
1 Introduction

If you work in analytics or data science, like we do, you are familiar with the fact that data is being generated

all the time at ever faster rates. (You may even be a little weary of people pontificating about this fact.)

Analysts are often trained to handle tabular or rectangular data that is mostly numeric, but much of the data

proliferating today is unstructured and typically text-heavy. Many of us who work in analytic fields are not

trained in even simple interpretation of natural language.

We developed a new R package, tidytext (Silge and Robinson 2016), because we were familiar with many

methods for data wrangling and visualization, but couldn’t easily apply these same methods to text. We found

that using tidy data principles can make many text mining tasks easier, more effective, and consistent with

tools already in wide use. By treating text as data frames of words, we can manipulate, summarize, and

visualize the characteristics of text easily and integrate natural language processing into effective workflows

we were already using.

The tools provided by the tidytext package are relatively simple; what is important is the possible

applications. Thus, this book provides compelling examples of real text mining problems.

1.1 What is tidy text?

As described by Hadley Wickham (Wickham 2014), tidy data has a specific structure:

each variable is a column

each observation is a row

each type of observational unit is a table

We thus define the tidy text format as being a table with one-term-per-row. This is in contrast to the ways

text is often stored in current analyses, as raw strings or perhaps a specialized format like a document-term

matrix. For tidy text mining, the term that is stored in each row can be, mostly commonly, a single word, or

perhaps an n-gram, a sentence, or another unit of text of interest for a certain analysis. In the tidytext package,

we provide functionality to tokenize by commonly used units of text like these and convert to a one-term-per-

row format.

Tidy data sets allow manipulation with a standard set of “tidy” tools, including popular packages such as dplyr

(Wickham and Francois 2016), tidyr (Wickham 2016), ggplot2 (Wickham 2009), and broom (Robinson et al.

2015). By keeping the input and output in tidy tables, users can transition fluidly between these tools. We’ve

found these tidy tools extend naturally to many text analyses and explorations.

At the same time, the tidytext package doesn’t expect a user to keep text data in a tidy form at all times during

an analysis. The package includes functions to tidy() objects (see the broom package (Robinson et al.

2015)) from popular text mining R packages such as tm (Ingo Feinerer and Meyer 2008) and quanteda

(Benoit and Nulty 2016). This allows, for example, a workflow with easy reading, filtering, and processing to

be done using dplyr and other tidy tools, after which the data can be converted into a document-term matrix

for machine learning applications. The models can then be re-converted into a tidy form for interpretation and

visualization with ggplot2.

1.2 About this book

This book is focused on practical software examples and data explorations. There are few equations, but a

great deal of code. We especially focus on generating real insights from the literature, news, and social

media that we analyze.

We don’t assume any previous knowledge of text mining; professional linguists and text analysts will likely

find our examples elementary, though we are confident they can build on the framework for their own

analyses.

We do assume that the reader is at least slightly familiar with dplyr, ggplot2, and the %>% “pipe” operator in

R, and is interested in applying these tools to text data. For users who don’t have this background, we

recommend books such as R for Data Science. We believe that with a basic background and interest in tidy

data, even a user early in their R career can understand and apply our examples.

1.3 Outline

We start by introducing the tidy text format, and some of the ways dplyr, tidyr, and tidytext allow informative

analyses of this structure.

Chapter 2 outlines the tidy text format and the unnest_tokens() function. It also introduces the

gutenbergr and janeaustenr packages, which provide useful literary text datasets that we’ll use

throughout this book.

Chapter 3 shows how to perform sentiment analysis on a tidy text dataset, using the sentiments

dataset from tidytext and inner_join() from dplyr.

Chapter 4 describes the tf-idf statistic (term frequency times inverse document frequency), a quantity

used for identifying terms that are especially important to a particular document.

Chapter 5 introduces n-grams and how to analyze word networks in text using the widyr package.

Text won’t be tidy at all stages of an analysis, and it is important to be able to convert back and forth from a

tidy format.

Chapter 6 introduces methods for tidying document-term matrices and corpus objects from the tm and

quanteda packages, as well as for casting tidy text datasets into those formats.

Chapter 7 explores the concept of topic modeling, and uses the tidy() method for interpreting and

visualizing the output of the topicmodels package.

We conclude with several tidy text analyses that bring together multiple text mining approaches we’ve

learned.

Chapter 8 demonstrates an application of a tidy text analysis by analyzing the authors’ own Twitter

archives. How do Dave’s and Julia’s tweeting habits compare?

Chapter 9 explores metadata from over 32,000 NASA datasets by looking at how keywords from the

datasets are connected to title and description fields.

Chapter 10 analyzes a dataset of Usenet messages from a diverse set of newsgroups (focused on

topics like politics, hockey, technology, atheism, and more) to understand patterns across the groups.

1.4 Topics this book does not cover

This book serves as an introduction to a framework along with a collection of examples, but it is far from a

complete exploration of natural language processing. The CRAN Task View on Natural Language

Processing provides details on more ways to use R for computational linguistics. There are several areas that

you may want to explore in more detail according to your needs.

Clustering, classification, and prediction: Machine learning on text is a vast topic that could easily fill

its own volume. We introduce one method of unsupervised clustering (topic modeling) in Chapter 7 but

many more machine learning algorithms can be used in dealing with text.

Word embedding: Words can be mapped to vectors, and such vector representations of words can

generate linguistic relationships about meanings of words or how words are used. Such representations

of words are not tidy in the sense that we consider here, but can boost performance of machine learning

algorithms.

More complex tokenization: We hand tokenization off to the tokenizers package (Mullen 2016), which

itself wraps a variety of tokenizers with a consistent interface, but many others exist for specific

applications.

Languages other than English: Some of our users have had success applying tidytext to their text

mining needs for languages other than English but we are not covering those issues in this book.

We feel that the tidy data philosphy is a powerful tool to make handling data easier and more effective, and

this is no less true when it comes to handling text. We also believe that the tools provided by tidy data

principles and specifically tidy text mining are well suited to extensions beyond the examples we provide

here.

1.5 Acknowledgements

We are so thankful for the contributions, help, and perspective of people who have moved us forward in this

project. There are several people and organizations we would like to thank in particular. We would like to

thank Gabriela de Queiroz for her contributions to the package while we were at the unconference where we

began work on the tidytext package, Lincoln Mullen for his work on the tokenizers package, Kenneth Benoit

for his work on the quanteda package, and Hadley Wickham for his work in framing tidy data principles and

building tidy tools. We would also like to thank rOpenSci, which hosted us at the unconference where we

began work, and the NASA Datanauts program, for the opportunities and support they have provided Julia

during her time with them.

References

Silge, Julia, and David Robinson. 2016. “Tidytext: Text Mining and Analysis Using Tidy Data Principles in R.”

JOSS 1 (3). The Open Journal. doi:10.21105/joss.00037.

Wickham, Hadley. 2014. “Tidy Data.” Journal of Statistical Software 59 (1): 1–23. doi:10.18637/jss.v059.i10.

Wickham, Hadley, and Romain Francois. 2016. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-

project.org/package=dplyr.

Wickham, Hadley. 2016. Tidyr: Easily Tidy Data with `spread()` and `gather()` Functions. https://CRAN.R-

project.org/package=tidyr.

Wickham, Hadley. 2009. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

http://ggplot2.org.

Robinson, David, Matthieu Gomez, Boris Demeshev, Dieter Menne, Benjamin Nutter, Luke Johnston, Ben

Bolker, Francois Briatte, and Hadley Wickham. 2015. Broom: Convert Statistical Analysis Objects into Tidy

Data Frames. https://CRAN.R-project.org/package=broom.

Ingo Feinerer, Kurt Hornik, and David Meyer. 2008. “Text Mining Infrastructure in R.” Journal of Statistical

Software 25 (5): 1–54. http://www.jstatsoft.org/v25/i05/.

Benoit, Kenneth, and Paul Nulty. 2016. Quanteda: Quantitative Analysis of Textual Data. https://CRAN.R-

project.org/package=quanteda.

Mullen, Lincoln. 2016. Tokenizers: A Consistent Interface to Tokenize Natural Language Text.

https://CRAN.R-project.org/package=tokenizers.

2 The tidy text format

We define the tidy text format as being a table with one-term-per-row. Structuring text data in this way means

that it conforms to tidy data principles and can be manipulated with a set of consistent tools. This is worth

contrasting with the ways text is often stored in text mining approaches.

Raw string: Text can, of course, be stored as raw strings within R, and often text data is first read into

memory in this form.

Corpus: These types of objects typically annotate the raw string content with additional metadata and

details.

Document-term matrix: This is a sparse matrix describing a collection (i.e., a corpus) of documents with

one row for each document and one column for each term. The value in the matrix is typically word count

or tf-idf (see Chapter 4).

