7 Methods and decorators

Python provides decorators as a handy way to modify functions. They were first
introduced with classmethod() and staticmethod() in Python 2.2, but were over-
hauled through PEP 318 into something more flexible and readable. Python pro-
vides a few decorators (including the two mentioned above) right out of the box,
but it seems that most developers don’t understand how they actually work behind

the scenes. This chapter aims to change that.

7.1 Creating decorators

A decorator is essentially a function that takes another function as an argument
and replaces it with a new, modified function. Odds are good you’ve already used
decorators to make your own wrapper functions. The simplest possible decorator
is the identity function, which does nothing except return the original function:

def identity(f):

return f

You can then use your decorator like this:

@identity
def foo():

return 'bar'

bjpcjp

7.1. CREATING DECORATORS 122

Which is the same as:

def foo():

return 'bar'

foo = identity(foo)

This decorator is useless, but it works. It just does nothing.

Example 7.1 A registering decorator

_functions = {}

def register(f):
global functions
_functions[f. name] = f

return f

@register def foo(): return bar

In this example, we register and store functions in a dictionary so we can retrieve

them by their name later from that dictionary.

In the following sections, I’'ll explain the standard decorators that Python provides

and how (and when) to use them.

The primary use case for decorators is factoring common code that needs to be
called before, after, or around multiple function. If you ever wrote Emacs Lisp code
you may have used defadvice that allows you to define code called around a func-
tion. Same things apply for developers having used the fabulous method combina-
tions brought by CLOS .

Consider a set of functions that are called and need to check that the user name
that they receive as argument:

class Store(object):

def get food(self, username, food):

'The Common Lisp Object System

bjpcjp

7.1. CREATING DECORATORS 123

if username !'= 'admin':
raise Exception("This user is not allowed to get food")

return self.storage.get(food)

def put food(self, username, food):
if username != 'admin':
raise Exception("This user is not allowed to get food")

self.storage.put(food)

The obvious first step here is to factor the checking code:
def check is admin(username):
if username != ‘admin':

raise Exception("This user is not allowed to get food")

class Store(object):
def get food(self, username, food):
check is admin(username)

return self.storage.get(food)

def put food(self, username, food):
check is admin(username)

self.storage.put(food)

Now our code looks a bit cleaner. But we can do even better if we use a decorator:
def check is admin(f):
def wrapper(*args, **kwargs):
if kwargs.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)

return wrapper

7.1. CREATING DECORATORS 124

class Store(object):
@check is admin
def get food(self, username, food):

return self.storage.get(food)

@check is admin
def put food(self, username, food):

self.storage.put(food)

Using decorators like this makes it easier to manage common functionality. This is
probably old hat to you if you have any serious Python experience, but what you
might not realize is that this naive approach to implementing decorators has some

major drawbacks.

As mentioned before, a decorator replaces the original function with a new one built
on-the-fly. However, this new function lacks many of the attributes of the original
function, such as its docstring and its name:
>>> def is admin(f):
def wrapper(*args, **kwargs):
if kwargs.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)

return wrapper

>>> def foobar(username="someone"):
"""Do crazy stuff."""

pass

>>> foobar.func_doc
‘Do crazy stuff.'

>>> foobar. name

bjpcjp

bjpcjp

7.1. CREATING DECORATORS 125

‘foobar'
>>> @is_admin
. def foobar(username="someone"):
“""Do crazy stuff."""

pass

>>> foobar. doc
>>> foobar. name

'wrapper'

Fortunately, the functools module included in Python solves this problem with the
update wrapper function, which copies these attributes to the wrapper itself. The

source code of update wrapper is self-explanatory:

Example 7.2 Source code of functools.update wrapper in Python 3.3

WRAPPER ASSIGNMENTS = (' module ', ' name ', ' qualname ', ' doc ',
' _annotations ')
WRAPPER UPDATES = (' dict ',)
def update wrapper(wrapper,
wrapped,
assigned = WRAPPER ASSIGNMENTS,
updated = WRAPPER UPDATES):
wrapper. wrapped = wrapped
for attr in assigned:
try:
value = getattr(wrapped, attr)
except AttributeError:
pass
else:
setattr(wrapper, attr, value)

for attr in updated:

bjpcjp

bjpcjp

7.1. CREATING DECORATORS 126

getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
Return the wrapper so this can be used as a decorator via partial()

return wrapper

If we take our previous example and use this function to update our wrapper, things

work much more nicely:

>>> def foobar(username="someone"):
n IIIIDO CraZy Stuff." mn

pass

>>> foobar = functools.update wrapper(is admin, foobar)
>>> foobar. name

‘foobar'

>>> foobar. doc

‘Do crazy stuff.'

