9 The AST
e

AST stands for Abstract Syntax Tree. It is a tree representation of the abstract struc-
ture of the source code of any programming language, including Python. Python as

its own AST that is built upon parsing a Python source file.

This area of Python is not heavily documented, and not easy to deal with at first
glance. Still, its is very interesting to know and understand some deeper construc-

tion of Python as a programming language to masterize its usage.

The easiest way to have aview of what the Python AST looks like is to parse a Python
code and dumps the generated AST. To do that, the Python ast module provides

everything you need for.

Example 9.1 Parsing Python code to AST

>>> import ast

>>> ast.parse

<function parse at 0x7f062731d950>

>>> ast.parse("x = 42")

< ast.Module object at 0x7f0628a5ad10>

>>> ast.dump(ast.parse("x = 42"))

"Module(body=[Assign(targets=[Name(id='x"', ctx=Store())], value=Num(n=42)) <«
1"

The ast.parse function returns a _ast.Module object that is the root of the tree.

bjpcjp

CHAPTER 9. THE AST 162

The tree can be entirely dumped using the ast.dump module, and in this case is the

following:
Num
Module -
Assign n [——m 42
body > =

targets | value

Name
id | ctx —w Store

An AST construction always starts with a root element, which is usually an ast.
Module object. This object contains a list of statements or expressions to evaluate

in its body attribute. It usually represents the content of a file.

As you can guess, the ast.Assign object represents an assignment, that is mapped
to the = sign in the Python syntax. Assign has a list of targets, and a value it assig-
nates to it. The list of target in this case consists of one object, ast.Name, which

represents a variable named x. The value is a number with value being 42.

This AST can be passed to Python to be compiled and then evaluated. The compile
function provided as a Python built-in allows that.

>>> compile(ast.parse("x = 42"), '<input>',6 'exec')

<code object <module> at 0x111b3b0O, file "<input>", line 1>

>>> eval(compile(ast.parse("x = 42"), '<input>', 'exec'))

>>> X

42

An abstract syntax tree can be built manually using the classes provided in the ast

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

CHAPTER 9. THE AST 163

module. Obviously, this is a very long way to write Python code, not a method |

would recommend! But it’s still interesting to use.

Let’s write a good old "Hello world!" in Python using the AST.

Example 9.2 Hello world using Python AST

>>> hello world = ast.Str(s="'hello world!', lineno=1, col offset=1)

>>> print call = ast.Print(values=[hello world], lineno=1, col offset=1l, nl «
=True)

>>> module = ast.Module(body=[print call])

>>> code = compile(module, '', 'exec')

>>> eval (code)

hello world!

Note

lineno and col offset represents the line number and column offset of the source
code that has been used to generate the AST. This doesn’t have much sense to setthemiin
this context since we are not parsing any source file, but it's useful to find back the position
of the code that generated this AST. It's for example used by Python when generating
backtraces. Anyway, Python refused to compile any AST object that doesn’t provide this
information, this is why we pass it fake values of 1 here. The ast.fix missing loc
ations () function can fix it for you by setting the missing values to the ones set on the

parent node.

The whole list of objects that are available in the AST is easily available by reading

the ast module documentation (note the underscore).

The first two categories you should consider are statement and expressions. State-
ments cover types like assert, assign (=), augmented assigned (+=, /=, etc), global,
def, if, return, for, class, pass, import, etc. They all inherit from ast.stmt. Expres-
sions cover types like lambda, number, yield, name (variable), compare or call. They

all inherit from ast.expr.

bjpcjp

CHAPTER 9. THE AST 164

There’s also a few other categories, such as ast.operator defining standard oper-
ator such as add (+), div (/), right shift (>>), etc, or ast.cmpop defining comparisons

operator.

You can easily imagine that it is then possible to leverage this AST to construct a
compiler that would parse strings and generate code by building a Python AST. This

is exactly what led to the Hy project discussed in Section 9.1.

In case you need to walk through your tree, the ast.walk function will help you
with that. But the ast module also provides NodeTransformer, a class that can be
subclassed to walk an AST to modify some nodes. It’s therefore easy to use it to

change code dynamically.

Example 9.3 Changing all binary operation to addition

import ast

class ReplaceBinOp(ast.NodeTransformer):
"""Replace operation by addition in binary operation"""
def visit BinOp(self, node):
return ast.BinOp(left=node.left,
op=ast.Add(),
right=node.right)

tree = ast.parse("x = 1/3")
ast.fix missing locations(tree)
eval(compile(tree, '', 'exec'))
print(ast.dump(tree))

print(x)

tree = ReplaceBinOp().visit(tree)
ast.fix missing locations(tree)
print(ast.dump(tree))

eval(compile(tree, '', 'exec'))

bjpcjp

bjpcjp

bjpcjp

9.1. HY 165

print(x)

Which executes to the following:

Module(body=[Assign(targets=[Name(id='x"', ctx=Store())],
value=BinOp(left=Num(n=1), op=Div(), right=Num(n=3)))])

0.3333333333333333

Module(body=[Assign(targets=[Name(id='x"', ctx=Store())],
value=BinOp(left=Num(n=1), op=Add(), right=Num(n=3)))])

Tip
If you need to evaluate a string of Python that should return a simple data type, you can
use ast.literal eval. Contrary to eval, it disallows the input string to execute any

code. It's a safer alternative to eval.

