
ǔǕ RDBMS and ORM

RDBMSs ¹ andORM ² are touch⁴ subjects, but there’s nowa⁴ to avoid having to deal

with them sooner or later. Man⁴ applications have to store data of some kind, and

developers oten choose todo sousing relational databases. Andwhenadeveloper

chooses to use a relational database, the tool the⁴ almost alwa⁴s choose to use for

it is an ORM librar⁴ of some kind.

Note

This chapter will be a little less Python-centric than others; bear with me. I’ll only be talking

about relational databases here, but many of the things we’ll cover here can also apply to

other kinds of databases.

RDBMSs are about storing relational data using normal form, while SQL is about

dealing with relational algebra. Together, the⁴ allow ⁴ou to store data and an-

swer questions about that data. However, there are a number of common difficul-

ties with using ORM in object-oriented programs, known collectivel⁴ as the object-

relational impedancemismatch. Thebottomline is, relationaldatabasesandobject-

orientedprogramshavedifferent representationsof datawhichdon’tmapproperl⁴

to one another: mapping SQL tables to P⁴thon classes won’t give ⁴ou optimal re-

sults, no matter what ⁴ou do.

¹Relational database management s⁴stems
²Object-relational mapping

CHAPTER ǔǕ. RDBMS AND ORM ǕǕǓ

ORM is supposed to make database s⁴stems easier to access: these tools abstract

theprocessof creatingqueries, generatingSQL so⁴oudon’t have to. Unfortunatel⁴,

more likel⁴ sooner than later, ⁴ou’ll want to do something with ⁴our database onl⁴

to discover that the abstraction la⁴er simpl⁴ won’t allow it. To make the most ef-

ficient use of ⁴our database, ⁴ou absolutel⁴ have to have an understanding of SQL

and RDBMSs so that ⁴ou can write ⁴our own queries directl⁴ without having to rel⁴

on the abstraction la⁴er for ever⁴thing.

But that’s not to sa⁴ ⁴ou should avoid ORM entirel⁴. ORM libraries can help with

rapid protot⁴ping of ⁴our application model, and some even provide useful tools

suchas schemaupgrades/downgrades. The important thing is that ⁴ouunderstand

that it’s not a substitute for a proper grasp of RDBMSs: man⁴ developers tr⁴ to solve

problems in the language of their choice rather than using their model API, and the

solutions the⁴ come up with are inelegant at best.

Imagine a SQL table for keeping track of messages. It has a single column named

"id," which is the primar⁴ ke⁴, and a string containing the message:

CREATE TABLE message (

id serial PRIMARY KEY,

content text

);

Wewant toavoidduplicateswhen receivingamessage, soa t⁴picaldeveloperwould

write something like this:

if message_table.select_by_id(message.id):

We already have the message, it's a duplicate, ignore and raise

raise DuplicateMessage(message)

else:

Insert the message

message_table.insert(message)

CHAPTER ǔǕ. RDBMS AND ORM ǕǕǔ

This would definitel⁴ work in most cases, but it has somemajor drawbacks:

• It implements a constraint alread⁴ expressed in the SQL schema, so it is a sort of

code duplication.

• It execute Ǖ SQL queries; executing SQL quer⁴ might be long and requires round-

trip to the SQL server, introducing extraneous dela⁴.

• It doesn’t take into account the possibilit⁴ of someone else inserting a duplicate

message ater we call select_by_id but before we call insert, which would cause

the program to raise an exception.

There’s a much better wa⁴ to write this code, but it requires cooperation with the

RDBMS server rather than treating it like dumb storage:

try:

Insert the message

message_table.insert(message)

except UniqueViolationError:

Duplicate

raise DuplicateMessage(message)

This achieves the exact same effect in amore efficient fashion andwithout an⁴ race

condition. This is a ver⁴ simple pattern, and it doesn’t conflict withORM in an⁴wa⁴.

The problem is that developers tend to treat SQL databases as dumb storage and

duplicate the constraints the⁴ wrote (or could write) in SQL in their controller code

rather than in their model.

Treating ⁴our SQL backend as a model API is good wa⁴ to make efficient use of it.

You can manipulate the data stored in ⁴our RDBMS with simple function calls pro-

grammed in its own procedural language.

