
Ǜ Functional programming

Functional programmingmight not be the first thing ⁴ou think of when ⁴ou think of

P⁴thon, but the support is there, and it’s quite extensive. Man⁴ P⁴thon developers

don’t seemto reali⁵e this, though,which is a shame: with fewexceptions, functional

programming allows ⁴ou to write more concise and efficient code.

When ⁴ouwrite codeusing functional st⁴le, ⁴our functions are designednot to have

side effects: the⁴ take an input and produce an output without keeping state or

modif⁴ingan⁴thingnot reflected in the returnvalue. Functions that follow this ideal

are referred to as purely functional:

A non-pure function
def remove_last_item(mylist):

"""Removes the last item from a list."""

mylist.pop(-1) # This modifies mylist

A pure function
def butlast(mylist):

"""Like butlast in Lisp; returns the list without the last element."""

return mylist[:-1] # This returns a copy of mylist

The practical advantages of functional programming include:

• Formal provability; admittedl⁴, this is a pure theoretical advantages, nobod⁴ is

going to mathematicall⁴ prove a P⁴thon program.

Ǜ.ǔ. GENERATORS ǔǗǗ

• Modularity; writing functionall⁴ forces a certain degree of separation in solving

⁴our problems and eases reuse in other contexts.

• Brevity. Functional programming is oten less verbose than other paradigms.

• Concurrency. Purel⁴ functional functions are thread-safe and can run concur-

rentl⁴. While it’s not ⁴et the case in P⁴thon, some functional languages do this

automaticall⁴, which can be a big help if ⁴ou ever need to scale ⁴our application.

• Testability. It’s a simplematter to test a functional program: all ⁴ou need is a set

of inputs and an expected set of outputs. The⁴ are idempotent.

Tip

If you want to get serious about functional programming, take my advice: take a break

from Python and learn Lisp. I know it might sound strange to talk about Lisp in a Python

book, but playing with Lisp for several years is what taught me how to "think functional."

You simply won’t develop the thought processes necessary to make full use of functional

programming if all your experience comes from imperative and object-oriented program-

ming. Lisp isn’t purely functional itself, but there’s more focus on functional programming

than you’ll find in Python.

8.1 Generators

Agenerator is anobject that returns a valueoneach call of its next()methoduntil it

raises StopIteration. The⁴ were first introduced in PEP Ǖǘǘ and offer an eas⁴ wa⁴

to create objects that implement the iterator protocol.

All ⁴ou have to do to create a generator is write a normal P⁴thon function that con-

tains a yield statement. P⁴thonwill detect the use of yield and tag the function as

a generator. When the function’s execution reaches a yield statement, it returns a

value as with a return statement, but with one notable difference: the interpreter

Ǜ.ǔ. GENERATORS ǔǗǘ

will save a stack reference, which will be used to resume the function’s execution

the next time next is called.

Creating a generator

>> def mygenerator():

... yield 1

... yield 2

... yield 'a'

...

>>> mygenerator()

<generator object mygenerator at 0x10d77fa50>

>>> g = mygenerator()

>>> next(g)

1

>>> next(g)

2

>>> next(g)

'a'

>>> next(g)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

You can check whether a function is a generator or not ⁴ourself b⁴ using inspect.

isgeneratorfunction:

>>> import inspect

>>> def mygenerator():

... yield 1

...

>>> inspect.isgeneratorfunction(mygenerator)

True

bjpcjp

Ǜ.ǔ. GENERATORS ǔǗǙ

>>> inspect.isgeneratorfunction(sum)

False

Reading the source code of inspect.isgeneratorfunction gives us some insight

into the tagging mentioned earlier:

Source code of inspect.isgeneratorfunction

def isgeneratorfunction(object):

"""Return true if the object is a user-defined generator function.

Generator function objects provides same attributes as functions.

See help(isfunction) for attributes listing."""

return bool((isfunction(object) or ismethod(object)) and

object.func_code.co_flags & CO_GENERATOR)

P⁴thon ǖ provides another useful function, inspect.getgeneratorstate:

>>> import inspect

>>> def mygenerator():

... yield 1

...

