10 Performances and optimizations

e ———

Premature optimization is the root of all evil.

--- Donald Knuth Structured Programming with go to Statements

10.1 Data structures

Most computer problems can be solved in an elegant and simple manner, provided
that you use the right data structures - and Python provides many data structures

to choose from.

Often, there is a temptation to code your own custom data structures - this is invari-
ably avain, useless, doomed idea. Python almost always has better data structures

and code to offer — learn to use them.

For example, everybody uses dict, but how many times have you seen code like
this:
def get fruits(basket, fruit):
# A variation is to use "if fruit in basket:"
try:
return basket[fruit]

except KeyError:
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return set()

It’s much more easy to use the get method already provided by the dict structure:

def get fruits(basket, fruit):

return basket.get(fruit, set())

It’s not uncommon for people to use basic Python data structures without being
aware of all the methods they provide. This is also true for sets - for example:
def has invalid fields(fields):
for field in fields:
if field not in ['foo', 'bar']:
return True

return False

This can be written without a loop:

def has invalid fields(fields):
return bool(set(fields) - set(['foo', 'bar']l))

The set data structures have methods which can solve many problems that would

otherwise need to be addressed by writing nested for/if blocks.

There are also more advanced data structures that can greatly reduce the burden
of code maintenance. For example, take a look at the following code:
def add animal in family(species, animal, family):
if family not in species:
species[family] = set()

species[family].add(animal)

species = {}

add animal in family(species, ‘'cat', 'felidea')
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Sure, this code is perfectly valid, but how many times will your program require a

variation of the above? Tens? Hundreds?

Python provides the collections.defaultdict structure, which solves the prob-

lem in an elegant way.

import collections

def add animal in family(species, animal, family):

species[family].add(animal)

species = collections.defaultdict(set)

add animal in family(species, 'cat', 'felidea')

Each time that you try to access a non-existent item from your dict, the defaultdict
will use the function that was passed as argument to its constructor to build a new
value - instead thanraisingaKeyError. In this case, the set functionis used to build

a new set each time we need it.

By the way, the collections module offers a few useful data structures that can

solve other kinds of problems, such as OrderedDict or Counter.

It’s really important to look for the right data structure in Python, as the correct

choice will save you time, and lessen code maintenance.

10.2 Profiling

Python provides a few tools to profile your program. The standard one is cProfile

and is easy enough to use.

Example 10.1 Using the cProfile module

$ python -m cProfile myscript.py
343 function calls (342 primitive calls) in 0.000 seconds
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Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.000 0.000 :0( getframe)

1 0.000 0.000 0.000 0.000 :0(len)
104 0.000 0.000 0.000 0.000 :0(setattr)
1 0.000 0.000 0.000 0.000 :0(setprofile)
1 0.000 0.000 0.000 0.000 :0(startswith)
2/1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 StringIO.py:30(<module>)
1 0.000 0.000 0.000 0.000 StringIO.py:42(StringIO)

The results list indicates the number of calls each function was called, and the time
spenton its execution. You can use the -s option to sort by other fields; e.g. -s time

will sort by internal time.

If you’ve coded in C, as | did years ago, you probably already know the fantastic
Valgrind tool, that - among other things - is able to provide profiling data for C
programs. The data that it provides can then be visualized by another great tool
named KCacheGrind.

You’ll be happy to know that the profiling information generated by cProfile can eas-
ily be converted to a call tree that can be read by KCacheGrind. The cProfile mod-
ule has a -o option that allows you to save the profiling data, and pyprof2calltree

can convert from one format to the other.

Example 10.2 Using KCacheGrind to visualize Python profiling data

$ python -m cProfile -o myscript.cprof myscript.py
$ pyprof2calltree -k -i myscript.cprof
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Figure 10.1: KCacheGrind example

This provides a lot of information that will allow you to determine what part of your

program might be consuming too much resources.

While this clearly works well for a macroscopic view of your program, it sometimes
helps to have a microscopic view of some part of the code. In such a context, | find
it better to rely on the dis module to find out what’s going on behind the scenes.
The dis module is a disassembler of Python byte code. It’s simple enough to use:

>>> def x():

. return 42

>>> import dis
>>> dis.dis(x)

2 O LOAD CONST 1 (42)
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3 RETURN_VALUE

The dis.dis function disassembles the function that you passed as a parameter,
and prints the list of bytecode instructions that are run by the function. It can be
useful to understand what’s really behind each line of code that you write, in order

to be able to properly optimize your code.