Another point that needs to be raised about ORM is support for multiple database

backends. Man⁴ ORM libraries tout it as a feature, but it’s reall⁴ a trap waiting to

CHAPTER ǔǕ. RDBMS AND ORM ǕǕǕ

ensnare unsuspecting developers. NoORM librar⁴ provides a complete abstraction

of all RDBMS features, so ⁴ou’ll have to dumb down ⁴our code to the most basic

RDBMS available (or that ⁴ou want to put up with), and ⁴ou’ll be unable to use an⁴

advanced RDBMS functions without breaking the abstraction la⁴er.

Simple things that aren’t standardi⁵ed in SQL, such as handling timestamp oper-

ations, are a pain to deal with when using an ORM; even more so if ⁴our code is

written to be RDBMS-agnostic. With this in mind, be sure to choose an RDBMS that

suits ⁴our application well ³.

A good wa⁴ to mitigate the problems with ORM libraries is to isolate them as pre-

scribed in Section Ǖ.ǖ. This approach not onl⁴ allows ⁴ou to easil⁴ swap ⁴our ORM

librar⁴ for a different one should the need arise, but it also allows ⁴ou to optimi⁵e

⁴our SQL usage b⁴ identif⁴ing places with inefficient usage of queries, b⁴passing

most of the ORM boilerplate.

An eas⁴wa⁴ to build such isolation is to for example onl⁴ use ⁴our ORM in amodule

of ⁴our application, for example myapp.storage. This module should onl⁴ exports

functions andmethods that allow ⁴ou to manipulate the data at a high level of ab-

straction. The ORM should be onl⁴ used from that module. At an⁴ point later, ⁴ou

will beable todrop inan⁴moduleproviding the sameAPI to replacemyapp.storage.

In the end, this section’s goal isn’t to take a side in the debate over whether to use

ORM; there’s alread⁴ plent⁴ of discussion on the Internet arguing over the pros and

cons. Thepoint of this section is tohelp ⁴ouunderstandhow important it is to know

enough about SQL and RDBMS to make use of their full potential in ⁴our applica-

tion.

The most commonl⁴ used ORM librar⁴ in P⁴thon (and arguabl⁴ the de facto stan-

dard) is SQLAlchem⁴. It supports a huge number of different backends and pro-

vides abstraction for most common operations. Schema upgrades can be handled

b⁴ third-part⁴ packages such as alembic.
³When in doubt, pick PostgreSQL.

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǖ

Some frameworks, such as Django, provide their own ORM libraries. If ⁴ou choose

touse a framework, it’s a smart idea touse thebuilt-in librar⁴,whichwill (obviousl⁴)

have better integration with the framework than an external one.

Warning

The MVC ᵃ architecture that most frameworks rely on can be easily misused. They imple-

ment (or make it easy to implement) ORM in their model directly, but without abstracting

enough of it: any code you have in your view and controllers that uses the model will also

be using ORM directly. This is something that you need to avoid. You should write a

data model that includes the ORM library rather than consists of it: this will provide better

testability and better isolation, as well as make it easier to swap out with another storage

technology should the need arise.

ᵃModel View Controller

12.1 Streaming data with Flask and PostgreSQL

In the previous section, we talked about how important it can be tomasteri⁵e ⁴our

data storage s⁴stem. Here, I’ll show ⁴ou how ⁴ou can use one of PostgreSQL's ad-

vanced features to build an HTTP event streaming s⁴stem.

The purpose of this micro-application is to store messages in a SQL table and pro-

vide access to those messages via an HTTP REST API. Each message consists of a

channel number, a source string, and a content string. The code that creates this

table is quite simple:

Example ǔǕ.ǔ Creating the message table

CREATE TABLE message (

id SERIAL PRIMARY KEY,

channel INTEGER NOT NULL,

source TEXT NOT NULL,

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǗ

content TEXT NOT NULL

);

Whatwealsowant todo is streamthesemessages to the client so that it canprocess

them in real time. To do this, we’re going to use the LISTEN and NOTIFY features of

PostgreSQL. These features allow us to listen for messages sent b⁴ a function we

provide that PostgreSQLwill execute:

Example ǔǕ.Ǖ The notify_on_insert function

CREATE OR REPLACE FUNCTION notify_on_insert() RETURNS trigger AS $$

BEGIN

PERFORM pg_notify('channel_' || NEW.channel,

CAST(row_to_json(NEW) AS TEXT));

RETURN NULL;

END;

$$ LANGUAGE plpgsql;

This creates a trigger function written in pl/pgsql, a language that onl⁴ PostgreSQL

understands. Note that we could also write this function in other languages, such

as P⁴thon itself, as PostgreSQL provides a pl/python language b⁴ embedding the

P⁴thon interpreter.