Let’s hold off on exploring structures like a document-term matrix until Chapter 6, and get down to the basics

of converting text to a tidy format.

2.1 The unnest_tokens function

Emily Dickinson wrote some lovely text in her time.

text <- c("Because I could not stop for Death -",

 "He kindly stopped for me -",

 "The Carriage held but just Ourselves -",

 "and Immortality")

text

[1] "Because I could not stop for Death -" "He kindly stopped for me -"

[3] "The Carriage held but just Ourselves -" "and Immortality"

This is a typical character vector that we might want to analyze. In order to turn it into a tidy text dataset, we

first need to put it into a data frame.

library(dplyr)

text_df <- data_frame(line = 1:4, text = text)

text_df

A tibble: 4 × 2

line text

<int> <chr>

1 1 Because I could not stop for Death -

2 2 He kindly stopped for me -

3 3 The Carriage held but just Ourselves -

4 4 and Immortality

Notice that this data frame isn’t yet compatible with tidy tools. We can’t filter out words or count which occur

most frequently, since each row is made up of multiple combined words. We need to convert this so that it has

one-token-per-document-per-row. A token, in this context, is a meaningful unit of text that we are interested

in using for further analysis. Tokenization is the process of breaking up text into individual tokens, and it is

most commonly done at the level of single words. Within our tidy text framework, we will both break the text

into individual tokens and transform it to a tidy data structure.

To do this, we use tidytext’s unnest_tokens() function.

library(tidytext)

text_df %>%

 unnest_tokens(word, text)

A tibble: 20 × 2

line word

<int> <chr>

1 1 because

2 1 i

3 1 could

4 1 not

5 1 stop

6 1 for

7 1 death

8 2 he

9 2 kindly

10 2 stopped

... with 10 more rows

We’ve now split each row so that there is one token (word) in each row of the new data frame; the default

tokenization in unnest_tokens() is for single words, as shown here. Also notice:

Other columns, such as the line number each word came from, are retained.

Punctuation has been stripped.

By default, unnest_tokens() converts the tokens to lowercase, which makes them easier to compare

or combine with other datasets. (Use the to_lower = FALSE argument to turn off this behavior).

Having the text data in this format lets us manipulate, process, and visualize the text using the standard set of

tidy tools, namely dplyr, tidyr, ggplot2, and broom.

2.2 Tidying the works of Jane Austen

Let’s use the text of Jane Austen’s 6 completed, published novels from the janeaustenr package (Silge 2016),

and transform them into a tidy format. The janeaustenr package provides these texts in a one-row-per-line

format. Let’s start with that, annotate a linenumber quantity to keep track of lines in the original format, and

use a regex to find where all the chapters are.

library(janeaustenr)

library(dplyr)

library(stringr)

original_books <- austen_books() %>%

 group_by(book) %>%

 mutate(linenumber = row_number(),

 chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]",

 ignore_case = TRUE)))) %>%

 ungroup()

original_books

A tibble: 73,422 × 4

text book linenumber chapter

<chr> <fctr> <int> <int>

1 SENSE AND SENSIBILITY Sense & Sensibility 1 0

2 Sense & Sensibility 2 0

3 by Jane Austen Sense & Sensibility 3 0

4 Sense & Sensibility 4 0

5 (1811) Sense & Sensibility 5 0

6 Sense & Sensibility 6 0

7 Sense & Sensibility 7 0

8 Sense & Sensibility 8 0

9 Sense & Sensibility 9 0

10 CHAPTER 1 Sense & Sensibility 10 1

... with 73,412 more rows

To work with this as a tidy dataset, we need to restructure it in the one-token-per-row format. The

 unnest_tokens() function is a way to convert a data frame with a text column to be one-token-per-row.

library(tidytext)

tidy_books <- original_books %>%

 unnest_tokens(word, text)

tidy_books

A tibble: 725,054 × 4

book linenumber chapter word

<fctr> <int> <int> <chr>

1 Sense & Sensibility 1 0 sense

2 Sense & Sensibility 1 0 and

3 Sense & Sensibility 1 0 sensibility

4 Sense & Sensibility 3 0 by

5 Sense & Sensibility 3 0 jane

6 Sense & Sensibility 3 0 austen

7 Sense & Sensibility 5 0 1811

8 Sense & Sensibility 10 1 chapter

9 Sense & Sensibility 10 1 1

10 Sense & Sensibility 13 1 the

... with 725,044 more rows

This function uses the tokenizers package (Mullen 2016) to separate each line of text in the original data

frame into tokens. The default tokenizing is for words, but other options include characters, n-grams,

sentences, lines, paragraphs, or separation around a regex pattern.

Now that the data is in one-word-per-row format, we can manipulate it with tidy tools like dplyr. We can

remove stop words (kept in the tidytext dataset stop_words) with an anti_join() .

data(stop_words)

tidy_books <- tidy_books %>%

 anti_join(stop_words)

We can also use count() to find the most common words in all the books as a whole.

tidy_books %>%

 count(word, sort = TRUE)

A tibble: 13,914 × 2

word n

<chr> <int>

1 miss 1855

2 time 1337

3 fanny 862

4 dear 822

5 lady 817

6 sir 806

7 day 797

8 emma 787

9 sister 727

10 house 699

... with 13,904 more rows

For example, this allows us to visualize the commonly used words using ggplot2.

library(ggplot2)

tidy_books %>%

 count(word, sort = TRUE) %>%

 filter(n > 600) %>%

 mutate(word = reorder(word, n)) %>%

 ggplot(aes(word, n)) +

 geom_bar(stat = "identity") +

 xlab(NULL) +

 coord_flip()

Figure 2.1: The most common words in Jane Austen’s novels

We could pipe this straight into ggplot2 because of our consistent use of tidy tools.

2.3 The gutenbergr package

Now that we’ve used the janeaustenr package, let’s introduce the gutenbergr package (Robinson 2016). The

gutenbergr package provides access to the public domain works from the Project Gutenberg collection. The

package includes tools both for downloading books (stripping out the unhelpful header/footer information),

and a complete dataset of Project Gutenberg metadata that can be used to find works of interest. In this book,

we will mostly use the function gutenberg_download() that downloads one or more works from Project

Gutenberg by ID, but you can also use other functions to explore metadata, pair Gutenberg ID with title,

author, language, etc., or gather information about authors. To learn more about gutenbergr, check out the

package’s tutorial at rOpenSci, where it is one of rOpenSci’s packages for data access.

2.4 Word frequencies

A common task in text mining is to look at word frequencies, just like we have done above for Jane Austen’s

novels, and to compare frequencies across different texts. We can do this intuitively and smoothly using tidy

data principles. We already have Jane Austen’s works; let’s get two more sets of texts to compare to. First,

let’s look at some science fiction and fantasy novels by H.G. Wells, who lived in the late 19th and early 20th

centuries. Let’s get The Time Machine, The War of the Worlds, The Invisible Man, and The Island of Doctor

Moreau.

library(gutenbergr)

hgwells <- gutenberg_download(c(35, 36, 5230, 159))

tidy_hgwells <- hgwells %>%

 unnest_tokens(word, text) %>%

 anti_join(stop_words)

Just for kicks, what are the most common words in these novels of H.G. Wells?

tidy_hgwells %>%

 count(word, sort = TRUE)

A tibble: 11,769 × 2

word n

<chr> <int>

1 time 454

2 people 302

3 door 260

4 heard 249

5 black 232

6 stood 229

7 white 222

8 hand 218

9 kemp 213

10 eyes 210

... with 11,759 more rows

Now let’s get some well-known works of the Brontë sisters, whose lives overlapped with Jane Austen’s

somewhat but who wrote in a rather different style. Let’s get Jane Eyre, Wuthering Heights, The Tenant of

Wildfell Hall, Villette, and Agnes Grey.

bronte <- gutenberg_download(c(1260, 768, 969, 9182, 766))

tidy_bronte <- bronte %>%

 unnest_tokens(word, text) %>%

 anti_join(stop_words)

What are the most common words in these novels of the Brontë sisters?

tidy_bronte %>%

 count(word, sort = TRUE)

A tibble: 25,714 × 2

word n

<chr> <int>

1 time 1586

2 miss 1388

3 hand 1239

4 day 1136

5 eyes 1023

6 night 1011

7 house 960

8 head 957

9 looked 949

10 aunt 896

... with 25,704 more rows

Interesting that “time”, “eyes”, and “hand” are in the top 10 for both H.G. Wells and the Brontë sisters.

Now, let’s calculate the frequency for each word for the works of Jane Austen, the Brontë sisters, and H.G.

