
Ǚ Unit testing

Breaking news! It’s ǕǓǔǖ and there are still people who don’t have a polic⁴ of test-

ing their projects. Now, the purpose of this book is not to convince ⁴ou to jump in

and start unit testing. If ⁴ou need to be convinced, I suggest ⁴ou start b⁴ reading

about the benefits of test-driven development. Writing code that is not tested is

essentiall⁴ useless, as there’s no wa⁴ to conclusivel⁴ prove that it works.

This section will cover the P⁴thon tools ⁴ou can use to construct a great suite of

tests. We’ll talk about how ⁴ou can utilise them to enhance ⁴our sotware, making

it rock-solid and regression free!

6.1 The basics

Contrar⁴ to what ⁴ou ma⁴ believe, the writing and running of unit tests is reall⁴

simple inP⁴thon. It’s not intrusive or disruptive, and it’s going tohelp ⁴ouandother

developers a lot in maintaining ⁴our sotware.

Your tests should be stored inside a tests submodule of ⁴our application or librar⁴.

This allows ⁴ou to ship the tests as part of ⁴our module, so that the⁴ can be run or

reused b⁴ an⁴one – even once ⁴our sotware is installed –without necessaril⁴ using

the source package. This also prevents them from being installed b⁴ mistake in a

top-level testsmodule.

Ǚ.ǔ. THE BASICS Ǜǖ

It’s usuall⁴ simpler to use a hierarch⁴ in ⁴our test tree thatmimics the hierarch⁴ ⁴ou

have in ⁴ourmodule tree. Thismeans that the tests covering the code of mylib/foo

bar.py should be inside mylib/tests/test_foobar.py; this makes things simpler

when looking for the tests relating to a particular file.

Example Ǚ.ǔ A reall⁴ simple test in test_true.py

def test_true():

assert True

This is the most simple unit test that can be written. To run it, ⁴ou simpl⁴ need to

load the test_true.py file and run the test_true function defined within.

Obviousl⁴, following these steps for all of ⁴our test files and functions would be a

pain. This is where the nose package comes to the rescue – once installed, it pro-

vides thenosetests command,which loadsever⁴ filewhosenamestartswithtest_

and then executes all functions within that start with test_.

Therefore,with the test_true.py file in our source tree, running nosetestswill give

us the following output:

$ nosetests -v

test_true.test_true ... ok

Ran 1 test in 0.003s

OK

On the other hand, as soon as a test fails, the output changes to indicate the failure,

accompanied b⁴ the whole traceback.

% nosetests -v

test_true.test_true ... ok

test_true.test_false ... FAIL

Ǚ.ǔ. THE BASICS ǛǗ

===

FAIL: test_true.test_false

Traceback (most recent call last):

File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in ←֓

runTest

self.test(*self.arg)

File "/home/jd/test_true.py", line 5, in test_false

assert False

AssertionError

Ran 2 tests in 0.003s

FAILED (failures=1)

A test fails as soon as an AssertionError exception is raised; assert does indeed

raise an AssertionError as soon as its argument is evaluated to something false

(False, None, Ǔ…). If an⁴ other exception is raised, the test also errors out.

Simple, isn’t it? While simplistic, this approach is used b⁴ a lot of small projects,

andworks ver⁴ well. The⁴ don’t require tools or libraries other than than nose, and

rel⁴ing on assert is good enough.

However, as ⁴ou start to writemore sophisticated tests, ⁴ou’ll start to become frus-

trated b⁴ things like the use of assert. Consider the following test:

def test_key():

a = ['a', 'b']

b = ['b']

assert a == b

When running nosetests, it gives the following output:

Ǚ.ǔ. THE BASICS Ǜǘ

$ nosetests -v

test_complicated.test_key ... FAIL

==

FAIL: test_complicated.test_key

Traceback (most recent call last):

File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in ←֓

runTest

self.test(*self.arg)

File "/home/jd/test_complicated.py", line 4, in test_key

assert a == b

AssertionError

Ran 1 test in 0.001s

FAILED (failures=1)

Alright, so a and b are different and this test doesn’t pass. But how are the⁴ differ-

ent? assert doesn’t give us this information, just states that the assertion is wrong

– not particularl⁴ useful.

Also, with such a basic ⁵ero framework approach, advanced usage such as skipping

tests or executing actions before or ater running ever⁴ test can become painful.

This is where the unittest package comes in hand⁴. It provides tools that will help

covering all of that – and good news is that unittest is part of the P⁴thon standard

librar⁴.

Ǚ.ǔ. THE BASICS ǛǙ

Warning

unittest has been largely improved starting with Python 2.7, so if you are supporting

earlier version of Python you may want to use its backport named unittest2. If you

need to support Python 2.6, you can then use the following snippet to import the correct

module for any Python versions at runtime:

try:

import unittest2 as unittest

except ImportError:

import unittest

If we rewrite the previous example using unittest, this is what it will look like:

import unittest

class TestKey(unittest.TestCase):

def test_key(self):

a = ['a', 'b']

b = ['b']

self.assertEqual(a, b)

As ⁴ou can see, the implementation isn’t much more complicated. All ⁴ou have to

do is create a class that inherits from unittest.TestCase, and write a method that

runs a test. Instead of using assert, we rel⁴ on a method provided b⁴ unittest.

TestCase that provides an equalit⁴ tester. When run, it outputs the following:

$ nosetests -v

test_key (test_complicated.TestKey) ... FAIL

===

FAIL: test_key (test_complicated.TestKey)

Traceback (most recent call last):

Ǚ.ǔ. THE BASICS Ǜǚ

File "/home/jd/Source/python-book/test_complicated.py", line 7, in ←֓

test_key

self.assertEqual(a, b)

AssertionError: Lists differ: ['a', 'b'] != ['b']

First differing element 0:

a

b

First list contains 1 additional elements.