This function performs a call to pg_notify. This is the function that actuall⁴ sends

the notification. The first argument is a string that represents a channel, while the

second is a string carr⁴ing the actual payload. We define the channel d⁴namicall⁴

based on the value of the channel column in the row. In this case, the pa⁴load will

be the entire row in JSON format. Yes, PostgreSQL knows how to convert a row to

JSON nativel⁴!

We want to send a notificationmessage on each INSERT performed in themessage

table, so we need to trigger this function on such events:

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǘ

Example ǔǕ.ǖ The trigger for notify_on_insert

CREATE TRIGGER notify_on_message_insert AFTER INSERT ON message

FOR EACH ROW EXECUTE PROCEDURE notify_on_insert();

And we’re done: the function is now plugged in and will be executed upon each

successful INSERT performed in the message table.

We can check that it works b⁴ using the LISTEN operation in psql:

$ psql

psql (9.3rc1)

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

Type "help" for help.

mydatabase=> LISTEN channel_1;

LISTEN

mydatabase=> INSERT INTO message(channel, source, content)

mydatabase-> VALUES(1, 'jd', 'hello world');

INSERT 0 1

Asynchronous notification "channel_1" with payload

"{"id":1,"channel":1,"source":"jd","content":"hello world"}"

received from server process with PID 26393.

As soon as the row is inserted, the notification is sent and we’re able to receive it

through the PostgreSQL client. Now all we have to do is build the P⁴thon applica-

tion that streams this event:

Example ǔǕ.Ǘ Receiving notifications in P⁴thon

import psycopg2

import psycopg2.extensions

import select

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǙ

conn = psycopg2.connect(database='mydatabase', user='myuser',

password='idkfa', host='localhost')

conn.set_isolation_level(

psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

curs = conn.cursor()

curs.execute("LISTEN channel_1;")

while True:

select.select([conn], [], [])

conn.poll()

while conn.notifies:

notify = conn.notifies.pop()

print("Got NOTIFY:", notify.pid, notify.channel, notify.payload)

The above code connects to PostgreSQL using the psycopgǕ librar⁴. We could have

used a librar⁴ that provides an abstraction la⁴er, such as SQLAlchemy, but none of

themprovideaccess to theLISTEN/NOTIFY functionalit⁴ of PostgreSQL. It’s still pos-

sible to access the underl⁴ing database connection to execute the code, but there

would be no point in doing that for this example, since we don’t need an⁴ of the

other features the ORM librar⁴ would provide.

The program listens on channel_ǔ. As soon as it receives a notification, it prints it

to the screen. If we run the program and insert a row in themessage table, we get

this output:

$ python3 listen.py

Got NOTIFY: 28797 channel_1

{"id":10,"channel":1,"source":"jd","content":"hello world"}

Now, we’ll use Flask, a simple HTTP micro-framework, to build our application.

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǚ

We’re going to send the data using the Server-Sent Eventsmessage protocol de-

fined b⁴ HTMLǘ ⁛.

Example ǔǕ.ǘ Flask streamer application

import flask

import psycopg2

import psycopg2.extensions

import select

app = flask.Flask(__name__)

def stream_messages(channel):

conn = psycopg2.connect(database='mydatabase', user='mydatabase',

password='mydatabase', host='localhost')

conn.set_isolation_level(

psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)

curs = conn.cursor()

curs.execute("LISTEN channel_%d;" % int(channel))

while True:

select.select([conn], [], [])

conn.poll()

while conn.notifies:

notify = conn.notifies.pop()

yield "data: " + notify.payload + "\n\n"

@app.route("/message/<channel>", methods=['GET'])

def get_messages(channel):

return flask.Response(stream_messages(channel),

⁛An alternative would be to use Transfer-Encoding: chunked defined b⁴ HTTP/ǔ.ǔ.

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǛ

mimetype='text/event-stream')

if __name__ == "__main__":

app.run()

This application is quite simple and onl⁴ supports streaming for the sake of the ex-

ample. We use Flask to route a request to GET /message/<channel>; as soon as the

code is called, it returns a response with the mimet⁴pe text/event-stream, sending

back a generator function instead of a string. Flask will then call this function and

send results each time the generator ⁴ields something.