>>> gen = mygenerator()

>>> gen

<generator object mygenerator at 0x7f94b44fec30>

>>> inspect.getgeneratorstate(gen)

'GEN_CREATED'

>>> next(gen)

1

>>> inspect.getgeneratorstate(gen)

'GEN_SUSPENDED'

>>> next(gen)

bjpcjp

bjpcjp

Ǜ.ǔ. GENERATORS ǔǗǚ

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

>>> inspect.getgeneratorstate(gen)

'GEN_CLOSED'

This function gives us the current state of a generator, allowing us to determine

whether it’s waiting to be run for the first time (GEN_CREATED), currentl⁴ being exe-

cuted b⁴ the interpreter (GEN_RUNNING), waiting to be resumed b⁴ a call to next()

(GEN_SUSPENDED), or finished running (GEN_CLOSED).

In P⁴thon, generators are built b⁴ keeping a reference of the stack when a function

yield something, resuming this stack when needed, i.e. when a call to next() is

executed again.

When ⁴ou iterate over an⁴ kind of data, the obvious approach is to build the entire

list first, which is oten wasteful in terms of memor⁴ consumption. Sa⁴ we want to

find the first number between ǔ and ǔǓ,ǓǓǓ,ǓǓǓ that’s equal to ǘǓ,ǓǓǓ. Sounds eas⁴,

doesn’t it? Let’s make this a challenge. We’ll run P⁴thon with a memor⁴ constraint

of ǔǕǛ MB:

$ ulimit -v 131072

$ python

>>> a = list(range(10000000))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

MemoryError

Uh-oh. Turns out we can’t build a list of tenmillion items with onl⁴ ǔǕǛMB ofmem-

or⁴!

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǜ.ǔ. GENERATORS ǔǗǛ

Warning

In Python 3, range() returns a generator; to get a generator in Python 2, you have to

use xrange() instead. (This function doesn’t exist in Python 3, since it’s redundant.)

Let’s tr⁴ using a generator instead:

$ python

>>> for value in xrange(10000000):

... if value == 50000:

... print("Found it")

... break

...

Found it

This time, our program executes without issue. The range() function returns an

iterable object that d⁴namicall⁴ generates our list of integers. Better still, since we

were onl⁴ interested in the ǘǓ,ǓǓǓth number, the generator onl⁴ had to generate

ǘǓ,ǓǓǓ numbers.

Generators allow ⁴ou to handle large data sets withminimal consumption ofmem-

or⁴ and processing c⁴cles b⁴ generating values on-the-fl⁴. Whenever ⁴ou need to

work with a huge number of values, generators can help ensure ⁴ou handle them

efficientl⁴.

yield also has a less commonl⁴ used feature: it can return a value like a function

call. This allows us to pass a value to a generator b⁴ calling its send()method:

Example Ǜ.ǔ yield returning a value

def shorten(string_list):

length = len(string_list[0])

for s in string_list:

length = yield s[:length]

bjpcjp

bjpcjp

Ǜ.ǔ. GENERATORS ǔǗǜ

mystringlist = ['loremipsum', 'dolorsit', 'ametfoobar']

shortstringlist = shorten(mystringlist)

result = []

try:

s = next(shortstringlist)

result.append(s)

while True:

number_of_vowels = len(filter(lambda letter: letter in 'aeiou', s))

Truncate the next string depending

on the number of vowels in the previous one

s = shortstringlist.send(number_of_vowels)

result.append(s)

except StopIteration:

pass

In this example, we’ve written a function called shorten that takes a list of strings

and returns a list consisting of those same strings, onl⁴ truncated. The length of

each string is determined b⁴ the number of vowels in the previous string: "loremip-

sum" has four vowels, so the second value returned b⁴ the generator will be the

first four letters of "dolorsit"; "dolo" has onl⁴ two vowels, so "ametfoobar" will

be truncated to its first two letters ("am"). The generator then stops and raises

StopIteration. Our generator thus returns:

['loremipsum', 'dolo', 'am']

Using yield and send() in this fashion allows P⁴thon generators to function like

coroutines seen in Lua and other languages.

Ǜ.Ǖ. LIST COMPREHENSIONS ǔǘǓ

Tip

PEP 289 introduced generator expressions, making it possible to build one-line generators

using a syntax similar to list comprehension:

>>> (x.upper() for x in ['hello', 'world'])

<generator object <genexpr> at 0x7ffab3832fa0>

>>> gen = (x.upper() for x in ['hello', 'world'])

>>> list(gen)

['HELLO', 'WORLD']

8.2 List comprehensions

List comprehension, or listcomp for short, allows ⁴ou to define a list’s contents in-

line with its declaration:

Without list comprehension

>>> x = []

>>> for i in (1, 2, 3):

... x.append(i)

...

