
ǜ The AST

AST stands for Abstract Syntax Tree. It is a tree representation of the abstract struc-

ture of the source code of an⁴ programming language, including P⁴thon. P⁴thon as

its own AST that is built upon parsing a P⁴thon source file.

This area of P⁴thon is not heavil⁴ documented, and not eas⁴ to deal with at first

glance. Still, its is ver⁴ interesting to know and understand some deeper construc-

tion of P⁴thon as a programming language to masteri⁵e its usage.

Theeasiestwa⁴ tohaveaviewofwhat theP⁴thonAST looks like is toparseaP⁴thon

code and dumps the generated AST. To do that, the P⁴thon ast module provides

ever⁴thing ⁴ou need for.

Example ǜ.ǔ Parsing P⁴thon code to AST

>>> import ast

>>> ast.parse

<function parse at 0x7f062731d950>

>>> ast.parse("x = 42")

<_ast.Module object at 0x7f0628a5ad10>

>>> ast.dump(ast.parse("x = 42"))

"Module(body=[Assign(targets=[Name(id='x', ctx=Store())], value=Num(n=42)) ←֓

])"

The ast.parse function returns a _ast.Module object that is the root of the tree.

bjpcjp



CHAPTER ǜ. THE AST ǔǙǕ

The tree can be entirel⁴ dumped using the ast.dumpmodule, and in this case is the

following:

An AST construction alwa⁴s starts with a root element, which is usuall⁴ an ast.

Module object. This object contains a list of statements or expressions to evaluate

in its body attribute. It usuall⁴ represents the content of a file.

As ⁴ou can guess, the ast.Assign object represents an assignment, that ismapped

to the = sign in the P⁴thon s⁴ntax. Assign has a list of targets, and a value it assig-

nates to it. The list of target in this case consists of one object, ast.Name, which

represents a variable named x. The value is a number with value being ǗǕ.

This AST can be passed to P⁴thon to be compiled and then evaluated. The compile

function provided as a P⁴thon built-in allows that.

>>> compile(ast.parse("x = 42"), '<input>', 'exec')

<code object <module> at 0x111b3b0, file "<input>", line 1>

>>> eval(compile(ast.parse("x = 42"), '<input>', 'exec'))

>>> x

42

An abstract s⁴ntax tree can be built manuall⁴ using the classes provided in the ast

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp



CHAPTER ǜ. THE AST ǔǙǖ

module. Obviousl⁴, this is a ver⁴ long wa⁴ to write P⁴thon code, not a method I

would recommend! But it’s still interesting to use.

Let’s write a good old "Hello world!" in P⁴thon using the AST.

Example ǜ.Ǖ Hello world using P⁴thon AST

>>> hello_world = ast.Str(s='hello world!', lineno=1, col_offset=1)

>>> print_call = ast.Print(values=[hello_world], lineno=1, col_offset=1, nl ←֓

=True)

>>> module = ast.Module(body=[print_call])

>>> code = compile(module, '', 'exec')

>>> eval(code)

hello world!

Note

lineno and col_offset represents the line number and column offset of the source

code that has been used to generate the AST. This doesn’t have much sense to set them in

this context since we are not parsing any source file, but it’s useful to find back the position

of the code that generated this AST. It’s for example used by Python when generating

backtraces. Anyway, Python refused to compile any AST object that doesn’t provide this

information, this is why we pass it fake values of 1 here. The ast.fix_missing_loc

ations() function can fix it for you by setting the missing values to the ones set on the

parent node.

The whole list of objects that are available in the AST is easil⁴ available b⁴ reading

the _astmodule documentation (note the underscore).

The first two categories ⁴ou should consider are statement and expressions. State-

ments cover t⁴pes like assert, assign (=), augmented assigned (+=, /=, etc), global,

def, if, return, for, class, pass, import, etc. The⁴ all inherit from ast.stmt. Expres-

sions cover t⁴pes like lambda, number, yield, name (variable), compareor call. The⁴

all inherit from ast.expr.

bjpcjp



CHAPTER ǜ. THE AST ǔǙǗ

There’s also a few other categories, such as ast.operator defining standard oper-

ator such as add (+), div (/), right shit (>>), etc, or ast.cmpop defining comparisons

operator.

You can easil⁴ imagine that it is then possible to leverage this AST to construct a

compiler thatwould parse strings and generate code b⁴ building a P⁴thon AST. This

is exactl⁴ what led to the H⁴ project discussed in Section ǜ.ǔ.

In case ⁴ou need to walk through ⁴our tree, the ast.walk function will help ⁴ou

with that. But the astmodule also provides NodeTransformer, a class that can be

subclassed to walk an AST to modif⁴ some nodes. It’s therefore eas⁴ to use it to

change code d⁴namicall⁴.

