12 RDBMS and ORM
g

RDBMSs ' and ORM ? are touchy subjects, but there’s no way to avoid having to deal
with them sooner or later. Many applications have to store data of some kind, and
developers often choose to do so using relational databases. And when a developer
chooses to use a relational database, the tool they almost always choose to use for

itis an ORM library of some kind.

Note
This chapter will be a little less Python-centric than others; bear with me. I'll only be talking

about relational databases here, but many of the things we’ll cover here can also apply to

other kinds of databases.

RDBMSs are about storing relational data using normal form, while SQL is about
dealing with relational algebra. Together, they allow you to store data and an-
swer questions about that data. However, there are a number of common difficul-
ties with using ORM in object-oriented programs, known collectively as the object-
relationalimpedance mismatch. The bottom lineis, relational databases and object-
oriented programs have different representations of data which don’t map properly
to one another: mapping SQL tables to Python classes won’t give you optimal re-

sults, no matter what you do.

'Relational database management systems
*Object-relational mapping

CHAPTER 12. RDBMS AND ORM 220

ORM is supposed to make database systems easier to access: these tools abstract
the process of creating queries, generating SQL so you don’t have to. Unfortunately,
more likely sooner than later, you’ll want to do something with your database only
to discover that the abstraction layer simply won’t allow it. To make the most ef-
ficient use of your database, you absolutely have to have an understanding of SQL
and RDBMSs so that you can write your own queries directly without having to rely

on the abstraction layer for everything.

But that’s not to say you should avoid ORM entirely. ORM libraries can help with
rapid prototyping of your application model, and some even provide useful tools
such asschemaupgrades/downgrades. The important thingisthatyou understand
thatit’s not a substitute for a proper grasp of RDBMSs: many developers try to solve
problems in the language of their choice rather than using their model API, and the

solutions they come up with are inelegant at best.

Imagine a SQL table for keeping track of messages. It has a single column named

"id," which is the primary key, and a string containing the message:

CREATE TABLE message (
id serial PRIMARY KEY,

content text

);

We wantto avoid duplicates when receiving a message, so a typical developer would

write something like this:

if message table.select by id(message.id):
We already have the message, it's a duplicate, ignore and raise
raise DuplicateMessage(message)

else:
Insert the message

message table.insert(message)

CHAPTER 12. RDBMS AND ORM 221

This would definitely work in most cases, but it has some major drawbacks:

« Itimplements a constraint already expressed in the SQL schema, so it is a sort of

code duplication.

« It execute 2 SQL queries; executing SQL query might be long and requires round-

trip to the SQL server, introducing extraneous delay.

« It doesn’t take into account the possibility of someone else inserting a duplicate
message after we call select_by_id but before we call insert, which would cause

the program to raise an exception.

There’s a much better way to write this code, but it requires cooperation with the
RDBMS server rather than treating it like dumb storage:
try:
Insert the message
message table.insert(message)
except UniqueViolationError:
Duplicate

raise DuplicateMessage(message)

This achieves the exact same effect in a more efficient fashion and without any race
condition. Thisis a very simple pattern, and it doesn’t conflict with ORM in any way.
The problem is that developers tend to treat SQL databases as dumb storage and
duplicate the constraints they wrote (or could write) in SQL in their controller code

rather than in their model.

Treating your SQL backend as a model APl is good way to make efficient use of it.
You can manipulate the data stored in your RDBMS with simple function calls pro-

grammed in its own procedural language.

Another point that needs to be raised about ORM is support for multiple database

backends. Many ORM libraries tout it as a feature, but it’s really a trap waiting to

CHAPTER 12. RDBMS AND ORM 222

ensnare unsuspecting developers. No ORM library provides a complete abstraction
of all RDBMS features, so you’ll have to dumb down your code to the most basic
RDBMS available (or that you want to put up with), and you’ll be unable to use any

advanced RDBMS functions without breaking the abstraction layer.

Simple things that aren’t standardized in SQL, such as handling timestamp oper-
ations, are a pain to deal with when using an ORM; even more so if your code is
written to be RDBMS-agnostic. With this in mind, be sure to choose an RDBMS that

suits your application well °.

