13 Python 3 support strategies

As far as I’m aware, Python 3 is still not the default Python interpreterin any system
that I’'m aware of at the moment, despite having been released in December 2008

- five years ago!

The problem, as you know, is that Python 3 broke compatibility with Python 2. At
the time that Python 3.0 arrived, the gap between it and Python 2.6 was so huge
that people weren’t even beginning to think about bridging it. Scared. Shrugging.

But then things changed: Python 2.7 back-ported a lot of features from Python 3.1,
narrowing the gap. Much sanity returned through subsequent versions of Python,
and | am happy to state that it is now possible to support both Python 2.7 and
Python 3.3... almost without difficulty!

There s official documentation on porting applications, but | wouldn’t recommend
following it to the letter. It talks a lot about the 2to3 tool - which converts Python 2
code to Python 3 - and contains proposals like starting a special Python 3 branch

for your project.

In my opinion, this is terrible advice nowadays. It may have been the most appro-
priate advice a few years ago, but considering the current state of "compatibility"

between Python 2.7 and Python 3.3, it’s better to forget about this approach.

CHAPTER 13. PYTHON 3 SUPPORT STRATEGIES 242

f Note
Note that a 3to2 tool also exists — but for the same reason given above, | wouldn’t encour-

age its use.

Firstly, 2to3 doesn’t do always the right thing - it’s not magic. It only deals with
syntax changes, which covers a lot; but it doesn’t maintain backward compatibility
with Python 2 - and in any case, you’ll have to handle semantic changes manually.
Secondly, running 2to3 is damn slow; and for this reason it’s unlikely to be a good
long-term solution. Some guides even suggest running it at setup.py time, which is

somewhat hazardous.

Some documentation recommends using different project branches to support Python 2
and Python 3. Experience shows that this can be terrible to manage, and that users
will get confused about which version they should use. Even worse, you will get
confused when they start submitting bug reports without explicitly stating which

branch they are using.

A better method is to use a single code base that is both Python 2 and Python 3

compatible. Thisis on what we put our effort on with OpenStack.

Inthe end, the only way to be sure that your code works under both Python versions
is to have unit testing. Without unit testing, it is impossible to know if your code
will work in both contexts and across versions. If you do not have any test in your
application ' the first thing to do is to increase your code coverage dramatically; you

may want to jump to Chapter 6 right ahead.

Tox is a great tool for automating tests run against multiple Python versions, and

we’ll talk about it in Section 6.7.

Once you have unit tests and tox set up, it’s easy enough to run your tests against

both Python versions using:

' have heard that such projects exist.

13.1. LANGUAGE AND STANDARD LIBRARY 243

tox -e py27,py33

See what’s broken, fix it, and launch tox again. Repeat until all tests pass. If you’re
doingit correctly, the number of errors will decrease slowly but steadily, to the point

where all of your code base will be fully Python 2 and 3 compatible.

If you have a C module written for Python that you would like to port, I’'m sorry to
inform you that there’s not much to say - other than to tell you to read the doc-
umentation and port your code. It may be a useful option to rewrite using cffi if

possible.

In the following sections | will discuss some points you will encounter while porting
between Python versions. | will assume that you already have a Python 2 code base.
While most of what follows could in theory also be applied to the porting of a Python

3 project to Python 2, | have never personally encountered such a case.

13.1 Language and standard library

The language hasn’t changed radically; I’m sure you’ve already taken a look. This
book won’t cover the entire list of changes - it would be much too boring, and in
any case can be found online. The book Porting to Python 3 gives a pretty good

overview of what you may need to change in order to support Python 3.

If you haven’t yet taken a look at the language changes made in Python 3, | invite
you to do so. It’s a great language, with a lot less corner cases, and much cleaner

interfaces on various object bases. You’ll love Python 3.

But it raises strong compatibility problems. The syntax changes to some state-
ments (e.g. exception catching) have removed old Python version compatibilities,
and they can be a pain to tackle if you used them. The hacking tool that we’ll dis-

cuss in section Section 1.4 can help you to fix these incompatible usages, and stop

13.1. LANGUAGE AND STANDARD LIBRARY 244

you from adding more.

When supporting multiple versions of Python, you shouldn’t try to support anything
older than 2.6 and 3.3 at the same time. Python 2.6 is the first version which has

enough compatibility with Python 3 to be easy enough to port forward.

The changes that might impact you the most are in the area of string handling. In
Python 3 what was called unicode is now str. That means that every string is Uni-

code - i.e. that u’foobar’ > and 'foobar’ mean the same thing.

Figure 13.1: Python 2 base classes

*The u prefix was removed in Python 3.0 but reintroduced in Python 3.3 - see PEP 414

13.1. LANGUAGE AND STANDARD LIBRARY 245

Figure 13.2: Python 3 base classes

Classes implementing unicode should rename that function to str, since the former
isn’t used anymore; you can automate this with a class decorator along these lines:
-*- encoding: utf-8 -*-

import six

This backports your Python 3 str for Python 2
def unicode compat(klass):
if not six.PY3:
klass. unicode = klass. str
klass. str = lambda self: self. unicode ().encode('utf-8")

return klass

@unicode compat
class Square(object):

def str (self):

13.2. EXTERNAL LIBRARIES 246

return u'"m " + str(id(self))

Thatway youimplementjust one method for all Python versions returning Unicode,

and the decorator handles the compatibility issue.