The generator, stream_messages, reuses the codewewrote earlier to listen to Post-

greSQL notifications. It receives the channel identifier as an argument, listens to

that channel, and then ⁴ields the pa⁴load. Remember that we used PostgreSQL’s

JSON encoding function in the trigger function, so we’re alread⁴ receiving JSON

data from PostgreSQL: there’s no need for us to transcode it, since we’re fine with

sending JSON data to the HTTP client.

Note

For the sake of simplicity, this example application has been written in a single file. It

isn’t easy to depict examples spanning multiple modules in a book. If this were a real

application, it would be a good idea to move the storage handling implementation into its

own Python module.

We can now run the server:

$ python listen+http.py

* Running on http://127.0.0.1:5000/

On another terminal, we can connect and retrieve the events as the⁴’re entered.

Upon connection, no data is received and the connection is kept open:

ǔǕ.ǔ. STREAMING DATAWITH FLASK AND POSTGRESQL ǕǕǜ

$ curl -v http://127.0.0.1:5000/message/1

* About to connect() to 127.0.0.1 port 5000 (#0)

* Trying 127.0.0.1...

* Adding handle: conn: 0x1d46e90

* Adding handle: send: 0

* Adding handle: recv: 0

* Curl_addHandleToPipeline: length: 1

* - Conn 0 (0x1d46e90) send_pipe: 1, recv_pipe: 0

* Connected to 127.0.0.1 (127.0.0.1) port 5000 (#0)

> GET /message/1 HTTP/1.1

> User-Agent: curl/7.32.0

> Host: 127.0.0.1:5000

> Accept: */*

>

But as soon as we insert some rows in themessage table:

mydatabase=> INSERT INTO message(channel, source, content)

mydatabase-> VALUES(1, 'jd', 'hello world');

INSERT 0 1

mydatabase=> INSERT INTO message(channel, source, content)

mydatabase-> VALUES(1, 'jd', 'it works');

INSERT 0 1

Data starts coming in through the terminal where curl is running:

data: {"id":71,"channel":1,"source":"jd","content":"hello world"}

data: {"id":72,"channel":1,"source":"jd","content":"it works"}

A naive and arguabl⁴more portable implementation of this application ⁜ would in-

⁜It would be compatible with other RDBMS servers, such as M⁴SQL

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǓ

stead loop over a SELECT statement over and over to poll for new data inserted in

the table. However, there’s no need to demonstrate that a push s⁴stem like this one

is muchmore efficient than constantl⁴ polling the database.

12.2 Interview with Dimitri Fontaine

I first met Dimitri a decade ago. He is a skilled PostgreSQL Major Contributor who

works at ǕndQuadrant and argues with other database gurus on the pgsql-hackers

mailing-list. We’ve shared a lot of open source adventures, and he’s been kind

enough to answer some questions about what ⁴ou should do when dealing with

databases.

What advice would you give to developers using RDBMS as their stor-
age backends? What should they know about?*

That’s a ver⁴ good question, mainl⁴ because it offers more than one op-

portunit⁴ to clarif⁴ assumptions that I want to highlight as ver⁴ wrong

here. If ⁴ou think the question as asked makes sense, ⁴ou reall⁴ need to

be reading m⁴ answer now!

Let’s startwith something reall⁴boring: RDBMSstands forRelationalDataBase

Management S⁴stem. Those beasts have been invented in the ǚǓs to an-

swer some common needs that ever⁴ application developer needed to

solve themselves at that time, and the main services RDBMS have been

implementing are not data storage, as ever⁴one knew how to implement

that alread⁴.

The main services offered b⁴ a RDBMS are the following:

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǔ

• Concurrenc⁴: access ⁴ourdata for readorwritewithasman⁴concurrent

threads of execution as ⁴ouwant to, the RDBMS is there to handle that

correctl⁴ for ⁴ou. That’s the main feature ⁴ou want out of a RDBMS.

