
ǚ Methods and decorators

P⁴thon provides decorators as a hand⁴ wa⁴ to modif⁴ functions. The⁴ were first

introduced with classmethod() and staticmethod() in P⁴thon Ǖ.Ǖ, but were over-

hauled through PEP ǖǔǛ into something more flexible and readable. P⁴thon pro-

vides a few decorators (including the two mentioned above) right out of the box,

but it seems thatmost developers don’t understandhow the⁴ actuall⁴work behind

the scenes. This chapter aims to change that.

7.1 Creating decorators

A decorator is essentiall⁴ a function that takes another function as an argument

and replaces it with a new, modified function. Odds are good ⁴ou’ve alread⁴ used

decorators to make ⁴our own wrapper functions. The simplest possible decorator

is the identit⁴ function, which does nothing except return the original function:

def identity(f):

return f

You can then use ⁴our decorator like this:

@identity

def foo():

return 'bar'

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǕ

Which is the same as:

def foo():

return 'bar'

foo = identity(foo)

This decorator is useless, but it works. It just does nothing.

Example ǚ.ǔ A registering decorator

_functions = {}

def register(f):

global _functions

_functions[f.__name__] = f

return f

@register def foo(): return bar

In this example, we register and store functions in a dictionar⁴ so we can retrieve

them b⁴ their name later from that dictionar⁴.

In the following sections, I’ll explain the standard decorators that P⁴thon provides

and how (and when) to use them.

The primar⁴ use case for decorators is factoring common code that needs to be

called before, ater, or aroundmultiple function. If ⁴ou ever wrote Emacs Lisp code

⁴ou ma⁴ have used defadvice that allows ⁴ou to define code called around a func-

tion. Same things appl⁴ for developers having used the fabulousmethod combina-

tions brought b⁴ CLOS ¹.

Consider a set of functions that are called and need to check that the user name

that the⁴ receive as argument:

class Store(object):

def get_food(self, username, food):

¹The Common Lisp Object S⁴stem

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǖ

if username != 'admin':

raise Exception("This user is not allowed to get food")

return self.storage.get(food)

def put_food(self, username, food):

if username != 'admin':

raise Exception("This user is not allowed to get food")

self.storage.put(food)

The obvious first step here is to factor the checking code:

def check_is_admin(username):

if username != 'admin':

raise Exception("This user is not allowed to get food")

class Store(object):

def get_food(self, username, food):

check_is_admin(username)

return self.storage.get(food)

def put_food(self, username, food):

check_is_admin(username)

self.storage.put(food)

Now our code looks a bit cleaner. But we can do even better if we use a decorator:

def check_is_admin(f):

def wrapper(*args, **kwargs):

if kwargs.get('username') != 'admin':

raise Exception("This user is not allowed to get food")

return f(*args, **kwargs)

return wrapper

ǚ.ǔ. CREATING DECORATORS ǔǕǗ

class Store(object):

@check_is_admin

def get_food(self, username, food):

return self.storage.get(food)

@check_is_admin

def put_food(self, username, food):

self.storage.put(food)

Using decorators like this makes it easier to manage common functionalit⁴. This is

probabl⁴ old hat to ⁴ou if ⁴ou have an⁴ serious P⁴thon experience, but what ⁴ou

might not reali⁵e is that this naive approach to implementing decorators has some

major drawbacks.

Asmentionedbefore, adecorator replaces theoriginal functionwithanewonebuilt

on-the-fl⁴. However, this new function lacks man⁴ of the attributes of the original

function, such as its docstring and its name:

>>> def is_admin(f):

... def wrapper(*args, **kwargs):

... if kwargs.get('username') != 'admin':

... raise Exception("This user is not allowed to get food")

... return f(*args, **kwargs)

... return wrapper

...

>>> def foobar(username="someone"):

... """Do crazy stuff."""

... pass

...

>>> foobar.func_doc

'Do crazy stuff.'

