8 Functional programming
e

Functional programming might not be the first thing you think of when you think of
Python, but the support is there, and it’s quite extensive. Many Python developers
don’tseem to realize this, though, whichis a shame: with few exceptions, functional

programming allows you to write more concise and efficient code.

When you write code using functional style, your functions are designed not to have
side effects: they take an input and produce an output without keeping state or
modifying anything not reflected in the return value. Functions thatfollow thisideal

are referred to as purely functional.

A non-pure function
def remove last item(mylist):
"""Removes the last item from a list."""

mylist.pop(-1) # This modifies mylist

A pure function

def butlast(mylist):
"""Like butlast in Lisp; returns the list without the last element."""

return mylist[:-1] # This returns a copy of mylist

The practical advantages of functional programming include:

- Formal provability; admittedly, this is a pure theoretical advantages, nobody is

going to mathematically prove a Python program.

8.1. GENERATORS 144

« Modularity; writing functionally forces a certain degree of separation in solving
your problems and eases reuse in other contexts.

« Brevity. Functional programming is often less verbose than other paradigms.

« Concurrency. Purely functional functions are thread-safe and can run concur-
rently. While it’s not yet the case in Python, some functional languages do this

automatically, which can be a big help if you ever need to scale your application.

- Testability. It’s a simple matter to test a functional program: all you need is a set

of inputs and an expected set of outputs. They are idempotent.

Tip

If you want to get serious about functional programming, take my advice: take a break
from Python and learn Lisp. | know it might sound strange to talk about Lisp in a Python
book, but playing with Lisp for several years is what taught me how to "think functional.”
You simply won’t develop the thought processes necessary to make full use of functional
programming if all your experience comes from imperative and object-oriented program-
ming. Lisp isn’t purely functional itself, but there’s more focus on functional programming

than you'll find in Python.

8.1 Generators

A generatoris an object that returns a value on each call of its next () method until it
raises StopIteration. They were first introduced in PEP 255 and offer an easy way

to create objects that implement the iterator protocol.

Allyou have to do to create a generator is write a normal Python function that con-
tains a yield statement. Python will detect the use of yield and tag the function as
a generator. When the function’s execution reaches a yield statement, it returns a

value as with a return statement, but with one notable difference: the interpreter

8.1. GENERATORS 145

will save a stack reference, which will be used to resume the function’s execution

the next time next is called.

Creating a generator

>> def mygenerator():
yield 1
yield 2
yield 'a’

>>> mygenerator()

<generator object mygenerator at 0x10d77fa50>
>>> g = mygenerator()

>>> next(q)

1

>>> next(g)

2

>>> next(g)

a
>>> next(g)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

You can check whether a function is a generator or not yourself by using inspect.
isgeneratorfunction:
>>> import inspect

>>> def mygenerator():

yield 1

>>> inspect.isgeneratorfunction(mygenerator)

True

bjpcjp

8.1. GENERATORS 146

>>> inspect.isgeneratorfunction(sum)

False

Reading the source code of inspect.isgeneratorfunction gives us some insight

into the tagging mentioned earlier:

Source code of inspect.isgeneratorfunction

def isgeneratorfunction(object):

"""Return true if the object is a user-defined generator function.
Generator function objects provides same attributes as functions.

See help(isfunction) for attributes listing."""
return bool((isfunction(object) or ismethod(object)) and

object.func code.co flags & CO GENERATOR)

Python 3 provides another useful function, inspect.getgeneratorstate:

>>> import inspect
>>> def mygenerator():

yield 1

>>> gen = mygenerator()

>>> gen

<generator object mygenerator at 0x7f94b44fec30>
>>> inspect.getgeneratorstate(gen)

'GEN CREATED'

>>> next(gen)

1

>>> inspect.getgeneratorstate(gen)
"GEN_SUSPENDED'

>>> next(gen)

bjpcjp

bjpcjp

8.1. GENERATORS 147

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

>>> inspect.getgeneratorstate(gen)

"GEN_CLOSED'

This function gives us the current state of a generator, allowing us to determine
whether it’s waiting to be run for the first time (GEN_CREATED), currently being exe-
cuted by the interpreter (GEN_RUNNING), waiting to be resumed by a call to next ()
(GEN_SUSPENDED), or finished running (GEN_CLOSED).

In Python, generators are built by keeping a reference of the stack when a function
yield something, resuming this stack when needed, i.e. when a call to next() is

executed again.

When you iterate over any kind of data, the obvious approach is to build the entire
list first, which is often wasteful in terms of memory consumption. Say we want to
find the first number between 1 and 10,000,000 that’s equal to 50,000. Sounds easy,
doesn’t it? Let’s make this a challenge. We’ll run Python with a memory constraint
of 128 MB:

$ ulimit -v 131072

$ python
>>> a = list(range(10000000))

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

MemoryError

Uh-oh. Turns out we can’t build a list of ten million items with only 128 MB of mem-

ory!

