
ǔǓ Performances and optimizations

Premature optimi⁵ation is the root of all evil.

--- Donald Knuth Structured Programming with go to Statements

10.1 Data structures

Most computer problems can be solved in an elegant and simplemanner, provided

that ⁴ou use the right data structures – and P⁴thon provides man⁴ data structures

to choose from.

Oten, there is a temptation to code ⁴our owncustomdata structures – this is invari-

abl⁴ a vain, useless, doomed idea. P⁴thon almost alwa⁴s has better data structures

and code to offer – learn to use them.

For example, ever⁴bod⁴ uses dict, but how man⁴ times have ⁴ou seen code like

this:

def get_fruits(basket, fruit):

A variation is to use "if fruit in basket:"

try:

return basket[fruit]

except KeyError:

ǔǓ.ǔ. DATA STRUCTURES ǔǚǗ

return set()

It’s muchmore eas⁴ to use the getmethod alread⁴ provided b⁴ the dict structure:

def get_fruits(basket, fruit):

return basket.get(fruit, set())

It’s not uncommon for people to use basic P⁴thon data structures without being

aware of all the methods the⁴ provide. This is also true for sets – for example:

def has_invalid_fields(fields):

for field in fields:

if field not in ['foo', 'bar']:

return True

return False

This can be written without a loop:

def has_invalid_fields(fields):

return bool(set(fields) - set(['foo', 'bar']))

The set data structures have methods which can solve man⁴ problems that would

otherwise need to be addressed b⁴ writing nested for/if blocks.

There are also more advanced data structures that can greatl⁴ reduce the burden

of code maintenance. For example, take a look at the following code:

def add_animal_in_family(species, animal, family):

if family not in species:

species[family] = set()

species[family].add(animal)

species = {}

add_animal_in_family(species, 'cat', 'felidea')

ǔǓ.Ǖ. PROFILING ǔǚǘ

Sure, this code is perfectl⁴ valid, but how man⁴ times will ⁴our program require a

variation of the above? Tens? Hundreds?

P⁴thon provides the collections.defaultdict structure, which solves the prob-

lem in an elegant wa⁴.

import collections

def add_animal_in_family(species, animal, family):

species[family].add(animal)

species = collections.defaultdict(set)

add_animal_in_family(species, 'cat', 'felidea')

Each time that ⁴ou tr⁴ to access anon-existent item from⁴ourdict, the defaultdict

will use the function that was passed as argument to its constructor to build a new

value – instead than raisinga KeyError. In this case, the set function is used tobuild

a new set each time we need it.

B⁴ the wa⁴, the collections module offers a few useful data structures that can

solve other kinds of problems, such as OrderedDict or Counter.

It’s reall⁴ important to look for the right data structure in P⁴thon, as the correct

choice will save ⁴ou time, and lessen codemaintenance.

10.2 Profiling

P⁴thon provides a few tools to profile ⁴our program. The standard one is cProfile

and is eas⁴ enough to use.

Example ǔǓ.ǔ Using the cProfilemodule

$ python -m cProfile myscript.py

343 function calls (342 primitive calls) in 0.000 seconds

ǔǓ.Ǖ. PROFILING ǔǚǙ

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.000 0.000 :0(_getframe)

1 0.000 0.000 0.000 0.000 :0(len)

104 0.000 0.000 0.000 0.000 :0(setattr)

1 0.000 0.000 0.000 0.000 :0(setprofile)

1 0.000 0.000 0.000 0.000 :0(startswith)

2/1 0.000 0.000 0.000 0.000 <string>:1(<module>)

1 0.000 0.000 0.000 0.000 StringIO.py:30(<module>)

1 0.000 0.000 0.000 0.000 StringIO.py:42(StringIO)

The results list indicates the number of calls each functionwas called, and the time

spent on its execution. You canuse the -soption to sort b⁴ other fields; e.g. -s time

will sort b⁴ internal time.

If ⁴ou’ve coded in C, as I did ⁴ears ago, ⁴ou probabl⁴ alread⁴ know the fantastic

Valgrind tool, that – among other things – is able to provide profiling data for C

programs. The data that it provides can then be visuali⁵ed b⁴ another great tool

named KCacheGrind.

You’ll behapp⁴ toknowthat theprofiling informationgeneratedb⁴ cProfile caneas-

il⁴ be converted to a call tree that can be read b⁴ KCacheGrind. The cProfilemod-

ule has a -o option that allows ⁴ou to save the profiling data, and p⁴profǕcalltree

can convert from one format to the other.

Example ǔǓ.Ǖ Using KCacheGrind to visuali⁵e P⁴thon profiling data

$ python -m cProfile -o myscript.cprof myscript.py

$ pyprof2calltree -k -i myscript.cprof

ǔǓ.Ǖ. PROFILING ǔǚǚ

Figure ǔǓ.ǔ: KCacheGrind example

This provides a lot of information thatwill allow ⁴ou to determinewhat part of ⁴our

programmight be consuming toomuch resources.

While this clearl⁴ works well for a macroscopic view of ⁴our program, it sometimes

helps to have a microscopic view of some part of the code. In such a context, I find

it better to rel⁴ on the dis module to find out what’s going on behind the scenes.

