11 Scaling and architecture
g

Nowadays all the hype is about resiliency and scalability, so | assume this is some-
thing that your development process is going to have to take into account sooner or
later. Many sides of the issue are not particularly tied to Python itself, while some

are only relevant to its main implementation, CPython.

The scalability, concurrency and parallelism of an application largely depend on the
choices made about itsinitial architecture and design. As you’ll see, there are some
paradigms - like multi-threading - that don’t apply correctly to Python, whereas

other techniques, such as service oriented architecture, work better.

11.1 A note on multi-threading

What is multi-threading? It’s the ability to run code on separate processors ' inside
a single Python process. This means that different parts of your code will be run in

parallel.

Why is this needed? The most common cases are:

1. You need to run background tasks without stopping your main thread’s exe-
cution, e.g. in the case of a graphical user interface where the main loop is

waiting for events.

'0r sequentially on one, if multiple CPUs aren’t present

11.1. ANOTE ON MULTI-THREADING 206

2. You need to spread your work-load across several CPUs.

So at first, it may seem that multi-threading looks like a good way to scale and par-
allelize your application, solving these problems. When you want to spread a work-
load, you start a new thread for each new request instead of handling them one at

a time.
Wonderful. Job done. We can move on.

No - sorry! First, if you’ve been in the Python world for a long time, you’ve probably
encountered the word GIL, and know how hated it is. The GIL is the Python Global
Interpreter Lock, a lock that must be acquired each time CPython > needs to execute
byte-code. Unfortunately, this means that if you try to scale your application by

making it run multiple threads, you’ll always be limited by this global lock.

So while using threads seems like the ideal solution, in fact most applications I've
seen running requests in multiple threads struggle to attain 150% CPU usage - i.e.
1.5 cores used. With computing nodes nowadays not usually having less than 2 or

4 cores, it’s a shame. Blame the GIL.

There isn’t currently any work being done to remove the GIL in CPython, because
nobody thinks the solution is worth the difficulty of implementing and maintaining
it.

However, CPython is just one * of the available Python implementations. Jython,
for example, doesn’t have a global interpreter lock, which means that it can run
multiple threads in parallel efficiently. Unfortunately, these projects by their very

nature lag behind CPython, and so are not really useful targets.

*The reference implementation of Python written in C that you run by typing python in your shell.
*although the most commonly used.

11.1. ANOTE ON MULTI-THREADING 207

Note

PyPy is another Python implementation, but is written in Python (see Section 10.6). PyPy
has a GIL too, but very interesting work is happening right now to replace it with a STM
(Software Transactional Memory)-based implementation. This is something very exciting
that’s going to change how we build and run multi-threading software in the future. Hard-
ware support is starting to appear in some processors, and Linux kernel developers are

looking at ways to suppress kernel locks too. These are good signs.

So are we back to our initial use cases, with no good solutions on offer? Not true -

there’s (at least) two solutions you can use:

1. If you need to run background tasks, the easiest way to do that is to build your
application around an event loop. There’s a lot of different Python modules
which provide for this, even a standard one called asyncore, which is an ef-
fort to standardize this functionality as part of PEP 3156. Some frameworks
such as Twisted are built around this concept. The most advanced ones should
give you access to events based on signals, timers and file descriptors activity
—we’ll talk about this in Section 11.3.

2. If you need to spread the work-load, using multiple processes is going to be

more efficient and easier. See Section 11.2.

For us developers, mere mortals, it all means that we should think twice before us-
ing multi-threading. I’'ve used multi-threading to dispatch jobs in rebuildd, a De-
bian build daemon | wrote a few years ago. While it seemed handy to have a thread
to control each running build job, | very quickly fell into the concurrency trap. If |
had the chance to begin again, I’d build something based on asynchronous events

handling or multi-processing, and not have to worry about this problem.

Getting multi-threaded applications right is hard. The level of complexity means

that it is a larger source of bugs than most others - and considering the little to be

11.2. MULTIPROCESSING VS MULTITHREADING 208

gained generally, it’s better not to waste too much effort on it.

11.2 Multiprocessing vs multithreading

As explained earlier, multi-threading is not a good scalability solution because of
the GIL. Abettersolution is the multiprocessing package thatis provided with Python.
It provides the same kind of interface that you would have using the multithread-
ing module, except that it starts new processes (via fork(2)) rather than new system
threads.