Wells.

tidy_both <- bind_rows(

 mutate(tidy_bronte, author = "Brontë Sisters"),

 mutate(tidy_hgwells, author = "H.G. Wells"))

austen_percent <- tidy_books %>%

 mutate(word = str_extract(word, "[a-z]+")) %>%

 count(word) %>%

 transmute(word, austen = n / sum(n))

frequency <- tidy_both %>%

 mutate(word = str_extract(word, "[a-z]+")) %>%

 count(author, word) %>%

 mutate(other = n / sum(n)) %>%

 left_join(austen_percent) %>%

 ungroup()

We use str_extract() here because the UTF-8 encoded texts from Project Gutenberg have some

examples of words with underscores around them to indicate emphasis (like italics). The tokenizer treated

these as words but we don’t want to count “_any_” separately from “any”. Now let’s plot.

library(scales)

ggplot(frequency, aes(x = other, y = austen, color = abs(austen - other))) +

 geom_abline(color = "gray40", lty = 2) +

 geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +

 geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +

 scale_x_log10(labels = percent_format()) +

 scale_y_log10(labels = percent_format()) +

 scale_color_gradient(limits = c(0, 0.001), low = "darkslategray4", high = "gray75") +

 facet_wrap(~author, ncol = 2) +

 theme(legend.position="none") +

 labs(y = "Jane Austen", x = NULL)

Figure 2.2: Comparing the word frequencies of Jane Austen, the Brontë sisters, and H.G. Wells

Words that are close to the line in these plots have similar frequencies in both sets of texts, for example, in

both Austen and Brontë texts (“miss”, “time”, “day” at the upper frequency end) or in both Austen and Wells

texts (“time”, “day”, “brother” at the high frequency end). Words that are far from the line are words that are

found more in one set of texts than another. For example, in the Austen-Brontë panel, words like “elizabeth”,

“emma”, and “edmund” (all proper nouns) are found in Austen’s texts but not much in the Brontë texts, while

words like “arthur”, “dog”, and “ham” are found in the Brontë texts but not the Austen texts. In comparing H.G.

Wells with Jane Austen, Wells uses words like “beast”, “island”, “feet”, and “black” that Austen does not, while

Austen uses words like “family”, “friend”, “letter”, and “dear” that Wells does not.

Overall, notice in Figure 2.2 that the words in the Austen-Brontë panel are closer to the zero-slope line than in

the Austen-Wells panel and also extend to lower frequencies; Austen and the Brontë sisters use more similar

words than Austen and H.G. Wells. Also, we notice that not all the words are found in all three sets of texts

and there are fewer points in the plot for Austen and H.G. Wells.

Let’s quantify how similar and different these sets of word frequencies are using a correlation test. How

correlated are the word frequencies between Austen and the Brontë sisters, and between Austen and Wells?

cor.test(data = frequency[frequency$author == "Brontë Sisters",],

 ~ other + austen)

Pearson's product-moment correlation

data: other and austen

t = 119.43, df = 10765, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7466616 0.7629140

sample estimates:

cor

0.7549037

cor.test(data = frequency[frequency$author == "H.G. Wells",],

 ~ other + austen)

Pearson's product-moment correlation

data: other and austen

t = 35.91, df = 6027, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.3988024 0.4403950

sample estimates:

cor

0.4198191

The relationship between the word frequencies is different between these sets of texts, as it appears in the

plots.

References

Silge, Julia. 2016. Janeaustenr: Jane Austen’s Complete Novels. https://CRAN.R-

project.org/package=janeaustenr.

Mullen, Lincoln. 2016. Tokenizers: A Consistent Interface to Tokenize Natural Language Text.

https://CRAN.R-project.org/package=tokenizers.

Robinson, David. 2016. Gutenbergr: Download and Process Public Domain Works from Project Gutenberg.

https://cran.rstudio.com/package=gutenbergr.

3 Sentiment analysis with tidy data

In the previous chapter, we explored in depth what we mean by the tidy text format and showed how this

format can be used to approach questions about word frequency. This allowed us to analyze which words are

used most frequently in documents and to compare documents, but now let’s investigate a different topic.

Let’s address the topic of opinion mining or sentiment analysis. When human readers approach a text, we

use our understanding of the emotional intent of words to infer whether a section of text is positive or

negative, or perhaps characterized by some other more nuanced emotion like surprise or disgust. We can

use the tools of text mining to approach the emotional content of text programmatically.

One way to analyze the sentiment of a text is to consider the text as a combination of its individual words and

the sentiment content of the whole text as the sum of the sentiment content of the individual words. This isn’t

the only way to approach sentiment analysis, but it is an often-used approach, and an approach that naturally

takes advantage of the tidy tool ecosystem.

3.1 The sentiments dataset

As discussed above, there are a variety of methods and dictionaries that exist for evaluating the opinion or

emotion in text. The tidytext package contains several sentiment lexicons in the sentiments dataset.

library(tidytext)

sentiments

A tibble: 23,165 × 4

word sentiment lexicon score

<chr> <chr> <chr> <int>

1 abacus trust nrc NA

2 abandon fear nrc NA

3 abandon negative nrc NA

4 abandon sadness nrc NA

5 abandoned anger nrc NA

6 abandoned fear nrc NA

7 abandoned negative nrc NA

8 abandoned sadness nrc NA

9 abandonment anger nrc NA

10 abandonment fear nrc NA

... with 23,155 more rows

The three general-purpose lexicons are

 AFINN from Finn Årup Nielsen,

 bing from Bing Liu and collaborators, and

 nrc from Saif Mohammad and Peter Turney.

All three of these lexicons are based on unigrams, i.e., single words. These lexicons contain many English

words and the words are assigned scores for positive/negative sentiment, and also possibly emotions like

joy, anger, sadness, and so forth. The nrc lexicon categorizes words in a binary fashion (“yes”/“no”) into

categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust. The

 bing lexicon categorizes words in a binary fashion into positive and negative categories. The AFINN

lexicon assigns words with a score that runs between -5 and 5, with negative scores indicating negative

sentiment and positive scores indicating positive sentiment. All of this information is tabulated in the

 sentiments dataset, and tidytext provides a function get_sentiments() to get specific sentiment

lexicons without the columns that are not used in that lexicon.

get_sentiments("afinn")

A tibble: 2,476 × 2

word score

<chr> <int>

1 abandon -2

2 abandoned -2

3 abandons -2

4 abducted -2

5 abduction -2

6 abductions -2

7 abhor -3

8 abhorred -3

9 abhorrent -3

10 abhors -3

... with 2,466 more rows

get_sentiments("bing")

A tibble: 6,788 × 2

word sentiment

<chr> <chr>

1 2-faced negative

2 2-faces negative

3 a+ positive

4 abnormal negative

5 abolish negative

6 abominable negative

7 abominably negative

8 abominate negative

9 abomination negative

10 abort negative

... with 6,778 more rows

get_sentiments("nrc")

A tibble: 13,901 × 2

word sentiment

<chr> <chr>

1 abacus trust

2 abandon fear

3 abandon negative

4 abandon sadness

5 abandoned anger

6 abandoned fear

7 abandoned negative

8 abandoned sadness

9 abandonment anger

10 abandonment fear

... with 13,891 more rows

How were these sentiment lexicons put together and validated? They were constructed via either

crowdsourcing (using, for example, Amazon Mechanical Turk) or by the labor of one of the authors, and were

validated using some combination of crowdsourcing again, restaurant or movie reviews, or Twitter data.

Given this information, we may hesitate to apply these sentiment lexicons to styles of text dramatically

different from what they were validated on, such as narrative fiction from 200 years ago. While it is true that

using these sentiment lexicons with, for example, Jane Austen’s novels may give us less accurate results

than with tweets sent by a contemporary writer, we still can measure the sentiment content for words that are

shared across the lexicon and the text.

There are also some domain-specific sentiment lexicons available, constructed to be used with text from a

specific content area. Chapter 6 explores an analysis using a sentiment lexicon specifically for finance.

Dictionary-based methods like the ones we are discussing find the total sentiment of a piece of text by adding

up the individual sentiment scores for each word in the text. Not every English word is in the lexicons

because many English words are pretty neutral. It is important to keep in mind that these methods do not take

into account qualifiers before a word, such as in “no good” or “not true”; a lexicon-based method like this is

based on unigrams only. For many kinds of text (like the narrative examples below), there are not sustained

sections of sarcasm or negated text, so this is not an important effect. Also, we can use a tidy text approach to

begin to understand what kinds of negation words are important in a given text; see Chapter 10 for an

extended example of such an analysis.

One last caveat is that the size of the chunk of text that we use to add up unigram sentiment scores can have

an effect on an analysis. A text the size of many paragraphs can often have positive and negative sentiment

averaged out to about zero, while sentence-sized or paragraph-sized text often works better.

3.2 Sentiment analysis with inner join

With data in a tidy format, sentiment analysis can be done as an inner join. This is another of the great

successes of viewing text mining as a tidy data analysis task; much as removing stop words is an antijoin

operation, performing sentiment analysis is an inner join operation.

