossible (or at least extremely compli-
cated) to spawn the HTTP server and test it through all scenarios, making it return

every possible value. It’s especially difficult to test for all failure scenarios.

A much simpler option is to build a set of mock objects that model these particular

scenarios, and to use them as environment for testing your code.

The standard library for creating mock objects in Python is mock. Starting with
Python 3.3, it has been merged into the Python standard library as unittest.mock.
You can therefore use a snippet like:
try:

from unittest import mock
except ImportError:

import mock

To maintain backward compatibility between Python 3.3 and earlier versions.

Mock is pretty simple to use:

Example 6.6 Basic mock usage

>>> import mock
>>> m = mock.Mock()
>>> m.some_method.return value = 42
>>> m.some _method()
42
>>> def print hello():
print("hello world!")

>>> m.some _method.side effect = print hello

>>> m.some_method()

6.3. MOCKING 94

hello world!
>>> def print hello():
print("hello world!")

return 43

>>> m.some _method.side effect = print hello
>>> m.some_method()

hello world!

43

>>> m.some _method.call count

3

Even using just this set of features, you should be able to mimic a lot of yourinternal

objects in order to fake various data scenarios.

Mock uses the action/assertion pattern: this means that once your test has run, you

will have to check that the actions you are mocking were correctly executed.

Example 6.7 Checking method calls

>>> import mock
>>> m = mock.Mock()
>>> m.some _method('foo', 'bar"')
<Mock name='mock.some method()' id='26144272"'>
>>> m.some _method.assert called once with('foo', 'bar')
>>> m.some_method.assert called once with('foo', mock.ANY)
>>> m.some_method.assert called once with('foo', 'baz"')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/dist-packages/mock.py", line 846, in <«
assert called once with
return self.assert called with(*args, **kwargs)

File "/usr/lib/python2.7/dist-packages/mock.py", line 835, in <«

6.3. MOCKING 95

assert called with
raise AssertionError(msg)
AssertionError: Expected call: some method('foo', 'baz')

Actual call: some method('foo', 'bar')

As you can see, it’s easy enough to pass a mock object to any part of your code, and
to check later if the code has been called with whatever argument it was supposed
to have. If you don’t know what arguments may have been passed, you can use

mock.ANY as a value; that will match any argument passed to your mock method.

Sometimes you may need to a some function, method or object from an external

module. mock provides a set of patching functions to that end.

Example 6.8 Using mock.patch

>>> import mock
>>> import os
>>> def fake os unlink(path):

raise IOError("Testing!")

>>> with mock.patch('os.unlink', fake os unlink):

os.unlink('foobar")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "<stdin>", line 2, in fake os unlink

IOError: Testing!

With the mock.patch method, it’s possible to change any part of an external piece
of code - making it behave in the required way in order to test all conditions in your

software.

Example 6.9 Using mock. patch to test a set of behaviour

6.3. MOCKING

import requests
import unittest

import mock

class WhereIsPythonError(Exception):

pass

def is python still a programming language():
try:
r = requests.get("http://python.org")
except IOError:
pass
else:
if r.status code == 200:
return 'Python is a programming language' in r.content

raise WhereIsPythonError("Something bad happened")

def get fake get(status code, content):
m = mock.Mock()
m.status code = status code
m.content = content
def fake get(url):
return m

return fake get

def raise get(url):

raise IOError("Unable to fetch url %s" % url)

class TestPython(unittest.TestCase):
@mock.patch('requests.get', get fake get(

6.3. MOCKING o7

200, 'Python is a programming language for sure'))
def test python is(self):

self.assertTrue(is python still a programming language())

@mock.patch('requests.get', get fake get(
200, 'Python is no more a programming language'))
def test python is not(self):

self.assertFalse(is python still a programming language())

@mock.patch('requests.get', get fake get(
404, 'Whatever'))

def test bad status code(self):
self.assertRaises(WhereIsPythonError,

is python still a programming language)

@mock.patch('requests.get', raise get)
def test ioerror(self):
self.assertRaises(WherelIsPythonError,

is python still a programming language)

Example 6.9 uses the decorator version of mock. patch, this does not change its be-
haviour, but is easier to use when you need to use mocking within the context of an

entire test function.

