
Write less, codemore

In this section I’ve compiled a few of the more advanced features that I find inter-

esting – the⁴’ll help ⁴ou to write better code.

14.1 Single dispatcher

I oten like to sa⁴ that P⁴thon is a good subset of Lisp, and as time passes I find this

to bemore andmore true. Recentl⁴ I stumbled across the PEP , which describes

a wa⁴ to dispatch generic functions in a similar manner to that provided b⁴ CLOS,

the Common Lisp Object S⁴stem.

If ⁴ou’re familiar with Lisp, this won’t be new to ⁴ou. The Lisp object s⁴stem, which

is one of the basic components of Common Lisp, provides a goodwa⁴ to define and

handle method dispatching. I’ll show ⁴ou how generic methods work in Lisp first –

even if onl⁴ for the pleasure of including Lisp code in a book on P⁴thon!

To begin with, let’s define a few ver⁴ simple classes, without an⁴ parent classes or

attributes

(defclass snare-drum ()

())

(defclass cymbal ()

())

. . SINGLE DISPATCHER

(defclass stick ()

())

(defclass brushes ()

())

This defines a few classes: snare-drum, symbal, stick and brushes, without an⁴

parent class nor attribute. These classes compose a drum kit, and we can combine

them to pla⁴ sound. So we define a play method that takes two arguments, and

returns a sound (as a string).

(defgeneric play (instrument accessory)

(:documentation "Play sound with instrument and accessory."))

This onl⁴ defines a genericmethod: it isn’t attached to an⁴ class, and so cannot ⁴et

be called. At this stage, we’ve onl⁴ informed the object s⁴stem that the method is

generic and can be called with various arguments. Now we’ll implement versions

of this method that simulate pla⁴ing our snare-drum.

(defmethod play ((instrument snare-drum) (accessory stick))

"POC!")

(defmethod play ((instrument snare-drum) (accessory brushes))

"SHHHH!")

Now we’ve defined concrete methods in code. The⁴ take two arguments: instru

ment, which is an instance of snare-drum; and accessory, which is an instance of

stick or brushes.

At this stage, ⁴ou should see the first major difference between this s⁴stem and the

P⁴thon (or similar) object s⁴stems: the method isn’t tied to an⁴ particular class.

The methods are generic, and an⁴ class can implement them.

. . SINGLE DISPATCHER

Let’s tr⁴ it.

* (play (make-instance 'snare-drum) (make-instance 'stick))

"POC!"

* (play (make-instance 'snare-drum) (make-instance 'brushes))

"SHHHH!"

* (play (make-instance 'cymbal) (make-instance 'stick))

debugger invoked on a SIMPLE-ERROR in thread

#<THREAD "main thread" RUNNING {1002ADAF23}>:

There is no applicable method for the generic function

#<STANDARD-GENERIC-FUNCTION PLAY (2)>

when called with arguments

(#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>).

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):

0: [RETRY] Retry calling the generic function.

1: [ABORT] Exit debugger, returning to top level.

((:METHOD NO-APPLICABLE-METHOD (T)) #<STANDARD-GENERIC-FUNCTION PLAY (2)> ←֓

#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>) [fast-method]

As ⁴ou can see, which function is called depends on the class of the arguments – the

object s⁴stems dispatch the function calls to the right function for us, depending

which classes we pass as arguments. If we call play with instances that are not

known to the object s⁴stem, an error will be thrown.

Inheritance is also supported and, the (more powerful and less error prone) equiv-

alent of P⁴thon’s super() is available via (call-next-method).

. . SINGLE DISPATCHER

(defclass snare-drum () ())

(defclass cymbal () ())

(defclass accessory () ())

(defclass stick (accessory) ())

(defclass brushes (accessory) ())

(defmethod play ((c cymbal) (a accessory))

"BIIING!")