Let’s look at the words with a joy score from the NRC lexicon. What are the most common joy words in

Emma? First, we need to take the text of the novels and convert the text to the tidy format using

 unnest_tokens() .

library(janeaustenr)

library(dplyr)

library(stringr)

tidy_books <- austen_books() %>%

 group_by(book) %>%

 mutate(linenumber = row_number(),

 chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]",

 ignore_case = TRUE)))) %>%

 ungroup() %>%

 unnest_tokens(word, text)

Now that the text is in a tidy format with one term per row, we are ready to do the sentiment analysis. First,

let’s use the NRC lexicon and filter() for the joy words. Next, let’s filter() the data frame with the

text from the books for the words from Emma and then use inner_join() to perform the sentiment analysis.

What are the most common joy words in Emma? Let’s use count() from dplyr.

nrcjoy <- get_sentiments("nrc") %>%

 filter(sentiment == "joy")

tidy_books %>%

 filter(book == "Emma") %>%

 inner_join(nrcjoy) %>%

 count(word, sort = TRUE)

A tibble: 303 × 2

word n

<chr> <int>

1 good 359

2 young 192

3 friend 166

4 hope 143

5 happy 125

6 love 117

7 deal 92

8 found 92

9 present 89

10 kind 82

... with 293 more rows

We see many positive, happy words about hope, friendship, and love here.

Or instead we could examine how sentiment changes during each novel. We can do this with just a handful

of lines that are mostly dplyr functions. First, we find a sentiment score for each word using the Bing lexicon

and inner_join() .

Next, we count up how many positive and negative words there are in defined sections of each book. We

define an index here to keep track of where we are in the narrative; this index (using integer division)

counts up sections of 100 lines of text. The %/% operator does integer division (x %/% y is equivalent to

 floor(x/y)) so the index keeps track of which 100-line section of text we are counting up negative and

positive sentiment in. Small sections of text may not have enough words in them to get a good estimate of

sentiment while really large sections can wash out narrative structure. For these books, using 100 lines works

well, but this can vary depending on individual texts, how long the lines were to start with, etc.

We then use spread() so that we have negative and positive sentiment in separate columns, and lastly

calculate a net sentiment (positive - negative).

library(tidyr)

janeaustensentiment <- tidy_books %>%

 inner_join(get_sentiments("bing")) %>%

 count(book, index = linenumber %/% 100, sentiment) %>%

 spread(sentiment, n, fill = 0) %>%

 mutate(sentiment = positive - negative)

Now we can plot these sentiment scores across the plot trajectory of each novel. Notice that we are plotting

against the index on the x-axis that keeps track of narrative time in sections of text.

library(ggplot2)

ggplot(janeaustensentiment, aes(index, sentiment, fill = book)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 facet_wrap(~book, ncol = 2, scales = "free_x")

Figure 3.1: Sentiment through the narratives of Jane Austen’s novels

We can see in Figure 3.1 how the plot of each novel changes toward more positive or negative sentiment

over the trajectory of the story.

3.3 Comparing the three sentiment dictionaries

With several options for sentiment lexicons, you might want some more information on which one is

appropriate for your purposes. Let’s use all three sentiment lexicons and examine how the sentiment

changes across the narrative arc of Pride and Prejudice. First, let’s use filter() to choose only the words

from the one novel we are interested in.

pride_prejudice <- tidy_books %>%

 filter(book == "Pride & Prejudice")

pride_prejudice

A tibble: 122,204 × 4

book linenumber chapter word

<fctr> <int> <int> <chr>

1 Pride & Prejudice 1 0 pride

2 Pride & Prejudice 1 0 and

3 Pride & Prejudice 1 0 prejudice

4 Pride & Prejudice 3 0 by

5 Pride & Prejudice 3 0 jane

6 Pride & Prejudice 3 0 austen

7 Pride & Prejudice 7 1 chapter

8 Pride & Prejudice 7 1 1

9 Pride & Prejudice 10 1 it

10 Pride & Prejudice 10 1 is

... with 122,194 more rows

Now, we can use inner_join() to calculate the sentiment in different ways. Remember from above that

the AFINN lexicon measures sentiment with a numeric score between -5 and 5, while the other two lexicons

categorize words in a binary fashion, either positive or negative. To find a sentiment score in chunks of text

throughout the novel, we will need to use a different pattern for the AFINN lexicon than for the other two.

Let’s again use integer division (%/%) to define larger sections of text that span multiple lines, and we can

use the same pattern with count() , spread() , and mutate() to find the net sentiment in each of these

sections of text.

afinn <- pride_prejudice %>%

 inner_join(get_sentiments("afinn")) %>%

 group_by(index = linenumber %/% 80) %>%

 summarise(sentiment = sum(score)) %>%

 mutate(method = "AFINN")

bing_and_nrc <- bind_rows(pride_prejudice %>%

 inner_join(get_sentiments("bing")) %>%

 mutate(method = "Bing et al."),

 pride_prejudice %>%

 inner_join(get_sentiments("nrc") %>%

 filter(sentiment %in% c("positive",

 "negative"))) %>%

 mutate(method = "NRC")) %>%

 count(method, index = linenumber %/% 80, sentiment) %>%

 spread(sentiment, n, fill = 0) %>%

 mutate(sentiment = positive - negative)

We now have an estimate of the net sentiment (positive - negative) in each chunk of the novel text for each

sentiment lexicon. Let’s bind them together and plot them.

bind_rows(afinn,

 bing_and_nrc) %>%

 ggplot(aes(index, sentiment, fill = method)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 facet_wrap(~method, ncol = 1, scales = "free_y")

Figure 3.2: Comparing three sentiment lexicons using Pride and Prejudice

The three different lexicons for calculating sentiment give results that are different in an absolute sense but

have similar relative trajectories through the novel. We see similar dips and peaks in sentiment at about the

same places in the novel, but the absolute values are significantly different. The AFINN lexicon gives the

largest absolute values, with high positive values. The lexicon from Bing et al. has lower absolute values and

seems to label larger blocks of contiguous positive or negative text. The NRC results are shifted higher

relative to the other two, labeling the text more positively, but detects similar relative changes in the text. We

find similar differences between the methods when looking at other novels; the NRC sentiment is high, the

AFINN sentiment has more variance, the Bing et al. sentiment appears to find longer stretches of similar text,

but all three agree roughly on the overall trends in the sentiment through a narrative arc.

Why is, for example, the result for the NRC lexicon biased so high in sentiment compared to the Bing et al.

result? Let’s look briefly at how many positive and negative words are in these lexicons.

get_sentiments("nrc") %>%

 filter(sentiment %in% c("positive",

 "negative")) %>%

 count(sentiment)

A tibble: 2 × 2

sentiment n

<chr> <int>

1 negative 3324

2 positive 2312

get_sentiments("bing") %>%

 count(sentiment)

A tibble: 2 × 2

sentiment n

<chr> <int>

1 negative 4782

2 positive 2006

Both lexicons have more negative than positive words, but the ratio of negative to positive words is higher in

the Bing lexicon than the NRC lexicon. This will contribute to the effect we see in the plot above, as will any

systematic difference in word matches, e.g. if the negative words in the NRC lexicon do not match the words

that Jane Austen uses very well. Whatever the source of these differences, we see similar relative trajectories

across the narrative arc, with similar changes in slope, but marked differences in absolute sentiment from

lexicon to lexicon. This is all important context to keep in mind when choosing a sentiment lexicon for

analysis.

3.4 Most common positive and negative words

One advantage of having the data frame with both sentiment and word is that we can analyze word counts

that contribute to each sentiment.

bing_word_counts <- tidy_books %>%

 inner_join(get_sentiments("bing")) %>%

 count(word, sentiment, sort = TRUE) %>%

 ungroup()

bing_word_counts

A tibble: 2,585 × 3

word sentiment n

<chr> <chr> <int>

1 miss negative 1855

2 well positive 1523

3 good positive 1380

4 great positive 981

5 like positive 725

6 better positive 639

7 enough positive 613

8 happy positive 534

9 love positive 495

10 pleasure positive 462

... with 2,575 more rows

This can be shown visually, and we can pipe straight into ggplot2, if we like, because of the way we are

consistently using tools built for handling tidy data frames.

bing_word_counts %>%

 group_by(sentiment) %>%

 top_n(10) %>%

 mutate(word = reorder(word, n)) %>%

 ggplot(aes(word, n, fill = sentiment)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 facet_wrap(~sentiment, scales = "free_y") +

 labs(y = "Contribution to sentiment",

 x = NULL) +

 coord_flip()

Figure 3.3: Words that contribute to positive and negative sentiment in Jane Austen’s novels

This lets us spot an anomaly in the sentiment analysis; the word “miss” is coded as negative but it is used as

a title for young, unmarried women in Jane Austen’s works. If it were appropriate for our purposes, we could

easily add “miss” to a custom stop-words list using bind_rows() .