Example ǜ.ǖ Changing all binar⁴ operation to addition

import ast

class ReplaceBinOp(ast.NodeTransformer):

"""Replace operation by addition in binary operation"""

def visit_BinOp(self, node):

return ast.BinOp(left=node.left,

op=ast.Add(),

right=node.right)

tree = ast.parse("x = 1/3")

ast.fix_missing_locations(tree)

eval(compile(tree, '', 'exec'))

print(ast.dump(tree))

print(x)

tree = ReplaceBinOp().visit(tree)

ast.fix_missing_locations(tree)

print(ast.dump(tree))

eval(compile(tree, '', 'exec'))

bjpcjp

bjpcjp

bjpcjp



ǜ.ǔ. HY ǔǙǘ

print(x)

Which executes to the following:

Module(body=[Assign(targets=[Name(id='x', ctx=Store())],

value=BinOp(left=Num(n=1), op=Div(), right=Num(n=3)))])

0.3333333333333333

Module(body=[Assign(targets=[Name(id='x', ctx=Store())],

value=BinOp(left=Num(n=1), op=Add(), right=Num(n=3)))])

4

Tip

If you need to evaluate a string of Python that should return a simple data type, you can

use ast.literal_eval. Contrary to eval, it disallows the input string to execute any

code. It’s a safer alternative to eval.

9.1 Hy

Now that ⁴ou knowabout the AST, ⁴ou can easil⁴ dreamof creating a new s⁴ntax for

P⁴thon that ⁴ou would parse and compile down to a standard P⁴thon AST. The H⁴

programming language is doing exactl⁴ that. It is a Lisp dialect that parses a Lisp

like language and converts it to regular P⁴thon AST. It is therefore full⁴ compatible

with the P⁴thon ecos⁴stem. You could compare it to what Clojure is to Java. H⁴

could deserve a book for itself, so we will onl⁴ fl⁴ over it in this section.

If ⁴ou alread⁴ wrote Lisp ¹, the H⁴ s⁴ntax will reall⁴ look familiar. Once installed,

launching the hy interpreter will give ⁴ou a standard REPL prompt where ⁴ou can

start interact with the interpreter.

¹If not, ⁴ou should consider it.

bjpcjp



ǜ.ǔ. HY ǔǙǙ

% hy

hy 0.9.10

=> (+ 1 1)

2

For those not familiar with the Lisp s⁴ntax, the parentheses denote a list, the first

element is a function, and the rest of the list are the arguments. Here the code is

equivalent to P⁴thon 1 + 1.

Most constructs aremapped from P⁴thon directl⁴, such as function definition. Set-

ting a variable relies on the setv function.

=> (defn hello [name]

... (print "Hello world!")

... (print (% "Nice to meet you %s" name)))

=> (hello "jd")

Hello world!

Nice to meet you jd

Internall⁴,Hy parses the code that is provided and compiles it down to P⁴thon AST.

Luckil⁴, Lisp is an eas⁴ to parse tree, as each pair of parentheses represents a node

of the list tree. All is needed to be done is to convert this Lisp tree to a P⁴thon ab-

stract s⁴ntax tree.

Class definition is supported through the defclass construct, that is inspired from

CLOS ².

(defclass A [object]

[[x 42]

[y (fn [self value]

(+ self.x value))]])

²Common Lisp Object S⁴stem



ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǙǚ

This defines a class named A, inheriting from object, with a class attribute xwhose

value is ǗǕ and a method y that returns the x attribute plus the value passed as

argument.

What’s reall⁴ wonderful, is that ⁴ou can import any Python library directl⁴ into H⁴
and use it with no penalt⁴.

=> (import uuid)

=> (uuid.uuid4)

UUID('f823a749-a65a-4a62-b853-2687c69d0e1e')

=> (str (uuid.uuid4))

'4efa60f2-23a4-4fc1-8134-00f5c271f809'

Hy alsohasmoreadvancedconstruct andmacros. If ⁴oueverwanted tohavea case

or switch statement in P⁴thon, admire what cond can do for ⁴ou:

(cond

((> somevar 50)

(print "That variable is too big!"))

((< somevar 10)

(print "That variable is too small!"))

(true

(print "That variable is jusssst right!")))

Hy is a ver⁴ niceproject that allows ⁴ou to jump into Lispworldwithout leaving ⁴our

comfort ⁵one too far behind ⁴ou, as ⁴ou are still writing P⁴thon. The hy2py tool can

even show ⁴ou what ⁴our H⁴ code would look like once translated into P⁴thon ³.