First extra element 1:

b

- ['a', 'b']

+ ['b']

Ran 1 test in 0.001s

FAILED (failures=1)

As ⁴ou can see, the output is much more useful. An assertion error is still raised,

and the test is still being failed, but at least we have real information about wh⁴ it’s

failing, which canhelp us to fix the problem. This iswh⁴ ⁴ou should definitel⁴never
use assert when writing test cases. An⁴one who tries to hack ⁴our code and ends

up failing a test will definitel⁴ thank ⁴ou for having not used assert, and having

thereb⁴ providing him/her with debugging information right awa⁴.

unittest provides a few test functions that ⁴ou can use to speciali⁵e ⁴our tests,

suchas: assertDictEqual, assertEqual, assertTrue, assertFalse, assertGreater,

assertGreaterEqual, assertIn, assertIs, assertIsIntance, assertIsNone, asser

Ǚ.ǔ. THE BASICS ǛǛ

tIsNot, assertIsNotNone, assertItemsEqual, assertLess, assertLessEqual, asse

rtListEqual, assertMultiLineEqual, assertNotAlmostEqual, assertNotEqual, ass

ertTupleEqual, assertRaises, assertRaisesRegexp, assertRegexpMatches, etc. It

would be a good idea to go through pydoc unittest and discover them all.

It’s also possible to deliberatel⁴ fail a test right awa⁴ using the fail(msg)method.

This can be convenient when ⁴ou know that a particular part of ⁴our code will def-

initel⁴ raise an error if executed, but there isn’t a particular assertion to check for.

Example Ǚ.Ǖ Failing a test

import unittest

class TestFail(unittest.TestCase):

def test_range(self):

for x in range(5):

if x > 4:

self.fail("Range returned a too big value: %d" % x)

It’s sometimes useful skip a test if it can’t be run – for example, ⁴ou ma⁴ wish to

run a test conditionall⁴ based on the presence or absence of a particular librar⁴. To

that end, ⁴ou can raise the unittest.SkipTest exception. When the test is raised,

it is simpl⁴ marked as having been skipped. The convenient method unittest.Tes

tCase.skipTest() can be used rather than raising the exception manuall⁴, as can

the unittest.skip decorator:

Example Ǚ.ǖ Skipping tests

import unittest

try:

import mylib

except ImportError:

mylib = None

Ǚ.ǔ. THE BASICS Ǜǜ

class TestSkipped(unittest.TestCase):

@unittest.skip("Do not run this")

def test_fail(self):

self.fail("This should not be run")

@unittest.skipIf(mylib is None, "mylib is not available")

def test_mylib(self):

self.assertEqual(mylib.foobar(), 42)

def test_skip_at_runtime(self):

if True:

self.skipTest("Finally I don't want to run it")

When executed, this test file will output the following:

$ python -m unittest -v test_skip

test_fail (test_skip.TestSkipped) ... skipped 'Do not run this'

test_mylib (test_skip.TestSkipped) ... skipped 'mylib is not available'

test_skip_at_runtime (test_skip.TestSkipped) ... skipped "Finally I don't ←֓

want to run it"

Ran 3 tests in 0.000s

OK (skipped=3)

Ǚ.ǔ. THE BASICS ǜǓ

Tip

As you may have noticed in Example 6.3, the unittest module provides a way to ex-

ecute a Python module that contains tests. It is less convenient than using nosetests,

as it does not discover test files on its own, but it can still be useful for running a particular

test module.

In man⁴ cases, there’s a need to execute a set of common actions before and ater

running a test. unittest provides two particular methods called setUp and tearD

own that are executed each time one of the test methods of a class is about to, or

has been, called.

Example Ǚ.Ǘ Using setUpwith unittest

import unittest

class TestMe(unittest.TestCase):

def setUp(self):

self.list = [1, 2, 3]

def test_length(self):

self.list.append(4)

self.assertEqual(len(self.list), 4)

def test_has_one(self):

self.assertEqual(len(self.list), 3)

self.assertIn(1, self.list)

In this case, setUp is called before running test_length and before running test_

has_one. It can be reall⁴ hand⁴ to create objects that are worked with during each

test; but ⁴ouneed to be sure that the⁴ get recreated in a clean state before each test

method is called. This is reall⁴ useful for creating test environments, oten referred

Ǚ.Ǖ. FIXTURES ǜǔ

to as "fixtures" (see Section Ǚ.Ǖ).

Tip

When using nosetests, you often might want to run only one particular test.

You can select which test you want to run by passing it as an argument – the

syntax is: path.to.your.module:ClassOfYourTest.test_method. Be sure that there’s

a colon between the module path and the class name. You can also specify

path.to.your.module:ClassOfYourTest to execute an entire class, or path.to.your.module

to execute an entire module.

Tip

It’s possible to run tests in parallel to speed things up. Simply add the --processes=N

option to your nosetests invocation to spawn several nosetests processes. However,

testrepository is a better alternative – this is discussed in Section 6.5.