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

8.1. GENERATORS 148

f Warning
In Python 3, range() returns a generator; to get a generator in Python 2, you have to

use xrange () instead. (This function doesn't exist in Python 3, since it's redundant.)

Let’s try using a generator instead:

$ python
>>> for value in xrange(10000000):

if value == 50000:
print("Found it")

break

Found it

This time, our program executes without issue. The range() function returns an
iterable object that dynamically generates our list of integers. Better still, since we
were only interested in the 50,000th number, the generator only had to generate
50,000 numbers.

Generators allow you to handle large data sets with minimal consumption of mem-
ory and processing cycles by generating values on-the-fly. Whenever you need to
work with a huge number of values, generators can help ensure you handle them

efficiently.

yield also has a less commonly used feature: it can return a value like a function

call. This allows us to pass a value to a generator by calling its send () method:

Example 8.1 yield returning a value

def shorten(string list):
length = len(string list[0])
for s in string list:

length = yield s[:length]

bjpcjp

bjpcjp

8.1. GENERATORS 149

mystringlist = ['loremipsum', 'dolorsit', 'ametfoobar']
shortstringlist = shorten(mystringlist)
result = []
try:
s = next(shortstringlist)
result.append(s)
while True:
number of vowels = len(filter(lambda letter: letter in ‘'aeiou', s))
Truncate the next string depending
on the number of vowels in the previous one
s = shortstringlist.send(number of vowels)
result.append(s)
except StopIteration:

pass

In this example, we’ve written a function called shorten that takes a list of strings
and returns a list consisting of those same strings, only truncated. The length of
each string is determined by the number of vowels in the previous string: "loremip-
sum" has four vowels, so the second value returned by the generator will be the
first four letters of "dolorsit"; "dolo" has only two vowels, so "ametfoobar" will
be truncated to its first two letters ("am"). The generator then stops and raises
StopIteration. Our generator thus returns:

['loremipsum', ‘'dolo', 'am']

Using yield and send() in this fashion allows Python generators to function like
coroutines seen in Lua and other languages.

8.2. LIST COMPREHENSIONS 150

Tip
PEP 289 introduced generator expressions, making it possible to build one-line generators
using a syntax similar to list comprehension:
f >>> (x.upper() for x in ['hello', 'world'])
<generator object <genexpr> at 0x7ffab3832fa0>
>>> gen = (x.upper() for x in ['hello', 'world'])

>>> list(gen)

['HELLO', 'WORLD']

8.2 List comprehensions

List comprehension, or listcomp for short, allows you to define a list’s contents in-
line with its declaration:

Without list comprehension
>>> X = []
>>> for i in (1, 2, 3):

X.append(1i)

>>> X

(1, 2, 3]

With list comprehension

>>> x = [i for i in (1, 2, 3)]
>>> X

[1, 2, 3]

You can use multiple for statements together and use if statements to filter out

items:

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 151

x = [word.capitalize()
for line in ("hello world?", "world!", "or not")
for word in line.split()
if not word.startswith("or")]

>>> X

['Hello', 'World?', 'World!', 'Not']

Using list comprehension rather than for loops is a neat way to quickly define lists.
Since we’re still talking about functional programming, it’s worth noting that lists
built through list comprehension can’t rely on the program’s state. ' This generally
makes them more concise and easier to read than lists made without list compre-
hension.

Note

There’s also syntax for building dictionaries or sets in the same fashion:

>>> {x:x.upper() for x in ['hello', 'world']}
{'world': 'WORLD', 'hello': 'HELLO'}

>>> {x.upper() for x in ['hello', 'world']}

set(['WORLD', 'HELLO'])

Note that this only works in Python 2.7 and onward.

8.3 Functional functions functioning

Python includes a number of tools for functional programming. These built-in func-

tions cover the basics:

« map(function, iterable) applies functiontoeachiteminiterable andreturns

either a list in Python 2 or an iterable map object in Python 3:

'Technically they can, but that’s really not how they’re supposed to work.