By using mocking we can simulate any problem - such as a Web server returning
a 404 error, or network issues arising. We can make sure that our code returns the
correct values, or raises the correct exception in every case - ensuring that our code

always behaves as expected.

6.4. SCENARIOS 98

6.4 Scenarios

When unit testing, itis common to require that a set of tests be run against different
versions of an object. You may want to run the same error-handling test with a
bunch of different objects that trigger that error; or you may want to run an entire

test suite against different drivers.

This last case is one that we heavily relied on in Ceilometer. Ceilometer provides
an abstract class that we call the storage API. Any driver can implement this base
abstract class and register itself to become a driver. The software loads the config-
ured storage driver when required, and uses the implemented storage API to store
or retrieve data. In this case, what need is a class of unit tests that runs against each
driver - meaning against each implementation of this storage API - to be sure that

they conform to what the callers expect.

The natural way of doing this is to use mixin classes; on one side, you would have
a class with unit tests, and on the other side a class with the specific driver usage
setup.

import unittest

class MongoDBBaseTest(unittest.TestCase):
def setUp(self):

self.connection = connect to mongodb()

class MySQLBaseTest(unittest.TestCase):
def setUp(self):

self.connection = connect to mysql()

class TestDatabase(unittest.TestCase):
def test connected(self):

self.assertTrue(self.connection.is connected())

bjpcjp

bjpcjp

6.4. SCENARIOS 99

class TestMongoDB(TestDatabase, MongoDBBaseTest):

pass

class TestMySQL(TestDatabase, MySQLBaseTest):

pass

Unfortunately, in the long run this method is far from convenient or scalable.

A better technique does exist, using the testscenarios package. This package pro-
vides an easy way to run a class test against a different set of scenarios generated
atrun-time. Using testscenarios, | have rewritten part of Example 6.9 to illustrate

mocking as covered in Section 6.3.

Example 6.10 testscenarios basic usage

import mock
import requests

import testscenarios

class WhereIsPythonError(Exception):

pass

def is python still a programming language():
r = requests.get("http://python.org")
if r.status code == 200:
return 'Python is a programming language' in r.content

raise WherelIsPythonError("Something bad happened")

def get fake get(status code, content):
m = mock.Mock()

m.status code = status code

bjpcjp

6.4. SCENARIOS 100

m.content = content
def fake get(url):
return m

return fake get

class TestPythonErrorCode(testscenarios.TestWithScenarios):
scenarios = [
('Not found', dict(status=404)),
('Client error', dict(status=400)),

('Server error', dict(status=500)),

def test python status code handling(self):
with mock.patch('requests.get’,
get fake get(
self.status,
'Python is a programming language for sure')):

self.assertRaises(WhereIsPythonError,

is python still a programming language)

Even though only one test seems to be defined, testscenarios runs the test three
times - because we have defined three scenarios.

% python -m unittest -v test scenario

test python status code handling (test scenario.TestPythonErrorCode) ... <«
ok

test python status code handling (test scenario.TestPythonErrorCode) ... <«
ok

test python status code handling (test scenario.TestPythonErrorCode) ... <+

ok

6.4. SCENARIOS 101

Ran 3 tests in 0.001s

OK

As can see, all we need to construct the scenario list is a tuple list that consists of
the scenario name as first argument, and as a second argument the dictionary of

attributes to be added to the test class for this scenario.

It is easy enough to imagine another use: where instead of storing a single value as
an attribute for each test, you could instantiate a particular driver and run all the

tests of the class against it.

Example 6.11 Using testscenarios to test drivers

import testscenarios

from myapp import storage

class TestPythonErrorCode(testscenarios.TestWithScenarios):
scenarios = [
('MongoDB', dict(driver=storage.MongoDBStorage())),
('SQL', dict(driver=storage.SQLStorage())),

('File', dict(driver=storage.FileStorage())),

def test storage(self):

self.assertTrue(self.driver.store({'foo': 'bar'}))

def test fetch(self):

self.assertEqual(self.driver.fetch('foo'), 'bar')

6.5. TEST STREAMING AND PARALLELISM 102

Note
If you wonder why there is no need to use the base class unittest.TestCase in the
previous examples, it's because testscenarios.TestWithScenarios inherits from

it.