The following code defines two functions, each of which does the same thing - con-

catenates three letters:

abc = ('a', 'b'",

c')

def concat a 1():
for letter in abc:

abc[0] + letter

def concat a 2():
a = abc[0]
for letter in abc:

a + letter

Both appear to do exactly the same thing, but if we disassemble them, we’ll see

that the generated bytecode is a bit different:

>>> dis.dis(concat a 1)

2 0 SETUP_LOOP 26 (to 29)
3 LOAD GLOBAL 0 (abc)
6 GET ITER
>> 7 FOR ITER 18 (to 28)
10 STORE_FAST 0 (letter)
3 13 LOAD GLOBAL 0 (abc)

16 LOAD CONST 1 (0)
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>>

>>

19
20
23
24
25
28
29
32

BINARY SUBSCR
LOAD FAST
BINARY ADD
POP_TOP
JUMP_ABSOLUTE
POP_BLOCK
LOAD CONST
RETURN_VALUE

>>> dis.dis(concat a 2)

2

>>

>>

>>

0
3
6
7

10
13
16
17
20

23
26
29
30
31
34
35
38

LOAD GLOBAL
LOAD CONST
BINARY SUBSCR
STORE_FAST

SETUP_LOOP
LOAD_GLOBAL
GET ITER
FOR_ITER
STORE FAST

LOAD FAST
LOAD FAST
BINARY ADD
POP_TOP
JUMP_ABSOLUTE
POP_BLOCK
LOAD CONST
RETURN_VALUE

22

14

17

(letter)

(None)

(abc)
(0)

(a)

(to 35)
(abc)

(to 34)
(letter)

(a)
(letter)

(None)

179

As you can see, in the second version we store abc[0] in a temporary variable be-
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fore running the loop. This makes the bytecode executed inside the loop a little
smaller, as we avoid having to do the abc[0] lookup for each iteration. Measured
using timeit, the second version is 10% faster than the first one; it takes a whole
microsecond less to execute! Obviously this microsecond is not worth the optimiza-
tion unless you call this function millions of times - but this is kind of insight that

the dis module can provide.

Whether you should need to rely on such "tricks" as storing the value outside the
loop is debatable - ultimately, it should be the compiler’s work to optimize this kind
of thing. On the other hand, as the language is heavily dynamic, it’s difficult for the
compiler to be sure that optimization wouldn’t result in negative side effects. So be

careful when writing your code!

Another wrong habit I’'ve often encountered when reviewing code is the defining of
functions inside functions for no reason. This has a cost - as the function is going

to be redefined over and over for no reason.

Example 10.3 A function defined in a function, disassembled

>> import dis
>>> def x():

return 42

>>> dis.dis(x)
2 0 LOAD CONST 1 (42)
3 RETURN_VALUE
>>> def x():
def y():
return 42

return y()

>>> dis.dis(x)

2 0 LOAD CONST 1 (<code object y at 0x100ce7e30, <+
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file "<stdin>", line 2>)

3 MAKE_FUNCTION

6 STORE_ FAST

4 9 LOAD_ FAST

12 CALL FUNCTION

15 RETURN VALUE

181

We can see here that it is needlessly complicated, calling MAKE_FUNCTION, STORE F
AST, LOAD_FAST and CALL_FUNCTION instead of just LOAD CONST. That requires many

more opcodes for no good reason - and function calling in Python is already ineffi-

cient.

The only case in which it is required to define a function within a function is when

building a function closure, and this is a perfectly identified use case in Python’s

opcodes.

Example 10.4 Disassembling a closure

>>> def x():

a = 42
def y():
return a
return y()
>>> dis.dis(x)
2 0 LOAD CONST

3 STORE_DEREF

3 6 LOAD_CLOSURE
9 BUILD TUPLE
12 LOAD CONST

=

N

(42)
(a)

(a)

(<code object y at 0x100d139b0,

<o
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file "<stdin>", line 3>)

15 MAKE_CLOSURE 0

18 STORE_FAST 0 (y)
5 21 LOAD FAST 0 (y)

24 CALL FUNCTION 0

27 RETURN_VALUE

10.3 Ordered list and bisect

When manipulating large lists, the use of sorted lists has a few advantages over

non-sorted lists - for example, sorted lists have a retrieve time of O(log n).