A good way to mitigate the problems with ORM libraries is to isolate them as pre-
scribed in Section 2.3. This approach not only allows you to easily swap your ORM
library for a different one should the need arise, but it also allows you to optimize
your SQL usage by identifying places with inefficient usage of queries, bypassing
most of the ORM boilerplate.

An easy way to build such isolation is to for example only use your ORM in a module
of your application, for example myapp.storage. This module should only exports
functions and methods that allow you to manipulate the data at a high level of ab-
straction. The ORM should be only used from that module. At any point later, you

will be able todropinany module providing the same APl to replacemyapp . storage.

In the end, this section’s goal isn’t to take a side in the debate over whether to use
ORM; there’s already plenty of discussion on the Internet arguing over the pros and
cons. The point of this sectionis to help you understand how importantitis to know
enough about SQL and RDBMS to make use of their full potential in your applica-

tion.

The most commonly used ORM library in Python (and arguably the de facto stan-
dard) is SQLAlchemy. It supports a huge number of different backends and pro-
vides abstraction for most common operations. Schema upgrades can be handled

by third-party packages such as alembic.

*When in doubt, pick PostgreSQL.

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 223

Some frameworks, such as Django, provide their own ORM libraries. If you choose
to use aframework, it’'sa smartidea to use the built-in library, which will (obviously)

have better integration with the framework than an external one.

Warning

The MVC 9 architecture that most frameworks rely on can be easily misused. They imple-
ment (or make it easy to implement) ORM in their model directly, but without abstracting
enough of it: any code you have in your view and controllers that uses the model will also
be using ORM directly. This is something that you need to avoid. You should write a
data model that includes the ORM library rather than consists of it: this will provide better
testability and better isolation, as well as make it easier to swap out with another storage

technology should the need arise.

9Model View Controller

12.1 Streaming data with Flask and PostgreSQL

In the previous section, we talked about how important it can be to masterize your
data storage system. Here, I’ll show you how you can use one of PostgreSQL's ad-

vanced features to build an HTTP event streaming system.

The purpose of this micro-application is to store messages in a SQL table and pro-
vide access to those messages via an HTTP REST API. Each message consists of a
channel number, a source string, and a content string. The code that creates this

table is quite simple:

Example 12.1 Creating the message table

CREATE TABLE message (
id SERIAL PRIMARY KEY,
channel INTEGER NOT NULL,
source TEXT NOT NULL,

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 224

content TEXT NOT NULL
);

What we also wantto dois stream these messages to the clientso thatit can process
them in real time. To do this, we’re going to use the LISTEN and NOTIFY features of
PostgreSQL. These features allow us to listen for messages sent by a function we

provide that PostgreSQL will execute:

Example 12.2 The notify_on_insert function

CREATE OR REPLACE FUNCTION notify on insert() RETURNS trigger AS $$
BEGIN
PERFORM pg notify('channel ' || NEW.channel,
CAST(row to json(NEW) AS TEXT));
RETURN NULL;
END;
$$ LANGUAGE plpgsql;

This creates a trigger function written in pl/pgsql, a language that only PostgreSQL
understands. Note that we could also write this function in other languages, such
as Python itself, as PostgreSQL provides a pl/python language by embedding the
Python interpreter.

This function performs a call to pg_notify. This is the function that actually sends
the notification. The first argument is a string that represents a channel, while the
second is a string carrying the actual payload. We define the channel dynamically
based on the value of the channel column in the row. In this case, the payload will
be the entire row in JSON format. Yes, PostgreSQL knows how to convert a row to
JSON natively!

We want to send a notification message on each INSERT performed in the message

table, so we need to trigger this function on such events:

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 225

Example 12.3 The trigger for notify_on_insert

CREATE TRIGGER notify on message insert AFTER INSERT ON message
FOR EACH ROW EXECUTE PROCEDURE notify on insert();

And we’re done: the function is now plugged in and will be executed upon each

successful INSERT performed in the message table.

We can check that it works by using the LISTEN operation in psql:
$ psql

psql (9.3rcl)

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

Type "help" for help.

mydatabase=> LISTEN channel 1;

LISTEN

mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'hello world');

INSERT 0 1

Asynchronous notification "channel 1" with payload
“{"id":1,"channel":1,"source":"jd","content":"hello world"}"

received from server process with PID 26393.

