
ǔǖ Python ǖ support strategies

As far as I’m aware, P⁴thon ǖ is still not the default P⁴thon interpreter in an⁴ s⁴stem

that I’m aware of at the moment, despite having been released in December ǕǓǓǛ

– five ⁴ears ago!

The problem, as ⁴ou know, is that P⁴thon ǖ broke compatibilit⁴ with P⁴thon Ǖ. At

the time that P⁴thon ǖ.Ǔ arrived, the gap between it and P⁴thon Ǖ.Ǚ was so huge

that people weren’t even beginning to think about bridging it. Scared. Shrugging.

But then things changed: P⁴thon Ǖ.ǚ back-ported a lot of features from P⁴thon ǖ.ǔ,

narrowing the gap. Much sanit⁴ returned through subsequent versions of P⁴thon,

and I am happ⁴ to state that it is now possible to support both P⁴thon Ǖ.ǚ and

P⁴thon ǖ.ǖ… almost without difficult⁴!

There is official documentation on porting applications, but I wouldn’t recommend

following it to the letter. It talks a lot about the Ǖtoǖ tool – which converts P⁴thon Ǖ

code to P⁴thon ǖ – and contains proposals like starting a special P⁴thon ǖ branch

for ⁴our project.

In m⁴ opinion, this is terrible advice nowada⁴s. It ma⁴ have been the most appro-

priate advice a few ⁴ears ago, but considering the current state of "compatibilit⁴"

between P⁴thon Ǖ.ǚ and P⁴thon ǖ.ǖ, it’s better to forget about this approach.

CHAPTER ǔǖ. PYTHON ǖ SUPPORT STRATEGIES ǕǗǕ

Note

Note that a 3to2 tool also exists – but for the same reason given above, I wouldn’t encour-

age its use.

Firstl⁴, Ǖtoǖ doesn’t do alwa⁴s the right thing – it’s not magic. It onl⁴ deals with

s⁴ntax changes, which covers a lot; but it doesn’t maintain backward compatibilit⁴

with P⁴thon Ǖ – and in an⁴ case, ⁴ou’ll have to handle semantic changesmanuall⁴.

Secondl⁴, running Ǖtoǖ is damn slow; and for this reason it’s unlikel⁴ to be a good

long-term solution. Some guides even suggest running it at setup.py time, which is

somewhat ha⁵ardous.

Somedocumentation recommendsusingdifferentprojectbranches to supportP⁴thon Ǖ

and P⁴thon ǖ. Experience shows that this can be terrible tomanage, and that users

will get confused about which version the⁴ should use. Even worse, ⁴ou will get

confused when the⁴ start submitting bug reports without explicitl⁴ stating which

branch the⁴ are using.

A better method is to use a single code base that is both P⁴thon Ǖ and P⁴thon ǖ

compatible. This is on what we put our effort on with OpenStack.

In the end, theonl⁴wa⁴ tobe sure that ⁴our codeworksunderbothP⁴thonversions

is to have unit testing. Without unit testing, it is impossible to know if ⁴our code

will work in both contexts and across versions. If ⁴ou do not have an⁴ test in ⁴our

application ¹ the first thing todo is to increase ⁴our code coveragedramaticall⁴; ⁴ou

ma⁴ want to jump to Chapter Ǚ right ahead.

Tox is a great tool for automating tests run against multiple P⁴thon versions, and

we’ll talk about it in Section Ǚ.ǚ.

Once ⁴ou have unit tests and tox set up, it’s eas⁴ enough to run ⁴our tests against

both P⁴thon versions using:

¹I have heard that such projects exist.

ǔǖ.ǔ. LANGUAGE AND STANDARD LIBRARY ǕǗǖ

tox -e py27,py33

See what’s broken, fix it, and launch tox again. Repeat until all tests pass. If ⁴ou’re

doing it correctl⁴, thenumberof errorswill decrease slowl⁴but steadil⁴, to thepoint

where all of ⁴our code base will be full⁴ P⁴thon Ǖ and ǖ compatible.

If ⁴ou have a C module written for P⁴thon that ⁴ou would like to port, I’m sorr⁴ to

inform ⁴ou that there’s not much to sa⁴ – other than to tell ⁴ou to read the doc-

umentation and port ⁴our code. It ma⁴ be a useful option to rewrite using cffi if

possible.

In the following sections I will discuss some points ⁴ouwill encounter while porting

betweenP⁴thonversions. Iwill assume that ⁴oualread⁴haveaP⁴thon Ǖ codebase.

Whilemostofwhat followscould in theor⁴alsobeapplied to theportingof aP⁴thon

ǖ project to P⁴thon Ǖ, I have never personall⁴ encountered such a case.

13.1 Language and standard library

The language hasn’t changed radicall⁴; I’m sure ⁴ou’ve alread⁴ taken a look. This

book won’t cover the entire list of changes – it would be much too boring, and in

an⁴ case can be found online. The book Porting to P⁴thon ǖ gives a prett⁴ good

overview of what ⁴ouma⁴ need to change in order to support P⁴thon ǖ.