6.2 Fixtures

In unit testing, fixtures represent components that are set up before a test, and

cleaned up ater the test is done. It’s usuall⁴ a good idea to build a special kind

of component for them, as the⁴ are reused in a lot of different places. For exam-

ple, if ⁴ou need an object which represents the configuration state of ⁴our applica-

tion, there’s a chance ⁴ou ma⁴ want it to be initiali⁵ed before each test, and reset

to its default values when the test is done. Rel⁴ing on temporar⁴ file creation also

requires that the file is created before the test starts, and deleted once the test is

done.

unittestonl⁴ provides the setUp and tearDown functionswe alread⁴ evoked. How-

ever, amechanismexists tohook into these. The fixturesP⁴thonmodule (not part

of the standard librar⁴) provides an eas⁴mechanism for creating fixture classes and

objects, such as the useFixturemethod.

Ǚ.ǖ. MOCKING ǜǕ

The fixturesmodules provides a few built-in fixtures, like fixtures.Environment

Variable – useful for adding or changing a variable in os.environ that will be reset

upon test exit.

Example Ǚ.ǘ Using fixtures.EnvironmentVariable

import fixtures

import os

class TestEnviron(fixtures.TestWithFixtures):

def test_environ(self):

fixture = self.useFixture(

fixtures.EnvironmentVariable("FOOBAR", "42"))

self.assertEqual(os.environ.get("FOOBAR"), "42")

def test_environ_no_fixture(self):

self.assertEqual(os.environ.get("FOOBAR"), None)

When ⁴ou can identif⁴ common patterns like these, it’s a good idea to create a fix-

ture that ⁴ou can reuse over all ⁴our test cases. This greatl⁴ simplifies the logic, and

shows exactl⁴ what ⁴ou are testing and in what manner.

Note

If you’re wondering why the base class unittest.TestCase isn’t used in the examples

in this section, it’s because fixtures.TestWithFixtures inherits from it.

6.3 Mocking

Mock objects are simulated objects that mimic the behaviour of real application

objects, but in particular and controlled wa⁴s. These are especiall⁴ useful in creat-

Ǚ.ǖ. MOCKING ǜǖ

ing environments that describe precisel⁴ the conditions for which ⁴ouwould like to

test code.

If ⁴ou arewriting anHTTP client, it’s likel⁴ impossible (or at least extremel⁴ compli-

cated) to spawn the HTTP server and test it through all scenarios, making it return

ever⁴ possible value. It’s especiall⁴ difficult to test for all failure scenarios.

Amuch simpler option is to build a set of mock objects that model these particular

scenarios, and to use them as environment for testing ⁴our code.

The standard librar⁴ for creating mock objects in P⁴thon is mock. Starting with

P⁴thon ǖ.ǖ, it has beenmerged into the P⁴thon standard librar⁴ as unittest.mock.

You can therefore use a snippet like:

try:

from unittest import mock

except ImportError:

import mock

Tomaintain backward compatibilit⁴ between P⁴thon ǖ.ǖ and earlier versions.

Mock is prett⁴ simple to use:

Example Ǚ.Ǚ Basic mock usage

>>> import mock

>>> m = mock.Mock()

>>> m.some_method.return_value = 42

>>> m.some_method()

42

>>> def print_hello():

... print("hello world!")

...

>>> m.some_method.side_effect = print_hello

>>> m.some_method()

Ǚ.ǖ. MOCKING ǜǗ

hello world!

>>> def print_hello():

... print("hello world!")

... return 43

...

>>> m.some_method.side_effect = print_hello

>>> m.some_method()

hello world!

43

>>> m.some_method.call_count

3

Evenusing just this set of features, ⁴ou shouldbe able tomimic a lot of ⁴our internal

objects in order to fake various data scenarios.

Mock uses the action/assertion pattern: thismeans that once ⁴our test has run, ⁴ou

will have to check that the actions ⁴ou are mocking were correctl⁴ executed.

Example Ǚ.ǚ Checking method calls

>>> import mock

>>> m = mock.Mock()

>>> m.some_method('foo', 'bar')

<Mock name='mock.some_method()' id='26144272'>

>>> m.some_method.assert_called_once_with('foo', 'bar')

>>> m.some_method.assert_called_once_with('foo', mock.ANY)

>>> m.some_method.assert_called_once_with('foo', 'baz')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/usr/lib/python2.7/dist-packages/mock.py", line 846, in ←֓

assert_called_once_with

return self.assert_called_with(*args, **kwargs)

File "/usr/lib/python2.7/dist-packages/mock.py", line 835, in ←֓

Ǚ.ǖ. MOCKING ǜǘ

assert_called_with

raise AssertionError(msg)

AssertionError: Expected call: some_method('foo', 'baz')

Actual call: some_method('foo', 'bar')

As ⁴ou can see, it’s eas⁴ enough to pass amock object to an⁴ part of ⁴our code, and

to check later if the code has been called with whatever argument it was supposed

to have. If ⁴ou don’t know what arguments ma⁴ have been passed, ⁴ou can use

mock.ANY as a value; that will match an⁴ argument passed to ⁴our mock method.

Sometimes ⁴ou ma⁴ need to a some function, method or object from an external

module. mock provides a set of patching functions to that end.

Example Ǚ.Ǜ Using mock.patch

>>> import mock

>>> import os

>>> def fake_os_unlink(path):

... raise IOError("Testing!")

...

>>> with mock.patch('os.unlink', fake_os_unlink):

... os.unlink('foobar')

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

File "<stdin>", line 2, in fake_os_unlink

IOError: Testing!

With the mock.patchmethod, it’s possible to change an⁴ part of an external piece

of code –making it behave in the requiredwa⁴ in order to test all conditions in ⁴our

sotware.