3.5 Wordclouds

We’ve seen that this tidy text mining approach works well with ggplot2, but having our data in a tidy format is

useful for other plots as well.

For example, consider the wordcloud package, which uses base R graphics. Let’s look at the most common

words in Jane Austen’s works as a whole again.

library(wordcloud)

tidy_books %>%

 anti_join(stop_words) %>%

 count(word) %>%

 with(wordcloud(word, n, max.words = 100))

Figure 3.4: The most common words in Jane Austen’s novels

In other functions, such as comparison.cloud() , you may need to turn the data frame into a matrix with

reshape2’s acast() . Let’s do the sentiment analysis to tag positive and negative words using an inner join,

then find the most common positive and negative words. Until the step where we need to send the data to

 comparison.cloud() , this can all be done with joins, piping, and dplyr because our data is in tidy format.

library(reshape2)

tidy_books %>%

 inner_join(get_sentiments("bing")) %>%

 count(word, sentiment, sort = TRUE) %>%

 acast(word ~ sentiment, value.var = "n", fill = 0) %>%

 comparison.cloud(colors = c("#F8766D", "#00BFC4"),

 max.words = 100)

Figure 3.5: Most common positive and negative words in Jane Austen’s novels

The size of a word’s text in Figure 3.5 is in proportion to its frequency within its sentiment. We can use this

visualization to see the most important positive and negative words, but the sizes of the words are not

comparable across sentiments.

3.6 Looking at units beyond just words

Lots of useful work can be done by tokenizing at the word level, but sometimes it is useful or necessary to

look at different units of text. For example, some sentiment analysis algorithms look beyond only unigrams

(i.e. single words) to try to understand the sentiment of a sentence as a whole. These algorithms try to

understand that

I am not having a good day.

is a sad sentence, not a happy one, because of negation. The Stanford CoreNLP tools and the sentimentr R

package (currently available on Github but not CRAN) are examples of such sentiment analysis algorithms.

For these, we may want to tokenize text into sentences.

PandP_sentences <- data_frame(text = prideprejudice) %>%

 unnest_tokens(sentence, text, token = "sentences")

Let’s look at just one.

PandP_sentences$sentence[2]

[1] "however little known the feelings or views of such a man may be on his first entering a neighbourhood, this truth is so well fixed in the minds of the surrounding families, that he is considered the rightful property of some one or other of their daughters."

The sentence tokenizing does seem to have a bit of trouble with UTF-8 encoded text, especially with sections

of dialogue; it does much better with punctuation in ASCII. One possibility, if this is important, is to try using

 iconv() , with something like iconv(text, to = 'latin1') in a mutate statement before unnesting.

Another option in unnest_tokens() is to split into tokens using a regex pattern. We could use this, for

example, to split the text of Jane Austen’s novels into a data frame by chapter.

austen_chapters <- austen_books() %>%

 group_by(book) %>%

 unnest_tokens(chapter, text, token = "regex",

 pattern = "Chapter|CHAPTER [\\dIVXLC]") %>%

 ungroup()

austen_chapters %>%

 group_by(book) %>%

 summarise(chapters = n())

A tibble: 6 × 2

book chapters

<fctr> <int>

1 Sense & Sensibility 51

2 Pride & Prejudice 62

3 Mansfield Park 49

4 Emma 56

5 Northanger Abbey 32

6 Persuasion 25

We have recovered the correct number of chapters in each novel (plus an “extra” row for each novel title). In

this data frame, each row corresponds to one chapter.

Near the beginning of this vignette, we used a similar regex to find where all the chapters were in Austen’s

novels for a tidy data frame organized by one-word-per-row. We can use tidy text analysis to ask questions

such as what are the most negative chapters in each of Jane Austen’s novels? First, let’s get the list of

negative words from the Bing lexicon. Second, let’s make a data frame of how many words are in each

chapter so we can normalize for the length of chapters. Then, let’s find the number of negative words in each

chapter and divide by the total words in each chapter. Which chapter has the highest proportion of negative

words?

bingnegative <- get_sentiments("bing") %>%

 filter(sentiment == "negative")

wordcounts <- tidy_books %>%

 group_by(book, chapter) %>%

 summarize(words = n())

tidy_books %>%

 semi_join(bingnegative) %>%

 group_by(book, chapter) %>%

 summarize(negativewords = n()) %>%

 left_join(wordcounts, by = c("book", "chapter")) %>%

 mutate(ratio = negativewords/words) %>%

 filter(chapter != 0) %>%

 top_n(1) %>%

 ungroup

A tibble: 6 × 5

book chapter negativewords words ratio

<fctr> <int> <int> <int> <dbl>

1 Sense & Sensibility 43 161 3405 0.04728341

2 Pride & Prejudice 34 111 2104 0.05275665

3 Mansfield Park 46 173 3685 0.04694708

4 Emma 15 151 3340 0.04520958

5 Northanger Abbey 21 149 2982 0.04996647

6 Persuasion 4 62 1807 0.03431101

These are the chapters with the most sad words in each book, normalized for number of words in the chapter.

What is happening in these chapters? In Chapter 43 of Sense and Sensibility Marianne is seriously ill, near

death, and in Chapter 34 of Pride and Prejudice Mr. Darcy proposes for the first time (so badly!). Chapter 46

of Mansfield Park is almost the end, when everyone learns of Henry’s scandalous adultery, Chapter 15 of

Emma is when horrifying Mr. Elton proposes, and in Chapter 21 of Northanger Abbey Catherine is deep in

her Gothic faux fantasy of murder, etc. Chapter 4 of Persuasion is when the reader gets the full flashback of

Anne refusing Captain Wentworth and how sad she was and what a terrible mistake she realized it to be.

4 Analyzing word and document frequency: tf-idf

A central question in text mining and natural language processing is how to quantify what a document is

about. Can we do this by looking at the words that make up the document? One measure of how important a

word may be is its term frequency (tf), how frequently a word occurs in a document; we have examined how to

measure word frequency using tidy data principles in Chapter 2. There are words in a document, however,

that occur many times but may not be important; in English, these are probably words like “the”, “is”, “of”, and

so forth. We might take the approach of adding words like these to a list of stop words and removing them

before analysis, but it is possible that some of these words might be more important in some documents than

others. A list of stop words is not a very sophisticated approach to adjusting term frequency for commonly

used words.

Another approach is to look at a term’s inverse document frequency (idf), which decreases the weight for

commonly used words and increases the weight for words that are not used very much in a collection of

documents. This can be combined with term frequency to calculate a term’s tf-idf (the two quantities multiplied

together), the frequency of a term adjusted for how rarely it is used. It is intended to measure how important a

word is to a document in a collection (or corpus) of documents. It is a rule-of-thumb or heuristic quantity; while

it has proved useful in text mining, search engines, etc., its theoretical foundations are considered less than

firm by information theory experts. The inverse document frequency for any given term is defined as

\[idf(\text{term}) = \ln{\left(\frac{n_{\text{documents}}}{n_{\text{documents containing term}}}\right)}\]

We can use tidy data principles, as described in Chapter 2, to approach tf-idf analysis and use consistent,

effective tools to quantify how important various terms are in a document that is part of a collection.

4.1 Term frequency in Jane Austen’s novels

Let’s start by looking at the published novels of Jane Austen and examine first term frequency, then tf-idf. We

can start just by using dplyr verbs such as group_by() and join() . What are the most commonly used

words in Jane Austen’s novels? (Let’s also calculate the total words in each novel here, for later use.)

library(dplyr)

library(janeaustenr)

library(tidytext)

book_words <- austen_books() %>%

 unnest_tokens(word, text) %>%

 count(book, word, sort = TRUE) %>%

 ungroup()

total_words <- book_words %>%

 group_by(book) %>%

 summarize(total = sum(n))

book_words <- left_join(book_words, total_words)

book_words

A tibble: 40,379 × 4

book word n total

<fctr> <chr> <int> <int>

1 Mansfield Park the 6206 160460

2 Mansfield Park to 5475 160460

3 Mansfield Park and 5438 160460

4 Emma to 5239 160996

5 Emma the 5201 160996

6 Emma and 4896 160996

7 Mansfield Park of 4778 160460

8 Pride & Prejudice the 4331 122204

9 Emma of 4291 160996

10 Pride & Prejudice to 4162 122204

... with 40,369 more rows

There is one row in this book_words data frame for each word-book combination; n is the number of

times that word is used in that book and total is the total words in that book. The usual suspects are here

with the highest n , “the”, “and”, “to”, and so forth. Let’s look at the distribution of n/total for each novel,

the number of times a word appears in a novel divided by the total number of terms (words) in that novel. This

is exactly what term frequency is.

library(ggplot2)

ggplot(book_words, aes(n/total, fill = book)) +

 geom_histogram(alpha = 0.8, show.legend = FALSE) +

 xlim(NA, 0.0009) +

 facet_wrap(~book, ncol = 2, scales = "free_y")

Figure 4.1: Term Frequency Distribution in Jane Austen’s Novels

There are very long tails to the right for these novels (those extremely common words!) that we have not

shown in these plots. These plots exhibit similar distributions for all the novels, with many words that occur

rarely and fewer words that occur frequently.