The dismodule is a disassembler of P⁴thon b⁴te code. It’s simple enough to use:

>>> def x():

... return 42

...

>>> import dis

>>> dis.dis(x)

2 0 LOAD_CONST 1 (42)

ǔǓ.Ǖ. PROFILING ǔǚǛ

3 RETURN_VALUE

The dis.dis function disassembles the function that ⁴ou passed as a parameter,

and prints the list of b⁴tecode instructions that are run b⁴ the function. It can be

useful to understand what’s reall⁴ behind each line of code that ⁴ou write, in order

to be able to properl⁴ optimi⁵e ⁴our code.

The following code defines two functions, each of which does the same thing – con-

catenates three letters:

abc = ('a', 'b', 'c')

def concat_a_1():

for letter in abc:

abc[0] + letter

def concat_a_2():

a = abc[0]

for letter in abc:

a + letter

Both appear to do exactl⁴ the same thing, but if we disassemble them, we’ll see

that the generated b⁴tecode is a bit different:

>>> dis.dis(concat_a_1)

2 0 SETUP_LOOP 26 (to 29)

3 LOAD_GLOBAL 0 (abc)

6 GET_ITER

>> 7 FOR_ITER 18 (to 28)

10 STORE_FAST 0 (letter)

3 13 LOAD_GLOBAL 0 (abc)

16 LOAD_CONST 1 (0)

ǔǓ.Ǖ. PROFILING ǔǚǜ

19 BINARY_SUBSCR

20 LOAD_FAST 0 (letter)

23 BINARY_ADD

24 POP_TOP

25 JUMP_ABSOLUTE 7

>> 28 POP_BLOCK

>> 29 LOAD_CONST 0 (None)

32 RETURN_VALUE

>>> dis.dis(concat_a_2)

2 0 LOAD_GLOBAL 0 (abc)

3 LOAD_CONST 1 (0)

6 BINARY_SUBSCR

7 STORE_FAST 0 (a)

3 10 SETUP_LOOP 22 (to 35)

13 LOAD_GLOBAL 0 (abc)

16 GET_ITER

>> 17 FOR_ITER 14 (to 34)

20 STORE_FAST 1 (letter)

4 23 LOAD_FAST 0 (a)

26 LOAD_FAST 1 (letter)

29 BINARY_ADD

30 POP_TOP

31 JUMP_ABSOLUTE 17

>> 34 POP_BLOCK

>> 35 LOAD_CONST 0 (None)

38 RETURN_VALUE

As ⁴ou can see, in the second version we store abc[0] in a temporar⁴ variable be-

ǔǓ.Ǖ. PROFILING ǔǛǓ

fore running the loop. This makes the b⁴tecode executed inside the loop a little

smaller, as we avoid having to do the abc[0] lookup for each iteration. Measured

using timeit, the second version is ǔǓ% faster than the first one; it takes a whole

microsecond less to execute! Obviousl⁴ thismicrosecond is notworth theoptimi⁵a-

tion unless ⁴ou call this function millions of times – but this is kind of insight that

the dismodule can provide.

Whether ⁴ou should need to rel⁴ on such "tricks" as storing the value outside the

loop is debatable – ultimatel⁴, it should be the compiler’swork to optimi⁵e this kind

of thing. On the other hand, as the language is heavil⁴ d⁴namic, it’s difficult for the

compiler to be sure that optimi⁵ationwouldn’t result in negative side effects. So be

careful when writing ⁴our code!

Another wrong habit I’ve oten encountered when reviewing code is the defining of

functions inside functions for no reason. This has a cost – as the function is going

to be redefined over and over for no reason.

Example ǔǓ.ǖ A function defined in a function, disassembled

>> import dis

>>> def x():

... return 42

...

>>> dis.dis(x)

2 0 LOAD_CONST 1 (42)

3 RETURN_VALUE

>>> def x():

... def y():

... return 42

... return y()

...

>>> dis.dis(x)

2 0 LOAD_CONST 1 (<code object y at 0x100ce7e30, ←֓

ǔǓ.Ǖ. PROFILING ǔǛǔ

file "<stdin>", line 2>)

3 MAKE_FUNCTION 0

6 STORE_FAST 0 (y)

4 9 LOAD_FAST 0 (y)

12 CALL_FUNCTION 0

15 RETURN_VALUE

We can see here that it is needlessl⁴ complicated, calling MAKE_FUNCTION, STORE_F

AST, LOAD_FAST and CALL_FUNCTION instead of just LOAD_CONST. That requires man⁴

more opcodes for no good reason – and function calling in P⁴thon is alread⁴ ineffi-

cient.

The onl⁴ case in which it is required to define a function within a function is when

building a function closure, and this is a perfectl⁴ identified use case in P⁴thon’s

opcodes.

Example ǔǓ.Ǘ Disassembling a closure

>>> def x():

... a = 42

... def y():

... return a

... return y()

...

>>> dis.dis(x)

2 0 LOAD_CONST 1 (42)

3 STORE_DEREF 0 (a)

3 6 LOAD_CLOSURE 0 (a)

9 BUILD_TUPLE 1

12 LOAD_CONST 2 (<code object y at 0x100d139b0, ←֓

ǔǓ.ǖ. ORDERED LIST AND BISECT ǔǛǕ

file "<stdin>", line 3>)

15 MAKE_CLOSURE 0

18 STORE_FAST 0 (y)

5 21 LOAD_FAST 0 (y)

24 CALL_FUNCTION 0

27 RETURN_VALUE

10.3 Ordered list and bisect

When manipulating large lists, the use of sorted lists has a few advantages over

non-sorted lists – for example, sorted lists have a retrieve time of O(log n).