6.5 Test streaming and parallelism

When performing a lot of tests, it can be useful to analyze them as they are run. The
default behaviour of tools like nosetests is to output the result to stdout - which is

not really convenient to parse or analyze.

subunit is a Python module that provides a streaming protocol for test results. It
allows for a number of interesting things, such as aggregating test results ' or to

record and archive test runs, etc.

Running a test using subunit is simple enough:

$ python -m subunit.run test scenario

The output of this command is binary data, so unless you have the ability to sight-
read the subunit protocol, itwouldn’t be interesting to reproduce it’s output directly
here. However, subunit also comes with a set of tools to transform this binary

stream into something smoother:

Example 6.12 Using subunit2pyunit

$ python -m subunit.run test scenario | subunit2pyunit

test scenario.TestPythonErrorCode.test python status code handling(Not <«
found)

test scenario.TestPythonErrorCode.test python status code handling(Not <«

found) ... ok

'Even from different source programs or languages

6.5. TEST STREAMING AND PARALLELISM 103

test scenario.TestPythonErrorCode.test python status code handling(Client <«
error)

test scenario.TestPythonErrorCode.test python status code handling(Client «+«
error) ... ok

test scenario.TestPythonErrorCode.test python status code handling(Server <«
error)

test scenario.TestPythonErrorCode.test python status code handling(Server <«

error) ... ok

Ran 3 tests in 0.061s

0K

Now this is something that we can understand - you should recognize the test suite
with scenarios from Section 6.4. Other tools worth mentioning include subunit2

csv, subunit2gtk and subunit2junitxml.

subunit is also able to automatically discover which test to run, when it is passed

the discover argument.

$ python -m subunit.run discover | subunit2pyunit

test scenario.TestPythonErrorCode.test python status code handling(Not <«
found)

test scenario.TestPythonErrorCode.test python status code handling(Not <«
found) ... ok

test scenario.TestPythonErrorCode.test python status code handling(Client <«
error)

test scenario.TestPythonErrorCode.test python status code handling(Client <«
error) ... ok

test scenario.TestPythonErrorCode.test python status code handling(Server <«

error)

6.5. TEST STREAMING AND PARALLELISM 104

test scenario.TestPythonErrorCode.test python status code handling(Server <«

error) ... ok

Ran 3 tests in 0.061s

0K

You can list tests, rather than running them, by passing the argument --1list. To
view the results, you can use subunit-1s:

$ python -m subunit.run discover --list | subunit-1ls --exists
test request.TestPython.test bad status code

test request.TestPython.test ioerror

test request.TestPython.test python is

test request.TestPython.test python is not

test scenario.TestPythonErrorCode.test python status code handling

Tip
You can also load a list of tests that you want to run — rather than running all tests — by

using the - - load-list option.

In large applications the number of tests can be overwhelming, so having programs
to handle the stream of results is very useful. The testrepository package is in-
tended to do just that; it provides the testr program, which you can use to handle
a database of your test run.

$ testr init

$ touch .testr.conf

% python -m subunit.run test scenario | testr load

Ran 4 tests in 0.001s

6.5. TEST STREAMING AND PARALLELISM 105

PASSED (1d=0)

$ testr failing
PASSED (1d=0)

$ testr last

Ran 3 tests in 0.001s
PASSED (id=0)

$ testr slowest

Test id Runtime (s)

test python status code handling(Not found) 0.000
test python status code handling(Server error) 0.000
test python status code handling(Client error) 0.000
$ testr stats

runs=1

Once the subunit stream of tests has been run and loaded inside testrepository, it is

possible to manipulate it easily using the testr command.

Obviously, this is tedious to do by hand each time you want to run tests. Instead,
you should teach testr how it should run your tests, so that it can load the results
itself. This can be accomplished by editing the .testr.conf file at the root of your

project.

Example 6.13 A . testr.conf file

[DEFAULT]

test command=python -m subunit.run discover . $LISTOPT $IDOPTION @
test id option=--load-list $IDFILE @

test list option=--list ©

® Command torunwhen calling testr run

® Command torunto load a test list

6.5. TEST STREAMING AND PARALLELISM 106
©® Command torun to list tests

Thefirstline, test command, is the one that is the most interesting. Now, all that we

need to do to load tests into testrepository and perform them is to run testr run.