The below program is a simple example, which sums one million random integers

8 times, spread across 8 threads at the same time.

Worker using multithreading
import random

import threading

results []
def compute():
results.append(sum(

[random.randint (1, 100) for i in range(1000000)]))

workers = [threading.Thread(target=compute) for x in range(8)]
for worker in workers:

worker.start()
for worker in workers:

worker.join()

print("Results: %s" % results)

Running this program returns the following:

11.2. MULTIPROCESSING VS MULTITHREADING 209

Example 11.1 Result of time python worker.py

$ time python worker.py

Results: [50517927, 50496846, 50494093, 50503078, 50512047, <«
50482863, 50543387, 50511493]

python worker.py 13.04s user 2.11s system 129% cpu 11.662 total

This has beenrunonanidle4 cores CPU, which means that Python could have used
up to 400% CPU power. Butit was clearly unable to do that, even with 8 threads run-

ning in parallel - it stuck at 129%, which is just 32% of the hardware’s capabilities.

Now, let’s rewrite this implementation using multiprocessing. For a simple case
like this, it’s pretty straightforward:

Example 11.2 Worker using multiprocessing

import multiprocessing

import random

def compute(n):
return sum(

[random.randint (1, 100) for i in range(1000000)])

Start 8 workers
pool = multiprocessing.Pool(8)

print("Results: %s" % pool.map(compute, range(8)))

Running this program under the exact same conditions gives the following result:

Example 11.3 Result of time python worker.py

$ time python workermp.py
Results: [50495989, 50566997, 50474532, 50531418, 50522470, <+
50488087, 50498016, 50537899]

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 210

python workermp.py 16.53s user 0.12s system 363% cpu 4.581 total

The execution time has been reduced by 60%; this time, we have been able to con-
sume up to 363% of CPU power, which is more than 90% of the computer’s CPU

capacity.

A further note - the multithreading module is not only able to efficiently spread a
work-loads over several local processors, but can also do so over a network, through
its multithreading.managers objects. It also provides bi-directional communica-

tion transports so your processes can exchange information with each other.

Each time you think that you can parallelize some work for a certain amount of
time, it’s much better to rely on multi-processing and to fork your jobs, in order to

spread the workload among several CPU cores.

11.3 Asynchronous and event-driven architecture

Event-driven programming is a good solution to organize program flow in a way

which listens for various events at once, without using a multi-threaded approach.

Consider an application that wants to listen for connection on a socket and then
process the connection it receives. There are basically three ways to approach the

problem:

1. Forka new process each time anew connectionis established, relying on some-

thing like the multiprocessing module.

2. Startanew thread each time a new connectionis established, relying on some-

thing like the threading module.

3. Add this new connection to your event loop, and react to the event it will gen-

erate when it occurs.

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 211

It is (now) well known that listening to hundreds of event sources is going to scale
much better when using an event-driven approach than, say, a thread-per-event
approach . This doesn’t mean that the two techniques are not compatible, but it
does mean that you can usually get rid of multiple threads by using an event-driven

mechanism.

We’ve already covered the pros and cons of the first options; in this section, only

the event-driven mechanism will be discussed.

The technique behind event-driven architecture is the building of an event loop.
Your program calls a function that blocks until an eventis received. Theidea behind
this is that your program can be kept busy while waiting for inputs and outputs to
complete; the most basic events are "l have data ready to be read" or "l can now

write data without blocking".

In Unix, the standard functions used to build such an event loop are the system calls
select(2) orpoll(2). They expect a few file descriptors to listen for, and will react

when one of them is ready to be read from or written to.

In Python, these system calls are exposed through the select module. It’s easy

enough to build an event-driven system with them, though it can be tedious.

Example 11.4 Basic example of using select

import select

import socket

server = socket.socket(socket.AF INET,
socket.SOCK STREAM)
Never block on read/write operations

server.setblocking(0)

Bind the socket to the port

*For further reading on this, take a look at the C10K problem.