9.2 Interview with Paul Tagliamonte

Paul is a Debian developer, who’s working at Sunlight Foundation. He created H⁴

in ǕǓǔǖ and, as a Lisp lover, I joined him in this fabulous adventure some time later.
³Though it has some restrictions.

bjpcjp



ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǙǛ

Why did you create Hy in the first place?

Initiall⁴, I createdH⁴ followinga conversationabout howsomeone should

write a Lisp that compiles to P⁴thon rather than Java’s JVM (Clojure). A

few short da⁴s later, and I had the first version of H⁴ – something which

resembled a lisp, and even worked like a proper lisp, but it was slow. I

mean, reall⁴ slow. It took about an order ofmagnitude slower than native

P⁴thon, since the Lisp runtime itself was implemented in P⁴thon.

Frustrated, I almost gave up, onl⁴ to be pushed forward b⁴ a coworker

the promise of using AST to implement the runtime, rather than imple-

ment the runtime in P⁴thon. This insane idea started to reall⁴ spark the

entire project. This set in shortl⁴ before the holida⁴s in ǕǓǔǕ, leading me

to spendm⁴entire break fromwork hacking onH⁴. Aweekor so later, and

I ended upwith something that resembled the current H⁴ codebase quite

closel⁴ – most H⁴ devs would even know their wa⁴ around the compiler.

Just ater getting enoughworking to implement a basic Flask app, I gave a

talk at BostonP⁴thon about this project, and the receptionwas incredibl⁴

warm – sowarm, in fact, that I’d started to viewH⁴ as a goodwa⁴ to teach

people about P⁴thon internals, such as how the REPL works ⁛, PEP ǖǓǕ

import hooks, and P⁴thon AST – a good introduction to the concept of

code that writes code.

Ater the talk, Iwasabitdisappointed ina fewsections, so I rewrotechunks

of the compiler to fix some philosophical issues in the process, leading us

to the current iteration of the codebase – which has stood up quite well!
⁛code.InteractiveConsole

bjpcjp



ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǙǜ

In addition, H⁴ (the Language) is a good wa⁴ to get people to understand

how to read Lisp, since the⁴ can get comfortable with s-expressions in an

environment the⁴ know (evenusing libraries the⁴have l⁴ing around), eas-

ing the transition to other (“real”) Lisps, such as Common Lisp, Schemeor

Clojure, aswell as experimentwith new ideas (such asmacro s⁴stems, ho-

moiconicit⁴, and working without the concept of a statement).

Howdid you find out about using the AST correctly? What are the tips
and tricks, advice you can give to people looking at it?

P⁴thon’s AST is quite interesting. It’s not quite private (in fact, it’s ex-

plicitl⁴ not private), but it’s also not a public interface either. No stabil-

it⁴ is guaranteed from version to version – in fact, there are some rather

anno⁴ing differences between P⁴thon Ǖ and ǖ, and even within different

P⁴thon ǖ releases. In addition, different implementations ma⁴ interpret

the AST differentl⁴, or even have a unique AST. Nothing sa⁴s J⁴thon, P⁴P⁴,

or CP⁴thonmust deal with P⁴thon AST in the same wa⁴.

For instance, CP⁴thon can deal with slightl⁴ out of order AST entries (b⁴

the linenoand col_offset),whereasP⁴P⁴will throwanassertionerror. While

sometimesanno⁴ing, theAST isgenerall⁴ sane. It’snot impossible tobuild

AST that works on a vast number of P⁴thon instances. With a conditional

or two, it’s onl⁴ mildl⁴ anno⁴ing to create AST that works on CP⁴thon Ǖ.Ǚ

through ǖ.ǖ and P⁴P⁴, making this tool quite hand⁴.

The AST is extremel⁴ under-documented, somost knowledge comes from

reverse engineering generated AST. B⁴ writing up simple P⁴thon scripts,

one can use something similar to import ast;ast.dump(ast.parse("pri

nt foo")) to generate equivalent AST to help with the task. With a bit of

guesswork, and some persistence, it’s not untenable to build up a basic

understanding this wa⁴.

At some point, I’ll take on the task of documenting m⁴ understanding of

bjpcjp



ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǚǓ

the ASTmodule, but I find writing code is the best wa⁴ to learn the AST.

What’s the current status, and future goals of Hy?

H⁴ is currentl⁴ in development. It has a few subtle issues that need to

be addressed, and fixing the bugs to make H⁴ virtuall⁴ indistinguishable

froman⁴ other LISP-ǔ variant. This is amonumental task, but it’s one that

it’s ripe for hacking.