As soon as the row is inserted, the notification is sent and we’re able to receive it
through the PostgreSQL client. Now all we have to do is build the Python applica-
tion that streams this event:

Example 12.4 Receiving notifications in Python

import psycopg2
import psycopg2.extensions

import select

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 226

conn = psycopg2.connect(database="'mydatabase', user='myuser',

password="'idkfa', host='localhost"')

conn.set isolation level(

psycopg2.extensions.ISOLATION LEVEL AUTOCOMMIT)

curs = conn.cursor()

curs.execute("LISTEN channel 1;")

while True:
select.select([conn], [], [])
conn.poll()
while conn.notifies:
notify = conn.notifies.pop()

print("Got NOTIFY:", notify.pid, notify.channel, notify.payload)

The above code connects to PostgreSQL using the psycopg? library. We could have
used a library that provides an abstraction layer, such as SQLAlchemy, but none of
them provide access to the LISTEN/NOTIFY functionality of PostgreSQL. It’s still pos-
sible to access the underlying database connection to execute the code, but there
would be no point in doing that for this example, since we don’t need any of the

other features the ORM library would provide.

The program listens on channel_1. As soon as it receives a notification, it prints it
to the screen. If we run the program and insert a row in the message table, we get
this output:

$ python3 listen.py

Got NOTIFY: 28797 channel 1

{"id":10, "channel":1, "source":"jd","content":"hello world"}

Now, we’ll use Flask, a simple HTTP micro-framework, to build our application.

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 227

We’re going to send the data using the Server-Sent Events message protocol de-
fined by HTML5 *.

Example 12.5 Flask streamer application

import flask
import psycopg2
import psycopg2.extensions

import select

app = flask.Flask(_name)

def stream messages(channel):
conn = psycopg2.connect(database="'mydatabase', user='mydatabase’,
password='mydatabase', host='localhost"')

conn.set isolation level(

psycopg2.extensions.ISOLATION LEVEL AUTOCOMMIT)

curs = conn.cursor()

curs.execute("LISTEN channel %d;" % int(channel))

while True:
select.select([conn], [], [1)
conn.poll()
while conn.notifies:
notify = conn.notifies.pop()

yield "data: " + notify.payload + "\n\n"

@app.route("/message/<channel>", methods=['GET'])
def get messages(channel):

return flask.Response(stream messages(channel),

*An alternative would be to use Transfer-Encoding: chunked defined by HTTP/1.1.

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 228

mimetype="'text/event-stream')

if name == " main ":

app.run()

This application is quite simple and only supports streaming for the sake of the ex-
ample. We use Flask to route a request to GET /message/<channel>; as soon as the
code is called, it returns a response with the mimetype text/event-stream, sending
back a generator function instead of a string. Flask will then call this function and

send results each time the generator yields something.

The generator, stream_messages, reuses the code we wrote earlier to listen to Post-
greSQL notifications. It receives the channel identifier as an argument, listens to
that channel, and then yields the payload. Remember that we used PostgreSQL’s
JSON encoding function in the trigger function, so we’re already receiving JSON
data from PostgreSQL: there’s no need for us to transcode it, since we’re fine with
sending JSON data to the HTTP client.

Note

For the sake of simplicity, this example application has been written in a single file. It
isn’t easy to depict examples spanning multiple modules in a book. If this were a real
application, it would be a good idea to move the storage handling implementation into its

own Python module.

We can now run the server:

$ python listen+http.py
* Running on http://127.0.0.1:5000/

On another terminal, we can connect and retrieve the events as they’re entered.

Upon connection, no data is received and the connection is kept open:

12.1. STREAMING DATA WITH FLASK AND POSTGRESQL 229

$ curl -v http://127.0.0.1:5000/message/1

* About to connect() to 127.0.0.1 port 5000 (#0)
* Trying 127.0.0.1...