• Concurrenc⁴ semantics: the details about the concurrenc⁴ behaviour

whenusingaRDBMSareproposedwithahigh-level specification in terms

of Atomicity and Isolation, that are ma⁴be the most crucial parts of

ACID. Atomicity is the propert⁴ that in between the time ⁴ou BEGIN a

transaction and the time ⁴ou’re donewith it (either COMMITor ROLLBACK),

noother concurrentactivit⁴on thes⁴stem isallowed toknowwhat⁴ou’re

doing, whatever that is. When using a proper RDBMS that includesData
Definition Language (or DDL, e.g. CREATE TABLE or ALTER TABLE). Isola-
tion is all about what ⁴ou’re allowed to notice of the concurrent activit⁴

of the s⁴stem fromwithin ⁴our own transaction. The SQL standard de-

fines Ǘ level of isolation, as described in transaction isolation documen-

tation

The RDBMS takes full responsibilit⁴ for ⁴our data. So it allows the devel-

oper to describe its own rules for consistenc⁴ and then it will check that

those rules are valid at crucial times such as transaction commit or state-
mentsboundaries, dependingon thedeferabilityof ⁴our constraintsdec-
larations.

The first constraint ⁴ou can place on ⁴our data is about its expected input

and output formatting, using the proper data type. A proper RDBMS will

know how to work with much more than text, numbers and dates, and
will properl⁴ handle dates that actuall⁴ appear in a calendar in use toda⁴

(Julian is not huge nowada⁴s, ⁴ou probabl⁴wantGregorianunless doing
histor⁴).

DataT⁴pesarenot just about inputandoutput formats, though. The⁴also

allow to implement behaviours and some level of polymorphism, as we

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǕ

all expect the basic equalit⁴ tests to be data t⁴pe specific: we don’t com-

pare text and numbers, dates and IP addresses, points boxes and lines,

booleans and circles, UUIDs and XML, Arra⁴s and Ranges in the samewa⁴,

to name but a few.

Protecting ⁴our data also means that the onl⁴ choice for a proper RDBMS

is to activel⁴ refuse data thatwon’tmatchwith ⁴our consistenc⁴ rules, the

first of which is the data t⁴pe ⁴ou’ve chosen. If ⁴ou think it’s OK to have

to deal with a date such as 0000-00-00 that never existed in the calendar,

then ⁴ou need to rethink.

Theotherpart of the consistencyguarantees is expressed in termsof con-
straintsas in CHECK constraints, NOT NULL constraints and constraint trig-
gers, one of which is known as foreign key. All of that can be though as

a user level extension of the data t⁴pe definition and behavior, the main

difference being that ⁴ou can choose to DEFER checking those constraints

frombeing enforced at the end of each statement to being enforced at the

end of the current transaction.

The relational bits of an RDBMS is all about modeling ⁴our data and the

guarantee that all tuples found in a relation share a common set of rules:

structure and constraints. When enforcing that, we are enforcing the use

of a proper explicit schema to handle our data.

Working on a proper schema for ⁴our data is a process known asNormal-
ization and ⁴ou can aim for a number of subtl⁴ different Normal Forms
in ⁴our design. Sometimes though, ⁴ou need more flexibilit⁴ than given

b⁴ the result of ⁴our Normalization process. Common wisdom is to first

normali⁵e ⁴our data schema and onl⁴ then see about how to denormal-
ize it in order to get back the flexibilit⁴ ⁴ou think ⁴ou need. Chances are

that ⁴ou reali⁵e ⁴ou actuall⁴ don’t need an⁴.

When ⁴ou do need more flexibilit⁴, using PostgreSQL ⁴ou can pick from

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǖ

a number of denormalisation options: composite t⁴pes, records, arra⁴s,

hstore, json or XML, for starters.

There’s a ver⁴ important drawback to denormalisation though, which

is that the Query Language we’re going to talk about next is designed

to handle rather normalized data. With PostgreSQL of course the Quer⁴

Language has been extended to support as much denormalisation as

possible when using composite t⁴pes, arra⁴s or hstore, and even json in

recent releases.

The RDBMS knows ver⁴ much about ⁴our data and can help ⁴ou imple-

ment a ver⁴ fined grain securit⁴ model, should ⁴ou need to do so. The

access patterns are managed at the relation and column level, and Post-

greSQL also implements SECURITY DEFINER stored procedure, allowing

⁴ou to offer access to sensible data in a ver⁴ controlled wa⁴, much the

same as with using suid programs.

The RDBMS offers ⁴ou to access ⁴our data using a StructuredQuery Lan-
guagewhich became a de-facto standard in the ǛǓs and is now driven b⁴

a commitee. In the case of PostgreSQL, lots of extensions are being added

with each and ever⁴ major release each ⁴ear allowing ⁴ou to have access

to a ver⁴ richDSL language. All the work of quer⁴ planning and optimisa-

tion is done for ⁴ou b⁴ the RDBMS so that ⁴ou can focus on a declarative
quer⁴where⁴ouonl⁴describe the result ⁴ouwant fromthedata⁴ouhave.