A couple of times, however, I've seen people trying to implement their own data
structures and algorithms to handle such cases. This is a bad idea - you shouldn’t

spend time on problems already solved.

Firstly, Python provides a bisect module which contains a bisection algorithm. It’s

easy enough to use:

Example 10.5 Usage of bisect

>>> farm = sorted(['haystack', 'needle', 'cow', 'pig'l])
>>> bisect.bisect(farm, 'needle')
3

>>> bisect.bisect left(farm, 'needle')

>>> pisect.bisect(farm, 'chicken')

>>> bisect.bisect left(farm, 'chicken')

>>> bisect.bisect(farm, 'eggs')
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1
>>> bisect.bisect left(farm, 'eggs')

1

Thebisect function allowsyou to retrieve theindex where a new list element should

be inserted, while keeping the list sorted.

If you wish to insert the element immediately, the bisect module provides the ins

ort left and insort right functions that do exactly that.

Example 10.6 Usage of bisect.insort

>>> farm

['cow', 'haystack', 'needle', 'pig'l]

>>> pisect.insort(farm, 'eggs')

>>> farm

['cow', 'eggs', 'haystack', 'needle', 'pig']
>>> bisect.insort(farm, 'turkey')

>>> farm

['cow', 'eggs', 'haystack', 'needle', 'pig', 'turkey']

You can then use these functions to create a list that is always sorted:

Example 10.7 A SortedList implementation

import bisect

class SortedList(list):
def init (self, iterable):

super(SortedList, self). 1init (sorted(iterable))

def insort(self, item):

bisect.insort(self, item)
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def index(self, value, start=None, stop=None):
place = bisect.bisect left(self[start:stop], value)
if start:
place += start
end = stop or len(self)
if place < end and self[place] == value:
return place

raise ValueError("%s is not in list" % value)

Obviously, one shouldn’t use the direct functions append or extend on this list - or

the list will no longer be sorted.

Many Python libraries exist which implement various versions of the above code -
and many more data types, such as binary or red-black tree structures. The blist
and bintree Python packages contain code that you can be use for these purposes,

rather than implementing and debugging your own version.

10.4 Namedtuple and slots

Sometimes it’s useful to have the ability to create very simple objects which only
possess a few fixed attributes. A simple implementation would be something along
these lines:
class Point(object):
def init (self, x, y):
self.x = x

self.y =y

This definitely gets the job done - however, there is a downside to this approach: it
creates a class which inherits from object. In using this Point class, you be instanti-

ating objects.
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One property of such objects in Python, is that they store all of their attributes inside
a dictionary; this dictionary is itself stored in the  dict  attribute:

>>> p = Point(1l, 2)

>>> p. dict

{'y': 2, 'x': 1}

>>> p.z = 42

>>> p.z

42

>>> p. dict

{'y': 2, 'x':1, 'z': 42}

The advantage is that you can add as many attributes as you want to an object.
The drawback, however, is that using a dictionary to store these attributes is quite
expensive in terms of memory - you need to store the object, the keys, the value
references, etc. It’s slow to create and slow to manipulate, with a high memory
cost. Consider the following simple class:
[source,python]
class Foobar(object):

def init (self, x):

self.x = x

Let’s check the memory usage using the memory profiler Python package:

$ python -m memory profiler object.py

Filename: object.py

Line # Mem usage Increment Line Contents

5 @profile
6 9.879 MB 0.000 MB def main():
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7 50.289 MB 40.410 MB f = [ Foobar(42) for i in range <«
(100000) ]