Example Ǚ.ǜ Using mock.patch to test a set of behaviour

Ǚ.ǖ. MOCKING ǜǙ

import requests

import unittest

import mock

class WhereIsPythonError(Exception):

pass

def is_python_still_a_programming_language():

try:

r = requests.get("http://python.org")

except IOError:

pass

else:

if r.status_code == 200:

return 'Python is a programming language' in r.content

raise WhereIsPythonError("Something bad happened")

def get_fake_get(status_code, content):

m = mock.Mock()

m.status_code = status_code

m.content = content

def fake_get(url):

return m

return fake_get

def raise_get(url):

raise IOError("Unable to fetch url %s" % url)

class TestPython(unittest.TestCase):

@mock.patch('requests.get', get_fake_get(

Ǚ.ǖ. MOCKING ǜǚ

200, 'Python is a programming language for sure'))

def test_python_is(self):

self.assertTrue(is_python_still_a_programming_language())

@mock.patch('requests.get', get_fake_get(

200, 'Python is no more a programming language'))

def test_python_is_not(self):

self.assertFalse(is_python_still_a_programming_language())

@mock.patch('requests.get', get_fake_get(

404, 'Whatever'))

def test_bad_status_code(self):

self.assertRaises(WhereIsPythonError,

is_python_still_a_programming_language)

@mock.patch('requests.get', raise_get)

def test_ioerror(self):

self.assertRaises(WhereIsPythonError,

is_python_still_a_programming_language)

Example Ǚ.ǜ uses the decorator version of mock.patch, this does not change its be-

haviour, but is easier to use when ⁴ou need to usemockingwithin the context of an

entire test function.

B⁴ using mocking we can simulate an⁴ problem – such as a Web server returning

a ǗǓǗ error, or network issues arising. We can make sure that our code returns the

correct values, or raises the correct exception in ever⁴ case – ensuring that our code

alwa⁴s behaves as expected.

Ǚ.Ǘ. SCENARIOS ǜǛ

6.4 Scenarios

Whenunit testing, it is common to require that a set of tests be run against different

versions of an object. You ma⁴ want to run the same error-handling test with a

bunch of different objects that trigger that error; or ⁴ou ma⁴ want to run an entire

test suite against different drivers.

This last case is one that we heavil⁴ relied on in Ceilometer. Ceilometer provides

an abstract class that we call the storage API. An⁴ driver can implement this base

abstract class and register itself to become a driver. The sotware loads the config-

ured storage driver when required, and uses the implemented storage API to store

or retrieve data. In this case, what need is a class of unit tests that runs against each

driver – meaning against each implementation of this storage API – to be sure that

the⁴ conform to what the callers expect.

The natural wa⁴ of doing this is to use mixin classes; on one side, ⁴ou would have

a class with unit tests, and on the other side a class with the specific driver usage

setup.

import unittest

class MongoDBBaseTest(unittest.TestCase):

def setUp(self):

self.connection = connect_to_mongodb()

class MySQLBaseTest(unittest.TestCase):

def setUp(self):

self.connection = connect_to_mysql()

class TestDatabase(unittest.TestCase):

def test_connected(self):

self.assertTrue(self.connection.is_connected())

bjpcjp

bjpcjp

Ǚ.Ǘ. SCENARIOS ǜǜ

class TestMongoDB(TestDatabase, MongoDBBaseTest):

pass

class TestMySQL(TestDatabase, MySQLBaseTest):

pass

Unfortunatel⁴, in the long run this method is far from convenient or scalable.

A better technique does exist, using the testscenarios package. This package pro-

vides an eas⁴ wa⁴ to run a class test against a different set of scenarios generated

at run-time. Using testscenarios, I have rewritten part of Example Ǚ.ǜ to illustrate

mocking as covered in Section Ǚ.ǖ.

Example Ǚ.ǔǓ testscenarios basic usage

import mock

import requests

import testscenarios

class WhereIsPythonError(Exception):

pass

def is_python_still_a_programming_language():

r = requests.get("http://python.org")

if r.status_code == 200:

return 'Python is a programming language' in r.content

raise WhereIsPythonError("Something bad happened")

def get_fake_get(status_code, content):

m = mock.Mock()

m.status_code = status_code

bjpcjp

Ǚ.Ǘ. SCENARIOS ǔǓǓ

m.content = content

def fake_get(url):

return m

return fake_get

class TestPythonErrorCode(testscenarios.TestWithScenarios):

scenarios = [

('Not found', dict(status=404)),

('Client error', dict(status=400)),

('Server error', dict(status=500)),

]

def test_python_status_code_handling(self):

with mock.patch('requests.get',

get_fake_get(

self.status,

'Python is a programming language for sure')):

self.assertRaises(WhereIsPythonError,

is_python_still_a_programming_language)

Even though onl⁴ one test seems to be defined, testscenarios runs the test three

times – because we have defined three scenarios.

% python -m unittest -v test_scenario

test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ←֓

ok

test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ←֓

ok

test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ←֓

ok

Ǚ.Ǘ. SCENARIOS ǔǓǔ

Ran 3 tests in 0.001s

OK

As can see, all we need to construct the scenario list is a tuple list that consists of

the scenario name as first argument, and as a second argument the dictionar⁴ of

attributes to be added to the test class for this scenario.

It is eas⁴ enough to imagine another use: where instead of storing a single value as

an attribute for each test, ⁴ou could instantiate a particular driver and run all the

tests of the class against it.