If ⁴ou haven’t ⁴et taken a look at the language changes made in P⁴thon ǖ, I invite

⁴ou to do so. It’s a great language, with a lot less corner cases, and much cleaner

interfaces on various object bases. You’ll love P⁴thon ǖ.

But it raises strong compatibilit⁴ problems. The s⁴ntax changes to some state-

ments (e.g. exception catching) have removed old P⁴thon version compatibilities,

and the⁴ can be a pain to tackle if ⁴ou used them. The hacking tool that we’ll dis-

cuss in section Section ǔ.Ǘ can help ⁴ou to fix these incompatible usages, and stop

ǔǖ.ǔ. LANGUAGE AND STANDARD LIBRARY ǕǗǗ

⁴ou from adding more.

Whensupportingmultiple versionsofP⁴thon, ⁴oushouldn’t tr⁴ to supportan⁴thing

older than Ǖ.Ǚ and ǖ.ǖ at the same time. P⁴thon Ǖ.Ǚ is the first version which has

enough compatibilit⁴ with P⁴thon ǖ to be eas⁴ enough to port forward.

The changes that might impact ⁴ou the most are in the area of string handling. In

P⁴thon ǖ what was called unicode is now str. That means that ever⁴ string is Uni-

code – i.e. that u’foobar' ² and 'foobar'mean the same thing.

Figure ǔǖ.ǔ: P⁴thon Ǖ base classes

²The u prefix was removed in P⁴thon ǖ.Ǔ but reintroduced in P⁴thon ǖ.ǖ – see PEP ǗǔǗ

ǔǖ.ǔ. LANGUAGE AND STANDARD LIBRARY ǕǗǘ

Figure ǔǖ.Ǖ: P⁴thon ǖ base classes

Classes implementing unicode should rename that function to str, since the former

isn’t used an⁴more; ⁴ou can automate this with a class decorator along these lines:

-*- encoding: utf-8 -*-

import six

This backports your Python 3 __str__ for Python 2

def unicode_compat(klass):

if not six.PY3:

klass.__unicode__ = klass.__str__

klass.__str__ = lambda self: self.__unicode__().encode('utf-8')

return klass

@unicode_compat

class Square(object):

def __str__(self):

ǔǖ.Ǖ. EXTERNAL LIBRARIES ǕǗǙ

return u"■ " + str(id(self))

Thatwa⁴⁴ou implement just onemethod for all P⁴thonversions returningUnicode,

and the decorator handles the compatibilit⁴ issue.

Another trick that can be hand⁴ when dealing with P⁴thon and Unicode is to use

the unicode_literals function, which is available starting with P⁴thon Ǖ.Ǚ ³.

>>> 'foobar'

'foobar'

>>> from __future__ import unicode_literals

>>> 'foobar'

u'foobar'

Various functions no longer return lists, instead returning iterable objects (such as

range); in addition, dictionar⁴ methods like keys or items now return iterable ob-

jects, and functions like iterkeys and iteritems have been removed. This is a big

change, but six (discussed in Section ǔǖ.ǖ) can help ⁴ou with handling it.

Obviousl⁴, the standard librar⁴ has evolved between P⁴thon Ǖ and P⁴thon ǖ, but

that shouldn’t be a huge concern. Some modules have been renamed or moved,

but in the end the result is a clearer la⁴out. There’s no official listing that I’m aware

of, but ⁴ou can find a prett⁴ good list here, or use a search engine.

The sixmodule,whichwewill discuss inSection ǔǖ.ǖ,will alsohelpa lotwhen tr⁴ing

to maintain compatibilit⁴ between P⁴thon Ǖ & ǖ.

13.2 External libraries

Your first enemies are the external libraries ⁴ou depend on. If ⁴ou read m⁴ advice

in Section Ǖ.ǖ and followed m⁴ check-list, ⁴ou won’t have a problem here – since

³Another reason not to support older versions?

ǔǖ.ǖ. USING SIX ǕǗǚ

that check-list included a P⁴thon ǖ support requirement. However, ⁴ou ma⁴ have

started a project earlier and have alread⁴ made the mistake.

Unfortunatel⁴ there isn’t an⁴ magic trick than can resolve the problem. Luckil⁴, if

⁴ou followedm⁴ other advice, ⁴ou isolated this librar⁴ enough that it is not spread

across ⁴our whole code base; so ⁴ou can think about replacing it. Indeed, this ma⁴

be ⁴our best move if the librar⁴ does not show a strong possibilit⁴ of supporting

P⁴thon ǖ. However, small and medium-si⁵ed libraries might be more easil⁴ ported

to P⁴thon ǖ than big frameworks, so ⁴ouma⁴ want to cut ⁴our teeth on them.

When looking for packages on P⁴PI, ⁴ou can check for the trove classifiers "Pro-

gramming Language :: Python :: Ǖ" and "Programming Language :: Python :: ǖ",

which indicate which version of P⁴thon the package supports. However, be careful

that these ma⁴ not be up to date.