>>> foobar.__name__

bjpcjp

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǘ

'foobar'

>>> @is_admin

... def foobar(username="someone"):

... """Do crazy stuff."""

... pass

...

>>> foobar.__doc__

>>> foobar.__name__

'wrapper'

Fortunatel⁴, the functoolsmodule included in P⁴thon solves this problemwith the

update_wrapper function, which copies these attributes to the wrapper itself. The

source code of update_wrapper is self-explanator⁴:

Example ǚ.Ǖ Source code of functools.update_wrapper in P⁴thon ǖ.ǖ

WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',

'__annotations__')

WRAPPER_UPDATES = ('__dict__',)

def update_wrapper(wrapper,

wrapped,

assigned = WRAPPER_ASSIGNMENTS,

updated = WRAPPER_UPDATES):

wrapper.__wrapped__ = wrapped

for attr in assigned:

try:

value = getattr(wrapped, attr)

except AttributeError:

pass

else:

setattr(wrapper, attr, value)

for attr in updated:

bjpcjp

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǙ

getattr(wrapper, attr).update(getattr(wrapped, attr, {}))

Return the wrapper so this can be used as a decorator via partial()

return wrapper

If we take our previous example anduse this function to update ourwrapper, things

work muchmore nicel⁴:

>>> def foobar(username="someone"):

... """Do crazy stuff."""

... pass

...

>>> foobar = functools.update_wrapper(is_admin, foobar)

>>> foobar.__name__

'foobar'

>>> foobar.__doc__

'Do crazy stuff.'

It can get tedious to use update_wrapper manuall⁴ when creating decorators, so

functools provides a decorator for decorators called wraps:

Example ǚ.ǖ Using functools.wraps

import functools

def check_is_admin(f):

@functools.wraps(f)

def wrapper(*args, **kwargs):

if kwargs.get('username') != 'admin':

raise Exception("This user is not allowed to get food")

return f(*args, **kwargs)

return wrapper

class Store(object):

bjpcjp

ǚ.ǔ. CREATING DECORATORS ǔǕǚ

@check_is_admin

def get_food(self, username, food):

return self.storage.get(food)

In our examples so far, we’ve alwa⁴s assumed that the decorated function would

have a username passed to it as a ke⁴word argument, but that might not alwa⁴s

be the case. With this in mind, it’s a better idea to build a smarter version of our

decorator that can look at the decorated function’s arguments and pull out what it

needs.

To that end, the inspect module allows us to retrieve a function’s signature and

operate on it:

Example ǚ.Ǘ Retrieving function arguments using inspect

import functools

import inspect

def check_is_admin(f):

@functools.wraps(f)

def wrapper(*args, **kwargs):

func_args = inspect.getcallargs(f, *args, **kwargs)

if func_args.get('username') != 'admin':

raise Exception("This user is not allowed to get food")

return f(*args, **kwargs)

return wrapper

@check_is_admin

def get_food(username, type='chocolate'):

return type + " nom nom nom!"

The function that does theheav⁴ litinghere is inspect.getcallargs, which returns

a dictionar⁴ containing the names and values of the arguments as ke⁴-value pairs.

bjpcjp

bjpcjp

ǚ.Ǖ. HOWMETHODSWORK IN PYTHON ǔǕǛ

In our example, this function returns {'username':'admin', 'type':'chocolat

e'}. Thismeans that our decorator doesn’t have to check if the usernameparameter

is a positional or a ke⁴word argument: all it has to do is look for it in the dictionar⁴.

7.2 How methods work in Python

You’ve probabl⁴ written do⁵ens of methods and thought nothing of them before

now, but tounderstandwhat certaindecoratorsdo, ⁴ouneed toknowhowmethods

work behind the scenes.

A method is a function that is stored as a class attribute. Let’s have a look at what

happens when we tr⁴ to access such an attribute directl⁴:

Example ǚ.ǘ A P⁴thon Ǖ method

>>> class Pizza(object):

... def __init__(self, size):

... self.size = size

... def get_size(self):

... return self.size

...