And that’s alsowh⁴⁴ouneed topa⁴ closeattention to theNoSQLofferings

here, as most of those trend⁴ products are in fact not just removing the

Structured Query Language out of the offering, but a whole lot of other
foundations that ⁴ou’ve been trained to expect.

M⁴advice todevelopers is to remember thedifferencesbetweena storage
backend and a RDBMS. Those are ver⁴ different services, and if all ⁴ou

need actuall⁴ is a storage backend, ma⁴be consider not using a RDBMS.

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǗ

Most oten though, what ⁴ou reall⁴ need is a full blown RDBMS. In that

case, the best option ⁴ou have is PostgreSQL. Go read its documentation,

see the list of data t⁴pes, operators, functions, features and extensions it

provides. Read some usage examples on blog posts.

Then consider PostgreSQL as a tool ⁴ou can leverage in ⁴our develop-

ment, and include it in ⁴our application architecture. Parts of the services

⁴ou need to implement are best offered at the RDBMS la⁴er, and Post-

greSQL excels at being that trustworth⁴ part of ⁴our whole implementa-

tion.

What’s the best way to use or not use ORM?

SQLstands forStructuredQueryLanguageand in thecaseofPostgreSQL
has been proven to be Turing Complete. Its implementation and opti-

mi⁵er are far from trivial.

As ORM stands for Object Relational Mapper, the idea is that ⁴ou can

deal with a one-to-one mapping of database relations with classes and

database tuples with objects, or class instances.

EvenwhenaRDBMS, likePostgreSQL, implements strong static t⁴ping, re-

lation definitions are built on the fl⁴: each quer⁴ result is a new relation.

Each subquer⁴ result is a new relation that might exists onl⁴ for the dura-

tion of the subquer⁴. Each JOIN, either INNER or OUTER, will result in a

new relation d⁴namicall⁴ built for solving just that JOIN.

As a direct consequence of that, it’s eas⁴ to understand that where the

ORM will be able to best work for ⁴ou is for what’s called CRUD appli-

cations: Create, Read, Update and Delete. The Read part should then

onl⁴ be limited to a ver⁴ simple SELECT statement targeting a single ta-

ble. If ⁴ou compare non-trivial output lists ⁴ou can measure the impact

of retrievingmore columns than necessar⁴ on quer⁴ performances. Now,

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǘ

if ⁴our ORM is including all the known fields in its projections (or output
list), then itwill force ⁴ourRDBMS to fetch external data (anddecompress)

it before sending it, ma⁴be onl⁴ to compress it again if ⁴ou’re using SSL in
between the RDBMS and ⁴our application. Also, just think about network

bandwidth usage and remember than we’re measuring simple primary
key based lookup queries in fractions of amillisecond.

So an⁴ column ⁴ou retrieve from the RDBMS and that ⁴ou end-up not us-

ing is pure waste of precious resources, a first scalabilit⁴ killer.

Even when ⁴our ORM of choice is well able to onl⁴ fetch the data ⁴ou’re

asking for, then ⁴ou have to somehow manage the exact list of columns

⁴ouwant ineachsituation, andavoidusingasimpleabstractmagicmethod

that will automaticall⁴ compute the fields list for ⁴ou.

The next part of the CRUD queries are simple INSERT, UPDATE and DELETE

statements. First, all those commands accept joins and sub-select when

⁴ou’re using an advanced RDBMS, such as PostgreSQL. Then again, for

example PostgreSQL implements the RETURNING clause, allowing ⁴ou to

return to the client an⁴ data that’s just been edited, such as default (t⁴p-
icall⁴ sequence numbers for surrogate ke⁴s) and other values computed
automaticall⁴ on the RDBMS (t⁴picall⁴ with BEFORE <action> triggers).

Is ⁴ourORM aware of that? What’s the s⁴ntax there to benefit from that?

In the general case, a relation is either a table, the result of calling a Set
REturning Function, or the result of an⁴ quer⁴. It’s common practice

when using an ORM to build a relational mapping in between defined

tables and somemodel classes, or some other helper stubs.