One of the external librar⁴ choicesmade at the beginning of the OpenStack project

was eventlet, a concurrent networking librar⁴. It has no support for P⁴thon ǖ, and

still tries to support P⁴thon Ǖ.ǘ –which, as ⁴ou imagine, does not facilitate an⁴ tran-

sition. This choice was made a long time ago in OpenStack, before an⁴ kind of

checks for P⁴thon ǖ compatibilit⁴ were done; and we alread⁴ know that this mod-

ule is going a big issue in themonths ahead. As of ⁴et, we have no concrete plan on

how to fix it.

Don’t make the samemistake!

13.3 Using six

Aswehaveseen, P⁴thon ǖbreakscompatibilit⁴withearlier versionsandshits things

around. However, the basics of the language haven’t changed, so it is possible to

have a sort of transition la⁴er; amodule that can implement forward and backward

compatibilit⁴ – a bridge between P⁴thon Ǖ and P⁴thon ǖ.

This module exists, and it’s called six – because two times three equals six.

ǔǖ.ǖ. USING SIX ǕǗǛ

The first thing that six provides is the six.PYǖ variable. This is a boolean which in-

dicates whether we are running P⁴thon ǖ or not. This is the pivot variable for an⁴ of

⁴our code base that has two versions, one for P⁴thon Ǖ and one for P⁴thon ǖ. How-

ever, be careful not to abuse it; scattering ⁴our code base with if six.PYǖ is going to

be difficult to work with later.

As we discussed in Section Ǜ.ǔ, which concerned generators, P⁴thon ǖ has a great

featurewhereb⁴ iterableobjectsare returned insteadof lists. Thatmeans thatmeth-

ods like dict.iteritems are gone, and that dict.items returns an iterator rather than a

list. Obviousl⁴ this can break ⁴our code. six provides six.iteritems for such cases, so

that all ⁴ou have to do is to replace the following code:

for k, v in mydict.iteritems():

print(k, v)

with:

import six

for k, v in six.iteritems(mydict):

print(k, v)

And voilà, P⁴thon ǖ compliance achieved in a snap! six provides a lot of similar

helper functions that can increase compatibilit⁴ across P⁴thon versions.

The raise s⁴ntaxalso changed inP⁴thonǖ ⁛, so re-raisingexceptions shouldbedone
using six.reraise.

If ⁴ou are using metaclasses, P⁴thon ǖ has also changed this completel⁴. Six has a

nice trick for handling the transition – for example, if ⁴ou are using the abc abstract
base classes metaclass, here’s how ⁴ou would use six:

import abc

from six import with_metaclass

⁛It now onl⁴ accepts one argument, an exception.

ǔǖ.ǖ. USING SIX ǕǗǜ

class MyClass(with_metaclass(abc.ABCMeta, object)):

pass

One cannot discuss P⁴thon ǖwithout touching on the string and unicodemess that

it solved. In P⁴thon Ǖ, the basic t⁴pe for string is str which can handle onl⁴ ba-

sic ASCII strings, and the t⁴pe unicode, added later, handles real string of text. In

P⁴thon ǖ, the basic t⁴pe is still str, but it shares the properties of the P⁴thon Ǖ

unicode class and can handle advanced encodings. The bytes t⁴pe replaces the

str t⁴pe for handling basic characters stream.

six provides a nice set of functions and constants to handle the transition, such

as six.u and six.string_types. The same compatibilit⁴ is provided for integers, with

six.integer_types that will handle the long t⁴pe that has been removed fromP⁴thon

ǖ.

As discussed in Section ǔǖ.ǔ, some modules have moved, and six provides a nice

module called six.moves that handles a lot of these moves transparentl⁴.

For example, the ConfigParser module in P⁴thon ǖ has been renamed to config-

parser. Code using ConfigParser under P⁴thon Ǖ:

from ConfigParser import ConfigParser

conf = ConfigParser()

can be ported andmade compatible with both major P⁴thon versions:

from six.moves.configparser import ConfigParser

conf = ConfigParser()

ǔǖ.ǖ. USING SIX ǕǘǓ

Tip

It is also possible to add your own moves via six.add_move to handle other transitions.

The six librar⁴might not be enough or cover all ⁴our use case. In this case, building

a compatibilit⁴ module encapsulating six itself might be worth it. B⁴ isolating the

this in one particular module, ⁴ou are assuring that ⁴ou’ll be able to enhance it for

future version of P⁴thon, or dispose (part of) it when ⁴ou’ll want to stop supporting

a particular version of P⁴thon. Also note that six is open source and that ⁴ou can

contribute to it rather than maintaining ⁴our own hacks.

The last thing I’llmention, is themoderni⁵emodule. It’s a thinwrapper around Ǖtoǖ

that "moderni⁵es" code b⁴ porting to P⁴thon ǖ; but rather than convert the s⁴ntax

to P⁴thon ǖ code onl⁴, it uses the sixmodule. It’s a better choice than the standard

Ǖtoǖ tool, and get ⁴our port off to a strong start b⁴ carr⁴ing out most of the grunt

work for ⁴ou. It’s worth a shot.