>>> Pizza.get_size

<unbound method Pizza.get_size>

P⁴thon Ǖ tellsus that theget_sizeattributeof thePizzaclass is anunboundmethod.

Example ǚ.Ǚ A P⁴thon ǖ method

>>> class Pizza(object):

... def __init__(self, size):

... self.size = size

... def get_size(self):

... return self.size

...

bjpcjp

ǚ.Ǖ. HOWMETHODSWORK IN PYTHON ǔǕǜ

>>> Pizza.get_size

<function Pizza.get_size at 0x7fdbfd1a8b90>

In P⁴thon ǖ, the concept of unboundmethod has been removed entirel⁴, andwe’re

told get_size is a function.

The principle is the same in both cases: get_size is a function that is not tied to an⁴

particular object, and P⁴thon will raise an error if we tr⁴ to call it:

Example ǚ.ǚ Calling unbound get_si⁵e in P⁴thon Ǖ

>>> Pizza.get_size()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unbound method get_size() must be called with Pizza instance as ←֓

first argument (got nothing instead)

Example ǚ.Ǜ Calling unbound get_si⁵e in P⁴thon ǖ

>>> Pizza.get_size()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: get_size() missing 1 required positional argument: 'self'

P⁴thon Ǖ rejects the method call because it’s unbound; P⁴thon ǖ permits the call,

but complains that we haven’t provided the necessar⁴ self argument. This makes

P⁴thon ǖ a bit more flexible: not onl⁴ can we pass an arbitrar⁴ instance of the class

to the method if we want to, but we can pass any object as long as it has the prop-

erties that the method expects to find:

>>> Pizza.get_size(Pizza(42))

42

And it works, just as promised, though it’s not ver⁴ convenient: we have to refer to

the class ever⁴ time we want to call one of its methods.

bjpcjp

ǚ.Ǖ. HOWMETHODSWORK IN PYTHON ǔǖǓ

So P⁴thon goes the extra mile for us b⁴ binding a class’s methods to its instances.

In otherwords, we can access get_size froman⁴ Pizza, and better still, P⁴thonwill

automaticall⁴ pass the object itself to the method’s self parameter:

Example ǚ.ǜ Calling bound get_size

>>> Pizza(42).get_size

<bound method Pizza.get_size of <__main__.Pizza object at 0x7f3138827910>>

>>> Pizza(42).get_size()

42

As expected, we don’t have to provide an⁴ argument to get_size, since it’s a bound

method: its self argument is automaticall⁴ set to our Pizza instance. Here’s a even

better example:

>>> m = Pizza(42).get_size

>>> m()

42

You don’t even have to keep a reference to ⁴our Pizza object as long as ⁴ou have a

reference to the bound method. And if ⁴ou have a reference to a method but ⁴ou

want to find out which object it’s bound to, ⁴ou can just check the method’s __sel

f__ propert⁴:

>>> m = Pizza(42).get_size

>>> m.__self__

<__main__.Pizza object at 0x7f3138827910>

>>> m == m.__self__.get_size

True

Obviousl⁴, we still have a reference to our object, andwe can find it back if wewant.

ǚ.ǖ. STATIC METHODS ǔǖǔ

7.3 Static methods

Static methods are methods which belong to a class, but don’t actuall⁴ operate on

class instances. For example:

Example ǚ.ǔǓ @staticmethod usage

class Pizza(object):

@staticmethod

def mix_ingredients(x, y):

return x + y

def cook(self):

return self.mix_ingredients(self.cheese, self.vegetables)

You could write mix_ingredients as a non-static method if ⁴ou wanted to, but it

would take a self argument thatwould never actuall⁴ be used. The @staticmethod

decorator gives us several things:

• P⁴thon doesn’t have to instantiate a boundmethod for each Pizza object we cre-

ate. Boundmethods are objects, too, and creating themhas a cost. Using a static

method lets us avoid that:

>>> Pizza().cook is Pizza().cook

False

>>> Pizza().mix_ingredients is Pizza.mix_ingredients

True

>>> Pizza().mix_ingredients is Pizza().mix_ingredients

True

• It improves the readabilit⁴ of the code: when we see @staticmethod, we know

that the method does not depend on the state of the object.