Therefore, it exists a way to use objects without this default behaviour. Classes in
Python can define a slots  attribute that will list the only attributes allowed
for instances of this class. The power of this is that instead of allocating a whole
dictionary object to store all of the object attributes, they can now be stored in a
list object. If you go through the CPython source code and take a look at the Obje
cts/typeobject.cfile,itis quite easy to understand what Python does in this case.
Here is a cut down version of the function which handles this:
static PyObject *
type new(PyTypeObject *metatype, PyObject *args, PyObject *kwds)
{
[..]
/* Check for a slots  sequence variable in dict, and count it */
slots = PyDict GetItemId(dict, &PyId slots );
nslots = 0;
if (slots == NULL) {
if (may add dict)
add dict++;
if (may add weak)

add weak++;

else {
/* Have slots */
/* Make it into a tuple */
if (PyUnicode Check(slots))

slots

PyTuple Pack(1l, slots);
else

slots

PySequence Tuple(slots);
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/* Are slots allowed? */
nslots = PyTuple GET SIZE(slots);
if (nslots > 0 && base->tp itemsize != 0) {
PyErr Format(PyExc TypeError,
"nonempty slots "
"not supported for subtype of '%s'",
base->tp name);
goto error;
}
/* Copy slots into a list, mangle names and sort them.
Sorted names are needed for  class  assignment.
Convert them back to tuple at the end.a
*/
newslots = PyList New(nslots - add dict - add weak);
if (newslots == NULL)
goto error;

if (PyList Sort(newslots) == -1) {
Py DECREF(newslots);
goto error;

}

slots = PyList AsTuple(newslots);

Py DECREF(newslots);

if (slots == NULL)

goto error;
}
/* Allocate the type object */
type = (PyTypeObject *)metatype->tp alloc(metatype, nslots);
[..]
/* Keep name and slots alive in the extended type object */

et = (PyHeapTypeObject *)type;
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Py INCREF(name);
et->ht name = name;
et->ht slots = slots;
slots = NULL;

[..]
return (PyObject *)type;

As you can see, Python converts the content of slots into atuple, thena list
that it builds and sorts, before converting it back into a tuple to use and store it
in the class. This way, Python can retrieve the values quickly, without having to

allocate and use an entire dictionary.

It’s easy enough to declare such a class:

Example 10.8 A class declaration using  slots

class Foobar(object):

__slots = 'x'

def init (self, x):

self.x = x

We can easily compare the memory usage of the two approaches using the memory
_profiler Python package:

Example 10.9 Memory usage of objects using slots

% python -m memory profiler slots.py

Filename: slots.py

Line # Mem usage Increment Line Contents

7 @profile
8 9.879 MB 0.000 MB def main():
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9 21.609 MB 11.730 MB f = [ Foobar(42) for i in range <«
(100000) ]

So it seems that by using the  slots  attribute of Python classes, we can halve
our memory usage - this means that when creating a large amount of simple ob-
jects,the slots attributeisan effective and efficient choice. However, the tech-
nique shouldn’t be misused in order to perform static typing or the like. Thisisn’t

in the spirit of Python programs.

Due to the fixed nature of the attribute list, it’s easy enough to imagine classes
where the attributes listed would always have a value, and where the fields would

always be sorted in some way.

That’s exactly the nature of the namedtuple class from the collection module. It al-
lows us to dynamically create a class that will inherit from tuptle, therefore sharing
its characteristics - such as being immutable, and having a fixed number of entries.
What namedtuple provides is the ability to retrieve the tuple elements by referenc-

ing a named attribute, rather than just referencing by index.

Example 10.10 Declaring a class using namedtuple

>>> import collections
>>> Foobar = collections.namedtuple('Foobar', ['x"'])
>>> Foobar = collections.namedtuple('Foobar', ['x"', 'y'])
>>> Foobar(42, 43)
Foobar(x=42, y=43)
>>> Foobar (42, 43).x
42
>>> Foobar(42, 43).x = 44
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

>>> Foobar(42, 43).z = 0



10.4. NAMEDTUPLE AND SLOTS 190

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'Foobar' object has no attribute 'z’
>>> list(Foobar (42, 43))

[42, 43]

Since a class like this would inherit from tuple, we can easily convert it to a list. We
can’t change or add any attributes on objects of this class, because on one hand it
inherits from tuple, and also because the slots valueis set to an empty tuple
- thereby avoiding the creating of the  dict .