A couple of times, however, I’ve seen people tr⁴ing to implement their own data

structures and algorithms to handle such cases. This is a bad idea – ⁴ou shouldn’t

spend time on problems alread⁴ solved.

Firstl⁴, P⁴thon provides a bisectmodule which contains a bisection algorithm. It’s

eas⁴ enough to use:

Example ǔǓ.ǘ Usage of bisect

>>> farm = sorted(['haystack', 'needle', 'cow', 'pig'])

>>> bisect.bisect(farm, 'needle')

3

>>> bisect.bisect_left(farm, 'needle')

2

>>> bisect.bisect(farm, 'chicken')

0

>>> bisect.bisect_left(farm, 'chicken')

0

>>> bisect.bisect(farm, 'eggs')

ǔǓ.ǖ. ORDERED LIST AND BISECT ǔǛǖ

1

>>> bisect.bisect_left(farm, 'eggs')

1

Thebisect functionallows⁴ou to retrieve the indexwhereanew list element should

be inserted, while keeping the list sorted.

If ⁴ou wish to insert the element immediatel⁴, the bisectmodule provides the ins

ort_left and insort_right functions that do exactl⁴ that.

Example ǔǓ.Ǚ Usage of bisect.insort

>>> farm

['cow', 'haystack', 'needle', 'pig']

>>> bisect.insort(farm, 'eggs')

>>> farm

['cow', 'eggs', 'haystack', 'needle', 'pig']

>>> bisect.insort(farm, 'turkey')

>>> farm

['cow', 'eggs', 'haystack', 'needle', 'pig', 'turkey']

You can then use these functions to create a list that is alwa⁴s sorted:

Example ǔǓ.ǚ A SortedList implementation

import bisect

class SortedList(list):

def __init__(self, iterable):

super(SortedList, self).__init__(sorted(iterable))

def insort(self, item):

bisect.insort(self, item)

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǗ

def index(self, value, start=None, stop=None):

place = bisect.bisect_left(self[start:stop], value)

if start:

place += start

end = stop or len(self)

if place < end and self[place] == value:

return place

raise ValueError("%s is not in list" % value)

Obviousl⁴, one shouldn’t use the direct functions append or extend on this list – or

the list will no longer be sorted.

Man⁴ P⁴thon libraries exist which implement various versions of the above code –

and man⁴ more data t⁴pes, such as binar⁴ or red-black tree structures. The blist

and bintreeP⁴thon packages contain code that ⁴ou can be use for these purposes,

rather than implementing and debugging ⁴our own version.

10.4 Namedtuple and slots

Sometimes it’s useful to have the abilit⁴ to create ver⁴ simple objects which onl⁴

possess a few fixed attributes. A simple implementationwould be something along

these lines:

class Point(object):

def __init__(self, x, y):

self.x = x

self.y = y

This definitel⁴ gets the job done – however, there is a downside to this approach: it

creates a class which inherits from object. In using this Point class, ⁴ou be instanti-

ating objects.

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǘ

Onepropert⁴of suchobjects inP⁴thon, is that the⁴ storeall of their attributes inside

a dictionar⁴; this dictionar⁴ is itself stored in the __dict__ attribute:

>>> p = Point(1, 2)

>>> p.__dict__

{'y': 2, 'x': 1}

>>> p.z = 42

>>> p.z

42

>>> p.__dict__

{'y': 2, 'x': 1, 'z': 42}

The advantage is that ⁴ou can add as man⁴ attributes as ⁴ou want to an object.

The drawback, however, is that using a dictionar⁴ to store these attributes is quite

expensive in terms of memor⁴ – ⁴ou need to store the object, the ke⁴s, the value

references, etc. It’s slow to create and slow to manipulate, with a high memor⁴

cost. Consider the following simple class:

[source,python]

class Foobar(object):

def __init__(self, x):

self.x = x

Let’s check the memor⁴ usage using the memory_profiler P⁴thon package:

$ python -m memory_profiler object.py

Filename: object.py

Line # Mem usage Increment Line Contents

==

5 @profile

6 9.879 MB 0.000 MB def main():

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǙ

7 50.289 MB 40.410 MB f = [Foobar(42) for i in range ←֓

(100000)]

Therefore, it exists a wa⁴ to use objects without this default behaviour. Classes in

P⁴thon can define a __slots__ attribute that will list the onl⁴ attributes allowed

for instances of this class. The power of this is that instead of allocating a whole

dictionar⁴ object to store all of the object attributes, the⁴ can now be stored in a

list object. If ⁴ou go through the CP⁴thon source code and take a look at the Obje

cts/typeobject.c file, it is quite eas⁴ to understandwhat P⁴thon does in this case.