It can get tedious to use update wrapper manually when creating decorators, so

functools provides a decorator for decorators called wraps:

Example 7.3 Using functools.wraps

import functools

def check is admin(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
if kwargs.get('username') !'= 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)

return wrapper

class Store(object):

bjpcjp

7.1. CREATING DECORATORS 127

@check is admin
def get food(self, username, food):

return self.storage.get(food)

In our examples so far, we’ve always assumed that the decorated function would
have a username passed to it as a keyword argument, but that might not always
be the case. With this in mind, it’s a better idea to build a smarter version of our
decorator that can look at the decorated function’s arguments and pull out what it

needs.

To that end, the inspect module allows us to retrieve a function’s signature and

operate on it:

Example 7.4 Retrieving function arguments using inspect

import functools

import inspect

def check is admin(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
func args = inspect.getcallargs(f, *args, **kwargs)
if func args.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)

return wrapper

@check is admin
def get food(username, type='chocolate'):

return type + nom nom nom!"

The function that does the heavy lifting hereis inspect.getcallargs, which returns

a dictionary containing the names and values of the arguments as key-value pairs.

bjpcjp

bjpcjp

7.2. HOWMETHODS WORK IN PYTHON 128

In our example, this function returns {'username':'admin', 'type':'chocolat
e'}. Thismeansthat ourdecorator doesn’t have to checkiif the username parameter

is a positional or a keyword argument: all it has to do is look for it in the dictionary.

7.2 How methods work in Python

You’ve probably written dozens of methods and thought nothing of them before
now, but to understand what certain decorators do, you need to know how methods

work behind the scenes.

A method is a function that is stored as a class attribute. Let’s have a look at what

happens when we try to access such an attribute directly:

Example 7.5 A Python 2 method

>>> class Pizza(object):
def init (self, size):
self.size = size
def get size(self):

return self.size

>>> Pizza.get size

<unbound method Pizza.get size>

Python 2tellsusthattheget sizeattribute ofthePizzaclassisanunbound method.

Example 7.6 A Python 3 method

>>> class Pizza(object):
def init (self, size):
self.size = size
def get size(self):

return self.size

bjpcjp

7.2. HOWMETHODS WORK IN PYTHON 129

>>> Pizza.get size

<function Pizza.get size at 0x7fdbfdla8b90>

In Python 3, the concept of unbound method has been removed entirely, and we’re

told get sizeis afunction.

The principleis the samein both cases: get _sizeisafunctionthatis nottiedtoany

particular object, and Python will raise an error if we try to call it:

Example 7.7 Calling unbound get_size in Python 2

>>> Pizza.get size()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unbound method get size() must be called with Pizza instance as +«

first argument (got nothing instead)

Example 7.8 Calling unbound get_size in Python 3

>>> Pizza.get size()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: get size() missing 1 required positional argument: 'self’

Python 2 rejects the method call because it’s unbound; Python 3 permits the call,
but complains that we haven’t provided the necessary self argument. This makes
Python 3 a bit more flexible: not only can we pass an arbitrary instance of the class
to the method if we want to, but we can pass any object as long as it has the prop-
erties that the method expects to find:

>>> Pizza.get size(Pizza(42))

42

And it works, just as promised, though it’s not very convenient: we have to refer to

the class every time we want to call one of its methods.

bjpcjp

7.2. HOWMETHODS WORK IN PYTHON 130

So Python goes the extra mile for us by binding a class’s methods to its instances.
In other words, we can access get size from anyPizza, and better still, Python will

automatically pass the object itself to the method’s self parameter:

Example 7.9 Calling bound get size

>>> Pizza(42).get size
<bound method Pizza.get size of < main_ .Pizza object at 0x7f3138827910>>
>>> Pizza(42).get size()

42

As expected, we don’t have to provide any argument to get size, sinceit’s a bound
method: its self argumentis automatically set to our Pizza instance. Here’s a even
better example:

>>> m = Pizza(42).get size

>>> m()

42

You don’t even have to keep a reference to your Pizza object as long as you have a
reference to the bound method. And if you have a reference to a method but you
want to find out which object it’s bound to, you can just check the method’s _ sel
f __ property:

>>> m = Pizza(42).get size

>>> m. self

< main_ .Pizza object at 0x7f3138827910>

>>>m == m. self .get size

True

Obviously, we still have a reference to our object, and we can find it back if we want.

7.3. STATIC METHODS 131

7.3 Static methods

Static methods are methods which belong to a class, but don’t actually operate on

class instances. For example:

Example 7.10 @staticmethod usage

class Pizza(object):
@staticmethod
def mix ingredients(x, y):

return x + vy

def cook(self):

return self.mix ingredients(self.cheese, self.vegetables)

You could write mix_ingredients as a non-static method if you wanted to, but it
would take a self argument that would never actually be used. The @staticmethod

decorator gives us several things:

« Python doesn’t have to instantiate a bound method for each Pizza object we cre-
ate. Bound methods are objects, too, and creating them has a cost. Using a static

method lets us avoid that:

>>> Pizza().cook is Pizza().cook

False

>>> Pizza().mix_ingredients is Pizza.mix ingredients
True

>>> Pizza().mix_ingredients 1is Pizza().mix ingredients

True

« It improves the readability of the code: when we see @staticmethod, we know

that the method does not depend on the state of the object.

7.4. CLASS METHOD 132

« We can override our static methods in subclasses. If we used a mix_ingredie
nts function defined at the top level of our module, a class inheriting from Pizza
wouldn’t be able to change the way we mix ingredients for our pizza without over-

riding the cook method itself.

7.4 Class method

Class methods are methods that are bound directly to a class rather than its in-

stances:

>>> class Pizza(object):
radius = 42
@classmethod
def get radius(cls):

return cls.radius

>>> Pizza.get radius

<bound method type.get radius of <class ' main .Pizza'>>
>>> Pizza().get radius

<bound method type.get radius of <class ' main .Pizza'>>
>>> Pizza.get radius is Pizza().get radius

True

>>> Pizza.get radius()

42

However you choose to access this method, it will be always bound to the class it
is attached to, and its first argument will be the class itself (remember, classes are

objects too!)

Class methods are mostly useful for creating factory methods - methods which in-

stantiate objectsin a specific fashion. If we used a@staticmethod instead, we would

7.5. ABSTRACT METHODS 133

have to hard-code the Pizza class name in our method, making any class inheriting
from Pizza unable to use our factory for its own purposes.
class Pizza(object):

def init (self, ingredients):

self.ingredients = ingredients

@classmethod
def from fridge(cls, fridge):

return cls(fridge.get cheese() + fridge.get vegetables())

In this case, we provide a from fridge factory method that we can pass a Fridge
object to. If we call this method with something like Pizza.from fridge(myfrid
ge), it will return a brand-new Pizza with ingredients taken from what’s available

inmyfridge.

7.5 Abstract methods

An abstract method is a method defined in a base class which may or may not ac-
tually provide any implementation. The simplest way to write an abstract method
in Python is:
class Pizza(object):

@staticmethod

def get radius():

raise NotImplementedError

Any classinheriting from Pizza should implementand overridetheget radius method;

otherwise, calling the method will raise an exception.

This particular way of implementing abstract methods has a drawback: if you write
a class that inherits from Pizza and forget to implement get radius, the error will

only be raised if you try to use that method at runtime.