Example 10.11 Memory usage of a class built from collections.namedtuple

% python -m memory profiler namedtuple.py

Filename: namedtuple.py

Line # Mem usage Increment Line Contents
4 @profile
5 9.895 MB 0.000 MB def main():
6 23.184 MB 13.289 MB f = [ Foobar(42) for i in range <«
(100000) ]

Therefore, usage of the namedtuple class factory is as almost as efficient as using an
objectwith slots ,theonlydifference beingthatitis compatible withthe tuple
class. It can therefore be passed to many native Python functions and libraries that
expect an iterable type as an argument. It also enjoys the various optimizations
that exist for tuples .

namedtuple also provides a few extra methods that, even if prefixed by an under-

score, are actually intended to be public. _asdict can convert the namedtuple to

'For example, tuples smaller than PyTuple MAXSAVESIZE (20 by default) will use a faster memory
allocator in CPython
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a dict instance, make allows us to convert an existing iterable object to this class,

and replace returns a new instance of the object with some fields replaced.

10.5 Memoization

Memoization is a technique used to speed up function calls by caching their result.
The results can be cached only if the function is pure - meaning that it has no side

effects or outputs, and that it does not depend on any global state.

A trivial function that can be memoized is the sine function sin.

Example 10.12 A basic memoization technique

>>> import math
>>> SIN MEMOIZED VALUES = {}
>>> def memoized sin(x):
if x not in SIN MEMOIZED VALUES:
_SIN MEMOIZED VALUES[x] = math.sin(x)
return SIN MEMOIZED VALUES[X]
>>> memoized sin(1)
0.8414709848078965
>>> SIN MEMOIZED VALUES
{1: 0.8414709848078965}
>>> memoized sin(2)
0.9092974268256817
>>> memoized sin(2)
0.9092974268256817
>>> SIN MEMOIZED VALUES
{1: 0.8414709848078965, 2: 0.9092974268256817}
>>> memoized sin(1)
0.8414709848078965
>>> SIN MEMOIZED VALUES
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{1: 0.8414709848078965, 2: 0.9092974268256817}

The first time that memoized siniscalled with an argument thatis notstoredin SI
N_MEMOIZED VALUES,the value will be computed and stored in this dictionary. Later
on, if we call the function with the same value again, the result will be retrieved from
the dictionary rather than computed again. While sinis a function which computes
very quickly, this may not be true of some advanced functions which involve more

complicated computations.

If you’ve already read about decorators (if not, go to Section 7.1), you must be think-
ing that there is a perfect opportunity to use them here - and you’d be right. PyPI
lists a few implementations of memoization through decorators, from very simple

cases to the most complex and complete.

Starting with Python 3.3, the functools module provides a LRU (Least-Recently-
Used) cache decorator. This provides the same functionality as the memoization
described here, but with the benefit that it limits the number of entries in the cache,

removing the least recently used one when the cache size reachesits maximum size.

The module also provides statistics on cache hits, misses, etc. In my opinion, these
are a must-haves when implementing such a cache. There’s no pointin using mem-
oization - or any caching technique - if you are unable to meter its usage and use-

fulness.

Here’s an example of the memoized sin function above, using functools.lru ca

che:

Example 10.13 Using functools.lru_ cache

>>> import functools

>>> import math

>>> @functools.lru cache(maxsize=2)
. def memoized sin(x):

return math.sin(x)
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>>> memoized sin(2)

0.9092974268256817

>>> memoized sin.cache info()

CacheInfo(hits=0, misses=1, maxsize=2, currsize=1)
>>> memoized sin(2)

0.9092974268256817

>>> memoized sin.cache info()

CacheInfo(hits=1, misses=1, maxsize=2, currsize=1)
>>> memoized sin(3)

0.1411200080598672

>>> memoized sin.cache info()

CacheInfo(hits=1, misses=2, maxsize=2, currsize=2)
>>> memoized sin(4)

-0.7568024953079282

>>> memoized sin.cache info()

CacheInfo(hits=1, misses=3, maxsize=2, currsize=2)
>>> memoized sin(3)

0.1411200080598672

>>> memoized sin.cache _info()

CacheInfo(hits=2, misses=3, maxsize=2, currsize=2)
>>> memoized sin.cache clear()

>>> memoized sin.cache info()

CacheInfo(hits=0, misses=0, maxsize=2, currsize=0)

10.6 PyPy

PyPy is an efficient implementation of the Python language which complies with

standards. Indeed, the canonical implementation of Python, CPython - so called
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because it’s written in C - can be very slow. The idea behind PyPy was to write
a Python interpreter in Python itself. In time it evolved to be written in RPython,

which is a restricted subset of the Python language.