Example Ǚ.ǔǔ Using testscenarios to test drivers

import testscenarios

from myapp import storage

class TestPythonErrorCode(testscenarios.TestWithScenarios):

scenarios = [

('MongoDB', dict(driver=storage.MongoDBStorage())),

('SQL', dict(driver=storage.SQLStorage())),

('File', dict(driver=storage.FileStorage())),

]

def test_storage(self):

self.assertTrue(self.driver.store({'foo': 'bar'}))

def test_fetch(self):

self.assertEqual(self.driver.fetch('foo'), 'bar')

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǕ

Note

If you wonder why there is no need to use the base class unittest.TestCase in the

previous examples, it’s because testscenarios.TestWithScenarios inherits from

it.

6.5 Test streaming and parallelism

When performing a lot of tests, it can be useful to anal⁴⁵e themas the⁴ are run. The

default behaviour of tools like nosetests is to output the result to stdout – which is

not reall⁴ convenient to parse or anal⁴⁵e.

subunit is a P⁴thon module that provides a streaming protocol for test results. It

allows for a number of interesting things, such as aggregating test results ¹ or to

record and archive test runs, etc.

Running a test using subunit is simple enough:

$ python -m subunit.run test_scenario

The output of this command is binar⁴ data, so unless ⁴ou have the abilit⁴ to sight-

read the subunitprotocol, itwouldn’t be interesting to reproduce it’s outputdirectl⁴

here. However, subunit also comes with a set of tools to transform this binar⁴

stream into something smoother:

Example Ǚ.ǔǕ Using subunit2pyunit

$ python -m subunit.run test_scenario | subunit2pyunit

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not ←֓

found)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not ←֓

found) ... ok

¹Even from different source programs or languages

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǖ

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client ←֓

error)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client ←֓

error) ... ok

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server ←֓

error)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server ←֓

error) ... ok

Ran 3 tests in 0.061s

OK

Now this is something that we can understand – ⁴ou should recogni⁵e the test suite

with scenarios from Section Ǚ.Ǘ. Other tools worth mentioning include subunit2

csv, subunit2gtk and subunit2junitxml.

subunit is also able to automaticall⁴ discover which test to run, when it is passed

the discover argument.

$ python -m subunit.run discover | subunit2pyunit

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not ←֓

found)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not ←֓

found) ... ok

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client ←֓

error)

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client ←֓

error) ... ok

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server ←֓

error)

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǗ

test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server ←֓

error) ... ok

Ran 3 tests in 0.061s

OK

You can list tests, rather than running them, b⁴ passing the argument --list. To

view the results, ⁴ou can use subunit-ls:

$ python -m subunit.run discover --list | subunit-ls --exists

test_request.TestPython.test_bad_status_code

test_request.TestPython.test_ioerror

test_request.TestPython.test_python_is

test_request.TestPython.test_python_is_not

test_scenario.TestPythonErrorCode.test_python_status_code_handling

Tip

You can also load a list of tests that you want to run – rather than running all tests – by

using the --load-list option.

In large applications the number of tests canbe overwhelming, so having programs

to handle the stream of results is ver⁴ useful. The testrepository package is in-

tended to do just that; it provides the testr program, which ⁴ou can use to handle

a database of ⁴our test run.

$ testr init

$ touch .testr.conf

% python -m subunit.run test_scenario | testr load

Ran 4 tests in 0.001s

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǘ

PASSED (id=0)

$ testr failing

PASSED (id=0)

$ testr last

Ran 3 tests in 0.001s

PASSED (id=0)

$ testr slowest

Test id Runtime (s)

-- -----------

test_python_status_code_handling(Not found) 0.000

test_python_status_code_handling(Server error) 0.000

test_python_status_code_handling(Client error) 0.000

$ testr stats

runs=1

Once the subunit stream of tests has been run and loaded inside testrepository, it is

possible to manipulate it easil⁴ using the testr command.

Obviousl⁴, this is tedious to do b⁴ hand each time ⁴ou want to run tests. Instead,

⁴ou should teach testr how it should run ⁴our tests, so that it can load the results

itself. This can be accomplished b⁴ editing the .testr.conf file at the root of ⁴our

project.

Example Ǚ.ǔǖ A .testr.conf file

[DEFAULT]

test_command=python -m subunit.run discover . $LISTOPT $IDOPTION ②1

test_id_option=--load-list $IDFILE ②2

test_list_option=--list ②3

②1 Command to run when calling testr run

②2 Command to run to load a test list

Ǚ.ǘ. TEST STREAMING AND PARALLELISM ǔǓǙ

②3 Command to run to list tests

The first line, test_command, is the one that is themost interesting. Now, all that we

need to do to load tests into testrepository and perform them is to run testr run.

Note

If you’re accustomed to running nosetests, testr run is now the equivalent com-

mand.

Two other options enable us to run the tests in parallel. This is simple enough to do

– all ⁴ou need to do is add the --parallel switch to testr run. Running ⁴our tests

in parallel can speed up the process considerabl⁴.

Example Ǚ.ǔǗ Running testr run --parallel

$ testr run --parallel

running=python -m subunit.run discover . --list

running=python -m subunit.run discover . --load-list /tmp/tmpiMq5Q1

running=python -m subunit.run discover . --load-list /tmp/tmp7hYEkP

running=python -m subunit.run discover . --load-list /tmp/tmpP_9zBc

running=python -m subunit.run discover . --load-list /tmp/tmpTejc5J

Ran 26 (+10) tests in 0.029s (-0.001s)

PASSED (id=7, skips=3)

Under the hood, testr runs the test listing operation, splits the test list into several

sublists, and creates a separate P⁴thon process to run each sublist of test. B⁴ de-

fault, the number of sublists is equal to the number of CPUs in the machine being

used. You can override the number of processes that b⁴ adding the --concurrency

flag.