* Adding handle: conn: 0x1d46e90

* Adding handle: send: 0

* Adding handle: recv: 0

* Curl addHandleToPipeline: length: 1

* - Conn O (0x1d46e90) send pipe: 1, recv pipe: 0O
* Connected to 127.0.0.1 (127.0.0.1) port 5000 (#0)
> GET /message/1 HTTP/1.1

> User-Agent: curl/7.32.0

> Host: 127.0.0.1:5000

> Accept: */*

But as soon as we insert some rows in the message table:

mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'hello world');

INSERT 0 1

mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'it works');

INSERT 0 1

Data starts coming in through the terminal where curlis running:

data: {"id":71,"channel":1,"source":"jd","content":"hello world"}

data: {"id":72,"channel":1,"source":"jd","content":"it works"}

A naive and arguably more portable implementation of this application ® would in-

°It would be compatible with other RDBMS servers, such as MySQL

12.2. INTERVIEW WITH DIMITRI FONTAINE 230

stead loop over a SELECT statement over and over to poll for new data inserted in
the table. However, there’s no need to demonstrate that a push system like this one

is much more efficient than constantly polling the database.

12.2 Interview with Dimitri Fontaine

| first met Dimitri a decade ago. He is a skilled PostgreSQL Major Contributor who
works at 2ndQuadrant and argues with other database gurus on the pgsqgl-hackers
mailing-list. We’ve shared a lot of open source adventures, and he’s been kind
enough to answer some questions about what you should do when dealing with

databases.

What advice would you give to developers using RDBMS as their stor-

age backends? What should they know about?*

That’s a very good question, mainly because it offers more than one op-
portunity to clarify assumptions that | want to highlight as very wrong
here. If you think the question as asked makes sense, you really need to

be reading my answer now!

Let’s start with somethingreally boring: RDBMS stands for Relational DataBase
Management System. Those beasts have been invented in the 70s to an-
swer some common needs that every application developer needed to
solve themselves at that time, and the main services RDBMS have been
implementing are not data storage, as everyone knew how to implement

that already.

The main services offered by a RDBMS are the following:

12.2. INTERVIEW WITH DIMITRI FONTAINE 231

« Concurrency: access your data for read or write with as many concurrent
threads of execution as you want to, the RDBMS is there to handle that

correctly for you. That’s the main feature you want out of a RDBMS.

« Concurrency semantics: the details about the concurrency behaviour
when using a RDBMS are proposed with a high-level specificationin terms
of Atomicity and Isolation, that are maybe the most crucial parts of
ACID. Atomicity is the property that in between the time you BEGIN a
transaction and the time you’re done with it (either COMMIT or ROLLBACK),
no other concurrent activity on the system s allowed to know whatyou’re
doing, whatever that is. When using a proper RDBMS that includes Data
Definition Language (or DDL, e.g. CREATE TABLE or ALTER TABLE). Isola-
tion is all about what you’re allowed to notice of the concurrent activity
of the system from within your own transaction. The SQL standard de-
fines 4 level of isolation, as described in transaction isolation documen-

tation

The RDBMS takes full responsibility for your data. So it allows the devel-
oper to describe its own rules for consistency and then it will check that
those rules are valid at crucial times such as transaction commit or state-
ments boundaries, depending on the deferability of your constraints dec-

larations.

The first constraint you can place on your data is about its expected input
and output formatting, using the proper data type. A proper RDBMS will
know how to work with much more than text, numbers and dates, and
will properly handle dates that actually appear in a calendar in use today
(Julian is not huge nowadays, you probably want Gregorian unless doing
history).

Data Types are notjustaboutinputand output formats, though. Theyalso

allow to implement behaviours and some level of polymorphism, as we

12.2. INTERVIEW WITH DIMITRI FONTAINE 232

all expect the basic equality tests to be data type specific: we don’t com-
pare text and numbers, dates and IP addresses, points boxes and lines,
booleans and circles, UUIDs and XML, Arrays and Ranges in the same way,

to name but a few.

Protecting your data also means that the only choice for a proper RDBMS
is to actively refuse data that won’t match with your consistency rules, the
first of which is the data type you’ve chosen. If you think it’s OK to have
to deal with a date such as 0000-00-00 that never existed in the calendar,

then you need to rethink.