(defmethod play ((c cymbal) (b brushes))

(concatenate 'string "SSHHHH!" (call-next-method)))

In this example, we define the stick and brushes classes as subclasses of access

ory. The playmethoddefinedwill return the soundBIIING!, regardless of what kind

of accessor⁴ instance is used to pla⁴ the c⁴mbal – except if it’s a brushes instance;

themostprecisemethod isalwa⁴scalled. The(call-next-method) function isused

to call the closest parentmethod, and in this case that would be themethodwhich

returns "BIIING!".

* (play (make-instance 'cymbal) (make-instance 'stick))

"BIIING!"

* (play (make-instance 'cymbal) (make-instance 'brushes))

"SSHHHH!BIIING!"

Note that CLOS can define speciali⁵edmethodswhich appl⁴ to onl⁴ one instance of

a class- using the eql speciali⁵er.

But if ⁴ou’re reall⁴ curious about the man⁴ features CLOS provides, I suggest that

⁴ou read the brief guide to CLOS b⁴ Jeff Dalton as a starter.

. . SINGLE DISPATCHER

P⁴thon implements a simpler version of this workflow with the singledispatch

function, which will is with P⁴thon . as part of the functoolsmodule. Here’s the

rough equivalent of the Lisp program above:

import functools

class SnareDrum(object): pass

class Cymbal(object): pass

class Stick(object): pass

class Brushes(object): pass

@functools.singledispatch

def play(instrument, accessory):

raise NotImplementedError("Cannot play these")

@play.register(SnareDrum)

def _(instrument, accessory):

if isinstance(accessory, Stick):

return "POC!"

if isinstance(accessory, Brushes):

return "SHHHH!"

raise NotImplementedError("Cannot play these")

We define our four classes, and a base play function that raises NotImplemented

Error, indicating that b⁴ default we don’t know what to do. We can then write a

speciali⁵ed version of this function for a specific instrument, the SnareDrum. This

functioncheckswhichaccessor⁴ t⁴pehasbeenpassed, and returns theappropriate

sound – or raises NotImplementedError again if it doesn’t recognise the accessor⁴.

If we run the program, it should work as follows:

>>> play(SnareDrum(), Stick())

'POC!'

. . SINGLE DISPATCHER

>>> play(SnareDrum(), Brushes())

'SHHHH!'

>>> play(Cymbal(), Brushes())

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper

return dispatch(args[0].__class__)(*args, **kw)

File "/home/jd/sd.py", line 10, in play

raise NotImplementedError("Cannot play these")

NotImplementedError: Cannot play these

>>> play(SnareDrum(), Cymbal())

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper

return dispatch(args[0].__class__)(*args, **kw)

File "/home/jd/sd.py", line 18, in _

raise NotImplementedError("Cannot play these")

NotImplementedError: Cannot play these

Thesingledispatchmodulechecks theclassof the first argumentpassed, andcalls

the appropriate version of the play function. For the object class, the first-defined

version of the function is alwa⁴s the one which is run – so, if our instrument is an

instance of a class that we did not register, this base function will be called.

For those eager to tr⁴ it out, the singledispatch function is provided in P⁴thon .

to . , through the P⁴thon Package Index.

As we saw in the Lisp version of the code, CLOS provides amultiple dispatcher that

candispatchdependingon the t⁴peof anyof theargumentsdefined in themethod

protot⁴pe, not just the first one. Unfortunatel⁴, the P⁴thon dispatcher is named

singledispatch for a good reason: it onl⁴ knows how to dispatch based on the first

. . CONTEXT MANAGERS

argument. Guido van Rossum wrote a short article called multimethod about this

subject a few ⁴ears ago.

In addition, there’s no wa⁴ to call the parent function directl⁴ – no equivalent of

either (call-next-method) from Lisp, or the P⁴thon super() function. You’ll have

to use various tricks to b⁴pass this limitation.

To conclude: while I am reall⁴ glad that P⁴thon is heading in this direction, as it’s

a reall⁴ powerful wa⁴ to enhance an object s⁴stem, it still lacks a lot of the more

advanced features that CLOS provides out of the box.