4.2 Zipf’s law

Distributions like those shown in Figure 4.1 are typical in language. In fact, those types of long-tailed

distributions are so common in any given corpus of natural language (like a book, or a lot of text from a

website, or spoken words) that the relationship between the frequency that a word is used and its rank has

been the subject of study; a classic version of this relationship is called Zipf’s law, after George Zipf, a 20th

century American linguist. Zipf’s law states that the frequency of a word is inversely proportional to its rank.

Since we have the data frame we used to plot term frequency, we can examine Zipf’s law for Jane Austen’s

novels with just a few lines of dplyr functions.

freq_by_rank <- book_words %>%

 group_by(book) %>%

 mutate(rank = row_number(),

 `term frequency` = n/total)

freq_by_rank

Source: local data frame [40,379 x 6]

Groups: book [6]

book word n total rank `term frequency`

<fctr> <chr> <int> <int> <int> <dbl>

1 Mansfield Park the 6206 160460 1 0.03867631

2 Mansfield Park to 5475 160460 2 0.03412065

3 Mansfield Park and 5438 160460 3 0.03389007

4 Emma to 5239 160996 1 0.03254118

5 Emma the 5201 160996 2 0.03230515

6 Emma and 4896 160996 3 0.03041069

7 Mansfield Park of 4778 160460 4 0.02977689

8 Pride & Prejudice the 4331 122204 1 0.03544074

9 Emma of 4291 160996 4 0.02665284

10 Pride & Prejudice to 4162 122204 2 0.03405780

... with 40,369 more rows

The rank column here tells us the rank of each word within the frequency table; the table was already

ordered by n so we could use row_number() to find the rank. Then, we can calculate the term frequency

in the same way we did before. Zipf’s law is often visualized by plotting rank on the x-axis and term frequency

on the y-axis, on logarithmic scales. Plotting this way, an inversely proportional relationship will have a

constant, negative slope.

freq_by_rank %>%

 ggplot(aes(rank, `term frequency`, color = book)) +

 geom_line(size = 1.2, alpha = 0.8) +

 scale_x_log10() +

 scale_y_log10()

Figure 4.2: Zipf’s law for Jane Austen’s novels

Notice that this plot is in log-log coordinates. We see that all six of Jane Austen’s novels are similar to each

other, and that the relationship between rank and frequency does have negative slope. It is not quite constant,

though; perhaps we could view this as a broken power law with, say, three sections. Let’s see what the

exponent of the power law is for the middle section of the rank range.

rank_subset <- freq_by_rank %>%

 filter(rank < 500,

 rank > 10)

lm(log10(`term frequency`) ~ log10(rank), data = rank_subset)

Call:

lm(formula = log10(`term frequency`) ~ log10(rank), data = rank_subset)

Coefficients:

(Intercept) log10(rank)

-0.6225 -1.1125

Classic versions of Zipf’s law have

\[\text{frequency} \propto \frac{1}{\text{rank}}\] and we have in fact gotten a slope close to -1 here. Let’s plot this

fitted power law with the data to see how it looks.

freq_by_rank %>%

 ggplot(aes(rank, `term frequency`, color = book)) +

 geom_abline(intercept = -0.62, slope = -1.1, color = "gray50", linetype = 2) +

 geom_line(size = 1.2, alpha = 0.8) +

 scale_x_log10() +

 scale_y_log10()

Figure 4.3: Fitting an exponent for Zipf’s law with Jane Austen’s novels

We have found a result close to the classic version of Zipf’s law for the corpus of Jane Austen’s novels. The

deviations we see here at high rank are not uncommon for many kinds of language; a corpus of language

often contains fewer rare words than predicted by a single power law. The deviations at low rank are more

unusual. Jane Austen uses a lower percentage of the most common words than many collections of

language. This kind of analysis could be extended to compare authors, or to compare any other collections of

text; it can be implemented simply using tidy data principles.

4.3 The bind_tf_idf function

The idea of tf-idf is to find the important words for the content of each document by decreasing the weight for

commonly used words and increasing the weight for words that are not used very much in a collection or

corpus of documents, in this case, the group of Jane Austen’s novels as a whole. Calculating tf-idf attempts to

find the words that are important (i.e., common) in a text, but not too common. Let’s do that now.

book_words <- book_words %>%

 bind_tf_idf(word, book, n)

book_words

A tibble: 40,379 × 7

book word n total tf idf tf_idf

<fctr> <chr> <int> <int> <dbl> <dbl> <dbl>

1 Mansfield Park the 6206 160460 0.03867631 0 0

2 Mansfield Park to 5475 160460 0.03412065 0 0

3 Mansfield Park and 5438 160460 0.03389007 0 0

4 Emma to 5239 160996 0.03254118 0 0

5 Emma the 5201 160996 0.03230515 0 0

6 Emma and 4896 160996 0.03041069 0 0

7 Mansfield Park of 4778 160460 0.02977689 0 0

8 Pride & Prejudice the 4331 122204 0.03544074 0 0

9 Emma of 4291 160996 0.02665284 0 0

10 Pride & Prejudice to 4162 122204 0.03405780 0 0

... with 40,369 more rows

Notice that idf and thus tf-idf are zero for these extremely common words. These are all words that appear in

all six of Jane Austen’s novels, so the idf term (which will then be the natural log of 1) is zero. The inverse

document frequency (and thus tf-idf) is very low (near zero) for words that occur in many of the documents in a

collection; this is how this approach decreases the weight for common words. The inverse document

frequency will be a higher number for words that occur in fewer of the documents in the collection.

Let’s look at terms with high tf-idf in Jane Austen’s works.

book_words %>%

 select(-total) %>%

 arrange(desc(tf_idf))

A tibble: 40,379 × 6

book word n tf idf tf_idf

<fctr> <chr> <int> <dbl> <dbl> <dbl>

1 Sense & Sensibility elinor 623 0.005193528 1.791759 0.009305552

2 Sense & Sensibility marianne 492 0.004101470 1.791759 0.007348847

3 Mansfield Park crawford 493 0.003072417 1.791759 0.005505032

4 Pride & Prejudice darcy 373 0.003052273 1.791759 0.005468939

5 Persuasion elliot 254 0.003036207 1.791759 0.005440153

6 Emma emma 786 0.004882109 1.098612 0.005363545

7 Northanger Abbey tilney 196 0.002519928 1.791759 0.004515105

8 Emma weston 389 0.002416209 1.791759 0.004329266

9 Pride & Prejudice bennet 294 0.002405813 1.791759 0.004310639

10 Persuasion wentworth 191 0.002283132 1.791759 0.004090824

... with 40,369 more rows

Here we see all proper nouns, names that are in fact important in these novels. None of them occur in all of

novels, and they are important, characteristic words for each text within the corpus of Jane Austen’s novels.

Some of the values for idf are the same for different terms because there are 6 documents in this corpus and

we are seeing the numerical value for \(\ln(6/1)\), \(\ln(6/2)\), etc. Let’s look at a visualization for these high tf-

idf words.

plot_austen <- book_words %>%

 arrange(desc(tf_idf)) %>%

 mutate(word = factor(word, levels = rev(unique(word))))

ggplot(plot_austen[1:20,], aes(word, tf_idf, fill = book)) +

 geom_bar(alpha = 0.8, stat = "identity") +

 labs(x = NULL, y = "tf-idf") +

 coord_flip()

Figure 4.4: Highest tf-idf words in Jane Austen’s Novels

Let’s look at the novels individually.

plot_austen <- plot_austen %>%

 group_by(book) %>%

 top_n(15) %>%

 ungroup

ggplot(plot_austen, aes(word, tf_idf, fill = book)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 labs(x = NULL, y = "tf-idf") +

 facet_wrap(~book, ncol = 2, scales = "free") +

 coord_flip()

Figure 4.5: Highest tf-idf words in each of Jane Austen’s Novels

Still all proper nouns! These words are, as measured by tf-idf, the most important to each novel and most

readers would likely agree.

4.4 A corpus of physics texts

Let’s work with another corpus of documents, to see what terms are important in a different set of works. In

fact, let’s leave the world of fiction and narrative entirely. Let’s download some classic physics texts from

Project Gutenberg and see what terms are important in these works, as measured by tf-idf. Let’s download

Discourse on Floating Bodies by Galileo Galilei, Treatise on Light by Christiaan Huygens, Experiments with

Alternate Currents of High Potential and High Frequency by Nikola Tesla, and Relativity: The Special and

General Theory by Albert Einstein.