The other part of the consistency guaranteesis expressed in terms of con-
straints as in CHECK constraints, NOT NULL constraints and constraint trig-
gers, one of which is known as foreign key. All of that can be though as
a user level extension of the data type definition and behavior, the main
difference being that you can choose to DEFER checking those constraints
from being enforced at the end of each statement to being enforced at the

end of the current transaction.

The relational bits of an RDBMS is all about modeling your data and the
guarantee that all tuples found in a relation share a common set of rules:
structure and constraints. When enforcing that, we are enforcing the use

of a proper explicit schema to handle our data.

Working on a proper schema for your data is a process known as Normal-
ization and you can aim for a number of subtly different Normal Forms
in your design. Sometimes though, you need more flexibility than given
by the result of your Normalization process. Common wisdom is to first
normalize your data schema and only then see about how to denormal-
ize it in order to get back the flexibility you think you need. Chances are

that you realize you actually don’t need any.

When you do need more flexibility, using PostgreSQL you can pick from

12.2. INTERVIEW WITH DIMITRI FONTAINE 233

a number of denormalisation options: composite types, records, arrays,

hstore, json or XML, for starters.

There’s a very important drawback to denormalisation though, which
is that the Query Language we’re going to talk about next is designed
to handle rather normalized data. With PostgreSQL of course the Query
Language has been extended to support as much denormalisation as
possible when using composite types, arrays or hstore, and even json in
recent releases.

The RDBMS knows very much about your data and can help you imple-
ment a very fined grain security model, should you need to do so. The
access patterns are managed at the relation and column level, and Post-
greSQL also implements SECURITY DEFINER stored procedure, allowing
you to offer access to sensible data in a very controlled way, much the

same as with using suid programs.

The RDBMS offers you to access your data using a Structured Query Lan-
guage which became a de-facto standard in the 80s and is now driven by
a commitee. In the case of PostgreSQL, lots of extensions are being added
with each and every major release each year allowing you to have access
to a very rich DSL language. All the work of query planning and optimisa-
tion is done for you by the RDBMS so that you can focus on a declarative

query whereyou only describe the result you want from the data you have.

And that’s also why you need to pay close attention to the NoSQL offerings
here, as most of those trendy products are in fact not just removing the
Structured Query Language out of the offering, but a whole lot of other

foundations that you’ve been trained to expect.

My advice to developersistorememberthe differences between a storage
backend and a RDBMS. Those are very different services, and if all you

need actually is a storage backend, maybe consider not using a RDBMS.

12.2. INTERVIEW WITH DIMITRI FONTAINE 234

Most often though, what you really need is a full blown RDBMS. In that
case, the best option you have is PostgreSQL. Go read its documentation,
see the list of data types, operators, functions, features and extensions it

provides. Read some usage examples on blog posts.

Then consider PostgreSQL as a tool you can leverage in your develop-
ment, and include it in your application architecture. Parts of the services
you need to implement are best offered at the RDBMS layer, and Post-
greSQL excels at being that trustworthy part of your whole implementa-

tion.
What’s the best way to use or not use ORM?

SQL stands for Structured Query Language and in the case of PostgreSQL
has been proven to be Turing Complete. Its implementation and opti-

mizer are far from trivial.

As ORM stands for Object Relational Mapper, the idea is that you can
deal with a one-to-one mapping of database relations with classes and

database tuples with objects, or class instances.

Even when a RDBMS, like PostgreSQL, implements strong static typing, re-
lation definitions are built on the fly: each query result is a new relation.
Each subquery result is a new relation that might exists only for the dura-
tion of the subquery. Each JOIN, either INNER or OUTER, will result in a

new relation dynamically built for solving just that JOIN.

As a direct consequence of that, it’s easy to understand that where the
ORM will be able to best work for you is for what’s called CRUD appli-
cations: Create, Read, Update and Delete. The Read part should then
only be limited to a very simple SELECT statement targeting a single ta-
ble. If you compare non-trivial output lists you can measure the impact

of retrieving more columns than necessary on query performances. Now,

12.2. INTERVIEW WITH DIMITRI FONTAINE 235

if your ORM is including all the known fields in its projections (or output
list), then it will force your RDBMS to fetch external data (and decompress)
it before sending it, maybe only to compress it again if you’re using SSL in
between the RDBMS and your application. Also, just think about network
bandwidth usage and remember than we’re measuring simple primary

key based lookup queries in fractions of a millisecond.