Note
If you're accustomed to running nosetests, testr run is now the equivalent com-

mand.

Two other options enable us to run the tests in parallel. This is simple enough to do
- all you need to do is add the - -parallel switch to testr run. Runningyour tests

in parallel can speed up the process considerably.

Example 6.14 Running testr run --parallel

$ testr run --parallel

running=python -m subunit.run discover . --list

running=python -m subunit.run discover . --load-list /tmp/tmpiMqg5Q1l
running=python -m subunit.run discover . --load-list /tmp/tmp7hYEkP
running=python -m subunit.run discover . --load-list /tmp/tmpP_9zBc

running=python -m subunit.run discover .

Ran 26 (+10) tests in 0.029s (-0.001s)

-load-list /tmp/tmpTejc5]

PASSED (id=7, skips=3)

Under the hood, testrruns the test listing operation, splits the test list into several
sublists, and creates a separate Python process to run each sublist of test. By de-
fault, the number of sublists is equal to the number of CPUs in the machine being
used. You can override the number of processes that by adding the - -concurrency
flag.

$ testr run --parallel --concurrency=2

6.6. COVERAGE 107

As you can imagine, there’s a lot of possibilities opened up by tools such as subunit
and testrepository that have only be skimmed through in this section. | believe
it’s worth being familiar with them, because testing can greatly influence the quality
of the software you will produce and release. Having powerful tools like these can

save a lot of time.

testrepository also integrates with setuptools and deploys a testr command for it.
This provides easier integration with setup.py-based workflows - you can, for ex-
ample, document your entire project around setup.py. The command setup.py
testr accepts a few options, such as - -testr-args - which adds more options to

the testrrun, or - -coverage, which will be covered in the next section.

6.6 Coverage

Code coverage is a tool which complements unit testing. It uses code analysis tools
and tracing hooks to determine which lines of your code have been executed; when
used during a unit test run, it can show you which parts of your code base have been

crossed over and which parts have not.

Writing tests is useful; but having a way to know what part of your code you may

have missed is the cherry on the cake.

Obviously, the first thing to do is to install the coverage Python module on your
system. Once this is done you will have access to the coverage program command

from your shell.?

Using coverage in standalone mode is straightforward, and can be useful- it could
lead you to part of your programs that are never run, and which might be "dead
code". In addition, using it while your unit tests are running provides an obvious

benefit: you’ll know which parts of the code are not being tested. The test tools

*The command may also be named python-coverage, if you install coverage through your oper-
ating system installation software. That is the case on Debian, for example.

bjpcjp

bjpcjp

6.6. COVERAGE

we’ve talked about so far are all integrated with coverage.

108

When using nose, you only need to add a few option switches to generate a nice

code coverage output:

Example 6.15 Using nosetests --with-coverage

$ nosetests --cover-package=ceilometer --with-coverage tests/test pipeline «

Py

Name
ceilometer

ceilometer.pipeline

127-128, 188-192, 275-280, 350-362

ceilometer.publisher
ceilometer.sample
ceilometer.transformer
ceilometer.transformer.accumulator

ceilometer.transformer.conversions

TOTAL

Ran 46 tests in 0.170s

OK

12
31
15
17
59

888

o o W ~ W

393

Missing

49, 59, 113, <+«

32-34

81-84
26-32, 35

Adding the - -cover-package option is important, since otherwise you will see ev-

ery Python package used, including standard library or third-party modules. The

output includes the lines of code that are were not run - and which therefore have

no tests. All you need to do now is spawn your favorite text editor and start writing

some.

6.6. COVERAGE 109

But you can do better, and make coverage generate nice HTML reports. Simply add
the --cover-html flag, and the cover directory from which you ran the command
will be populated with HTML pages. Each page will show you which parts of your

source code were or were not run.