ǚ.Ǘ. CLASS METHOD ǔǖǕ

• We can override our static methods in subclasses. If we used a mix_ingredie

nts function defined at the top level of our module, a class inheriting from Pizza

wouldn’t be able to change thewa⁴wemix ingredients for our pi⁵⁵awithout over-

riding the cookmethod itself.

7.4 Class method

Class methods are methods that are bound directl⁴ to a class rather than its in-

stances:

>>> class Pizza(object):

... radius = 42

... @classmethod

... def get_radius(cls):

... return cls.radius

...

>>> Pizza.get_radius

<bound method type.get_radius of <class '__main__.Pizza'>>

>>> Pizza().get_radius

<bound method type.get_radius of <class '__main__.Pizza'>>

>>> Pizza.get_radius is Pizza().get_radius

True

>>> Pizza.get_radius()

42

However ⁴ou choose to access this method, it will be alwa⁴s bound to the class it

is attached to, and its first argument will be the class itself (remember, classes are

objects too!)

Class methods are mostl⁴ useful for creating factory methods – methods which in-

stantiateobjects ina specific fashion. Ifweuseda@staticmethod instead,wewould

ǚ.ǘ. ABSTRACT METHODS ǔǖǖ

have to hard-code the Pizza class name in ourmethod,making an⁴ class inheriting

from Pizza unable to use our factor⁴ for its own purposes.

class Pizza(object):

def __init__(self, ingredients):

self.ingredients = ingredients

@classmethod

def from_fridge(cls, fridge):

return cls(fridge.get_cheese() + fridge.get_vegetables())

In this case, we provide a from_fridge factor⁴ method that we can pass a Fridge

object to. If we call this method with something like Pizza.from_fridge(myfrid

ge), it will return a brand-new Pizza with ingredients taken from what’s available

in myfridge.

7.5 Abstract methods

An abstract method is a method defined in a base class which ma⁴ or ma⁴ not ac-

tuall⁴ provide an⁴ implementation. The simplest wa⁴ to write an abstract method

in P⁴thon is:

class Pizza(object):

@staticmethod

def get_radius():

raise NotImplementedError

An⁴class inheriting fromPizza should implementandoverride theget_radiusmethod;

otherwise, calling the method will raise an exception.

This particular wa⁴ of implementing abstractmethods has a drawback: if ⁴ouwrite

a class that inherits from Pizza and forget to implement get_radius, the error will

onl⁴ be raised if ⁴ou tr⁴ to use that method at runtime.

ǚ.ǘ. ABSTRACT METHODS ǔǖǗ

Example ǚ.ǔǔ Implementing an abstract method

>>> Pizza()

<__main__.Pizza object at 0x7fb747353d90>

>>> Pizza().get_radius()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in get_radius

NotImplementedError

If ⁴ou implement⁴ourabstractmethodsusingP⁴thon’sbuilt-inabcmodule instead,

⁴ou’ll get an earl⁴ warning if ⁴ou tr⁴ to instantiate an object with abstractmethods:

Example ǚ.ǔǕ Implementing an abstract method using abc

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def get_radius(self):

"""Method that should do something."""

When ⁴ou use abc and its special class, if ⁴ou tr⁴ to instantiate a BasePizza or a

class inheriting from it that doesn’t override get_radius, ⁴ou’ll get a TypeError:

>>> BasePizza()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: Can't instantiate abstract class BasePizza with abstract methods ←֓

get_radius

ǚ.Ǚ. MIXING STATIC, CLASS, AND ABSTRACT METHODS ǔǖǘ

Note

The metaclass declaration changed between Python 2 and Python 3. The previous ex-

amples only work with Python 2 for this reason.

7.6 Mixing static, class, and abstract methods

Each of these decorators is useful on its own, but the time ma⁴ come when ⁴ou’ll

have to use them together. Here are some tips that will help ⁴ou with that.