So any column you retrieve from the RDBMS and that you end-up not us-

ing is pure waste of precious resources, a first scalability killer.

Even when your ORM of choice is well able to only fetch the data you’re
asking for, then you have to somehow manage the exact list of columns
you wantin each situation, and avoid using a simple abstract magic method

that will automatically compute the fields list for you.

The next part of the CRUD queries are simple INSERT, UPDATE and DELETE
statements. First, all those commands accept joins and sub-select when
you’re using an advanced RDBMS, such as PostgreSQL. Then again, for
example PostgreSQL implements the RETURNING clause, allowing you to
return to the client any data that’s just been edited, such as default (typ-
ically sequence numbers for surrogate keys) and other values computed
automatically on the RDBMS (typically with BEFORE <action> triggers).

Is your ORM aware of that? What’s the syntax there to benefit from that?

In the general case, a relation is either a table, the result of calling a Set
REturning Function, or the result of any query. It’s common practice
when using an ORM to build a relational mapping in between defined

tables and some model classes, or some other helper stubs.

If you consider the whole SQL semantics in their generalities, then the re-
lational mapper should really be able to map any query against a class.

You would then presumably have to build a new class for each query you

12.2. INTERVIEW WITH DIMITRI FONTAINE 236

want to run.

The legend of the Sufficiently Smart Compiler applies to ORMs too. For
more details about what that legend is, read On Being Sufficiently Smart

by James Hague.

The idea when applied to our very case is that you trust your ORM to do a
better job than you at writing efficient SQL queries, even when you’re not
giving it enough information to even work out the exact set of data you

are interested into.

It’s true that at times, SQL can get quite complex. You’re not going to get
anywhere near simpler by using an APl to SQL generator that you can’t

control, though.

After having said all that against the typical ORM, something needs to be

said against the alternatives.

Building SQL queries as a string is not scalable. You want to be able to
compose several restrictions (the WHERE clauses) and dynamically add
some joinsrightinto a subquery just sothatyou can optionally fetch some

more detailed data, etc.

My current thinking is that the tool you really want to have is not an ORM,

it’s a nice way to compose a SQL query from a programmatic interface.

There’s a PostgreSQL driver proposing exactly the right abstraction to that
problem, it’s the Common Lisp library Postmodern with the S-SQL solu-
tion. Of course, Lisp lends itself really well to allow for easy to program

composable components.

Actually intwo casesyou canrelaxand use your ORM, provided thatyou’re
willing to accept the following compromise: as soon as possible you will

need to edit your ORM usage out of your code base.

« Time To Market; When you’re really in a hurry and want to gain market

12.2. INTERVIEW WITH DIMITRI FONTAINE 237

share as soon as possible, the only way to get there is to release a first
version of your application and idea. If your team is more proficient at
using an ORM when compared to hand crafting SQL queries, then by all
means just do that. You have to realize, though, that as soon as you’re
successful with your application, one of the first scalability problems
you will have to solveis going to be related to your ORM producing really
bad queries, and your usage of the ORM having painted you into a cor-
ner and bad code design decisions. But if you’re there, you’re successful
enough to spend some refactoring money and remove any dependency
toward the ORM, right?

« CRUD Application; the real thing, where you are only editing a single
tuple at a time, and you don’t really care about performances. Like for

the basic admin application interface.

Are there any pros or cons to choosing PostgreSQL over other databases

when working with Python?

Here are my top reasons for choosing PostgreSQL as a developer:

« Community support: the PostgreSQL community really is welcoming to
new users, and will typically spend the time it takes to fully understand
your question before to answer the best possible answer. The mailing
lists are still the best way to communicate with the community. See

PostgreSQL Mailing Lists for details.

« Dataintegrity and durability: any data you send to PostgreSQL is safe in

its definition and your ability to fetch it again later.

- Data Types, function, operators, arrays and ranges: PostgreSQL has a
very rich set of data types that are really useful and come with a host
of operators and functions to process them. It’s even possible to de-

normalize using arrays or JSON data types, and still be able to write

12.2. INTERVIEW WITH DIMITRI FONTAINE 238

advanced queries including joins against those. For example, did you
know about the ~ regular expression operator? and the regexp split

to _array and regexp split to table functions?