6.6. COVERAGE 110

Coverage for ceilometer.publisher : 75%
12 statements 9 run |3 missing |CI excluded

1 & -*. encoding: utrf-8 -*.
2 #
» & Copyright © 2013 Intel Corp.
a4 # Copyright © 2013 eNovance
= #
Author: Yunhong Jiang =vunhong, jiang@intel.com=
. F Julien Danjou =julien@daniolr, info=
-]
Licensed under the Apache License, Version 2.0 (the "License"); wvou may
not use this file except in compliance with the License. You may obtain
1 & a copy of the License at
11
L g http: Awww. apache, orgslicenses/ LICENSE-Z.0
12 #
W # Unless required by applicable law or agreed to in writing, software
15 & distributed under the License is distributed on an "45 IS" BASIS, WITHOUT
16 # WARRANTIES OR CONDITIONS OF ANY KIND, elither express or implied. See the
17 # License for the specific language governing permissions and limitations
12 # under the License.
19

from stevedore Lmport driver

-n | import abc
from ceilometer.openstack.common Import network_utils

Tf| def get_publisher{url, namespace='ceilometer.puhlisher')}:
- ""'"get publisher driver and load it.

2 ‘param URL: URL for the publisher

28 Jparam namespace: Hamespace to use to look for drivers.

nmnn

parse_result = network_utils.urlsplitiurl)

loaded_driver = driver.DriverManager({namespace, parse_result.scheme)
return loaded_driver.driver(parse_result)

34
a5 |class FPublisherBase(object):
""'Base class for plugins that publish the sampler, """

| __metaclass__ = abc.ABCMeta

def __init_ (self, parsed_url):

pass
41
44| i@abc.abstractmethod
4z def publish_samples(self, context, samples):
44 "Publish samples into final conduit."
a5

Figure 6.1: Coverage of ceilometer.publisher

If you want to be that guy, you can use the option --cover-min-percentage=COVE

6.7. USING VIRTUALENV WITH TOX 111

R _MIN PERCENTAGE, which will make the test suite fail if a minimum percentage of

the code is not executed when the test suite is run.

Warning

A code coverage score of 100% doesn’t necessarily mean that the code is entirely tested
and that you can rest. It only proves that your whole code path has been run; there is
no indication that every possible condition has been tested. So while being a respectable

goal, it doesn’t indicate anything conclusive.

When using testrepository, coverage can be run using setuptools integration.

Example 6.16 Using coverage with testrepository

$ python setup.py testr --coverage

This will automatically run your test suite with coverage and generate an HTML re-

port in the cover directory.

You should then use this information to consolidate your test suite and add tests for
any code thatis currently not being run. This is important; it facilitates later project

maintenance, and increases your code’s overall quality.

6.7 Using virtualenv with tox

In Chapter 5, the use of virtual environments is presented and discussed. One of
their main uses s to provide a clean environment for running unit tests. It would be
really sad if you thought that your tests were working, when in fact you were not,

for example, respecting the dependency list.

You could write a script to deploy a virtual environment, install setuptools, and
then install all of the dependencies required for both your application/library run-
time and unit tests. But this is such a common use case that an application dedi-

cated to this task has already been built: tox.

bjpcjp

6.7. USING VIRTUALENV WITH TOX 112

Tox aims to automate and standardize how tests are run in Python. To that end,
it provides everything needed to run an entire test suite in a clean virtual environ-

ment, while alsoinstalling your application to check that the installation works fine.

Before using tox, you need to provide a configuration file. This file is named tox.
ini and should be placed in the root directory of your project, beside your setup.
py file.

$ touch tox.ini

You can now run tox successfully:

% tox

GLOB sdist-make: /home/jd/project/setup.py

python create: /home/jd/project/.tox/python

python inst: /home/jd/project/.tox/dist/project-1.zip

summary

python: commands succeeded

congratulations :)

Obviously this alone is not very useful. In this instance, tox creates a virtual envi-
ronment in .tox/python using its default Python version, uses setup.py to create a
distribution of your package and then installs it inside this virtual environment. No

commands are then run, because we didn’t specify any in the configuration file.

We can change this default behaviour by adding a command that will be run inside
our test environment. Editing tox.ini to include the following:

[testenv]

commands=nosetests

will run the command nosetests will likely fail, since we don’t have nosetests in-
stalled in the virtual environment. We need to list it as part of the dependencies to

be installed.