7.5. ABSTRACT METHODS 134

Example 7.11 Implementing an abstract method

>>> Pizza()
< main_ .Pizza object at 0x7fb747353d90>
>>> Pizza().get radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in get radius

NotImplementedError

If youimplementyour abstract methods using Python’s built-in abc module instead,

you’ll get an early warning if you try to instantiate an object with abstract methods:

Example 7.12 Implementing an abstract method using abc

import abc

class BasePizza(object):

~_metaclass = abc.ABCMeta

@abc.abstractmethod
def get radius(self):

"""Method that should do something."""

When you use abc and its special class, if you try to instantiate a BasePizza or a

class inheriting from it that doesn’t override get radius, you’ll get a TypeError:

>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class BasePizza with abstract methods <«

get radius

7.6. MIXING STATIC, CLASS, AND ABSTRACT METHODS 135

f Note
The metaclass declaration changed between Python 2 and Python 3. The previous ex-

amples only work with Python 2 for this reason.

7.6 Mixing static, class, and abstract methods

Each of these decorators is useful on its own, but the time may come when you’ll

have to use them together. Here are some tips that will help you with that.

An abstract method’s prototype isn’t set in stone. When you actually implement
the method, there’s nothing stopping you from extending the argument list as you

see fit:

import abc

class BasePizza(object):

__metaclass = abc.ABCMeta

@abc.abstractmethod
def get ingredients(self):

"""Returns the ingredient list."""

class Calzone(BasePizza):
def get ingredients(self, with egg=False):
egg = Egg() if with egg else None

return self.ingredients + [egg]

We can define Calzone's methods any way we like, as long as they still support the
interface we define in the BasePizza class. This includes implementing them as

class or static methods:

7.6. MIXING STATIC, CLASS, AND ABSTRACT METHODS

import abc

class BasePizza(object):

__metaclass = abc.ABCMeta

@abc.abstractmethod
def get ingredients(self):

"""Returns the ingredient list."""

class DietPizza(BasePizza):
@staticmethod
def get ingredients():

return None

136

Even though our static get ingredients method doesn’t return a result based on

the object’s state, it still supports our abstract BasePizza class’s interface, so it’s

still valid.

Starting with Python 3 (this won’t work as expected in Python 2; see issue 5867),

it’s also possible to use the @staticmethod and @classmethod decorators on top of

@abstractmethod:

Example 7.13 Mixing @classmethod and @abstractmethod

import abc

class BasePizza(object):

__metaclass = abc.ABCMeta

ingredients = ['cheese']

@classmethod

7.6. MIXING STATIC, CLASS, AND ABSTRACT METHODS 137

@abc.abstractmethod
def get ingredients(cls):
"""Returns the ingredient list."""

return cls.ingredients

Notethatdefiningget ingredientsasaclass methodinBasePizza likethisdoesn’t
force its subclasses to define it as a class method as well. The same would apply if
we’d defined it as a static method: there’s no way to force subclasses to implement

abstract methods as a specific kind of method.

But wait - here we have an implementation in an abstract method. Can we do that?
Yep - Python doesn’t have a problem with it! Unlike Java, you can put code in your

abstract methods and call it using super():

Example 7.14 Using super() with abstract methods

import abc

class BasePizza(object):

__metaclass = abc.ABCMeta

default ingredients = ['cheese']

@classmethod
@abc.abstractmethod
def get ingredients(cls):
"""Returns the default ingredient list."""

return cls.default ingredients

class DietPizza(BasePizza):
def get ingredients(self):

return [Egg()] + super(DietPizza, self).get ingredients()

7.7. THE TRUTHABOUT SUPER 138

In this example, every Pizza you make that inherits from BasePizza will have to
override the get ingredients method, but it will have access to the base class’s

default mechanism for getting the ingredients list.

7.7 The truth about super

From the earliest days of Python, developers have been able to use both single and
multiple inheritance to extend their classes. However, many developers don’t seem
to understand how these mechanisms actually work, and the associated super()

method that is associated with it.

Thereis pros and cons of single and multiple inheritance, composition or even duck
typing would be out of topic for this book, though if you are not familiar with these
notions | suggest that you read about them to have a view - and build your own

opinion.