Here is a cut down version of the function which handles this:

static PyObject *

type_new(PyTypeObject *metatype, PyObject *args, PyObject *kwds)

{

[…]

/* Check for a __slots__ sequence variable in dict, and count it */

slots = _PyDict_GetItemId(dict, &PyId___slots__);

nslots = 0;

if (slots == NULL) {

if (may_add_dict)

add_dict++;

if (may_add_weak)

add_weak++;

}

else {

/* Have slots */

/* Make it into a tuple */

if (PyUnicode_Check(slots))

slots = PyTuple_Pack(1, slots);

else

slots = PySequence_Tuple(slots);

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǚ

/* Are slots allowed? */

nslots = PyTuple_GET_SIZE(slots);

if (nslots > 0 && base->tp_itemsize != 0) {

PyErr_Format(PyExc_TypeError,

"nonempty __slots__ "

"not supported for subtype of '%s'",

base->tp_name);

goto error;

}

/* Copy slots into a list, mangle names and sort them.

Sorted names are needed for __class__ assignment.

Convert them back to tuple at the end.a

*/

newslots = PyList_New(nslots - add_dict - add_weak);

if (newslots == NULL)

goto error;

if (PyList_Sort(newslots) == -1) {

Py_DECREF(newslots);

goto error;

}

slots = PyList_AsTuple(newslots);

Py_DECREF(newslots);

if (slots == NULL)

goto error;

}

/* Allocate the type object */

type = (PyTypeObject *)metatype->tp_alloc(metatype, nslots);

[…]

/* Keep name and slots alive in the extended type object */

et = (PyHeapTypeObject *)type;

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǛ

Py_INCREF(name);

et->ht_name = name;

et->ht_slots = slots;

slots = NULL;

[…]

return (PyObject *)type;

As ⁴ou can see, P⁴thon converts the content of __slots__ into a tuple, then a list

that it builds and sorts, before converting it back into a tuple to use and store it

in the class. This wa⁴, P⁴thon can retrieve the values quickl⁴, without having to

allocate and use an entire dictionar⁴.

It’s eas⁴ enough to declare such a class:

Example ǔǓ.Ǜ A class declaration using __slots__

class Foobar(object):

__slots__ = 'x'

def __init__(self, x):

self.x = x

We can easil⁴ compare the memor⁴ usage of the two approaches using the memory

_profiler P⁴thon package:

Example ǔǓ.ǜMemor⁴ usage of objects using __slots__

% python -m memory_profiler slots.py

Filename: slots.py

Line # Mem usage Increment Line Contents

==

7 @profile

8 9.879 MB 0.000 MB def main():

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǛǜ

9 21.609 MB 11.730 MB f = [Foobar(42) for i in range ←֓

(100000)]

So it seems that b⁴ using the __slots__ attribute of P⁴thon classes, we can halve

our memor⁴ usage – this means that when creating a large amount of simple ob-

jects, the__slots__attribute is aneffectiveandefficient choice. However, the tech-

nique shouldn’t be misused in order to perform static t⁴ping or the like. This isn’t

in the spirit of P⁴thon programs.

Due to the fixed nature of the attribute list, it’s eas⁴ enough to imagine classes

where the attributes listed would alwa⁴s have a value, and where the fields would

alwa⁴s be sorted in some wa⁴.

That’s exactl⁴ thenature of the namedtuple class from the collectionmodule. It al-

lows us to d⁴namicall⁴ create a class that will inherit from tuple, therefore sharing

its characteristics – such as being immutable, and having a fixed number of entries.

What namedtuple provides is the abilit⁴ to retrieve the tuple elements b⁴ referenc-

ing a named attribute, rather than just referencing b⁴ index.

Example ǔǓ.ǔǓ Declaring a class using namedtuple

>>> import collections

>>> Foobar = collections.namedtuple('Foobar', ['x'])

>>> Foobar = collections.namedtuple('Foobar', ['x', 'y'])

>>> Foobar(42, 43)

Foobar(x=42, y=43)

>>> Foobar(42, 43).x

42

>>> Foobar(42, 43).x = 44

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

>>> Foobar(42, 43).z = 0

ǔǓ.Ǘ. NAMEDTUPLE AND SLOTS ǔǜǓ

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'Foobar' object has no attribute 'z'

>>> list(Foobar(42, 43))

[42, 43]

Since a class like this would inherit from tuple, we can easil⁴ convert it to a list. We

can’t change or add an⁴ attributes on objects of this class, because on one hand it

inherits from tuple, and also because the __slots__ value is set to an empt⁴ tuple

– thereb⁴ avoiding the creating of the __dict__.

Example ǔǓ.ǔǔMemor⁴ usage of a class built from collections.namedtuple

% python -m memory_profiler namedtuple.py

Filename: namedtuple.py

Line # Mem usage Increment Line Contents

==

4 @profile

5 9.895 MB 0.000 MB def main():

6 23.184 MB 13.289 MB f = [Foobar(42) for i in range ←֓

(100000)]

Therefore, usage of the namedtuple class factor⁴ is as almost as efficient as using an

objectwith __slots__, the onl⁴ differencebeing that it is compatiblewith the tuple

class. It can therefore be passed toman⁴ native P⁴thon functions and libraries that

expect an iterable t⁴pe as an argument. It also enjo⁴s the various optimi⁵ations

that exist for tuples ¹.

namedtuple also provides a few extra methods that, even if prefixed b⁴ an under-

score, are actuall⁴ intended to be public. _asdict can convert the namedtuple to
¹For example, tuples smaller than PyTuple_MAXSAVESIZE (ǕǓ b⁴ default) will use a faster memor⁴

allocator in CP⁴thon

ǔǓ.ǘ. MEMOIZATION ǔǜǔ

a dict instance, _make allows us to convert an existing iterable object to this class,

and _replace returns a new instance of the object with some fields replaced.