$ testr run --parallel --concurrency=2

Ǚ.Ǚ. COVERAGE ǔǓǚ

As ⁴ou can imagine, there’s a lot of possibilities opened up b⁴ tools such as subunit

and testrepository that have onl⁴ be skimmed through in this section. I believe

it’sworthbeing familiarwith them, because testing cangreatl⁴ influence thequalit⁴

of the sotware ⁴ou will produce and release. Having powerful tools like these can

save a lot of time.

testrepository also integrates with setuptools and deplo⁴s a testr command for it.

This provides easier integration with setup.py-based workflows – ⁴ou can, for ex-

ample, document ⁴our entire project around setup.py. The command setup.py

testr accepts a few options, such as --testr-args – which adds more options to

the testr run, or --coverage, which will be covered in the next section.

6.6 Coverage

Code coverage is a tool which complements unit testing. It uses code anal⁴sis tools

and tracing hooks to determinewhich lines of ⁴our code have been executed; when

usedduring aunit test run, it can show⁴ouwhichparts of ⁴our codebasehavebeen

crossed over and which parts have not.

Writing tests is useful; but having a wa⁴ to know what part of ⁴our code ⁴ou ma⁴

have missed is the cherr⁴ on the cake.

Obviousl⁴, the first thing to do is to install the coverage P⁴thon module on ⁴our

s⁴stem. Once this is done ⁴ou will have access to the coverage program command

from ⁴our shell.²

Using coverage in standalone mode is straightforward, and can be useful- it could

lead ⁴ou to part of ⁴our programs that are never run, and which might be "dead

code". In addition, using it while ⁴our unit tests are running provides an obvious

benefit: ⁴ou’ll know which parts of the code are not being tested. The test tools

²The commandma⁴ also be named python-coverage, if ⁴ou install coverage through ⁴our oper-
ating s⁴stem installation sotware. That is the case on Debian, for example.

bjpcjp

bjpcjp

Ǚ.Ǚ. COVERAGE ǔǓǛ

we’ve talked about so far are all integrated with coverage.

When using nose, ⁴ou onl⁴ need to add a few option switches to generate a nice

code coverage output:

Example Ǚ.ǔǘ Using nosetests --with-coverage

$ nosetests --cover-package=ceilometer --with-coverage tests/test_pipeline ←֓

.py

..

Name Stmts Miss Cover Missing

ceilometer 0 0 100%

ceilometer.pipeline 152 20 87% 49, 59, 113, ←֓

127-128, 188-192, 275-280, 350-362

ceilometer.publisher 12 3 75% 32-34

ceilometer.sample 31 4 87% 81-84

ceilometer.transformer 15 3 80% 26-32, 35

ceilometer.transformer.accumulator 17 0 100%

ceilometer.transformer.conversions 59 0 100%

TOTAL 888 393 56%

Ran 46 tests in 0.170s

OK

Adding the --cover-package option is important, since otherwise ⁴ou will see ev-
ery P⁴thon package used, including standard librar⁴ or third-part⁴ modules. The

output includes the lines of code that are were not run – and which therefore have

no tests. All ⁴ou need to do now is spawn ⁴our favorite text editor and start writing

some.

Ǚ.Ǚ. COVERAGE ǔǓǜ

But ⁴ou can do better, andmake coverage generate nice HTML reports. Simpl⁴ add

the --cover-html flag, and the cover director⁴ from which ⁴ou ran the command

will be populated with HTML pages. Each page will show ⁴ou which parts of ⁴our

source code were or were not run.

Ǚ.Ǚ. COVERAGE ǔǔǓ

Figure Ǚ.ǔ: Coverage of ceilometer.publisher

If ⁴ou want to be that gu⁴, ⁴ou can use the option --cover-min-percentage=COVE

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǔ

R_MIN_PERCENTAGE, which will make the test suite fail if a minimum percentage of

the code is not executed when the test suite is run.

Warning

A code coverage score of 100% doesn’t necessarily mean that the code is entirely tested

and that you can rest. It only proves that your whole code path has been run; there is

no indication that every possible condition has been tested. So while being a respectable

goal, it doesn’t indicate anything conclusive.

When using testrepository, coverage can be run using setuptools integration.

Example Ǚ.ǔǙ Using coverage with testrepository

$ python setup.py testr --coverage

This will automaticall⁴ run ⁴our test suite with coverage and generate an HTML re-

port in the cover director⁴.

You should thenuse this information to consolidate ⁴our test suite andadd tests for

an⁴ code that is currentl⁴ not being run. This is important; it facilitates later project

maintenance, and increases ⁴our code’s overall qualit⁴.

6.7 Using virtualenv with tox

In Chapter ǘ, the use of virtual environments is presented and discussed. One of

theirmain uses is to provide a clean environment for running unit tests. It would be

reall⁴ sad if ⁴ou thought that ⁴our tests were working, when in fact ⁴ou were not,

for example, respecting the dependenc⁴ list.

You could write a script to deplo⁴ a virtual environment, install setuptools, and

then install all of the dependencies required for both ⁴our application/librar⁴ run-

time and unit tests. But this is such a common use case that an application dedi-

cated to this task has alread⁴ been built: tox.

bjpcjp

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǕ

Tox aims to automate and standardi⁵e how tests are run in P⁴thon. To that end,

it provides ever⁴thing needed to run an entire test suite in a clean virtual environ-

ment,whilealso installing⁴ourapplication tocheck that the installationworks fine.

Before using tox, ⁴ou need to provide a configuration file. This file is named tox.

ini and should be placed in the root director⁴ of ⁴our project, beside ⁴our setup.

py file.