Multiple inheritance is still used in many places, and especially in code where the
mixin pattern is involved. That’s why it’s still important to know about it, and be-

cause it is part of Python’s core.

t Note
A mixin is a class that inherits from two or more other classes, combining their features

together.

As you should know by now, classes are objects in Python. The construct used to
create a class is a special statement that you should be well familiar with: class

classname(expression of inheritance).

The part in parentheses is a Python expression that returns the list of class objects
to be used as the class’s parents. Normally you’d specify them directly, but you

could also write something like:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

7.7. THE TRUTHABOUT SUPER 139

>>> def parent():

return object

>>> class A(parent()):

pass

>>> A.mro()

[<class ' main .A'>, <type 'object'>]

And it works as expected: class Ais defined with object asits parent class. The class
method mro () returns the method resolution order used to resolve attributes. The
current MRO system was first implemented in Python 2.3, and its internal workings

are described in the Python 2.3 release notes.

You already know that the canonical way to call a method in a parent class is by
using the super() function, but what you probably don’t know is that super() is
actually a constructor, and you instantiate a super object each time you call it. It
takes either one or two arguments: the first argument is a class, and the second

argument is either a subclass or an instance of the first argument.

The object returned by the constructor functions as a proxy for the parent classes
of the first argument. It has its own getattribute method that iterates over
the classes in the MRO list and returns the first matching attribute it finds:
>>> class A(object):

bar = 42

def foo(self):

pass

>>> class B(object):

bar = 0

bjpcjp

bjpcjp

7.7. THE TRUTHABOUT SUPER 140

>>> class C(A, B):

xXyz = 'abc

>>> C.mro()

[<class ' main_.C'>, <class ' main_.A'>, <class ' main_.B'>, <type ' «
object'>]

>>> super(C, C()).bar

42

>>> super(C, C()).foo

<bound method C.foo of < main .C object at 0x7f0299255a90>>

>>> super(B). self

>>> super(B, B()). self

< main_.B object at

When requesting an attribute of the super object of aninstance of C, it walks through

the MRO list and return the attribute from the first class having it.

In the previous example, we used a bound super object; i.e., we called super with
two arguments. If we call super() with only one argument, it returns an unbound

super object instead:

>>> super(C)

<super: <class 'C'>, NULL>

Since this object is unbound, you can’t use it to access class attributes:

>>> super(C).foo
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'super' object has no attribute 'foo'
>>> super(C).bar
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

7.7. THE TRUTHABOUT SUPER 141

AttributeError: 'super' object has no attribute 'bar’
>>> super(C).xyz
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'super' object has no attribute 'xyz'

At first glance, it might seem like this kind of super object is useless, but the su-
per class implements the descriptor protocol (i.e. get) in a way that makes
unbound super objects useful as class attributes:

>>> class D(C):

sup = super(C)

>>> D().sup

<super: <class 'C'>, <D object>>

>>> D().sup.foo

<bound method D.foo of < main .D object at 0x7f0299255bd0>>
>>> D().sup.bar

42

The unbound super object’s get method is called using the instance and the
attribute name as arguments (super(C). get (D(), 'foo')), allowingitto find

and resolve foo.

Note

Even if you've never heard of the descriptor protocol, you've probably used it through
the @property decorator without knowing it. It's the mechanism in Python that allows
an object that's stored as an attribute to return something other than itself. This protocol
isn’t covered in this book, but you can find out more about it in the Python data model

documentation.

There are plenty of situations where using super can be tricky, such as handling

bjpcjp

7.7. THE TRUTHABOUT SUPER 142

different method signatures along the inheritance chain. Unfortunately, there’s no
silver bullet for that, apart from using tricks like having all your methods accept

their arguments using *args, **kwargs.

In Python 3, super () picked up a little bit of magic: it can now be called from within
a method without any arguments. When no arguments are passed to super(), it
automatically searches the stack frame for them:
class B(A):

def foo(self):

super().foo()

super is the standard way of accessing parent attributes in subclasses, and you
should always use it. It allows cooperative calls of parent methods without any sur-
prises, such as parent methods not being called or being called twice when using

multiple inheritance.

bjpcjp