If ⁴ou consider the whole SQL semantics in their generalities, then the re-
lational mapper should reall⁴ be able to map an⁴ quer⁴ against a class.

You would then presumabl⁴ have to build a new class for each quer⁴ ⁴ou

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǙ

want to run.

The legend of the Sufficientl⁴ Smart Compiler applies to ORMs too. For

more details about what that legend is, read On Being Sufficientl⁴ Smart

b⁴ James Hague.

The idea when applied to our ver⁴ case is that ⁴ou trust ⁴ourORM to do a

better job than ⁴ou at writing efficient SQL queries, even when ⁴ou’re not

giving it enough information to even work out the exact set of data ⁴ou

are interested into.

It’s true that at times, SQL can get quite complex. You’re not going to get

an⁴where near simpler b⁴ using an API to SQL generator that ⁴ou can’t

control, though.

Ater having said all that against the t⁴pical ORM, something needs to be

said against the alternatives.

Building SQL queries as a string is not scalable. You want to be able to

compose several restrictions (the WHERE clauses) and d⁴namicall⁴ add

some joins right intoa subquer⁴ just so that ⁴oucanoptionall⁴ fetch some

more detailed data, etc.

M⁴ current thinking is that the tool ⁴ou reall⁴ want to have is not anORM,

it’s a nice wa⁴ to compose a SQL quer⁴ from a programmatic interface.

There’s aPostgreSQLdriver proposingexactl⁴ the right abstraction to that

problem, it’s the Common Lisp librar⁴ Postmodern with the S-SQL solu-

tion. Of course, Lisp lends itself reall⁴ well to allow for eas⁴ to program

composable components.

Actuall⁴ in twocases⁴oucan relaxanduse⁴ourORM,provided that ⁴ou’re

willing to accept the following compromise: as soon as possible ⁴ou will

need to edit ⁴our ORM usage out of ⁴our code base.

• Time To Market; When ⁴ou’re reall⁴ in a hurr⁴ and want to gain market

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǚ

share as soon as possible, the onl⁴ wa⁴ to get there is to release a first

version of ⁴our application and idea. If ⁴our team is more proficient at

using an ORM when compared to hand crating SQL queries, then b⁴ all

means just do that. You have to reali⁵e, though, that as soon as ⁴ou’re

successful with ⁴our application, one of the first scalabilit⁴ problems

⁴ouwill have to solve is going to be related to ⁴ourORMproducing reall⁴

bad queries, and ⁴our usage of the ORM having painted ⁴ou into a cor-

ner and bad code design decisions. But if ⁴ou’re there, ⁴ou’re successful

enough to spend some refactoringmone⁴ and remove an⁴ dependenc⁴

toward the ORM, right?

• CRUD Application; the real thing, where ⁴ou are onl⁴ editing a single

tuple at a time, and ⁴ou don’t reall⁴ care about performances. Like for

the basic admin application interface.

Are thereanyprosor cons tochoosingPostgreSQLoverotherdatabases
when working with Python?

Here are m⁴ top reasons for choosing PostgreSQL as a developer:

• Communit⁴ support: the PostgreSQL communit⁴ reall⁴ is welcoming to

new users, and will t⁴picall⁴ spend the time it takes to full⁴ understand

⁴our question before to answer the best possible answer. The mailing

lists are still the best wa⁴ to communicate with the communit⁴. See

PostgreSQL Mailing Lists for details.

• Data integrit⁴ and durabilit⁴: an⁴ data ⁴ou send to PostgreSQL is safe in
its definition and ⁴our abilit⁴ to fetch it again later.

• Data T⁴pes, function, operators, arra⁴s and ranges: PostgreSQL has a

ver⁴ rich set of data t⁴pes that are reall⁴ useful and come with a host

of operators and functions to process them. It’s even possible to de-

normali⁵e using arrays or JSON data t⁴pes, and still be able to write

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǖǛ

advanced queries including joins against those. For example, did ⁴ou

know about the ~ regular expression operator? and the regexp_split_

to_array and regexp_split_to_table functions?

• The planner and optimi⁵er: ⁴ou have to tr⁴ to push the limits ⁴ou know

about those to reall⁴ understand how complex and powerful the⁴ are.

I’ve repeatedl⁴ seen Ǖ to ǖ pages long queries run to complement in a

small number of milliseconds.