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 212

server.bind(('localhost', 10000))

server.listen(8)

while True:

select() returns 3 arrays containing the object (sockets, files..) <«
that
are ready to be read, written to or raised an error
inputs, outputs, excepts = select.select(
[server], []1, [server])
if server in inputs:
connection, client address = server.accept()

connection.send("hello!\n")

A wrapper around these low-level interfaces was added to Python in the early days,

called asyncore. Itis not widely used, and hasn’t evolved much.

Alternatively, there are many frameworks which provide this kind of functionality in
a more integrated manner, such as Twisted or Tornado. Twisted has been almost a
de-facto standard for years in this regard. C libraries that export Python interfaces,

such as libevent, libev or libuv, also provides very efficient event loops.

While they all solve the same problem, the downside is that nowadays there are
too many choices, and most of them are not interoperable. Also, most of them are
callback based - which means that the program flow is not really clear when reading

the code.

What about gevent or Greenlet? They avoid the use of callback, but the imple-
mentation details are scary, and include CPython x86 specific code and monkey-
patching of standard functions. Not something you want to use and maintain on

the long term, really.

Recently, Guido Van Rossum started to work on a solution code-named tulip, which

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 213

is documented under PEP 3156.° The goal of this package is to provide a standard
event loop interface. In the future, all frameworks and libraries would be compati-

ble with it and would be able to interoperate.

tulip has been renamed and merged into Python 3.4 as the asyncio package. If you
don’t plan to depend on Python 3.4, it’s also possible to install it for Python 3.3 us-
ing the version provided on PyPI - simply running pip install asyncio will do
the job. Victor Stinner started a backport of tulip named trollius, which aims to be

compatible with Python 2.6 and superior versions.

Now that you’ve got all the cards in your hand, no doubt you’re wondering: but

what should | use to build an event loop in my event-driven application?

At this point in Python’s development, it’s a really tough question. The language is
stillin a transition phase. As of the time of this writing, nothing yet uses the asyncio

module. That means that using is going to be a real challenge.

Here are my recommendations at this point:

« If you target Python 2 only, asyncio is out of reach for you. For me, the next best

choice would be something based on libev, like pyev.

« If you target both major Python versions - 2 and 3 - you’d better use something
that is compatible with both, such as pyev. However, | would strongly advise you
to keep in mind that you might have to transition later to asyncio. It may be useful
to have a minimal abstraction layer, and not to spread the internal guts of your
eventing-dependency over the entire program. If you’re adventurous, trying to

mix asyncio/trollius can be a nice solution too.

« If you only target version 3, go ahead with asyncio. It’ll be a pain to start with, as
there are still not a lot of examples or documentation, but it’s a safe bet. You’ll be

a pioneer.

SAsynchronous 10 Support Rebooted: the "asyncio" Module, Guido van Rossum, 2012

11.3. ASYNCHRONOUS AND EVENT-DRIVEN ARCHITECTURE 214

Example 11.5 Example with pyev

import pyev

import socket

server = socket.socket(socket.AF INET,
socket.SOCK STREAM)
Never block on read/write operations

server.setblocking(0)

Bind the socket to the port
server.bind(('localhost', 10000))

server.listen(8)

def server activity(watcher, revents):
connection, client address = server.accept()
connection.send("hello!\n")

connection.close()

loop = pyev.default loop()
watcher = pyev.Io(server, pyev.EV READ, loop, server activity)
watcher.start()

loop.start()

As you can see here, the pyev interface is pretty easy to grasp. Via its libev usage,
it supports an Io object for input/output, but also the tracking of child processes,
timers, signals and even callbacks to call when idle. libev also automatically relies

on the best interface for polling - epol1(2) on Linux or kqueue (2) on BSD.

11.4. SERVICE-ORIENTED ARCHITECTURE 215

11.4 Service-oriented architecture

Considering the previously stated problems and solutions, the shortcomings of Python
in terms of scalability and usage in large, complex applications can seem tricky to
circumvent. Howeverit appearsthat Pythonisreally good atimplementing Service-
Oriented Architecture (SOA) - if you’re not yet familiar with this, there’s plenty of

documentation and opinions that you can read online.

SOAis the architecture type used by OpenStackin all its components. Components
use HTTP REST to communicate with external clients (end-users) and an abstracted
RPC mechanism that can support several wire protocols, the most commonly used
one being AMQP.

In your own case, the choice of which communication channels to use between

those blocks is mainly a matter of knowing with whom you will be communicating,.