« The planner and optimizer: you have to try to push the limits you know
about those to really understand how complex and powerful they are.
I’'ve repeatedly seen 2 to 3 pages long queries run to complement in a

small number of milliseconds.

« Transactional DDL: it’s possible to ROLLBACK almost any command. Try
it now, just open your psql shell against a database you have and type
in BEGIN;DROP TABLE foo;ROLLBACK; where you replace foo with the

name of a table that exists in your local instance. Amazing, right?

« INSERT INTO ...RETURNING: you can return anything from the INSERT
statement directly, like for example the id value that got derived from
a sequence. You win a network round-trip and get the result with the

same protocol and tools as when issuing a SELECT statement.

e WITH (DELETE FROM ...RETURNING *) INSERT INTO ...SELECT: Post-
greSQL support Common Table Expression in queries, which are known
as WITH queries, and thanks to its support for the RETURNING clause, it

also supports DML commands there. That’s just awesome, rith?

« Window Functions, CREATE AGGREGATE: if you don’t know what a window
function is, go read about it in the PostgreSQL Manual or in my blog at
Understanding Window Functions. Then you have to realise that Post-
greSQL allows you to use any existing aggregate as a window function,

and allows you to dynamically define new aggregates online in SQL.

« PL/Python (and others such as C, SQL, Javascript or Lua): you can run
your own code on the server, right where the data is, so that you don’t
have to fetch it over the network just to process it then send it back in a

query to do the next level of JOIN. Whatever itis, you can do it all on the

12.2. INTERVIEW WITH DIMITRI FONTAINE 239

server.

« Specific Indexing (GiST, GIN, SP-GiST, partial & functional): did you know
that you can create Python functions to process your data from within
PostgreSQL, then index the result of calling that function? So that when
you issue a query with a WHERE clause calling that function, it’s called
only once with the data from the query, then it’s matched directly with
the contents of the index? PostgreSQL implements index frameworks
for non sortable data types, like 2 dimensional types (ranges, geometry,
etc); and for container data types. Lots of cases are already supported
out of the box, and a host more thanks to the Extension system. Have a
look at the Additional Supplied Modules and the PostgreSQL Extension

Network.

« Extensions: such extensionsinclude hstore, a full blown key value store
with flexible indexing, ltree for indexing nested tags, pg_trgm as a poor
man’s full text search solution, that supports indexing regular expres-
sion searches and unanchored LIKE queries, ip4r for quick searches of

an IP address in a range, and a lot more.

- Foreign Data Wrappers: the foreign data wrappers are a whole class of
extensions, implementing the SQL/MED standard (Management of Ex-
ternal Data). The idea is to embed a connection driver right into the
PostgreSQL server then expose it through the CREATE SERVER command.
PostgreSQL provides an API to foreign data wrapper authors that al-
lows them to implement read and write access to the remote data, and
also where clauses push-down for efficient joining capabilities. You can
even use the advanced SQL capabilities of PostgreSQL against data that

you maintain with another piece of technology!

« LISTEN/NOTIFY: PostgreSQLimplementsanasynchronousserver-to-client

protocol called LISTEN/NOTIFY. The application may receive unsolicited

12.2. INTERVIEW WITH DIMITRI FONTAINE 240

messages from the server when something interesting happens, for ex-
ample an UPDATE of some data. The NOTIFY command accepts a data
payload so thatyou can e.g. notify your cache application the objectid’s
to purge when the object just has been removed or updated. Of course,
the notification only happens if the transaction actually did a successful
COMMIT.

« COPY Streaming protocol: PostgreSQL implements a streaming protocol
and uses it to implement its fully integrated replication solution. Now,
that protocol is quite easy to use from an application and allows im-
pressive performance boosts. As soon as you’re working on more than a
dozen row at a time, sometimes before, thing about using COPY against
a temporary table then issuing a single statement joining to that tem-
porary table: PostgreSQL knows how to join against other tables in all
data modifying statements (insert, update, delete), and batch opera-

tion usually are way faster.