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 152

map usage in Python 3

>>> map(lambda x: x + "bzz!", ["I think", "I'm good"])

<map object at O0x7fe710labddo>

>>> list(map(lambda x: x + "bzz!", ["I think", "I'm good"]))
['I thinkbzz!', "I'm goodbzz!"]

o filter(function or None, iterable) filters the items in iterable based on
the result returned by function, and returns either a list in Python 2, or better, an

iterable filter object in Python 3:

Example 8.2 filter usage in Python 3

>>> filter(lambda x: x.startswith("I "), ["I think", "I'm good"])
<filter object at 0x7f9a0d636dd0o>

>>> list(filter(lambda x: x.startswith("I "), ["I think", "I'm good"]))
['I think']

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 153

Tip

You can write a function equivalent to filter or map using generators and list compre-
hension:

Equivalent of map using list comprehension

>>> (X + "bzz!" for x in ["I think", "I'm good"])

<generator object <genexpr> at 0x7f9a0d697dcO>

>>> [x + "bzz!" for x in ["I think", "I'm good"]]

['I thinkbzz!', "I'm goodbzz!"]

Equivalent of filter using list comprehension

>>> (x for x in ["I think", "I'm good"] if x.startswith("I "))
<generator object <genexpr> at 0x7f9a0d697dc0O>
>>> [x for x in ["I think", "I'm good"] if x.startswith("I ")]

['T think']

Using generators like this in Python 2 will give you an iterable object rather than a list, just

like the map and filter functions in Python 3.

« enumerate(iterable[, start]) returnsan iterable enumerate object that yields
a sequence of tuples, each consisting of an integer index (starting with start, if
provided) and the corresponding item in iterable. It’s useful when you need to
write code that refers to array indexes. For example, instead of writing this:

i=0

while i < len(mylist):

print("Item %d: %s" % (i, mylist[i]))

i+=1

You could write this:

for i, item in enumerate(mylist):

print("Item %d: %s" % (i, item))

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 154

« sorted(iterable, key=None, reverse=False) returns a sorted version of itera
ble. The key argument allows you to provide a function that returns the value to

sort on.

« any(iterable) and all(iterable) both return a boolean depending on the val-

ues returned by iterable. These functions are equivalent to:

def all(iterable):
for x in iterable:
if not x:
return False

return True

def any(iterable):
for x in iterable:
if x:
return True

return False

These functions are useful for checking whether any or all of the valuesin aniterable
satisfy a given condition:
mylist = [0, 1, 3, -1]
if all(map(lambda x: x > 0, mylist)):
print("All items are greater than 0")
if any(map(lambda x: x > 0, mylist)):

print("At least one item is greater than 0")

e zip(iterl [,iter2 [...1]) takes multiple sequences and combines them into
tuples. It’s useful when you need to combine a list of keys and a list of values into
a dict. Like the other functions described above, it returns a list in Python 2 and

an iterable in Python 3:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING

>>> keys = ["foobar", "barzz", "ba!"]

>>> map(len, keys)

<map object at 0x7fcl1l686100d0>

>>> zip(keys, map(len, keys))

<zip object at 0x7fcl6860d440>

>>> list(zip(keys, map(len, keys)))
[('foobar', 6), ('barzz', 5), ('ba'!', 3)]
>>> dict(zip(keys, map(len, keys)))
{'foobar': 6, 'barzz': 5, 'ba!': 3}

155

You might have noticed by now how the return types differ between Python 2 and

Python 3. Most of Python’s purely functional built-in functions return a list rather

than an iterable in Python 2, making them less memory-efficient than their Python

3.xequivalents. If you’re planning to write code using these functions, keep in mind

that you’ll get the most benefit out of them in Python 3. If you’re stuck to Python 2,

don’t despair yet: the itertools module from the standard library provides an it-

erator based version of many of these functions (itertools.izip, itertoolz. imap,

itertools.ifilter, etc).

There’s still one important tool missing from this list, however. One common task

when working with lists is finding the first item that satisfies a specific condition.

This is usually accomplished with a function like this:

def first positive number(numbers):
for n in numbers:
if n > 0:

return n

We can also write this in functional style:

def first(predicate, items):

for item in items:

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 156

if predicate(item):

return item

first(lambda x: x >0, [-1, 0, 1, 2])

Or more concisely:

Less efficient

list(filter(lambda x: x > 0, [-1, 0, 1, 2]))[0] @

Efficient but for Python 3

next(filter(lambda x: x >0, [-1, 0, 1, 2]))

Efficient but for Python 2
next(itertools.ifilter(lambda x: x > 0, [-1, 0, 1, 2]))

® Note that this may raise an IndexError if no items satisfy the condition, causing

list(filter()) toreturn an empty list.

Instead of writing this same function in every program you make, you can include

the small but very useful Python package first:

Example 8.3 Using first

>>> from first import first

>>> first([0, False, None, [], (), 421])
42

>>> first([-1, 0, 1, 2])

>>> first([-1, 0, 1, 2], key=lambda x: x > 0)

The key argument can be used to provide a function which receives each item as an

argument and returns a boolean indicating whether it satisfies the condition.