I’m also interested in keeping H⁴ efficient, in so far as it can be.

I hope, in the long run, that H⁴ will become a sort of teaching tool – one

wa⁴ to explain some of the concepts that are quite foreign to even expe-

rienced P⁴thonistas. I hope it also proves interesting enough to P⁴thon-

istas that the⁴ take an interest in these tools at our disposal, and continue

pushing the bounds of what I think H⁴ is.

M⁴ hope is that people see H⁴ for what it is – an ama⁵ing teaching tool. A

wa⁴ to get people interested in Common Lisp, Clojure or Scheme. I want

people to go home and read about wh⁴ Lisp variants do things the wa⁴

the⁴do, andhow the⁴ canborrow this philosoph⁴ in their da⁴-to-da⁴ cod-

ing.

How interoperable with Python is Hy? What about code distribution
and packaging?

Ama⁵ingl⁴ interoperable. Stunningl⁴ interoperable, reall⁴. Sowell, in fact,

that pdb can properl⁴ debugH⁴without an⁴ changes at all. To reall⁴ drive

this point home, I’ve written Flask apps, Django apps and modules of all

sorts. P⁴thon can import P⁴thon, H⁴ can importH⁴, H⁴ can import P⁴thon

and P⁴thon can import H⁴. This is what reall⁴ makes H⁴ unique – even

variants like Clojure can’t do this, the interop is purel⁴ unidirectional (Clo-

jure can import Java, but Java has one hell of a time importing Clojure).

This was done to reall⁴ bring homehowpowerful these toolswe have are.

bjpcjp

bjpcjp



ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǚǔ

H⁴worksb⁴ translatingH⁴ code (in s-expressions) intoP⁴thonASTalmost

directl⁴. This compilation step means the generated b⁴tecode is fairl⁴

sane stuff (somuchso thatdebuggingH⁴b⁴ lookingatP⁴thonsourcegen-

erated fromP⁴thon AST is a goodwa⁴ of tracking down pesk⁴ AST errors),

whichmeans P⁴thon has a ver⁴ hard time of even telling themodule isn’t

written in P⁴thon at all.

Common Lisp-isms, such as *earmuffs* or using-dashes are full⁴ sup-

ported b⁴ translating them to a P⁴thon equivalent (in this case, *earmuf

fs*becomesEARMUFFS, andusing-dashesbecomesusing_dashes),which

means P⁴thon doesn’t have a hard time of using them at all.

Ensuring that we have reall⁴ good interoperabilit⁴ is one of our highest

priorities, so if ⁴ou see an⁴ bugs – file them!

What are the upside and downside of choosing Hy over Python?

This is an interesting question. I’m quite partial, so take this with a grain

of salt!

H⁴ outshines P⁴thon in a few special wa⁴s because we’ve taken a bit of

effort to smooth behavior over P⁴thon versions to allow the newP⁴thon ǖ

future happen sooner. This was done b⁴ doing things like using future

division in P⁴thon Ǖ, and ensuring the s⁴ntax is normali⁵ed between the

two versions.

In addition, H⁴has somethingP⁴thonhasa ver⁴ hard timewith (evenwith

the outstanding AST module), which is a full macro s⁴stem. Macros are

ver⁴ special functions that alter the code during it’s compile step – not

unlike having ast.NodeVisitor as a first-class function of the language.

This leads to eas⁴ creation of new domain-specific languages, which is

composed of the base language (in this case, H⁴ / P⁴thon), with the addi-

tion of man⁴ macros which allow uniquel⁴ expressive and succinct code.

bjpcjp



ǜ.Ǖ. INTERVIEWWITH PAUL TAGLIAMONTE ǔǚǕ

Oten times, clever DSLs can replace languages designed to perform this

role, such as Lua.

As for downsides, what gives H⁴ it’s power can also hurt it. Not techni-

call⁴, but sociall⁴. H⁴, b⁴ virtue of being a Lisp written in s-expressions,

suffers from the stigma of being hard to learn, read or maintain. People

mightbeaverse toworkingonprojectsusingH⁴due to the fearofH⁴being

extremel⁴ complex.

H⁴ is the Lisp ever⁴one loves to hate – P⁴thon folks tend to not enjo⁴

its s⁴ntax, and Lispers tend to avoid H⁴ due to, well, being P⁴thon. H⁴

uses P⁴thon objects directl⁴, so the behavior of fundamental objects can

sometimes be surprising to the seasoned Lisper.

Hopefull⁴peoplewill lookpast it’s s⁴ntaxandconsiderusing it foraproject

toexpandone’shori⁵ons, andexplorepartsofP⁴thonpreviousl⁴untouched.