6.7. USING VIRTUALENV WITH TOX 113

[testenv]
deps=nose

commands=nosetests

When run, tox will now recreate the environment, install the new dependency and
run the command nosetests, which will execute all of our unit tests. Obviously, we
might want to add more dependencies - you can list them in the deps configuration
option, but you can also use the -rfile syntax to read from a file. If you’re using
pbr to manage your setup.py file, you know that it reads the dependencies from a
file called requirements.txt. It is therefore a good idea to tell tox to use that file
too:

[testenv]

deps=nose

-rrequirements.txt

commands=nosetests

The [testenv] section of the file defines the parameters for all virtual environments
managed by tox. But as mentioned previously, tox can manage multiple Python
virtual environments - indeed, it’s possible to run our tests under a Python version
other than the default one by passing the -e flag to tox:

% tox -e py26

GLOB sdist-make: /home/jd/project/setup.py

py26 create: /home/jd/project/.tox/py26

py26 installdeps: nose

py26 inst: /home/jd/project/.tox/dist/rebuildd-1.zip

py26 runtests: commands[0] | nosetests

6.7. USING VIRTUALENV WITH TOX 114

Ran 7 tests in 0.029s

0K

summary

py26: commands succeeded

congratulations :)

By default, tox can simulate many environments: py24, py25, py26, py27, py30, py31,
py32, py33, jython and pypy! You can even add your own. To add an environment or
to create a new one, you just need to add another section named [testenv: envn
ame_1]. If we want to run a different command for one of the environments, it’s easy
with the following tox. ini file:

[testenv]

deps=nose

commands=nosetests

[testenv:py27]

commands=pytest

This only overrides the commands for the py27 environment; so nose will still be
installed as part of the dependencies when running tox -e py27, butthe command

pytest will be run instead.

We can create a new environment with an unsupported version of Python right
away:

[testenv]

deps=nose

commands=nosetests

[testenv:py21]
basepython=python2.1

6.7. USING VIRTUALENV WITH TOX 115

We can now (attempt to) use Python 2.1 to run our test suite - although | don’t think

it will work.

Now, it is likely that you will want to support multiple Python versions. So it would
be great to have tox run all the tests for all the Python versions you want to support
by default. This can be done by specifying the environment list you want to use
when tox is run without arguments:

[tox]

envlist=py26,py27,py33,pypy

[testenv]
deps=nose

commands=nosetests

When tox is launched without any further arguments, all four environments listed
will be created, populated with the dependencies and the application, and then the

command nosetests will be run.

We can also use tox to integrate other tests like flake8, as discussed in Section 1.4.

[tox]

envlist=py26,py27,py33,pypy,peps

[testenv]
deps=nose

commands=nosetests

[testenv:pep8]
deps=flake8

commands=flake8

In this case, the pep8 environment will be run using the default version of Python,

6.8. TESTING POLICY 116

which is probably fine.?

Tip

When running tox, you will spot that all of the environments are built and run in sequence.
f This can often make the process very long. Since the virtual environments are isolated,
nothing prevents you from running tox commands in parallel. This is exactly what the
detox package does, by providing a detox command which runs all of the default envi-

ronments from envlist in parallel. You should pip install it!

6.8 Testing policy

Having testing code embedded in your project is wonderful, but how you run it is
also extremely important. There are too many projects that have test code which

lays around, but which fails to be run for some reason.

While this topic is not strictly limited to Python, | consider it important enough to
emphasize here: you should have a zero tolerance policy on untested code. No code

should be merged unless there is a proper set of unit tests to cover it.

The minimum that you should aim for is to be sure that each of the commits you

push pass all the tests. Having an automated way to do that is even better.

For example, OpenStack relies on a specific workflow based on Gerrit, Jenkins and
Zuul. Each commit pushed goes through the code review system provided by Gerrit,
and Zuulisin charge of running a set of testing jobs against it using Jenkins. Jenkins
runs the unit testing, and various higher-level functional tests for each project. This
ensures that the submitted patches pass all tests. Code reviewing by a couple of

developers makes sure that all code that is committed has associated unit tests.

If you are using the popular GitHub hosting service, Travis Cl provides awaytoruna

test after each push or merge, or against pull requests that are submitted. Whileitis

*You can still specify the basepython option if you want to change that

bjpcjp

bjpcjp

bjpcjp

6.9. INTERVIEW WITH ROBERT COLLINS 117

unfortunate that this done post-push, it’s still a fantastic way to track regressions.
Travis supports all significant Python versions out of the box, and it’s possible to
customize it to a high degree. Once you’ve activated Travis on your project via their

Web interface, adding a file is simple: . travis.yml does the job for you.