$ touch tox.ini

You can now run tox successfull⁴:

% tox

GLOB sdist-make: /home/jd/project/setup.py

python create: /home/jd/project/.tox/python

python inst: /home/jd/project/.tox/dist/project-1.zip

____________________ summary _____________________

python: commands succeeded

congratulations :)

Obviousl⁴ this alone is not ver⁴ useful. In this instance, tox creates a virtual envi-

ronment in .tox/python using its default P⁴thon version, uses setup.py to create a

distribution of ⁴our package and then installs it inside this virtual environment. No

commands are then run, because we didn’t specif⁴ an⁴ in the configuration file.

We can change this default behaviour b⁴ adding a command that will be run inside

our test environment. Editing tox.ini to include the following:

[testenv]

commands=nosetests

will run the command nosetests will likel⁴ fail, since we don’t have nosetests in-

stalled in the virtual environment. We need to list it as part of the dependencies to

be installed.

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǖ

[testenv]

deps=nose

commands=nosetests

When run, toxwill now recreate the environment, install the new dependenc⁴ and

run the command nosetests, which will execute all of our unit tests. Obviousl⁴, we

mightwant to addmore dependencies – ⁴ou can list them in the deps configuration

option, but ⁴ou can also use the -rfile s⁴ntax to read from a file. If ⁴ou’re using

pbr to manage ⁴our setup.py file, ⁴ou know that it reads the dependencies from a

file called requirements.txt. It is therefore a good idea to tell tox to use that file

too:

[testenv]

deps=nose

-rrequirements.txt

commands=nosetests

The [testenv] sectionof the file defines theparameters for all virtual environments

managed b⁴ tox. But as mentioned previousl⁴, tox can manage multiple P⁴thon

virtual environments – indeed, it’s possible to run our tests under a P⁴thon version

other than the default one b⁴ passing the -e flag to tox:

% tox -e py26

GLOB sdist-make: /home/jd/project/setup.py

py26 create: /home/jd/project/.tox/py26

py26 installdeps: nose

py26 inst: /home/jd/project/.tox/dist/rebuildd-1.zip

py26 runtests: commands[0] | nosetests

.......

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǗ

Ran 7 tests in 0.029s

OK

____________________ summary _____________________

py26: commands succeeded

congratulations :)

B⁴default, tox can simulateman⁴environments: pyǕǗ,pyǕǘ,pyǕǙ,pyǕǚ,pyǖǓ,pyǖǔ,

pyǖǕ, pyǖǖ, jython and pypy! You can even add ⁴our own. To add an environment or

to create a new one, ⁴ou just need to add another section named [testenv:_envn

ame_]. If we want to run a different command for one of the environments, it’s eas⁴

with the following tox.ini file:

[testenv]

deps=nose

commands=nosetests

[testenv:py27]

commands=pytest

This onl⁴ overrides the commands for the py27 environment; so nose will still be

installed as part of the dependencieswhen running tox -e py27, but the command

pytestwill be run instead.

We can create a new environment with an unsupported version of P⁴thon right

awa⁴:

[testenv]

deps=nose

commands=nosetests

[testenv:py21]

basepython=python2.1

Ǚ.ǚ. USING VIRTUALENVWITH TOX ǔǔǘ

We cannow (attempt to) useP⁴thon Ǖ.ǔ to runour test suite – although I don’t think

it will work.

Now, it is likel⁴ that ⁴ou will want to support multiple P⁴thon versions. So it would

be great to have tox run all the tests for all the P⁴thon versions ⁴ouwant to support

b⁴ default. This can be done b⁴ specif⁴ing the environment list ⁴ou want to use

when tox is run without arguments:

[tox]

envlist=py26,py27,py33,pypy

[testenv]

deps=nose

commands=nosetests

When tox is launched without an⁴ further arguments, all four environments listed

will be created, populatedwith thedependencies and the application, and then the

command nosetestswill be run.

We can also use tox to integrate other tests like flake8, as discussed in Section ǔ.Ǘ.

[tox]

envlist=py26,py27,py33,pypy,pep8

[testenv]

deps=nose

commands=nosetests

[testenv:pep8]

deps=flake8

commands=flake8

In this case, the pepǛ environment will be run using the default version of P⁴thon,

Ǚ.Ǜ. TESTING POLICY ǔǔǙ

which is probabl⁴ fine.³

Tip

When running tox, you will spot that all of the environments are built and run in sequence.

This can often make the process very long. Since the virtual environments are isolated,

nothing prevents you from running tox commands in parallel. This is exactly what the

detox package does, by providing a detox command which runs all of the default envi-

ronments from envlist in parallel. You should pip install it!

6.8 Testing policy

Having testing code embedded in ⁴our project is wonderful, but how ⁴ou run it is

also extremel⁴ important. There are too man⁴ projects that have test code which

la⁴s around, but which fails to be run for some reason.

While this topic is not strictl⁴ limited to P⁴thon, I consider it important enough to

emphasi⁵ehere: ⁴oushouldhavea ⁵ero tolerancepolic⁴onuntestedcode. Nocode

should be merged unless there is a proper set of unit tests to cover it.

The minimum that ⁴ou should aim for is to be sure that each of the commits ⁴ou

push pass all the tests. Having an automated wa⁴ to do that is even better.

For example, OpenStack relies on a specific workflow based on Gerrit, Jenkins and

Zuul. Eachcommitpushedgoes through thecode reviews⁴stemprovidedb⁴Gerrit,

andZuul is in chargeof runninga set of testing jobsagainst it using Jenkins. Jenkins

runs the unit testing, and various higher-level functional tests for each project. This

ensures that the submitted patches pass all tests. Code reviewing b⁴ a couple of

developers makes sure that all code that is committed has associated unit tests.