10.5 Memoization

Memoi⁵ation is a technique used to speed up function calls b⁴ caching their result.

The results can be cached onl⁴ if the function is pure – meaning that it has no side

effects or outputs, and that it does not depend on an⁴ global state.

A trivial function that can be memoi⁵ed is the sine function sin.

Example ǔǓ.ǔǕ A basic memoi⁵ation technique

>>> import math

>>> _SIN_MEMOIZED_VALUES = {}

>>> def memoized_sin(x):

... if x not in _SIN_MEMOIZED_VALUES:

... _SIN_MEMOIZED_VALUES[x] = math.sin(x)

... return _SIN_MEMOIZED_VALUES[x]

>>> memoized_sin(1)

0.8414709848078965

>>> _SIN_MEMOIZED_VALUES

{1: 0.8414709848078965}

>>> memoized_sin(2)

0.9092974268256817

>>> memoized_sin(2)

0.9092974268256817

>>> _SIN_MEMOIZED_VALUES

{1: 0.8414709848078965, 2: 0.9092974268256817}

>>> memoized_sin(1)

0.8414709848078965

>>> _SIN_MEMOIZED_VALUES

bjpcjp

ǔǓ.ǘ. MEMOIZATION ǔǜǕ

{1: 0.8414709848078965, 2: 0.9092974268256817}

The first time that memoized_sin is calledwith an argument that is not stored in _SI

N_MEMOIZED_VALUES, the valuewill be computed and stored in this dictionar⁴. Later

on, ifwe call the functionwith the samevalueagain, the resultwill be retrieved from

the dictionar⁴ rather than computed again. While sin is a functionwhich computes

ver⁴ quickl⁴, this ma⁴ not be true of some advanced functions which involve more

complicated computations.

If ⁴ou’ve alread⁴ readaboutdecorators (if not, go toSection ǚ.ǔ), ⁴oumust be think-

ing that there is a perfect opportunit⁴ to use them here – and ⁴ou’d be right. P⁴PI

lists a few implementations of memoi⁵ation through decorators, from ver⁴ simple

cases to the most complex and complete.

Starting with P⁴thon ǖ.ǖ, the functools module provides a LRU (Least-Recentl⁴-

Used) cache decorator. This provides the same functionalit⁴ as the memoi⁵ation

describedhere, butwith thebenefit that it limits the number of entries in the cache,

removing the least recentl⁴usedonewhen thecachesi⁵e reaches itsmaximumsi⁵e.

Themodule also provides statistics on cache hits, misses, etc. Inm⁴ opinion, these

are amust-haveswhen implementing such a cache. There’s no point in usingmem-

oi⁵ation – or an⁴ caching technique – if ⁴ou are unable to meter its usage and use-

fulness.

Here’s an example of the memoized_sin function above, using functools.lru_ca

che:

Example ǔǓ.ǔǖ Using functools.lru_cache

>>> import functools

>>> import math

>>> @functools.lru_cache(maxsize=2)

... def memoized_sin(x):

... return math.sin(x)

ǔǓ.Ǚ. PYPY ǔǜǖ

...

>>> memoized_sin(2)

0.9092974268256817

>>> memoized_sin.cache_info()

CacheInfo(hits=0, misses=1, maxsize=2, currsize=1)

>>> memoized_sin(2)

0.9092974268256817

>>> memoized_sin.cache_info()

CacheInfo(hits=1, misses=1, maxsize=2, currsize=1)

>>> memoized_sin(3)

0.1411200080598672

>>> memoized_sin.cache_info()

CacheInfo(hits=1, misses=2, maxsize=2, currsize=2)

>>> memoized_sin(4)

-0.7568024953079282

>>> memoized_sin.cache_info()

CacheInfo(hits=1, misses=3, maxsize=2, currsize=2)

>>> memoized_sin(3)

0.1411200080598672

>>> memoized_sin.cache_info()

CacheInfo(hits=2, misses=3, maxsize=2, currsize=2)

>>> memoized_sin.cache_clear()

>>> memoized_sin.cache_info()

CacheInfo(hits=0, misses=0, maxsize=2, currsize=0)

10.6 PyPy

P⁴P⁴ is an efficient implementation of the P⁴thon language which complies with

standards. Indeed, the canonical implementation of P⁴thon, CP⁴thon – so called

bjpcjp

ǔǓ.Ǚ. PYPY ǔǜǗ

because it’s written in C – can be ver⁴ slow. The idea behind P⁴P⁴ was to write

a P⁴thon interpreter in P⁴thon itself. In time it evolved to be written in RP⁴thon,

which is a restricted subset of the P⁴thon language.

RP⁴thon places constraints on the P⁴thon language in such a wa⁴ that a variable’s

t⁴pe can be inferred at compile time. The RP⁴thon code is translated to C code that

is compiled tobuild the interpreter –RP⁴thon couldof coursebeused to implement

other languages than P⁴thon.