>>> x

[1, 2, 3]

With list comprehension

>>> x = [i for i in (1, 2, 3)]

>>> x

[1, 2, 3]

You can use multiple for statements together and use if statements to filter out

items:

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǔ

x = [word.capitalize()

for line in ("hello world?", "world!", "or not")

for word in line.split()

if not word.startswith("or")]

>>> x

['Hello', 'World?', 'World!', 'Not']

Using list comprehension rather than for loops is a neat wa⁴ to quickl⁴ define lists.

Since we’re still talking about functional programming, it’s worth noting that lists

built through list comprehension can’t rel⁴ on the program’s state. ¹ This generall⁴

makes them more concise and easier to read than lists made without list compre-

hension.

Note

There’s also syntax for building dictionaries or sets in the same fashion:

>>> {x:x.upper() for x in ['hello', 'world']}

{'world': 'WORLD', 'hello': 'HELLO'}

>>> {x.upper() for x in ['hello', 'world']}

set(['WORLD', 'HELLO'])

Note that this only works in Python 2.7 and onward.

8.3 Functional functions functioning

P⁴thon includes a number of tools for functional programming. These built-in func-

tions cover the basics:

• map(function, iterable) applies function to each item in iterable and returns

either a list in P⁴thon Ǖ or an iterable map object in P⁴thon ǖ:
¹Technicall⁴ the⁴ can, but that’s reall⁴ not how the⁴’re supposed to work.

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǕ

map usage in Python ǖ

>>> map(lambda x: x + "bzz!", ["I think", "I'm good"])

<map object at 0x7fe7101abdd0>

>>> list(map(lambda x: x + "bzz!", ["I think", "I'm good"]))

['I thinkbzz!', "I'm goodbzz!"]

• filter(function or None, iterable) filters the items in iterable based on

the result returned b⁴ function, and returns either a list in P⁴thon Ǖ, or better, an

iterable filter object in P⁴thon ǖ:

Example Ǜ.Ǖ filter usage in P⁴thon ǖ

>>> filter(lambda x: x.startswith("I "), ["I think", "I'm good"])

<filter object at 0x7f9a0d636dd0>

>>> list(filter(lambda x: x.startswith("I "), ["I think", "I'm good"]))

['I think']

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǖ

Tip

You can write a function equivalent to filter or map using generators and list compre-

hension:

Equivalent of map using list comprehension

>>> (x + "bzz!" for x in ["I think", "I'm good"])

<generator object <genexpr> at 0x7f9a0d697dc0>

>>> [x + "bzz!" for x in ["I think", "I'm good"]]

['I thinkbzz!', "I'm goodbzz!"]

Equivalent of filter using list comprehension

>>> (x for x in ["I think", "I'm good"] if x.startswith("I "))

<generator object <genexpr> at 0x7f9a0d697dc0>

>>> [x for x in ["I think", "I'm good"] if x.startswith("I ")]

['I think']

Using generators like this in Python 2 will give you an iterable object rather than a list, just

like the map and filter functions in Python 3.

• enumerate(iterable[, start]) returns an iterable enumerate object that ⁴ields

a sequence of tuples, each consisting of an integer index (starting with start, if

provided) and the corresponding item in iterable. It’s useful when ⁴ou need to

write code that refers to arra⁴ indexes. For example, instead of writing this:

i = 0

while i < len(mylist):

print("Item %d: %s" % (i, mylist[i]))

i += 1

You could write this:

for i, item in enumerate(mylist):

print("Item %d: %s" % (i, item))

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǗ

• sorted(iterable, key=None, reverse=False) returns a sorted version of itera

ble. The key argument allows ⁴ou to provide a function that returns the value to

sort on.