If ⁴ou are using the popular GitHubhosting service, Travis CI provides awa⁴ to run a

test ater eachpushormerge, or against pull requests that are submitted. While it is
³You can still specif⁴ the basepython option if ⁴ou want to change that

bjpcjp

bjpcjp

bjpcjp

Ǚ.ǜ. INTERVIEWWITH ROBERT COLLINS ǔǔǚ

unfortunate that this done post-push, it’s still a fantastic wa⁴ to track regressions.

Travis supports all significant P⁴thon versions out of the box, and it’s possible to

customi⁵e it to a high degree. Once ⁴ou’ve activated Travis on ⁴our project via their

Web interface, adding a file is simple: .travis.yml does the job for ⁴ou.

Example Ǚ.ǔǚ A .travis.yml example file

language: python

python:

- "2.7"

- "3.3"

command to install dependencies

install: "pip install -r requirements.txt --use-mirrors"

command to run tests

script: nosetests

Wherever ⁴our code is hosted, these da⁴s it is alwa⁴s possible to aim for some sort

of automatic testing of ⁴our sotware, and tomake sure that ⁴ou are going forward

with ⁴our project – not going backward b⁴ adding more bugs.

6.9 Interview with Robert Collins

You ma⁴ have alread⁴ used one of Robert’s programs, without knowing – he is,

among other things, the original author of the Bazaar distributed version control

s⁴stem. Toda⁴, he is a Distinguished Technologist at HP Cloud Services, where he

works on OpenStack. Robert has written a lot of the P⁴thon tools described in this

book, such as fixtures, testscenarios, testrespository and even python-subunit.

bjpcjp

Ǚ.ǜ. INTERVIEWWITH ROBERT COLLINS ǔǔǛ

What kind of testing policywould you advise using? When is it accept-
able not to test code?

I think it’s an engineering trade-off – considering the likelihood of fail-

ure slipping through to production undetected, the cost of an undetected

failure of that component, the si⁵e and cohesion of the team doing the

work… Take OpenStack – ǔǙǓǓ contributors – a nuanced polic⁴ is ver⁴

hard to work with there, as so man⁴ people have opinions. Generall⁴

speaking, there should be some automated check as part of landing in

trunk that the code will do what it is intended to do and that what it is in-

tended to do is what is needed. Oten that speaks to requiring functional

tests that might be in different code bases. Unit tests are great for speed

andpinning down corner cases. I think it’s ok to var⁴ the balance between

st⁴les of testing, as long as there is testing.

Where the cost of testing is ver⁴ high and the returns are ver⁴ low, I think

it’s fine to make an informed decision not to test, but that’s a relativel⁴

rare situation: most things can be tested fairl⁴ cheapl⁴, and the benefit of

catching errors earl⁴ is usuall⁴ quite high.

What are the best strategies to put in placewhenwriting Python code
in order to make testing easier, and improve its quality?

Separate out concerns – don’t domultiple things in one place; this makes

reuse easier, and that makes it easier to put test doubles in place. Take a

pure functional approachwhen⁴oucan (e.g. in a singlemethodeither cal-

culate something, or change some state, but where possible avoid doing

bjpcjp

bjpcjp

Ǚ.ǜ. INTERVIEWWITH ROBERT COLLINS ǔǔǜ

both). Thatwa⁴ ⁴ou can test all of the calculatingbehaviourwithout deal-

ing with state changes – such as writing to a database, talking to an HTTP

server, etc. The benefit works the other wa⁴ around too – ⁴ou can replace

the calculation logic for tests toprovoke corner casebehaviour anddetect

via mocks / test doubles that the expected state propagation happens as

desired. The most heinous stuff to test IME is deepl⁴ la⁴ered stacks with

complex cross-la⁴er behavioural dependencies. There ⁴ouwant to evolve

the code so that the contract between la⁴ers is simple, predictable, and

most usefull⁴ for testing – replaceable.

In your opinion, what’s the best way to organize unit tests in source
code?

Having a hierarch⁴ like $ROOT/$PACKAGE/tests – but I do just one for a

whole source tree (vs e.g. $ROOT/$PACKAGE/$SUBPACKAGE/tests).

Within tests, I oten mirror the structure of the rest of the source tree:

$ROOT/$PACKAGE/foo.py would be tested in $ROOT/$PACKAGE/tests/tes

t_foo.py.

There should be no imports from tests b⁴ the rest of the tree except per-

haps a test_suite/load_tests function in the top level __init__. This per-

mits easil⁴ detaching the tests for small footprint installations.

What are the tools that can be employed to build functional tests in
Python?

I just use whichever flavour of unittest is in use in the project: it’s suf-

ficientl⁴ flexible (particularl⁴ with things like testresources and parallel

runners) to cater for most needs.

How do you envision the future of unit testing libraries and frame-
works in Python?

The big challenges I see are:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǚ.ǜ. INTERVIEWWITH ROBERT COLLINS ǔǕǓ

• the continued expansion of parallel capabilities in new machines – Ǘ

CPU phones now. Existing unit test internal APIs aren’t optimised for

parallel workloads. M⁴ StreamResult work is aimed directl⁴ at this;

• more complex scheduling support – a lessugl⁴ solution for theproblems

that class andmodule scoped setup aim at;

• finding somewa⁴ toconsolidate the largevariet⁴of frameworkswehave

toda⁴: itwouldbegreat tobeable togeta consolidatedviewacrossmul-

tiple projects – for integration testing – that have different test runners

in use.

