14 Write less, code more

In this section I’'ve compiled a few of the more advanced features that | find inter-

esting - they’ll help you to write better code.

14.1 Single dispatcher

| often like to say that Python is a good subset of Lisp, and as time passes | find this
to be more and more true. Recently | stumbled across the PEP 443, which describes
a way to dispatch generic functions in a similar manner to that provided by CLOS,

the Common Lisp Object System.

If you’re familiar with Lisp, this won’t be new to you. The Lisp object system, which
is one of the basic components of Common Lisp, provides a good way to define and
handle method dispatching. I’ll show you how generic methods work in Lisp first -

even if only for the pleasure of including Lisp code in a book on Python!
To begin with, let’s define a few very simple classes, without any parent classes or

attributes

(defclass snare-drum ()

()

(defclass cymbal ()
())

14.1. SINGLE DISPATCHER 252

(defclass stick ()
())

(defclass brushes ()

()

This defines a few classes: snare-drum, symbal, stick and brushes, without any
parent class nor attribute. These classes compose a drum kit, and we can combine
them to play sound. So we define a play method that takes two arguments, and
returns a sound (as a string).

(defgeneric play (instrument accessory)

(:documentation "Play sound with instrument and accessory."))

This only defines a generic method: itisn’t attached to any class, and so cannot yet
be called. At this stage, we’ve only informed the object system that the method is
generic and can be called with various arguments. Now we’ll implement versions
of this method that simulate playing our snare-drum.

(defmethod play ((instrument snare-drum) (accessory stick))

“POC!")

(defmethod play ((instrument snare-drum) (accessory brushes))

“SHHHH!")

Now we’ve defined concrete methods in code. They take two arguments: instru
ment, which is an instance of snare-drum; and accessory, which is an instance of

stick or brushes.

At this stage, you should see the first major difference between this system and the
Python (or similar) object systems: the method isn’t tied to any particular class.

The methods are generic, and any class can implement them.

14.1. SINGLE DISPATCHER 253

Let’s try it.
* (play (make-instance 'snare-drum) (make-instance 'stick))

“POC!"

* (play (make-instance 'snare-drum) (make-instance 'brushes))

"SHHHH!"

* (play (make-instance 'cymbal) (make-instance 'stick))
debugger invoked on a SIMPLE-ERROR in thread
#<THREAD "main thread" RUNNING {1002ADAF23}>:
There is no applicable method for the generic function
#<STANDARD-GENERIC-FUNCTION PLAY (2)>
when called with arguments

(#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>).

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):
0: [RETRY] Retry calling the generic function.
1: [ABORT] Exit debugger, returning to top level.

((:METHOD NO-APPLICABLE-METHOD (T)) #<STANDARD-GENERIC-FUNCTION PLAY (2)> <«
#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>) [fast-method]

As you can see, which functionis called depends on the class of the arguments - the
object systems dispatch the function calls to the right function for us, depending
which classes we pass as arguments. If we call play with instances that are not

known to the object system, an error will be thrown.

Inheritance is also supported and, the (more powerful and less error prone) equiv-

alent of Python’s super() is available via (call-next-method).

14.1. SINGLE DISPATCHER 254

(defclass snare-drum () ())

(defclass cymbal () ())

(defclass accessory () ())
(defclass stick (accessory) ())

(defclass brushes (accessory) ())

(defmethod play ((c cymbal) (a accessory))
"BIIING!'")

(defmethod play ((c cymbal) (b brushes))
(concatenate 'string "SSHHHH!" (call-next-method)))

In this example, we define the stick and brushes classes as subclasses of access
ory. The play method defined will return the sound BIIING!, regardless of what kind
of accessory instance is used to play the cymbal - except if it’s a brushes instance;
the most precise method is always called. The (call-next-method) functionisused
to call the closest parent method, and in this case that would be the method which
returns "BIIING!".

* (play (make-instance 'cymbal) (make-instance 'stick))

"BITING!"

* (play (make-instance 'cymbal) (make-instance 'brushes))

"SSHHHH!BITING!"

Note that CLOS can define specialized methods which apply to only one instance of

a class- using the eql specializer.

But if you’re really curious about the many features CLOS provides, | suggest that

you read the brief guide to CLOS by Jeff Dalton as a starter.

14.1. SINGLE DISPATCHER 255

Python implements a simpler version of this workflow with the singledispatch
function, which will is with Python 3.4 as part of the functools module. Here’s the
rough equivalent of the Lisp program above:

import functools

class SnareDrum(object): pass
class Cymbal(object): pass
class Stick(object): pass

class Brushes(object): pass

@functools.singledispatch
def play(instrument, accessory):

raise NotImplementedError("Cannot play these")

@play.register(SnareDrum)
def (instrument, accessory):
if isinstance(accessory, Stick):
return "POC!"
if isinstance(accessory, Brushes):
return “SHHHH!"

raise NotImplementedError("Cannot play these")

We define our four classes, and a base play function that raises NotImplemented
Error, indicating that by default we don’t know what to do. We can then write a
specialized version of this function for a specific instrument, the SnareDrum. This
function checks which accessory type has been passed, and returns the appropriate

sound - or raises NotImplementedError again if it doesn’t recognise the accessory.