What’s interesting in P⁴P⁴, besides the technical challenge, is that it is now at a

stage where it can act as a faster replacement for CP⁴thon. P⁴P⁴ has a JIT (Just-

In-Time) compiler built-in – long stor⁴ short, it allows the code to be run in a faster

wa⁴ b⁴ combining the speed of compiled code with the flexibilit⁴ of interpretation.

How fast? That depends, but for pure algorithmic code it ismuch faster. For more

general code, P⁴P⁴ claims to achieve ǖ times the speed, most of the time. Though

don’t start dreaming too much about it ⁴et – P⁴P⁴ also has some of the CP⁴thon

limitations, such as the hated GIL. ²

While not being a strict optimi⁵ation technique, targeting P⁴P⁴ as one of ⁴our sup-

ported P⁴thon implementations is probabl⁴ a good idea. Achieving this goal re-

quires the same kind of coding polic⁴ that is required for support of other P⁴thon

versions – basicall⁴, ⁴ou need to make sure that ⁴ou are testing ⁴our sotware un-

der P⁴P⁴ like ⁴ou do under CP⁴thon. tox (see Section Ǚ.ǚ) supports the building of

virtual environments using P⁴P⁴, just as it does for CP⁴thon Ǖ or CP⁴thon ǖ, so it

should be prett⁴ straightforward to put this in place.

Doing so at the beginning of the project will make sure that there’s not too much

work to do at a later stage if ⁴ou wish to be able to run ⁴our sotware with P⁴P⁴.

²Global Interpreter Lock

bjpcjp

bjpcjp

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǘ

Note

For the Hy project, we successfully adopted such a strategy from the beginning. Hy always

has supported PyPy and all CPython versions without much trouble. On the other hand,

we failed to do so in all of our OpenStack projects, and we are now blocked by various

code paths and dependencies that don’t work on PyPy for various reasons, as they weren’t

fully tested in the early stages.

P⁴P⁴ is compatible with P⁴thon Ǖ.ǚ, and its JIT compiler works on ǖǕ- and ǙǗ-bit,

xǛǙ and ARM architectures, and under various operating s⁴stems (Linux, Windows,

Mac OS X…). Support for P⁴thon ǖ is underwa⁴.

10.7 Achieving zero copy with the buffer protocol

Oten programs have to deal with a huge amount of data in the form of large arra⁴s

of b⁴tes. Handling such a large amount of data in strings can be ver⁴ ineffective

once ⁴ou start manipulating it b⁴ cop⁴ing, slicing, andmodif⁴ing them.

Let’s consider a small program which reads a large file of binar⁴ data, and copies

it partiall⁴ into another file. To examine out our memor⁴ usage, we will use mem-

or⁴_profiler, a nice P⁴thon package that allows us to see the memor⁴ usage of a

program line b⁴ line.

@profile

def read_random():

with open("/dev/urandom", "rb") as source:

content = source.read(1024 * 10000)

content_to_write = content[1024:]

print("Content length: %d, content to write length %d" %

(len(content), len(content_to_write)))

with open("/dev/null", "wb") as target:

bjpcjp

bjpcjp

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǙ

target.write(content_to_write)

if __name__ == '__main__':

read_random()

We then run the above program usingmemory_profiler:

$ python -m memory_profiler memoryview/copy.py

Content length: 10240000, content to write length 10238976

Filename: memoryview/copy.py

Mem usage Increment Line Contents

======================================

@profile

9.883 MB 0.000 MB def read_random():

9.887 MB 0.004 MB with open("/dev/urandom", "rb") as source:

19.656 MB 9.770 MB content = source.read(1024 * 10000) ②1

29.422 MB 9.766 MB content_to_write = content[1024:] ②2

29.422 MB 0.000 MB print("Content length: %d, content to write ←֓

length %d" %

29.434 MB 0.012 MB (len(content), len(content_to_write)))

29.434 MB 0.000 MB with open("/dev/null", "wb") as target:

29.434 MB 0.000 MB target.write(content_to_write)

②1 We are reading ǔǓ MB from /dev/urandom and not doing much with it. P⁴thon

needs to allocate around ǔǓ MB of memor⁴ to store this data as a string.

②2 We cop⁴ the entire block of dataminus the first KB – becausewewon’t bewrit-

ing to that first KB to the target file.

What’s interesting in this example is that, as ⁴ou can see, the memor⁴ usage of the

program is increased b⁴ about ǔǓ MB when building the variable content_to_write.

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǚ

In fact, the slice operator is cop⁴ing the entiret⁴ of content, minus the first KB, into

a new string object.

Whendealingwith largedata, performing this kindof operationon largeb⁴te arra⁴s

is going to be a disaster. If ⁴ou happen to have written C code alread⁴, ⁴ou know

that using memcpy() has a significant cost, both in term of memor⁴ usage and in

terms of general performance: cop⁴ing memor⁴ is slow.

But as a C programmer ⁴ou’ll also know that strings are arra⁴s of characters, and

that nothing stops ⁴ou from looking at onl⁴ part of this arra⁴ without cop⁴ing it,

through the use of basic pointer arithmetic ³.