RPython places constraints on the Python language in such a way that a variable’s
type can be inferred at compile time. The RPython code is translated to C code that
iscompiled to build the interpreter - RPython could of course be used to implement

other languages than Python.

What’s interesting in PyPy, besides the technical challenge, is that it is now at a
stage where it can act as a faster replacement for CPython. PyPy has a JIT (Just-
In-Time) compiler built-in - long story short, it allows the code to be run in a faster

way by combining the speed of compiled code with the flexibility of interpretation.

How fast? That depends, but for pure algorithmic code it is much faster. For more
general code, PyPy claims to achieve 3 times the speed, most of the time. Though
don’t start dreaming too much about it yet - PyPy also has some of the CPython

limitations, such as the hated GIL. 2

While not being a strict optimization technique, targeting PyPy as one of your sup-
ported Python implementations is probably a good idea. Achieving this goal re-
quires the same kind of coding policy that is required for support of other Python
versions - basically, you need to make sure that you are testing your software un-
der PyPy like you do under CPython. tox (see Section 6.7) supports the building of
virtual environments using PyPy, just as it does for CPython 2 or CPython 3, so it

should be pretty straightforward to put this in place.

Doing so at the beginning of the project will make sure that there’s not too much

work to do at a later stage if you wish to be able to run your software with PyPy.

*Global Interpreter Lock
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Note

For the Hy project, we successfully adopted such a strategy from the beginning. Hy always
f has supported PyPy and all CPython versions without much trouble. On the other hand,
we failed to do so in all of our OpenStack projects, and we are now blocked by various
code paths and dependencies that don’t work on PyPy for various reasons, as they weren’t

fully tested in the early stages.

PyPy is compatible with Python 2.7, and its JIT compiler works on 32- and 64-bit,
x86 and ARM architectures, and under various operating systems (Linux, Windows,

Mac OS X...). Support for Python 3 is underway.

10.7 Achieving zero copy with the buffer protocol

Often programs have to deal with a huge amount of data in the form of large arrays
of bytes. Handling such a large amount of data in strings can be very ineffective

once you start manipulating it by copying, slicing, and modifying them.

Let’s consider a small program which reads a large file of binary data, and copies
it partially into another file. To examine out our memory usage, we will use mem-
ory_profiler, a nice Python package that allows us to see the memory usage of a

program line by line.

@profile
def read random():
with open("/dev/urandom", "rb") as source:
content = source.read(1024 * 10000)
content to write = content[1024:]
print("Content length: %d, content to write length %d" %
(len(content), len(content to write)))

with open("/dev/null", "wb") as target:
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target.write(content to write)

if name == "' main_ ':

read random()

We then run the above program using memory_profiler:

$ python -m memory profiler memoryview/copy.py
Content length: 10240000, content to write length 10238976

Filename: memoryview/copy.py

Mem usage Increment Line Contents
@profile

9.883 MB 0.000 MB  def read random():

9.887 MB 0.004 MB with open("/dev/urandom", "rb") as source:
19.656 MB 9.770 MB content = source.read(1024 * 10000) @
29.422 MB 9.766 MB content to write = content[1024:] @
29.422 MB 0.000 MB print("Content length: %d, content to write <

length %d" %
29.434 MB 0.012 MB (len(content), len(content to write)))
29.434 MB 0.000 MB with open("/dev/null", "wb") as target:
29.434 MB 0.000 MB target.write(content to write)

® We arereading 10 MB from /dev/urandom and not doing much with it. Python

needs to allocate around 10 MB of memory to store this data as a string.

® We copy the entire block of data minus the first KB - because we won’t be writ-
ing to that first KB to the target file.

What’s interesting in this example is that, as you can see, the memory usage of the

program is increased by about 10 MB when building the variable content_to_write.
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In fact, the slice operator is copying the entirety of content, minus the first KB, into

a new string object.

When dealing with large data, performing this kind of operation on large byte arrays
is going to be a disaster. If you happen to have written C code already, you know
that using memcpy() has a significant cost, both in term of memory usage and in

terms of general performance: copying memory is slow.