If we run the program, it should work as follows:

>>> play(SnareDrum(), Stick())
‘POC!"’

14.1. SINGLE DISPATCHER

>>> play(SnareDrum(), Brushes())
"SHHHH!'

>>> play(Cymbal(), Brushes())
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper

return dispatch(args[0]. class)(*args, **kw)
File "/home/jd/sd.py", line 10, in play
raise NotImplementedError("Cannot play these")
NotImplementedError: Cannot play these
>>> play(SnareDrum(), Cymbal())
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper

return dispatch(args[0]. class)(*args, **kw)
File "/home/jd/sd.py", line 18, in _
raise NotImplementedError("Cannot play these")

NotImplementedError: Cannot play these

256

The singledispatch module checks the class of the first argument passed, and calls

the appropriate version of the play function. For the object class, the first-defined

version of the function is always the one which is run - so, if our instrument is an

instance of a class that we did not register, this base function will be called.

For those eager to try it out, the singledispatch function is provided in Python 2.6

to 3.3, through the Python Package Index.

As we saw in the Lisp version of the code, CLOS provides a multiple dispatcher that

candispatch depending on the type of any of the arguments defined in the method

prototype, not just the first one. Unfortunately, the Python dispatcher is named

singledispatch for a good reason: it only knows how to dispatch based on the first

14.2. CONTEXT MANAGERS 257

argument. Guido van Rossum wrote a short article called multimethod about this

subject a few years ago.

In addition, there’s no way to call the parent function directly - no equivalent of
either (call-next-method) from Lisp, or the Python super() function. You’ll have

to use various tricks to bypass this limitation.

To conclude: while | am really glad that Python is heading in this direction, as it’s
a really powerful way to enhance an object system, it still lacks a lot of the more

advanced features that CLOS provides out of the box.

14.2 Context managers

The with statement introduced in Python 2.6 is likely to remind old time Lispers of
the various with-* macros that are often used in the language. Python provides a
similar-looking mechanism, with the use of objects which implement the context

management protocol.

Objects like those returned by open support this protocol; that’s why you can write
code along these lines:
with open("myfile", "r") as f:

line = f.readline()

The object returned by open has two methods, onecalled enter andonecalled
__exit ;theseare called at the start of thewith block and at the end of it, respec-

tively.

A simple implementation of a context object would be:

Example 14.1 Simple implementation of a context object

class MyContext(object):
def enter_(self):

pass

14.2. CONTEXT MANAGERS 258

def exit (self, exc type, exc value, traceback):

pass

It wouldn’t do anything, but is valid.

When do you want to use context managers? The use of context management pro-

tocol might be appropriate if you identify the following pattern in your object:

1. Call method A,
2. Execute some code;

3. Call method B.

Where it is expected that a call to method B must always be done after a call
to A. The open function illustrates this pattern well - in this case, the constructor
that opens the file and allocates a file descriptor internally is method A. The close
method that releases the file descriptor corresponds to method B. Obviously, the

close function is always meant to be called after you instantiate the file object.

The contextlib standard library provides contextmanager to ease the implemen-
tation of such a mechanism, by relying on a generator to construct the _enter
and _exit methods for you. We can use this to implement our simple context

manager:

Example 14.2 Simplest usage of contextlib.contextmanager

import contextlib

@contextlib.contextmanager
def MyContext():

yield

For example, I’'ve been using this design pattern in Ceilometer for the pipeline in-

frastructure we set up. Basically, a pipelineis a tube into which objects are put, and

14.2. CONTEXT MANAGERS 259

from which they are dispatched to various places. The steps to send data this way

are as follows:

1. Call the publish(objects) method of a pipeline, with your objects as argu-

ments - as many times as you need.

2. Once done, call the flush() method to indicate that you’re done publishing

for now.

Note thatif you never call the flush() method, your objects will never be sent down
the tube; or at least not completely. It can be very easy for a programmer to forget
about a flush() call, which breaks the program without giving any clues as to what

might be wrong.

It’s much better if your APl provides a context manager object that will not allow
the APl user to make this mistake. This can be done pretty easily with the following

code:

Example 14.3 Using a context manager on a pipeline object

import contextlib

class Pipeline(object):
def publish(self, objects):
Imagine publication code here

pass

def flush(self):
Imagine flushing code here

pass

@contextlib.contextmanager

def publisher(self):

14.2. CONTEXT MANAGERS 260

try:

yield self. publish
finally:

self. flush()

Now, when users of our APl wants to publish something in our pipeline, they don’t
have to use publish or flush. They just request a publisher using the eponym
function, and uses it.
pipeline = Pipeline()
with pipeline.publisher() as publisher:

publisher([1, 2, 3, 4])

When you provide an API like this, there’s no place for user error. Always use context

managers when you see that it suits the design pattern.

In some contexts, it might be useful to use several context managers at the same

time - for example, opening two files at the same time to copy their content:

Example 14.4 Opening two files at the same time

with open("filel", "r") as source:
with open("file2", "w") as destination:

destination.write(source.read())

Remember that the with statement supports having multiple arguments - so you

should write:

Example 14.5 Opening two files at the same time with one with statement

with open("filel", "r") as source, open("file2", "w") as destination:

destination.write(source.read())