This is a pretty diverse bunch. They may all be physics classics, but they were written across a 300-year

timespan, and some of them were first written in other languages and then translated to English. Perfectly

homogeneous these are not, but that doesn’t stop this from being an interesting exercise!

library(gutenbergr)

physics <- gutenberg_download(c(37729, 14725, 13476, 5001),

 meta_fields = "author")

Now that we have the texts, let’s use unnest_tokens() and count() to find out how many times each

word was used in each text.

physics_words <- physics %>%

 unnest_tokens(word, text) %>%

 count(author, word, sort = TRUE) %>%

 ungroup()

physics_words

A tibble: 12,592 × 3

author word n

<chr> <chr> <int>

1 Galilei, Galileo the 3760

2 Tesla, Nikola the 3604

3 Huygens, Christiaan the 3553

4 Einstein, Albert the 2994

5 Galilei, Galileo of 2049

6 Einstein, Albert of 2030

7 Tesla, Nikola of 1737

8 Huygens, Christiaan of 1708

9 Huygens, Christiaan to 1207

10 Tesla, Nikola a 1176

... with 12,582 more rows

Here we see just the raw counts; we need to remember that these documents are all different lengths. Let’s

go ahead and calculate tf-idf.

physics_words <- physics_words %>%

 bind_tf_idf(word, author, n)

plot_physics <- physics_words %>%

 arrange(desc(tf_idf)) %>%

 mutate(word = factor(word, levels = rev(unique(word)))) %>%

 mutate(author = factor(author, levels = c("Galilei, Galileo",

 "Huygens, Christiaan",

 "Tesla, Nikola",

 "Einstein, Albert")))

ggplot(plot_physics[1:20,], aes(word, tf_idf, fill = author)) +

 geom_bar(alpha = 0.8, stat = "identity") +

 labs(x = NULL, y = "tf-idf") +

 coord_flip()

Figure 4.6: Highest tf-idf words in classic physics corpus

Nice! Let’s look at each text individually.

plot_physics <- plot_physics %>%

 group_by(author) %>%

 top_n(15, tf_idf) %>%

 mutate(word = reorder(word, tf_idf))

ggplot(plot_physics, aes(word, tf_idf, fill = author)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 labs(x = NULL, y = "tf-idf") +

 facet_wrap(~author, ncol = 2, scales = "free") +

 coord_flip()

Figure 4.7: Highest tf-idf words in each physics texts

Very interesting indeed. One thing we see here is “gif” in the Einstein text?!

grep("eq\\.", physics$text, value = TRUE)[1:10]

[1] " eq. 1: file eq01.gif"

[2] " eq. 2: file eq02.gif"

[3] " eq. 3: file eq03.gif"

[4] " eq. 4: file eq04.gif"

[5] " eq. 05a: file eq05a.gif"

[6] " eq. 05b: file eq05b.gif"

[7] "the distance between the points being eq. 06 ."

[8] "direction of its length with a velocity v is eq. 06 of a metre."

[9] "velocity v=c we should have eq. 06a ,"

[10] "the rod as judged from K1 would have been eq. 06 ;"

Some cleaning up of the text is in order. “K1” is the name of a coordinate system for Einstein:

grep("K1", physics$text, value = TRUE)[1]

[1] "to a second co-ordinate system K1 provided that the latter is"

Maybe it makes sense to keep this one. Also notice that in this line we have “co-ordinate”, which explains

why there are separate “co” and “ordinate” items in the high tf-idf words for the Einstein text; the

 unnest_tokens() function separates around punctuation.

“AB”, “RC”, and so forth are names of rays, circles, angles, and so forth for Huygens.

grep("AK", physics$text, value = TRUE)[1]

[1] "Now let us assume that the ray has come from A to C along AK, KC; the"

Let’s remove some of these less meaningful words to make a better, more meaningful plot. Notice that we

make a custom list of stop words and use anti_join() to remove them; this is a flexible approach that can

be used in many situations. We will need to go back a few steps since we are removing words from the tidy

data frame.

mystopwords <- data_frame(word = c("eq", "co", "rc", "ac", "ak", "bn",

 "fig", "file", "cg", "cb", "cm"))

physics_words <- anti_join(physics_words, mystopwords, by = "word")

plot_physics <- physics_words %>%

 arrange(desc(tf_idf)) %>%

 mutate(word = factor(word, levels = rev(unique(word)))) %>%

 group_by(author) %>%

 top_n(15, tf_idf) %>%

 ungroup %>%

 mutate(author = factor(author, levels = c("Galilei, Galileo",

 "Huygens, Christiaan",

 "Tesla, Nikola",

 "Einstein, Albert")))

ggplot(plot_physics, aes(word, tf_idf, fill = author)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 labs(x = NULL, y = "tf-idf") +

 facet_wrap(~author, ncol = 2, scales = "free") +

 coord_flip()

Figure 4.8: Highest tf-idf words in classic physics texts

We don’t hear enough about ramparts or things being ethereal in physics today.

5 Relationships between words

So far we’ve considered words as individual units, and considered their relationships to sentiments or to

documents. However, many interesting text analyses are based on the relationships between words, whether

examining which words tend to follow others immediately, or that tend to co-occur within the same

documents.

In this chapter, we’ll explore some of the methods tidytext offers for calculating and visualizing relationships

between words in your text dataset. This includes the token = "ngrams" argument, which tokenizes by

pairs of adjacent words rather than by individual ones. We’ll also introduce two new packages: ggraph, which

extends ggplot2 to construct network plots, and widyr, which calculates pairwise correlations and distances

within a tidy data frame. Together these expand our toolbox for exploring text within the tidy data framework.

5.1 Tokenizing by n-gram

We’ve been using the unnest_tokens function to tokenize by word, or sometimes by sentence or

paragraph, which is useful for the kinds of sentiment and frequency analyses we’ve been doing so far. But we

can also use the function to tokenize into consecutive sequences of words, called n-grams. By seeing how

often word X is followed by word Y, we can then build a model of the relationships between them.

We do this by adding the token = "ngrams" option to unnest_tokens() , and setting n to the number

of words we wish to capture in each n-gram. When we set n to 2, we are examining pairs of two

consecutive words, often called “bigrams”:

library(dplyr)

library(tidytext)

library(janeaustenr)

austen_bigrams <- austen_books() %>%

 unnest_tokens(bigram, text, token = "ngrams", n = 2)

austen_bigrams

Loading [Contrib]/a11y/accessibility-menu.js

A tibble: 725,048 × 2

book bigram

<fctr> <chr>

1 Sense & Sensibility sense and

2 Sense & Sensibility and sensibility

3 Sense & Sensibility sensibility by

4 Sense & Sensibility by jane

5 Sense & Sensibility jane austen

6 Sense & Sensibility austen 1811

7 Sense & Sensibility 1811 chapter

8 Sense & Sensibility chapter 1

9 Sense & Sensibility 1 the

10 Sense & Sensibility the family

... with 725,038 more rows

This data structure is still a variation of the tidy text format. It is structured as one-row-per-token (with extra

metadata, such as book , still preserved), but each token now represents a bigram. Notice that these

bigrams overlap: “sense and” is one token, while “and sensibility” is another.

5.1.1 Counting and filtering n-grams

Our usual tidy tools apply equally well to n-gram analysis. We can examine the most common bigrams using

dplyr’s count() :

austen_bigrams %>%

 count(bigram, sort = TRUE)

A tibble: 211,237 × 2

bigram n

<chr> <int>

1 of the 3017

2 to be 2787

3 in the 2368

4 it was 1781

5 i am 1545

6 she had 1472

7 of her 1445

8 to the 1387

9 she was 1377

10 had been 1299

... with 211,227 more rows

As one might expect, a lot of the most common bigrams are pairs of common (uninteresting) words, such as

 of the and to be : what we call “stop-words” (see Chapter). This is a useful time to use tidyr’s

 separate() , which splits a column into multiple based on a delimiter. This lets us separate it into two

columns, “word1” and “word2”, at which we can remove cases where either is a stop-word.

library(tidyr)

bigrams_separated <- austen_bigrams %>%

 separate(bigram, c("word1", "word2"), sep = " ")

bigrams_filtered <- bigrams_separated %>%

 filter(!word1 %in% stop_words$word) %>%

 filter(!word2 %in% stop_words$word)

New bigram counts:

bigram_counts <- bigrams_filtered %>%

 count(word1, word2, sort = TRUE)

bigram_counts

Source: local data frame [33,421 x 3]

Groups: word1 [6,711]

word1 word2 n

<chr> <chr> <int>

1 sir thomas 287

2 miss crawford 215

3 captain wentworth 170

4 miss woodhouse 162

5 frank churchill 132

6 lady russell 118

7 lady bertram 114

8 sir walter 113

9 miss fairfax 109

10 colonel brandon 108

... with 33,411 more rows

We can see that names (whether first and last or with a salutation) are the most common pairs in Jane Austen

books.