But as a C programmer you’ll also know that strings are arrays of characters, and
that nothing stops you from looking at only part of this array without copying it,

through the use of basic pointer arithmetic >,

This is possible in Python using objects which implement the buffer protocol. The
buffer protocolis defined in PEP 3118, which explains the C APl used to provide this

protocol to various types, such as strings.

When an object implements this protocol, you can use the memoryview class con-
structor on it to build a new memoryview object that will reference the original ob-

ject memory.

Here’s an example:

>>> s = b"abcdefgh"

>>> view = memoryview(s)
>>> view[1]

98 ©

>>> limited = view[1:3]
<memory at 0x7fcal8b8d460>
>>> bytes(view[1l:3])

b'bc'

® Thisisthe ASCII code for the letter b.

*Assuming that the entire string is in a contiguous memory area.
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Figure 10.2: Using slice on memoryview objects

In this case, we are going to make use of the fact that the memoryview object’s slice
operator itself returns a memoryview object. That means it does not copy any data,

but merely references a particular slice of it.

With this in mind, we now can rewrite the program, this time referencing the data

we want to write using a memoryview object.

@profile
def read random():
with open("/dev/urandom", "rb") as source:
content = source.read (1024 * 10000)
content to write = memoryview(content)[1024:]
print("Content length: %d, content to write length %d" %
(len(content), len(content to write)))
with open("/dev/null", "wb") as target:
target.write(content to write)
if name == "' main ':

read random()

And this program will have half the memory usage of the first version:

$ python -m memory profiler memoryview/copy-memoryview.py
Content length: 10240000, content to write length 10238976

Filename: memoryview/copy-memoryview.py
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with open("/dev/urandom", "rb") as source:
content = source.read(1024 * 10000) ©

content to write = memoryview(content) «

print("Content length: %d, content to write <«

(len(content), len(content to write)))

with open("/dev/null", "wb") as target:

Mem usage Increment Line Contents
@profile
9.887 MB 0.000 MB  def read random():
9.891 MB 0.004 MB
19.660 MB 9.770 MB
19.660 MB 0.000 MB
[1024:] ©
19.660 MB 0.000 MB
length %d" %
19.672 MB 0.012 MB
19.672 MB 0.000 MB
19.672 MB 0.000 MB

target.write(content to write)

® We arereading 10 MB from /dev/urandom and not doing much with it. Python

needs to allocate around 10 MB of memory to store this data as a string.

® We reference the entire block of data minus the first KB - because we won’t

be writing to that first KB to the target file. No copying means that no more

memory is used!

This kind of trick is especially useful when dealing with sockets. As you may know,

when data is sent over a socket, it might not send all the data in a single call. A

simple implementation would be to write:

import socket

s = socket.socket(..)

s.connect(..)

data = b"a" * (1024 * 100000) @

while data:
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sent s.send(data)

data = data[sent:] ©

® Build a bytes object with more than 100 millions times the letter a.

® Remove the first sent bytes sent.

Obviously, using such a mechanism, you are going to copy the data over and over
until the socket has sent everything. Using memoryview, we can achieve the same
functionality without copying data - hence, zero copy:
import socket
s = socket.socket(..)
s.connect(..)
data = b"a" * (1024 * 100000) @
mv = memoryview(data)
while mv:
sent = s.send(mv)

mv = mv[sent:] ©

® Build a bytes object with more than 100 millions times the letter a.

® Build anew memoryview object pointing to the data which remains to be sent.

Thiswon’t copy anything, and won’t use any more memory than the 100 MB initially

needed for our data variable.

We’ve now seen memoryview objects used to write data efficiently, but the same
method can also be used to read data. Most 1/0 operations in Python know how to
deal with objects implementing the buffer protocol. They can read fromit, but also
write to it. In this case, we don’t need memoryview objects - we can just ask an 1/0

function to write into our pre-allocated object:
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>>> ba = bytearray(8)

>>> ba
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00")
>>> with open("/dev/urandom", "rb") as source:

source.readinto(ba)

8

>>> ba

bytearray(b' m.z\x8d\x0fp\xal')

With such techniques, it’s easy to pre-allocate a buffer (as you would do in C to mit-
igate the number of calls to malloc()) and fill it at your convenience. Using memo-
ryview, you can even place data at any point in the memory area:

>>> ba = bytearray(8)

>>> ba at 4 = memoryview(ba)[4:] @

>>> with open("/dev/urandom"”, "rb") as source:

source.readinto(ba at 4) @

4
>>> ba

bytearray(b'\x00\x00\x00\x00\x0b\x19\xae\xb2")

® We reference the bytearray from offset 4 to its end.