9.1 Hy

Now that you know about the AST, you can easily dream of creating a new syntax for
Python that you would parse and compile down to a standard Python AST. The Hy
programming language is doing exactly that. Itis a Lisp dialect that parses a Lisp
like language and converts it to regular Python AST. It is therefore fully compatible
with the Python ecosystem. You could compare it to what Clojure is to Java. Hy

could deserve a book for itself, so we will only fly over it in this section.

If you already wrote Lisp ', the Hy syntax will really look familiar. Once installed,
launching the hy interpreter will give you a standard REPL prompt where you can

start interact with the interpreter.

'If not, you should consider it.

bjpcjp

9.1. HY 166

% hy

hy 0.9.10
= (+11)
2

For those not familiar with the Lisp syntax, the parentheses denote a list, the first
element is a function, and the rest of the list are the arguments. Here the code is

equivalent to Python1 + 1.

Most constructs are mapped from Python directly, such as function definition. Set-
ting a variable relies on the setv function.
=> (defn hello [name]
(print "Hello world!")
(print (% "Nice to meet you %s" name)))
=> (hello "jd")
Hello world!

Nice to meet you jd

Internally, Hy parses the code that is provided and compiles it down to Python AST.
Luckily, Lisp is an easy to parse tree, as each pair of parentheses represents a node
of the list tree. All is needed to be done is to convert this Lisp tree to a Python ab-

stract syntax tree.

Class definition is supported through the defclass construct, that is inspired from
CLOS 2.
(defclass A [object]
[[x 42]
[y (fn [self valuel

(+ self.x value))ll)

*Common Lisp Object System

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 167

This defines a class named A, inheriting from object, with a class attribute x whose
value is 42 and a method y that returns the x attribute plus the value passed as

argument.

What'’s really wonderful, is that you can import any Python library directly into Hy
and use it with no penalty.

=> (import uuid)

=> (uuid.uuid4)

UUID('f823a749-a65a-4a62-b853-2687c69d0ele’)

=> (str (uuid.uuid4))

'4efab0f2-23a4-4fcl-8134-00f5c271f809'

Hy also has more advanced construct and macros. If you ever wanted to have a case
or switch statement in Python, admire what cond can do for you:

(cond

((> somevar 50)

(print "That variable is too big!"))
((< somevar 10)

(print "That variable is too small!"))
(true

(print "That variable is jusssst right!")))

Hy is a very nice project that allows you to jump into Lisp world without leaving your
comfort zone too far behind you, as you are still writing Python. The hy2py tool can

even show you what your Hy code would look like once translated into Python °.

9.2 Interview with Paul Tagliamonte

Paul is a Debian developer, who’s working at Sunlight Foundation. He created Hy

in 2013 and, as a Lisp lover, | joined him in this fabulous adventure some time later.

*Though it has some restrictions.

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 168

Why did you create Hy in the first place?

Initially, | created Hy following a conversation about how someone should
write a Lisp that compiles to Python rather than Java’s JVM (Clojure). A
few short days later, and | had the first version of Hy - something which
resembled a lisp, and even worked like a proper lisp, but it was slow. |
mean, really slow. It took about an order of magnitude slower than native

Python, since the Lisp runtime itself was implemented in Python.

Frustrated, | almost gave up, only to be pushed forward by a coworker
the promise of using AST to implement the runtime, rather than imple-
ment the runtime in Python. This insane idea started to really spark the
entire project. This set in shortly before the holidays in 2012, leading me
to spend my entire break from work hacking on Hy. A week or so later, and
| ended up with something that resembled the current Hy codebase quite

closely - most Hy devs would even know their way around the compiler.

Just after getting enough working to implement a basic Flask app, | gave a
talk at Boston Python about this project, and the reception was incredibly
warm - so warm, in fact, that I’d started to view Hy as a good way to teach
people about Python internals, such as how the REPL works *, PEP 302
import hooks, and Python AST - a good introduction to the concept of

code that writes code.

After the talk, | was a bitdisappointedin afew sections, so | rewrote chunks
of the compiler to fix some philosophical issues in the process, leading us

to the current iteration of the codebase - which has stood up quite well!

“*code.InteractiveConsole

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 169

In addition, Hy (the Language) is a good way to get people to understand
how to read Lisp, since they can get comfortable with s-expressionsin an
environment they know (even using libraries they have lying around), eas-
ing the transition to other (“real”) Lisps, such as Common Lisp, Scheme or
Clojure, as well as experiment with new ideas (such as macro systems, ho-

moiconicity, and working without the concept of a statement).

How did you find out about using the AST correctly? What are the tips

and tricks, advice you can give to people looking at it?