When exposing an API to the outside world, the preferred channel nowadays is
HTTP, and especially stateless designs such as REST ° style architectures. These

kinds of architectures are easy to implement, scale, deploy and comprehend.

However, when exposing and using your APl internally, using HTTP may be not the
best protocol. A large panel of communication protocols for applications exist, and

a full description of any of them would likely fill an entire book.

In Python, there’s plenty of libraries to build RPC " systems. Kombu - among others
- isinteresting because it provides an RPC mechanism on top of a lot of back-ends;
AMQ protocol being the main one. But support for Redis, MongoDB, BeanStalk,

Amazon SQS, CouchDB, or ZooKeeper are also provided.

In the end, there’s a huge amount to be gained indirectly from using such loosely

coupled architecture. If we consider that each module provides and exposes an API,

®Representational state transfer
"Remote Procedure Call

11.4. SERVICE-ORIENTED ARCHITECTURE 216

we can run multiple daemons exposing this API. For example, Apache httpd would
create a new worker using a new system process that handles new connections;
we can then dispatch our connection to a different worker running on the same
compute node. All we need to haveis a system of dispatching the work between our
workers, which provides this API. Each block will be a different Python process, and
as we’ve seen above, this is better than multi-threading to spread your work-load.
You’ll be able to start multiple workers on each computing node you have. Even if
not strictly necessary, using stateless blocks should be favored any time you have
the choice.

ZeroMQ is a socket library that can act as a concurrency framework. The follow-
ing example implements the same worker seen in the previous examples, but uses

ZeroMQ as a way to dispatch and communicate.

Workers using ZeroMQ

import multiprocessing
import random

import zmq

def compute():
return sum(

[random.randint (1, 100) for i in range(1000000)])

def worker():
context = zmqg.Context()
work receiver = context.socket(zmq.PULL)
work receiver.connect("tcp://0.0.0.0:5555")
result sender = context.socket(zmq.PUSH)
result sender.connect("tcp://0.0.0.0:5556")
poller = zmqg.Poller()

poller.register(work receiver, zmq.POLLIN)

11.4. SERVICE-ORIENTED ARCHITECTURE

while True:

socks = dict(poller.poll())

if socks.get(work receiver) == zmq.POLLIN:

obj = work receiver.recv pyobj()

result sender.send pyobj(obj())

context = zmq.Context()
Build a channel to send work to be done
work sender = context.socket(zmqg.PUSH)
work sender.bind("tcp://0.0.0.0:5555")
Build a channel to receive computed results
result receiver = context.socket(zmqg.PULL)
result receiver.bind("tcp://0.0.0.0:5556")
Start 8 workers
processes = []
for x in range(8):
p = multiprocessing.Process(target=worker)
p.start()
processes.append(p)
Start 8 jobs
for x in range(8):
work sender.send pyobj(compute)
Read 8 results
results = []
for x in range(8):
results.append(result receiver.recv_pyobj())
Terminate all processes
for p in processes:

p.terminate()

217

11.4. SERVICE-ORIENTED ARCHITECTURE 218

print("Results: %s" % results)

As you can see, ZeroMQ provides an easy way to build communication channels.
I’'ve chosen the TCP transport layer here to illustrate the fact that we could run this
over a network. It should be noted that ZeroMQ also provides a inproc communi-
cation channel that works by using Unix sockets. Obviously the communication
protocol built upon ZeroMQ in this example is very simplistic — in order to keep this
book’s examples clear and concise; but it shouldn’t be hard to imagine building a

more sophisticated communication layer on top of it.

With such a protocol, it’s easy to imagine building a entirely distributed application

communication with a network message bus - ZeroMQ, AMQP, or something else.

Note also that protocols like HTTP, ZeroMQ or AMQP are language agnostic; you
can use different languages and platforms to implement each part of your system.
While we all agree that Python is a good language, other teams might have other
preferences; or another language might be a better solution for some part of a prob-

lem.

In the end, using a transport bus to decouple your application is a good option. It
allows you to build both synchronous and asynchronous APIs that can be spread
from one computer to several thousand. It doesn’t tie you to a particular technol-
ogy or language - and these days, there’s no longer a reason not to be ready to

distribute your software, or to be constrained by any particular language.