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 157

You’ll notice that we’ve used lambda in a good portion of the examples so far in this
chapter. lambda was actually added to Python in the first place to facilitate func-
tional programming functions such asmap () and filter(), which otherwise would
have required writing an entirely new function every time you wanted to check a
different condition:

import operator

from first import first

def greater than zero(number):

return number > 0

first([-1, O, 1, 2], key=greater than zero)

This code works identically to the previous example, butit’s a good deal more cum-
bersome: if we wanted to get the first number in the sequence that’s greater than,
say, 42, then we’d need to def an appropriate function rather than definingitin-line
with our call to first.

But despite its usefulness in helping us avoid situations like this, lambda still has
its problems. First and most obviously, we can’t pass a key function using lambda
if it would require more than a single line of code. In this event, we’re back to the
cumbersome pattern of writing new function definitions for each key we need. Or

are we?

functools.partial is our first step towards replacing lambda with a more flexible
alternative. Itallows usto create awrapperfunction with a twist: rather than chang-
ing the behavior of a function, it instead changes the arguments it receives:

from functools import partial

from first import first

def greater than(number, min=0):

bjpcjp

bjpcjp

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 158

return number > min

first([-1, 0, 1, 2], key=partial(greater than, min=42))

Our new greater than function works just like the old greater than zero by de-
fault, but now we can specify the value we want to compare our numbers to. In this
case, we pass functools.partial our function and the value we want for min, and
we get back a new function that has min set to 42, just like we want. In other words,
we can write a function and use functools.partial to customize what it does to

our needs in any given situation.

This is still a couple lines more than we strictly need in this case, though. All we’re
doing in this example is comparing two numbers; what if Python had built-in func-
tions for these kinds of comparisons? As it turns out, the operator module has just
what we’re looking for:

import operator

from functools import partial

from first import first

first([-1, 0, 1, 2], key=partial(operator.le, 0))

Here we see that functools.partial also works with positional arguments. In this
case, operator.le(a, b) takestwo numbers and returns whether the first is less
than or equal to the second: the 0 we pass to functools.partial gets sentto a, and
the argument passed to the function returned by functools.partial gets sent to
b. So this works identically to our initial example, without using lambda or defining

any additional functions.

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 159

Note

functools.partial is typically useful in replacement of lambda, and is to be consid-
ered as a superior alternative. lambda is to be considered an anomaly in Python lan-
guage 9, due to its limited body size of one line long single expression. On the other hand,

functools.partial is built as a nice wrapper around the original function.

9And was once even planned to be removed in Python 3, but finally escaped from its fate.

The itertools module in the Python Standard Library also provides a bunch of use-
ful functions that you’ll want to keep in mind. I’'ve seen too many programmers end
up writing their own versions of these functions even though Python itself provides

them out-of-the-box:

« chain(*iterables) iterates over multiple iterables one after each other without

building an intermediate list of all items.

« combinations(iterable, r) generatesall combination of length r fromthe given

iterable.

« compress(data, selectors) appliesaboolean mask from selectorstodataand
returns only the values from data where the corresponding element of selectors

is true.

« count(start, step) generatesanendlesssequence ofvalues, startingfromstart

and incrementing by step with each call.
« cycle(iterable) loops repeatedly over the valuesin iterable.

« dropwhile(predicate, iterable) filterselementsofaniterablestarting fromthe

beginning until predicate is false.

« groupby(iterable, keyfunc) creates an iterator groupingitems by the result re-
turned by the keyfunc function.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

8.3. FUNCTIONAL FUNCTIONS FUNCTIONING 160

« permutations(iterable[, rl) returns successive r-length permutations of the

itemsin iterable.

 product(*iterables) returns an iterable of the cartesian product of iterables

without using a nested for loop.

« takewhile(predicate, iterable) returns elements of an iterable starting from

the beginning until predicate is false.

These functions are particularly useful in conjunction with the operator module.
When used together, itertools and operator can handle most situations that pro-

grammers typically rely on lambda for:

Example 8.4 Using the operator module with itertools.groupby

>>> import itertools

>>> a = [{'foo': 'bar'}, {'foo': 'bar', 'x': 42}, {'foo': 'baz', 'y': 43}]

>>> import operator

>>> list(itertools.groupby(a, operator.itemgetter('foo')))

[('bar', <itertools. grouper object at 0xb000d0>), ('baz', <itertools. <«
_grouper object at 0xb00110>)]

>>> [(key, list(group)) for key, group in list(itertools.groupby(a, <«
operator.itemgetter('foo')))]

[(‘bar', [1), ('baz', [{'y': 43, 'foo': 'baz'}])]

In this case, we could have also written lambda x:x['foo'], butusingoperator lets

us avoid having to use lambda at all.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