Another trick that can be handy when dealing with Python and Unicode is to use
the unicode_literals function, which is available starting with Python 2.6 °,

>>> 'foobar'

‘foobar'

>>> from future import unicode literals

>>> 'foobar'

u'foobar'

Various functions no longer return lists, instead returning iterable objects (such as
range); in addition, dictionary methods like keys or items now return iterable ob-
jects, and functions like iterkeys and iteritems have been removed. This is a big

change, but six (discussed in Section 13.3) can help you with handling it.

Obviously, the standard library has evolved between Python 2 and Python 3, but
that shouldn’t be a huge concern. Some modules have been renamed or moved,
butin the end the result is a clearer layout. There’s no official listing that I’'m aware

of, but you can find a pretty good list here, or use a search engine.

The sixmodule, which we will discuss in Section 13.3, will also help alot when trying
to maintain compatibility between Python 2 & 3.
13.2 External libraries

Your first enemies are the external libraries you depend on. If you read my advice

in Section 2.3 and followed my check-list, you won’t have a problem here - since

*Another reason not to support older versions?

13.3. USING SIX 247

that check-list included a Python 3 support requirement. However, you may have

started a project earlier and have already made the mistake.

Unfortunately there isn’t any magic trick than can resolve the problem. Luckily, if
you followed my other advice, you isolated this library enough that it is not spread
across your whole code base; so you can think about replacing it. Indeed, this may
be your best move if the library does not show a strong possibility of supporting
Python 3. However, small and medium-sized libraries might be more easily ported

to Python 3 than big frameworks, so you may want to cut your teeth on them.

When looking for packages on PyPI, you can check for the trove classifiers "Pro-
gramming Language :: Python :: 2" and "Programming Language :: Python :: 3",
which indicate which version of Python the package supports. However, be careful

that these may not be up to date.

One of the external library choices made at the beginning of the OpenStack project
was eventlet, a concurrent networking library. It has no support for Python 3, and
still tries to support Python 2.5 - which, as you imagine, does not facilitate any tran-
sition. This choice was made a long time ago in OpenStack, before any kind of
checks for Python 3 compatibility were done; and we already know that this mod-
uleis going a bigissue in the months ahead. As of yet, we have no concrete plan on

how to fix it.

Don’t make the same mistake!

13.3 Using six

Aswe have seen, Python 3 breaks compatibility with earlier versions and shifts things
around. However, the basics of the language haven’t changed, so it is possible to
have a sort of transition layer; a module that can implement forward and backward

compatibility - a bridge between Python 2 and Python 3.

This module exists, and it’s called six - because two times three equals six.

13.3. USING SIX 248

The first thing that six provides is the six.PY3 variable. This is a boolean which in-
dicates whether we are running Python 3 or not. This is the pivot variable for any of
your code base that has two versions, one for Python 2 and one for Python 3. How-
ever, be careful not to abuse it; scattering your code base with if six.PY3 is going to
be difficult to work with later.

As we discussed in Section 8.1, which concerned generators, Python 3 has a great
feature whereby iterable objects are returned instead of lists. That means that meth-
ods like dict.iteritems are gone, and that dict.items returns an iterator rather than a
list. Obviously this can break your code. six provides six.iteritems for such cases, so
that all you have to do is to replace the following code:

for k, v in mydict.iteritems():

print(k, v)

with:

import six

for k, v in six.iteritems(mydict):

print(k, v)

And voila, Python 3 compliance achieved in a snap! six provides a lot of similar

helper functions that can increase compatibility across Python versions.

The raise syntax also changed in Python 3 “, so re-raising exceptions should be done

using six.reraise.

If you are using metaclasses, Python 3 has also changed this completely. Six has a
nice trick for handling the transition - for example, if you are using the abc abstract
base classes metaclass, here’s how you would use six:

import abc

from six import with metaclass

*It now only accepts one argument, an exception.

13.3. USING SIX 249

class MyClass(with metaclass(abc.ABCMeta, object)):

pass

One cannot discuss Python 3 without touching on the string and unicode mess that
it solved. In Python 2, the basic type for string is str which can handle only ba-
sic ASCII strings, and the type unicode, added later, handles real string of text. In
Python 3, the basic type is still str, but it shares the properties of the Python 2
unicode class and can handle advanced encodings. The bytes type replaces the

str type for handling basic characters stream.

six provides a nice set of functions and constants to handle the transition, such
as six.u and six.string_types. The same compatibility is provided for integers, with
six.integer_types that will handle the long type that has been removed from Python
3.

As discussed in Section 13.1, some modules have moved, and six provides a nice

module called six.moves that handles a lot of these moves transparently.

For example, the ConfigParser module in Python 3 has been renamed to config-

parser. Code using ConfigParser under Python 2:

from ConfigParser import ConfigParser

conf = ConfigParser()

can be ported and made compatible with both major Python versions:

from six.moves.configparser import ConfigParser

conf = ConfigParser()

13.3. USING SIX 250

P

It is also possible to add your own moves via six.add_move to handle other transitions.

The six library might not be enough or cover all your use case. In this case, building
a compatibility module encapsulating six itself might be worth it. By isolating the
this in one particular module, you are assuring that you’ll be able to enhance it for
future version of Python, or dispose (part of) it when you’ll want to stop supporting
a particular version of Python. Also note that six is open source and that you can

contribute to it rather than maintaining your own hacks.

The lastthing I’'ll mention, is the modernize module. It’s a thin wrapper around 2to3
that "modernizes" code by porting to Python 3; but rather than convert the syntax
to Python 3 code only, it uses the six module. It’s a better choice than the standard
2to3 tool, and get your port off to a strong start by carrying out most of the grunt

work for you. It’s worth a shot.