14.2 Context managers

The with statement introduced in P⁴thon . is likel⁴ to remind old time Lispers of

the various with-*macros that are oten used in the language. P⁴thon provides a

similar-looking mechanism, with the use of objects which implement the context

management protocol.

Objects like those returned b⁴ open support this protocol; that’s wh⁴ ⁴ou can write

code along these lines:

with open("myfile", "r") as f:

line = f.readline()

The object returned b⁴ open has twomethods, one called __enter__ and one called

__exit__; these are called at the start of the with block and at the end of it, respec-

tivel⁴.

A simple implementation of a context object would be:

Example . Simple implementation of a context object

class MyContext(object):

def __enter__(self):

pass

. . CONTEXT MANAGERS

def __exit__(self, exc_type, exc_value, traceback):

pass

It wouldn’t do an⁴thing, but is valid.

When do ⁴ou want to use context managers? The use of context management pro-

tocol might be appropriate if ⁴ou identif⁴ the following pattern in ⁴our object:

. Call method A;

. Execute some code;

. Call method B.

Where it is expected that a call to method B must always be done ater a call
to A. The open function illustrates this pattern well – in this case, the constructor

that opens the file and allocates a file descriptor internall⁴ is method A. The close

method that releases the file descriptor corresponds to method B. Obviousl⁴, the

close function is alwa⁴s meant to be called ater ⁴ou instantiate the file object.

The contextlib standard librar⁴ provides contextmanager to ease the implemen-

tation of such a mechanism, b⁴ rel⁴ing on a generator to construct the __enter__

and __exit__ methods for ⁴ou. We can use this to implement our simple context

manager:

Example . Simplest usage of contextlib.contextmanager

import contextlib

@contextlib.contextmanager

def MyContext():

yield

For example, I’ve been using this design pattern in Ceilometer for the pipeline in-

frastructurewe set up. Basicall⁴, a pipeline is a tube intowhich objects are put, and

. . CONTEXT MANAGERS

from which the⁴ are dispatched to various places. The steps to send data this wa⁴

are as follows:

. Call the publish(objects) method of a pipeline, with ⁴our objects as argu-

ments – as man⁴ times as ⁴ou need.

. Once done, call the flush() method to indicate that ⁴ou’re done publishing

for now.

Note that if ⁴ounever call the flush()method, ⁴our objectswill never be sent down

the tube; or at least not completel⁴. It can be ver⁴ eas⁴ for a programmer to forget

about a flush() call, which breaks the programwithout giving an⁴ clues as towhat

might be wrong.

It’s much better if ⁴our API provides a context manager object that will not allow

the API user tomake this mistake. This can be done prett⁴ easil⁴ with the following

code:

Example . Using a context manager on a pipeline object

import contextlib

class Pipeline(object):

def _publish(self, objects):

Imagine publication code here

pass

def _flush(self):

Imagine flushing code here

pass

@contextlib.contextmanager

def publisher(self):

. . CONTEXT MANAGERS

try:

yield self._publish

finally:

self._flush()

Now, when users of our API wants to publish something in our pipeline, the⁴ don’t

have to use _publish or _flush. The⁴ just request a publisher using the epon⁴m

function, and uses it.

pipeline = Pipeline()

with pipeline.publisher() as publisher:

publisher([1, 2, 3, 4])

When⁴ouprovide anAPI like this, there’s noplace for user error. Alwa⁴s use context

managers when ⁴ou see that it suits the design pattern.

In some contexts, it might be useful to use several context managers at the same

time – for example, opening two files at the same time to cop⁴ their content:

Example . Opening two files at the same time

with open("file1", "r") as source:

with open("file2", "w") as destination:

destination.write(source.read())

Remember that the with statement supports having multiple arguments – so ⁴ou

should write:

Example . Opening two files at the same time with one with statement

with open("file1", "r") as source, open("file2", "w") as destination:

destination.write(source.read())