This is possible in P⁴thon using objects which implement the buffer protocol. The
buffer protocol is defined in PEP ǖǔǔǛ, which explains the C API used to provide this

protocol to various t⁴pes, such as strings.

When an object implements this protocol, ⁴ou can use thememoryview class con-

structor on it to build a newmemoryview object that will reference the original ob-

ject memor⁴.

Here’s an example:

>>> s = b"abcdefgh"

>>> view = memoryview(s)

>>> view[1]

98 ②1

>>> limited = view[1:3]

<memory at 0x7fca18b8d460>

>>> bytes(view[1:3])

b'bc'

②1 This is the ASCII code for the letter b.
³Assuming that the entire string is in a contiguous memor⁴ area.

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǛ

Figure ǔǓ.Ǖ: Using slice onmemoryview objects

In this case, we are going to make use of the fact that the memoryview object’s slice

operator itself returns a memoryview object. That means it does not cop⁴ an⁴ data,

but merel⁴ references a particular slice of it.

With this in mind, we now can rewrite the program, this time referencing the data

we want to write using amemoryview object.

@profile

def read_random():

with open("/dev/urandom", "rb") as source:

content = source.read(1024 * 10000)

content_to_write = memoryview(content)[1024:]

print("Content length: %d, content to write length %d" %

(len(content), len(content_to_write)))

with open("/dev/null", "wb") as target:

target.write(content_to_write)

if __name__ == '__main__':

read_random()

And this programwill have half the memor⁴ usage of the first version:

$ python -m memory_profiler memoryview/copy-memoryview.py

Content length: 10240000, content to write length 10238976

Filename: memoryview/copy-memoryview.py

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǔǜǜ

Mem usage Increment Line Contents

======================================

@profile

9.887 MB 0.000 MB def read_random():

9.891 MB 0.004 MB with open("/dev/urandom", "rb") as source:

19.660 MB 9.770 MB content = source.read(1024 * 10000) ②1

19.660 MB 0.000 MB content_to_write = memoryview(content) ←֓

[1024:] ②2

19.660 MB 0.000 MB print("Content length: %d, content to write ←֓

length %d" %

19.672 MB 0.012 MB (len(content), len(content_to_write)))

19.672 MB 0.000 MB with open("/dev/null", "wb") as target:

19.672 MB 0.000 MB target.write(content_to_write)

②1 We are reading ǔǓ MB from /dev/urandom and not doing much with it. P⁴thon

needs to allocate around ǔǓ MB of memor⁴ to store this data as a string.

②2 We reference the entire block of data minus the first KB – because we won’t

be writing to that first KB to the target file. No cop⁴ing means that no more

memor⁴ is used!

This kind of trick is especiall⁴ useful when dealing with sockets. As ⁴ou ma⁴ know,

when data is sent over a socket, it might not send all the data in a single call. A

simple implementation would be to write:

import socket

s = socket.socket(…)

s.connect(…)

data = b"a" * (1024 * 100000) ②1

while data:

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǕǓǓ

sent = s.send(data)

data = data[sent:] ②2

②1 Build a b⁴tes object with more than ǔǓǓ millions times the letter a.

②2 Remove the first sent b⁴tes sent.

Obviousl⁴, using such a mechanism, ⁴ou are going to cop⁴ the data over and over

until the socket has sent ever⁴thing. Usingmemoryview, we can achieve the same

functionalit⁴ without cop⁴ing data – hence, ⁵ero cop⁴:

import socket

s = socket.socket(…)

s.connect(…)

data = b"a" * (1024 * 100000) ②1

mv = memoryview(data)

while mv:

sent = s.send(mv)

mv = mv[sent:] ②2

②1 Build a b⁴tes object with more than ǔǓǓ millions times the letter a.

②2 Build a newmemor⁴viewobject pointing to the datawhich remains to be sent.

Thiswon’t cop⁴an⁴thing, andwon’t use an⁴morememor⁴ than the ǔǓǓMB initiall⁴

needed for our data variable.

We’ve now seen memor⁴view objects used to write data efficientl⁴, but the same

method can also be used to read data. Most I/O operations in P⁴thon know how to

deal with objects implementing the buffer protocol. The⁴ can read from it, but also

write to it. In this case, we don’t needmemoryview objects – we can just ask an I/O

function to write into our pre-allocated object:

ǔǓ.ǚ. ACHIEVING ZERO COPYWITH THE BUFFER PROTOCOL ǕǓǔ

>>> ba = bytearray(8)

>>> ba

bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00')

>>> with open("/dev/urandom", "rb") as source:

... source.readinto(ba)

...

8

>>> ba

bytearray(b'`m.z\x8d\x0fp\xa1')

With such techniques, it’s eas⁴ to pre-allocate a buffer (as ⁴ouwould do in C tomit-

igate the number of calls tomalloc()) and fill it at ⁴our convenience. Usingmemo-

ryview, ⁴ou can even place data at an⁴ point in the memor⁴ area:

>>> ba = bytearray(8)

>>> ba_at_4 = memoryview(ba)[4:] ②1

>>> with open("/dev/urandom", "rb") as source:

... source.readinto(ba_at_4) ②2

...

4

>>> ba

bytearray(b'\x00\x00\x00\x00\x0b\x19\xae\xb2')

②1 We reference the bytearray from offset Ǘ to its end.