An abstract method’s protot⁴pe isn’t set in stone. When ⁴ou actuall⁴ implement

the method, there’s nothing stopping ⁴ou from extending the argument list as ⁴ou

see fit:

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def get_ingredients(self):

"""Returns the ingredient list."""

class Calzone(BasePizza):

def get_ingredients(self, with_egg=False):

egg = Egg() if with_egg else None

return self.ingredients + [egg]

We can define Calzone's methods an⁴ wa⁴ we like, as long as the⁴ still support the

interface we define in the BasePizza class. This includes implementing them as

class or static methods:

ǚ.Ǚ. MIXING STATIC, CLASS, AND ABSTRACT METHODS ǔǖǙ

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def get_ingredients(self):

"""Returns the ingredient list."""

class DietPizza(BasePizza):

@staticmethod

def get_ingredients():

return None

Even though our static get_ingredientsmethod doesn’t return a result based on

the object’s state, it still supports our abstract BasePizza class’s interface, so it’s

still valid.

Starting with P⁴thon ǖ (this won’t work as expected in P⁴thon Ǖ; see issue ǘǛǙǚ),

it’s also possible to use the @staticmethod and @classmethod decorators on top of

@abstractmethod:

Example ǚ.ǔǖMixing @classmethod and @abstractmethod

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

ingredients = ['cheese']

@classmethod

ǚ.Ǚ. MIXING STATIC, CLASS, AND ABSTRACT METHODS ǔǖǚ

@abc.abstractmethod

def get_ingredients(cls):

"""Returns the ingredient list."""

return cls.ingredients

Note thatdefiningget_ingredientsasaclassmethod inBasePizza like thisdoesn’t

force its subclasses to define it as a class method as well. The same would appl⁴ if

we’d defined it as a staticmethod: there’s nowa⁴ to force subclasses to implement

abstract methods as a specific kind of method.

Butwait – herewe have an implementation in an abstractmethod. Canwe do that?

Yep – P⁴thon doesn’t have a problemwith it! Unlike Java, ⁴ou can put code in ⁴our

abstract methods and call it using super():

Example ǚ.ǔǗ Using super()with abstract methods

import abc

class BasePizza(object):

__metaclass__ = abc.ABCMeta

default_ingredients = ['cheese']

@classmethod

@abc.abstractmethod

def get_ingredients(cls):

"""Returns the default ingredient list."""

return cls.default_ingredients

class DietPizza(BasePizza):

def get_ingredients(self):

return [Egg()] + super(DietPizza, self).get_ingredients()

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǖǛ

In this example, ever⁴ Pizza ⁴ou make that inherits from BasePizza will have to

override the get_ingredients method, but it will have access to the base class’s

default mechanism for getting the ingredients list.

7.7 The truth about super

From the earliest da⁴s of P⁴thon, developers have been able to use both single and

multiple inheritance to extend their classes. However,man⁴developers don’t seem

to understand how these mechanisms actuall⁴ work, and the associated super()

method that is associated with it.

There is pros and cons of single andmultiple inheritance, composition or evenduck

t⁴ping would be out of topic for this book, though if ⁴ou are not familiar with these

notions I suggest that ⁴ou read about them to have a view – and build ⁴our own

opinion.

Multiple inheritance is still used in man⁴ places, and especiall⁴ in code where the

mixin pattern is involved. That’s wh⁴ it’s still important to know about it, and be-

cause it is part of P⁴thon’s core.

Note

A mixin is a class that inherits from two or more other classes, combining their features

together.

As ⁴ou should know b⁴ now, classes are objects in P⁴thon. The construct used to

create a class is a special statement that ⁴ou should be well familiar with: class

classname(expression of inheritance).

The part in parentheses is a P⁴thon expression that returns the list of class objects

to be used as the class’s parents. Normall⁴ ⁴ou’d specif⁴ them directl⁴, but ⁴ou

could also write something like:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǖǜ

>>> def parent():

... return object

...