Example 6.17 A . travis.yml example file

language: python
python:
- "2.7"
- "3.3"
command to install dependencies
install: "pip install -r requirements.txt --use-mirrors"
command to run tests

script: nosetests

Wherever your code is hosted, these days it is always possible to aim for some sort
of automatic testing of your software, and to make sure that you are going forward

with your project - not going backward by adding more bugs.

6.9 Interview with Robert Collins

You may have already used one of Robert’s programs, without knowing - he is,
among other things, the original author of the Bazaar distributed version control
system. Today, he is a Distinguished Technologist at HP Cloud Services, where he
works on OpenStack. Robert has written a lot of the Python tools described in this

book, such as fixtures, testscenarios, testrespository and even python-subunit.

bjpcjp

6.9. INTERVIEW WITH ROBERT COLLINS 118

What kind of testing policy would you advise using? When is it accept-
able not to test code?

| think it’s an engineering trade-off - considering the likelihood of fail-
ure slipping through to production undetected, the cost of an undetected
failure of that component, the size and cohesion of the team doing the
work... Take OpenStack - 1600 contributors — a nuanced policy is very
hard to work with there, as so many people have opinions. Generally
speaking, there should be some automated check as part of landing in
trunk that the code will do what it is intended to do and that what it is in-
tended to do is what is needed. Often that speaks to requiring functional
tests that might be in different code bases. Unit tests are great for speed
and pinning down corner cases. | thinkit’s ok to vary the balance between

styles of testing, as long as there is testing.

Where the cost of testing is very high and the returns are very low, | think
it’s fine to make an informed decision not to test, but that’s a relatively
rare situation: most things can be tested fairly cheaply, and the benefit of

catching errors early is usually quite high.

What are the best strategies to put in place when writing Python code

in order to make testing easier, and improve its quality?

Separate out concerns - don’t do multiple things in one place; this makes
reuse easier, and that makes it easier to put test doubles in place. Take a
pure functional approachwhenyou can (e.g. in asingle method either cal-

culate something, or change some state, but where possible avoid doing

bjpcjp

bjpcjp

6.9. INTERVIEW WITH ROBERT COLLINS 119

both). That way you can test all of the calculating behaviour without deal-
ing with state changes - such as writing to a database, talking to an HTTP
server, etc. The benefit works the other way around too - you can replace
the calculation logic for tests to provoke corner case behaviour and detect
via mocks / test doubles that the expected state propagation happens as
desired. The most heinous stuff to test IME is deeply layered stacks with
complex cross-layer behavioural dependencies. There you want to evolve
the code so that the contract between layers is simple, predictable, and

most usefully for testing - replaceable.

In your opinion, what’s the best way to organize unit tests in source

code?

Having a hierarchy like $R00T/$PACKAGE/tests - but | do just one for a
whole source tree (vs e.g. $RO0T/$PACKAGE/$SUBPACKAGE/tests).

Within tests, | often mirror the structure of the rest of the source tree:
$RO0T/$PACKAGE/foo.py would be tested in $RO0T/$PACKAGE/tests/tes
t foo.py.

There should be no imports from tests by the rest of the tree except per-
haps a test_suite/load_tests function in the top level init . This per-

mits easily detaching the tests for small footprint installations.

What are the tools that can be employed to build functional tests in
Python?

| just use whichever flavour of unittest is in use in the project: it’s suf-
ficiently flexible (particularly with things like testresources and parallel

runners) to cater for most needs.

How do you envision the future of unit testing libraries and frame-

works in Python?

The big challenges | see are:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

6.9.

INTERVIEW WITH ROBERT COLLINS

« the continued expansion of parallel capabilities in new machines - 4
CPU phones now. Existing unit test internal APIs aren’t optimised for

parallel workloads. My StreamResult work is aimed directly at this;

« more complexscheduling support - aless ugly solution forthe problems

that class and module scoped setup aim at;

« findingsome way to consolidate the large variety of frameworks we have
today: itwould be greatto be able to get a consolidated view across mul-
tiple projects - for integration testing - that have different test runners

in use.

120