• any(iterable) and all(iterable) both return a boolean depending on the val-

ues returned b⁴ iterable. These functions are equivalent to:

def all(iterable):

for x in iterable:

if not x:

return False

return True

def any(iterable):

for x in iterable:

if x:

return True

return False

These functionsareuseful for checkingwhetheran⁴orall of thevalues inan iterable

satisf⁴ a given condition:

mylist = [0, 1, 3, -1]

if all(map(lambda x: x > 0, mylist)):

print("All items are greater than 0")

if any(map(lambda x: x > 0, mylist)):

print("At least one item is greater than 0")

• zip(iter1 [,iter2 [...]]) takes multiple sequences and combines them into

tuples. It’s useful when ⁴ou need to combine a list of ke⁴s and a list of values into

a dict. Like the other functions described above, it returns a list in P⁴thon Ǖ and

an iterable in P⁴thon ǖ:

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǘ

>>> keys = ["foobar", "barzz", "ba!"]

>>> map(len, keys)

<map object at 0x7fc1686100d0>

>>> zip(keys, map(len, keys))

<zip object at 0x7fc16860d440>

>>> list(zip(keys, map(len, keys)))

[('foobar', 6), ('barzz', 5), ('ba!', 3)]

>>> dict(zip(keys, map(len, keys)))

{'foobar': 6, 'barzz': 5, 'ba!': 3}

You might have noticed b⁴ now how the return t⁴pes differ between P⁴thon Ǖ and

P⁴thon ǖ. Most of P⁴thon’s purel⁴ functional built-in functions return a list rather

than an iterable in P⁴thon Ǖ, making them lessmemor⁴-efficient than their P⁴thon

ǖ.x equivalents. If ⁴ou’re planning towrite code using these functions, keep inmind

that ⁴ou’ll get themost benefit out of them in P⁴thon ǖ. If ⁴ou’re stuck to P⁴thon Ǖ,

don’t despair ⁴et: the itertoolsmodule from the standard librar⁴ provides an it-

erator based version ofman⁴ of these functions (itertools.izip, itertoolz.imap,

itertools.ifilter, etc).

There’s still one important tool missing from this list, however. One common task

when working with lists is finding the first item that satisfies a specific condition.

This is usuall⁴ accomplished with a function like this:

def first_positive_number(numbers):

for n in numbers:

if n > 0:

return n

We can also write this in functional st⁴le:

def first(predicate, items):

for item in items:

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǙ

if predicate(item):

return item

first(lambda x: x > 0, [-1, 0, 1, 2])

Or more concisel⁴:

Less efficient

list(filter(lambda x: x > 0, [-1, 0, 1, 2]))[0] ②1

Efficient but for Python 3

next(filter(lambda x: x > 0, [-1, 0, 1, 2]))

Efficient but for Python 2

next(itertools.ifilter(lambda x: x > 0, [-1, 0, 1, 2]))

②1 Note that thisma⁴ raise an IndexError if no items satisf⁴ the condition, causing

list(filter()) to return an empt⁴ list.

Instead of writing this same function in ever⁴ program ⁴ou make, ⁴ou can include

the small but ver⁴ useful P⁴thon package first:

Example Ǜ.ǖ Using first

>>> from first import first

>>> first([0, False, None, [], (), 42])

42

>>> first([-1, 0, 1, 2])

-1

>>> first([-1, 0, 1, 2], key=lambda x: x > 0)

1

The key argument can be used to provide a functionwhich receives each item as an

argument and returns a boolean indicating whether it satisfies the condition.

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǚ

You’ll notice that we’ve used lambda in a good portion of the examples so far in this

chapter. lambda was actuall⁴ added to P⁴thon in the first place to facilitate func-

tional programming functions such as map() and filter(), which otherwise would

have required writing an entirel⁴ new function ever⁴ time ⁴ou wanted to check a

different condition:

import operator

from first import first

def greater_than_zero(number):

return number > 0

first([-1, 0, 1, 2], key=greater_than_zero)

This codeworks identicall⁴ to the previous example, but it’s a good dealmore cum-

bersome: if we wanted to get the first number in the sequence that’s greater than,

sa⁴, ǗǕ, thenwe’d need to def an appropriate function rather than defining it in-line

with our call to first.