® Wewrite the content of /dev/urandom from offset 4 to the end of the bytearray,

effectively reading 4 bytes only.

Tip
Both the objects in the array module and the functions in the struct module can handle the

buffer protocol correctly, and can therefore perform efficiently when targeting zero copy.
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10.8 Interview with Victor Stinner

Victor is a long time Python hacker, a core contributor and the author of many
Python modules. He recently authored PEP 454, which proposes a new tracemal
loc module to trace memory block allocation inside Python, and also wrote a sim-

ple AST optimizer.

What’s a good starting strategy to optimize Python code?

Well, the strategy is the same in Python as in other languages. First you
need a well-defined use case, in order to get a stable and reproducible
benchmark. Without a reliable benchmark, trying different optimizations
may result in a wasting time and premature optimizations. Useless op-
timizations may make the code worse, less readable, or even slower. A

useful optimization must speed the program up by at least 5%.

If a specific part of the code is identified as being "slow", a benchmark
should be prepared on this code. Abenchmark on a short function is usu-
ally called a "micro-benchmark". The speedup should be at least 20%,

maybe 25%, to justify an optimization on a micro-benchmark.

It may be interesting to run a benchmark on different computers, differ-
ent operating systems, different compilers. For example, performances
of realloc() may vary between Linux and Windows. Even if it should be

avoided, sometimes, the implementation may depend on the platform.

There’s a lot of different tools around for profiling or optimizing Python

code; what are your weapons of choice?
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Python 3.3 has anew time.perf counter() function to measure elapsed

time for a benchmark. It has the best resolution available.

A test should be run more than once; 3 times is a minimum, 5 may be
enough. Repeating a test fills disk cache and CPU caches. | prefer to keep

the minimum timing, other developers prefer the geometric mean.

For micro-benchmarks, the timeit module is easy to use and gives results
quickly, but the results are not reliable using default parameters. Tests

should be repeated manually to get stable results.

Optimizing can take a lot of time, so it’s better to focus on functions which
use the most CPU power. To find these functions, Python has cProfile
and profile modules which record the amount of time spent in each func-

tion.

What are the interesting Python tricks to know that could improve

performance?

The standard library should be reused as much as possible - it’s well tested,
and also usually efficient. Python built-in types are implemented in C and
have good performance. Use the correct container to get the best per-
formance; Python provides many different kind of containers - dict, list,

deque, set, etc.

There are some hacks to optimize Python, but they should be avoided
because they make the code less readable in exchange for only a minor

speed-up.
The Zen of Python (PEP 20) says "There should be one - and preferably

only one - obvious way to do it." In practice, there are different ways to
write Python code, and performances are not the same. Only trust bench-

marks on your use case.

In which areas does Python have poor performance? Which areas should
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be used with care?

In general, | prefer not to worry about performance while developing a
new application. Premature optimization is the root of all evil. When
slow functions are identified, the algorithm should be changed. If the al-
gorithm and the container types are well chosen, it’s possible to rewrite

short functions in C to get best performances.

A bottleneckin CPython is the Global Interpreter Lock known as the "GIL".
Two threads cannot execute Python bytecode at the same time. However,
this limitation only mattersif two threads are executing pure Python code.
If most processing time is spent in function calls, and these functions re-
lease the GIL, then the GIL is not the bottleneck. For example, most I/O

functions release the GIL.

The multiprocessing module can easily be used to workaround the GIL.
Another option, more complex to implement, is to write asynchronous
code. Twisted, Tornado and Tulip projects, which are network-oriented

libraries, make use of this technique.

What "mistakes" that contribute to poor performance do you see most

often?

When Python is not well understood, inefficient code can be written. For
example, | have seen copy.deepcopy() misused, when no copy was re-

quired.

Another performance-killer is an inefficient data structure. With less than
one hundred items, the container type has no impact on performance.
With more items, the complexity of each operation (add, get, delete) and

it’s effects must be known.
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