>>> class A(parent()):

... pass

...

>>> A.mro()

[<class '__main__.A'>, <type 'object'>]

And itworks as expected: class A is definedwith objectas its parent class. The class

method mro() returns themethod resolution order used to resolve attributes. The

current MRO s⁴stemwas first implemented in P⁴thon Ǖ.ǖ, and its internal workings

are described in the P⁴thon Ǖ.ǖ release notes.

You alread⁴ know that the canonical wa⁴ to call a method in a parent class is b⁴

using the super() function, but what ⁴ou probabl⁴ don’t know is that super() is

actuall⁴ a constructor, and ⁴ou instantiate a super object each time ⁴ou call it. It

takes either one or two arguments: the first argument is a class, and the second

argument is either a subclass or an instance of the first argument.

The object returned b⁴ the constructor functions as a prox⁴ for the parent classes

of the first argument. It has its own __getattribute__ method that iterates over

the classes in the MRO list and returns the first matching attribute it finds:

>>> class A(object):

... bar = 42

... def foo(self):

... pass

...

>>> class B(object):

... bar = 0

...

bjpcjp

bjpcjp

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǗǓ

>>> class C(A, B):

... xyz = 'abc'

...

>>> C.mro()

[<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <type ' ←֓

object'>]

>>> super(C, C()).bar

42

>>> super(C, C()).foo

<bound method C.foo of <__main__.C object at 0x7f0299255a90>>

>>> super(B).__self__

>>> super(B, B()).__self__

<__main__.B object at

Whenrequestinganattributeof the superobjectof an instanceof C, itwalks through

the MRO list and return the attribute from the first class having it.

In the previous example, we used a bound super object; i.e., we called super with

two arguments. If we call super() with onl⁴ one argument, it returns an unbound

super object instead:

>>> super(C)

<super: <class 'C'>, NULL>

Since this object is unbound, ⁴ou can’t use it to access class attributes:

>>> super(C).foo

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'super' object has no attribute 'foo'

>>> super(C).bar

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǗǔ

AttributeError: 'super' object has no attribute 'bar'

>>> super(C).xyz

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'super' object has no attribute 'xyz'

At first glance, it might seem like this kind of super object is useless, but the su-

per class implements the descriptor protocol (i.e. __get__) in a wa⁴ that makes

unbound super objects useful as class attributes:

>>> class D(C):

... sup = super(C)

...

>>> D().sup

<super: <class 'C'>, <D object>>

>>> D().sup.foo

<bound method D.foo of <__main__.D object at 0x7f0299255bd0>>

>>> D().sup.bar

42

The unbound super object’s __get__ method is called using the instance and the

attribute name as arguments (super(C).__get__(D(), 'foo')), allowing it to find

and resolve foo.

Note

Even if you’ve never heard of the descriptor protocol, you’ve probably used it through

the @property decorator without knowing it. It’s the mechanism in Python that allows

an object that’s stored as an attribute to return something other than itself. This protocol

isn’t covered in this book, but you can find out more about it in the Python data model

documentation.

There are plent⁴ of situations where using super can be trick⁴, such as handling

bjpcjp

ǚ.ǚ. THE TRUTH ABOUT SUPER ǔǗǕ

different method signatures along the inheritance chain. Unfortunatel⁴, there’s no

silver bullet for that, apart from using tricks like having all ⁴our methods accept

their arguments using *args, **kwargs.

In P⁴thon ǖ, super() picked up a little bit ofmagic: it can nowbe called fromwithin

a method without an⁴ arguments. When no arguments are passed to super(), it

automaticall⁴ searches the stack frame for them:

class B(A):

def foo(self):

super().foo()

super is the standard wa⁴ of accessing parent attributes in subclasses, and ⁴ou

should alwa⁴s use it. It allows cooperative calls of parentmethodswithout an⁴ sur-

prises, such as parent methods not being called or being called twice when using

multiple inheritance.

bjpcjp