②2 Wewrite the content of /dev/urandom fromoffset Ǘ to the end of the bytearray,

effectivel⁴ reading Ǘ b⁴tes onl⁴.

Tip

Both the objects in the array module and the functions in the struct module can handle the

buffer protocol correctly, and can therefore perform efficiently when targeting zero copy.

ǔǓ.Ǜ. INTERVIEWWITH VICTOR STINNER ǕǓǕ

10.8 Interview with Victor Stinner

Victor is a long time P⁴thon hacker, a core contributor and the author of man⁴

P⁴thon modules. He recentl⁴ authored PEP ǗǘǗ, which proposes a new tracemal

locmodule to trace memor⁴ block allocation inside P⁴thon, and also wrote a sim-

ple AST optimi⁵er.

What’s a good starting strategy to optimize Python code?

Well, the strateg⁴ is the same in P⁴thon as in other languages. First ⁴ou

need a well-defined use case, in order to get a stable and reproducible

benchmark. Without a reliable benchmark, tr⁴ing different optimi⁵ations

ma⁴ result in a wasting time and premature optimi⁵ations. Useless op-

timi⁵ations ma⁴ make the code worse, less readable, or even slower. A

useful optimi⁵ation must speed the program up b⁴ at least ǘ%.

If a specific part of the code is identified as being "slow", a benchmark

should be prepared on this code. A benchmark on a short function is usu-

all⁴ called a "micro-benchmark". The speedup should be at least ǕǓ%,

ma⁴be Ǖǘ%, to justif⁴ an optimi⁵ation on amicro-benchmark.

It ma⁴ be interesting to run a benchmark on different computers, differ-

ent operating s⁴stems, different compilers. For example, performances

of realloc() ma⁴ var⁴ between Linux and Windows. Even if it should be

avoided, sometimes, the implementation ma⁴ depend on the platform.

There’sa lotofdifferent toolsaround forprofilingoroptimizingPython
code; what are your weapons of choice?

bjpcjp

bjpcjp

ǔǓ.Ǜ. INTERVIEWWITH VICTOR STINNER ǕǓǖ

P⁴thon ǖ.ǖ has a new time.perf_counter() function to measure elapsed

time for a benchmark. It has the best resolution available.

A test should be run more than once; ǖ times is a minimum, ǘ ma⁴ be

enough. Repeating a test fills disk cache and CPU caches. I prefer to keep

the minimum timing, other developers prefer the geometric mean.

For micro-benchmarks, the timeit module is eas⁴ to use and gives results

quickl⁴, but the results are not reliable using default parameters. Tests

should be repeated manuall⁴ to get stable results.

Optimi⁵ing can take a lot of time, so it’s better to focus on functionswhich

use the most CPU power. To find these functions, P⁴thon has cProfile

and profile modules which record the amount of time spent in each func-

tion.

What are the interesting Python tricks to know that could improve
performance?

Thestandard librar⁴ shouldbe reusedasmuchaspossible– it’swell tested,

and also usuall⁴ efficient. P⁴thon built-in t⁴pes are implemented in C and

have good performance. Use the correct container to get the best per-

formance; P⁴thon provides man⁴ different kind of containers – dict, list,

deque, set, etc.

There are some hacks to optimi⁵e P⁴thon, but the⁴ should be avoided

because the⁴ make the code less readable in exchange for onl⁴ a minor

speed-up.

The Zen of P⁴thon (PEP ǕǓ) sa⁴s "There should be one – and preferabl⁴

onl⁴ one – obvious wa⁴ to do it." In practice, there are different wa⁴s to

write P⁴thon code, and performances are not the same. Onl⁴ trust bench-

marks on ⁴our use case.

InwhichareasdoesPythonhavepoorperformance? Whichareasshould

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

bjpcjp

ǔǓ.Ǜ. INTERVIEWWITH VICTOR STINNER ǕǓǗ

be used with care?

In general, I prefer not to worr⁴ about performance while developing a

new application. Premature optimi⁵ation is the root of all evil. When

slow functions are identified, the algorithm should be changed. If the al-

gorithm and the container t⁴pes are well chosen, it’s possible to rewrite

short functions in C to get best performances.

A bottleneck in CP⁴thon is the Global Interpreter Lock known as the "GIL".

Two threads cannot execute P⁴thonb⁴tecode at the same time. However,

this limitationonl⁴matters if two threadsare executingpureP⁴thoncode.

If most processing time is spent in function calls, and these functions re-

lease the GIL, then the GIL is not the bottleneck. For example, most I/O

functions release the GIL.

The multiprocessing module can easil⁴ be used to workaround the GIL.

Another option, more complex to implement, is to write as⁴nchronous

code. Twisted, Tornado and Tulip projects, which are network-oriented

libraries, make use of this technique.

What"mistakes" that contribute topoorperformancedoyouseemost
oten?

When P⁴thon is not well understood, inefficient code can be written. For

example, I have seen copy.deepcopy() misused, when no cop⁴ was re-

quired.

Another performance-killer is an inefficient data structure. With less than

one hundred items, the container t⁴pe has no impact on performance.

With more items, the complexit⁴ of each operation (add, get, delete) and

it’s effects must be known.

bjpcjp

bjpcjp

bjpcjp