• Transactional DDL: it’s possible to ROLLBACK almost an⁴ command. Tr⁴

it now, just open ⁴our psql shell against a database ⁴ou have and t⁴pe

in BEGIN;DROP TABLE foo;ROLLBACK; where ⁴ou replace foo with the

name of a table that exists in ⁴our local instance. Ama⁵ing, right?

• INSERT INTO ...RETURNING: ⁴ou can return an⁴thing from the INSERT

statement directl⁴, like for example the id value that got derived from

a sequence. You win a network round-trip and get the result with the

same protocol and tools as when issuing a SELECT statement.

• WITH (DELETE FROM ...RETURNING *) INSERT INTO ...SELECT: Post-

greSQLsupportCommonTableExpression inqueries,whichareknown
asWITH queries, and thanks to its support for the RETURNING clause, it

also supports DML commands there. That’s just awesome, rith?

• WindowFunctions, CREATE AGGREGATE: if ⁴oudon’t knowwhat awindow

function is, go read about it in the PostgreSQL Manual or in m⁴ blog at

Understanding Window Functions. Then ⁴ou have to realise that Post-

greSQL allows ⁴ou to use an⁴ existing aggregate as a window function,

and allows ⁴ou to d⁴namicall⁴ define new aggregates online in SQL.

• PL/P⁴thon (and others such as C, SQL, Javascript or Lua): ⁴ou can run

⁴our own code on the server, right where the data is, so that ⁴ou don’t

have to fetch it over the network just to process it then send it back in a

quer⁴ to do the next level of JOIN. Whatever it is, ⁴ou can do it all on the

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE Ǖǖǜ

server.

• Specific Indexing (GiST, GIN, SP-GiST, partial & functional): did ⁴ou know

that ⁴ou can create P⁴thon functions to process ⁴our data from within

PostgreSQL, then index the result of calling that function? So that when

⁴ou issue a quer⁴ with a WHERE clause calling that function, it’s called

onl⁴ once with the data from the quer⁴, then it’s matched directl⁴ with

the contents of the index? PostgreSQL implements index frameworks

for non sortable data t⁴pes, like Ǖ dimensional t⁴pes (ranges, geometr⁴,

etc); and for container data t⁴pes. Lots of cases are alread⁴ supported

out of the box, and a hostmore thanks to the Extension s⁴stem. Have a

look at the Additional Supplied Modules and the PostgreSQL Extension

Network.

• Extensions: such extensions include hstore, a full blown ke⁴ value store
with flexible indexing, ltree for indexing nested tags, pg_trgm as a poor

man’s full text search solution, that supports indexing regular expres-

sion searches and unanchored LIKE queries, ipǗr for quick searches of
an IP address in a range, and a lot more.

• Foreign DataWrappers: the foreign data wrappers are a whole class of
extensions, implementing the SQL/MED standard (Management of Ex-

ternal Data). The idea is to embed a connection driver right into the

PostgreSQL server then expose it through the CREATE SERVER command.

PostgreSQL provides an API to foreign data wrapper authors that al-
lows them to implement read and write access to the remote data, and

also where clauses push-down for efficient joining capabilities. You can

even use the advanced SQL capabilities of PostgreSQL against data that

⁴oumaintain with another piece of technolog⁴!

• LISTEN/NOTIFY: PostgreSQL implementsanas⁴nchronousserver-to-client

protocol called LISTEN/NOTIFY. The applicationma⁴ receive unsolicited

ǔǕ.Ǖ. INTERVIEWWITH DIMITRI FONTAINE ǕǗǓ

messages from the server when something interesting happens, for ex-

ample an UPDATE of some data. The NOTIFY command accepts a data

pa⁴load so that ⁴ou can e.g. notif⁴ ⁴our cache application theobject id’s

to purge when the object just has been removed or updated. Of course,

the notification onl⁴ happens if the transaction actuall⁴ did a successful

COMMIT.

• COPYStreamingprotocol: PostgreSQL implements a streamingprotocol
and uses it to implement its full⁴ integrated replication solution. Now,

that protocol is quite eas⁴ to use from an application and allows im-

pressive performance boosts. As soon as ⁴ou’reworking onmore than a

do⁵en row at a time, sometimes before, thing about using COPY against

a temporary table then issuing a single statement joining to that tem-

porar⁴ table: PostgreSQL knows how to join against other tables in all

data modif⁴ing statements (insert, update, delete), and batch opera-

tion usuall⁴ are wa⁴ faster.