But despite its usefulness in helping us avoid situations like this, lambda still has

its problems. First and most obviousl⁴, we can’t pass a key function using lambda

if it would require more than a single line of code. In this event, we’re back to the

cumbersome pattern of writing new function definitions for each key we need. Or

are we?

functools.partial is our first step towards replacing lambda with a more flexible

alternative. It allowsus tocreateawrapper functionwitha twist: rather thanchang-

ing the behavior of a function, it instead changes the arguments it receives:

from functools import partial

from first import first

def greater_than(number, min=0):

bjpcjp

bjpcjp

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǛ

return number > min

first([-1, 0, 1, 2], key=partial(greater_than, min=42))

Our new greater_than function works just like the old greater_than_zero b⁴ de-

fault, but nowwe can specif⁴ the valuewewant to compare our numbers to. In this

case, we pass functools.partial our function and the value we want for min, and

we get back a new function that has min set to ǗǕ, just like wewant. In other words,

we can write a function and use functools.partial to customi⁵e what it does to

our needs in an⁴ given situation.

This is still a couple lines more than we strictl⁴ need in this case, though. All we’re

doing in this example is comparing two numbers; what if P⁴thon had built-in func-

tions for these kinds of comparisons? As it turns out, the operatormodule has just

what we’re looking for:

import operator

from functools import partial

from first import first

first([-1, 0, 1, 2], key=partial(operator.le, 0))

Here we see that functools.partial also works with positional arguments. In this

case, operator.le(a, b) takes two numbers and returns whether the first is less

than or equal to the second: the Ǔwepass to functools.partial gets sent to a, and

the argument passed to the function returned b⁴ functools.partial gets sent to

b. So this works identicall⁴ to our initial example, without using lambda or defining

an⁴ additional functions.

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǘǜ

Note

functools.partial is typically useful in replacement of lambda, and is to be consid-

ered as a superior alternative. lambda is to be considered an anomaly in Python lan-

guage ᵃ, due to its limited body size of one line long single expression. On the other hand,

functools.partial is built as a nice wrapper around the original function.

ᵃAndwas once even planned to be removed in P⁴thon ǖ, but finall⁴ escaped from its fate.

The itertoolsmodule in the P⁴thon Standard Librar⁴ also provides a bunch of use-

ful functions that ⁴ou’ll want to keep inmind. I’ve seen tooman⁴ programmers end

upwriting their own versions of these functions even though P⁴thon itself provides

them out-of-the-box:

• chain(*iterables) iterates over multiple iterables one ater each other without

building an intermediate list of all items.

• combinations(iterable, r) generates all combinationof length r from the given

iterable.

• compress(data, selectors) applies a booleanmask from selectors to data and

returns onl⁴ the values from datawhere the corresponding element of selectors

is true.

• count(start, step)generatesanendless sequenceof values, starting fromstart

and incrementing b⁴ stepwith each call.

• cycle(iterable) loops repeatedl⁴ over the values in iterable.

• dropwhile(predicate, iterable) filters elementsof an iterable starting fromthe

beginning until predicate is false.

• groupby(iterable, keyfunc) creates an iterator grouping items b⁴ the result re-

turned b⁴ the keyfunc function.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

Ǜ.ǖ. FUNCTIONAL FUNCTIONS FUNCTIONING ǔǙǓ

• permutations(iterable[, r]) returns successive r-length permutations of the

items in iterable.

• product(*iterables) returns an iterable of the cartesian product of iterables

without using a nested for loop.

• takewhile(predicate, iterable) returns elements of an iterable starting from

the beginning until predicate is false.

These functions are particularl⁴ useful in conjunction with the operator module.

When used together, itertools and operator can handle most situations that pro-

grammers t⁴picall⁴ rel⁴ on lambda for:

Example Ǜ.Ǘ Using the operatormodule with itertools.groupby

>>> import itertools

>>> a = [{'foo': 'bar'}, {'foo': 'bar', 'x': 42}, {'foo': 'baz', 'y': 43}]

>>> import operator

>>> list(itertools.groupby(a, operator.itemgetter('foo')))

[('bar', <itertools._grouper object at 0xb000d0>), ('baz', <itertools. ←֓

_grouper object at 0xb00110>)]

>>> [(key, list(group)) for key, group in list(itertools.groupby(a, ←֓

operator.itemgetter('foo')))]

[('bar', []), ('baz', [{'y': 43, 'foo': 'baz'}])]

In this case, we could have alsowritten lambda x:x['foo'], but using operator lets

us avoid having to use lambda at all.

bjpcjp

bjpcjp

bjpcjp

bjpcjp