Python’s AST is quite interesting. It’s not quite private (in fact, it’s ex-
plicitly not private), but it’s also not a public interface either. No stabil-
ity is guaranteed from version to version - in fact, there are some rather
annoying differences between Python 2 and 3, and even within different
Python 3 releases. In addition, different implementations may interpret
the AST differently, or even have a unique AST. Nothing says Jython, PyPy,
or CPython must deal with Python AST in the same way.

For instance, CPython can deal with slightly out of order AST entries (by
the lineno and col_offset), whereas PyPy will throw an assertion error. While
sometimes annoying, the AST is generally sane. It’snotimpossible to build
AST that works on a vast number of Python instances. With a conditional
or two, it’s only mildly annoying to create AST that works on CPython 2.6
through 3.3 and PyPy, making this tool quite handy.

The AST is extremely under-documented, so most knowledge comes from
reverse engineering generated AST. By writing up simple Python scripts,
one can use something similar to import ast;ast.dump(ast.parse("pri
nt foo")) to generate equivalent AST to help with the task. With a bit of
guesswork, and some persistence, it’s not untenable to build up a basic

understanding this way.

At some point, I'll take on the task of documenting my understanding of

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 170

the AST module, but | find writing code is the best way to learn the AST.
What’s the current status, and future goals of Hy?

Hy is currently in development. It has a few subtle issues that need to
be addressed, and fixing the bugs to make Hy virtually indistinguishable
from any other LISP-1 variant. Thisis a monumental task, but it’s one that

it’s ripe for hacking.
I’m also interested in keeping Hy efficient, in so far as it can be.

| hope, in the long run, that Hy will become a sort of teaching tool - one
way to explain some of the concepts that are quite foreign to even expe-
rienced Pythonistas. | hope it also proves interesting enough to Python-
istas that they take an interest in these tools at our disposal, and continue

pushing the bounds of what | think Hy is.

My hope is that people see Hy for what it is - an amazing teaching tool. A
way to get people interested in Common Lisp, Clojure or Scheme. | want
people to go home and read about why Lisp variants do things the way

they do, and how they can borrow this philosophy in their day-to-day cod-
ing.

How interoperable with Python is Hy? What about code distribution
and packaging?

Amazingly interoperable. Stunningly interoperable, really. Sowell, in fact,
that pdb can properly debug Hy without any changes at all. To really drive
this point home, I’'ve written Flask apps, Django apps and modules of all
sorts. Python canimport Python, Hy canimport Hy, Hy can import Python
and Python can import Hy. This is what really makes Hy unique - even
variants like Clojure can’t do this, the interop is purely unidirectional (Clo-
jure can import Java, but Java has one hell of a time importing Clojure).

This was done to really bring home how powerful these tools we have are.

bjpcjp

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 171

Hy works by translating Hy code (in s-expressions) into Python AST almost
directly. This compilation step means the generated bytecode is fairly
sane stuff (so much so that debugging Hy by looking at Python source gen-
erated from Python AST is a good way of tracking down pesky AST errors),
which means Python has a very hard time of even telling the module isn’t

written in Python at all.

Common Lisp-isms, such as *earmuffs* or using-dashes are fully sup-
ported by translating them to a Python equivalent (in this case, *earmuf
fs* becomes EARMUFFS, and using-dashes becomesusing dashes), which

means Python doesn’t have a hard time of using them at all.

Ensuring that we have really good interoperability is one of our highest

priorities, so if you see any bugs - file them!
What are the upside and downside of choosing Hy over Python?

This is an interesting question. I’m quite partial, so take this with a grain

of salt!

Hy outshines Python in a few special ways because we’ve taken a bit of
effort to smooth behavior over Python versions to allow the new Python 3
future happen sooner. This was done by doing things like using future
division in Python 2, and ensuring the syntax is normalized between the

two versions.

In addition, Hy has something Python has a very hard time with (even with
the outstanding AST module), which is a full macro system. Macros are
very special functions that alter the code during it’s compile step - not
unlike having ast.NodeVisitor as a first-class function of the language.
This leads to easy creation of new domain-specific languages, which is
composed of the base language (in this case, Hy / Python), with the addi-

tion of many macros which allow uniquely expressive and succinct code.

bjpcjp

9.2. INTERVIEW WITH PAUL TAGLIAMONTE 172

Often times, clever DSLs can replace languages designed to perform this

role, such as Lua.

As for downsides, what gives Hy it’s power can also hurt it. Not techni-
cally, but socially. Hy, by virtue of being a Lisp written in s-expressions,
suffers from the stigma of being hard to learn, read or maintain. People
might be averse to working on projects using Hy due to the fear of Hy being

extremely complex.

Hy is the Lisp everyone loves to hate - Python folks tend to not enjoy
its syntax, and Lispers tend to avoid Hy due to, well, being Python. Hy
uses Python objects directly, so the behavior of fundamental objects can

sometimes be surprising to the seasoned Lisper.

Hopefully people will look pastit’s syntax and consider using it for a project

to expand one’s horizons, and explore parts of Python previously untouched.