In other analyses, we may want to work with the recombined words. tidyr’s unite() function is the inverse

of separate() , and lets us recombine the columns into one. Thus, “separate/filter/count/unite” let us find the

most common bigrams not containing stop-words.

bigrams_united <- bigrams_filtered %>%

 unite(bigram, word1, word2, sep = " ")

bigrams_united

A tibble: 44,784 × 2

book bigram

* <fctr> <chr>

1 Sense & Sensibility jane austen

2 Sense & Sensibility austen 1811

3 Sense & Sensibility 1811 chapter

4 Sense & Sensibility chapter 1

5 Sense & Sensibility norland park

6 Sense & Sensibility surrounding acquaintance

7 Sense & Sensibility late owner

8 Sense & Sensibility advanced age

9 Sense & Sensibility constant companion

10 Sense & Sensibility happened ten

... with 44,774 more rows

In other analyses you may be interested in the most common trigrams, which are consecutive sequences of 3

words. We can find this by setting n = 3 :

austen_books() %>%

 unnest_tokens(trigram, text, token = "ngrams", n = 3) %>%

 separate(trigram, c("word1", "word2", "word3"), sep = " ") %>%

 filter(!word1 %in% stop_words$word,

 !word2 %in% stop_words$word,

 !word3 %in% stop_words$word) %>%

 count(word1, word2, word3, sort = TRUE)

Source: local data frame [8,757 x 4]

Groups: word1, word2 [7,462]

word1 word2 word3 n

<chr> <chr> <chr> <int>

1 dear miss woodhouse 23

2 miss de bourgh 18

3 lady catherine de 14

4 catherine de bourgh 13

5 poor miss taylor 11

6 sir walter elliot 11

7 ten thousand pounds 11

8 dear sir thomas 10

9 twenty thousand pounds 8

10 replied miss crawford 7

... with 8,747 more rows

5.1.2 Analyzing bigrams

This one-row-per-bigram format is helpful for exploratory analyses of the text. As a simple example, we might

be interested in the most common “streets” mentioned in each book:

bigrams_filtered %>%

 filter(word2 == "street") %>%

 count(book, word1, sort = TRUE)

Source: local data frame [34 x 3]

Groups: book [6]

book word1 n

<fctr> <chr> <int>

1 Sense & Sensibility berkeley 16

2 Sense & Sensibility harley 16

3 Northanger Abbey pulteney 14

4 Northanger Abbey milsom 11

5 Mansfield Park wimpole 10

6 Pride & Prejudice gracechurch 9

7 Sense & Sensibility conduit 6

8 Sense & Sensibility bond 5

9 Persuasion milsom 5

10 Persuasion rivers 4

... with 24 more rows

A bigram can also be treated as a term in a document in the same way that we treated individual words. For

example, we can look at the TF-IDF (Chapter 4) of bigrams across Austen novels. These TF-IDF values can

be visualized within each book, just as we did for words (Figure).

bigram_tf_idf <- bigrams_united %>%

 count(book, bigram) %>%

 bind_tf_idf(bigram, book, n) %>%

 arrange(desc(tf_idf))

bigram_tf_idf

Source: local data frame [36,217 x 6]

Groups: book [6]

book bigram n tf idf tf_idf

<fctr> <chr> <int> <dbl> <dbl> <dbl>

1 Persuasion captain wentworth 170 0.02985599 1.791759 0.05349475

2 Mansfield Park sir thomas 287 0.02873160 1.791759 0.05148012

3 Mansfield Park miss crawford 215 0.02152368 1.791759 0.03856525

4 Persuasion lady russell 118 0.02072357 1.791759 0.03713165

5 Persuasion sir walter 113 0.01984545 1.791759 0.03555828

6 Emma miss woodhouse 162 0.01700966 1.791759 0.03047722

7 Northanger Abbey miss tilney 82 0.01594400 1.791759 0.02856782

8 Sense & Sensibility colonel brandon 108 0.01502086 1.791759 0.02691377

9 Emma frank churchill 132 0.01385972 1.791759 0.02483329

10 Pride & Prejudice lady catherine 100 0.01380453 1.791759 0.02473439

... with 36,207 more rows

Figure 5.1: The 12 bigrams with the highest TF-IDF from each Jane Austen novel.

Much as we discovered in Chapter , the units that distinguish each Austen book are almost exclusively

names. We also notice some pairings of a common verb and a name, such as “replied elizabeth” in Pride &

Prejudice, or “cried emma” in Emma.

There are advantages and disadvantages to examining the TF-IDF of bigrams rather than individual words.

Pairs of consecutive words might capture structure that isn’t present when one is just counting single words,

and may provide context that makes tokens more understandable (for example, “pulteney street”, in

Northanger Abbey, is more informative than “pulteney”). However, the per-bigram counts are also sparser: a

typical two-word pair is rarer than either of its component words. Thus, bigrams can be especially useful

when you have a very large text dataset.

5.1.3 Using bigrams to provide context in sentiment analysis

Our sentiment analysis approch in Chapter simply counted the appearance of positive or negative words,

according to a reference lexicon. One of the problems with this approach is that a word’s context can matter

nearly as much as its presence. For example, the words “happy” and “like” will be counted as positive, even

in a sentence like “I’m not happy and I don’t like it!”

Now that we have the data organized into bigrams, it’s easy to tell how often words are preceded by a word

like “not”:

bigrams_separated %>%

 filter(word1 == "not") %>%

 count(word1, word2, sort = TRUE)

Source: local data frame [1,246 x 3]

Groups: word1 [1]

word1 word2 n

<chr> <chr> <int>

1 not be 610

2 not to 355

3 not have 327

4 not know 252

5 not a 189

6 not think 176

7 not been 160

8 not the 147

9 not at 129

10 not in 118

... with 1,236 more rows

By performing sentiment analysis on the bigram data, we can examine how often sentiment-associated words

are preceded by “not” or other negating words. We could use this to ignore or even reverse their contribution

to the sentiment score.

Let’s use the AFINN lexicon for sentiment analysis, which you may recall gives a numeric sentiment score for

each word, with positive or negative numbers indicating the direction of the sentiment.

AFINN <- get_sentiments("afinn")

AFINN

A tibble: 2,476 × 2

word score

<chr> <int>

1 abandon -2

2 abandoned -2

3 abandons -2

4 abducted -2

5 abduction -2

6 abductions -2

7 abhor -3

8 abhorred -3

9 abhorrent -3

10 abhors -3

... with 2,466 more rows

We can then examine the most frequent words that were preceded by “not” and were associated with a

sentiment.

not_words <- bigrams_separated %>%

 filter(word1 == "not") %>%

 inner_join(AFINN, by = c(word2 = "word")) %>%

 count(word2, score, sort = TRUE) %>%

 ungroup()

not_words

A tibble: 245 × 3

word2 score n

<chr> <int> <int>

1 like 2 99

2 help 2 82

3 want 1 45

4 wish 1 39

5 allow 1 36

6 care 2 23

7 sorry -1 21

8 leave -1 18

9 pretend -1 18

10 worth 2 17

... with 235 more rows

For example, the most common sentiment-associated word to follow “not” was “like”, which would normally

have a (positive) score of 2.

It’s worth asking which words contributed the most in the “wrong” direction. To compute that, we can multiply

their score by the number of times they appear (so that a word with a score of +3 occurring 10 times has as

much impact as a word with a sentiment score of +1 occurring 30 times). We visualize the result with a bar

plot (Figure).

not_words %>%

 mutate(contribution = n * score) %>%

 arrange(desc(abs(contribution))) %>%

 head(20) %>%

 mutate(word2 = reorder(word2, contribution)) %>%

 ggplot(aes(word2, n * score, fill = n * score > 0)) +

 geom_bar(stat = "identity", show.legend = FALSE) +

 xlab("Words preceded by \"not\"") +

 ylab("Sentiment score * number of occurrences") +

 coord_flip()

Figure 5.2: The 20 words followed by ‘not’ that had the greatest contribution to sentiment scores, in either a

positive or negative direction.

The bigrams “not like” and “not help” were overwhelmingly the largest causes of misidentification, making the

text seem much more positive than it is. But we can see phrases like “not afraid” and “not fail” sometimes

suggest text is more negative than it is.

“Not” isn’t the only term that provides some context for the following word. We could pick four common words

(or more) that negate the subsequent term, and use the same joining and counting approach to examine all of

them at once.

negation_words <- c("not", "no", "never", "without")

negated_words <- bigrams_separated %>%

 filter(word1 %in% negation_words) %>%

 inner_join(AFINN, by = c(word2 = "word")) %>%

 count(word1, word2, score, sort = TRUE) %>%

 ungroup()

We could then visualize what the most common words to follow each particular negation are (Figure). While

“not like” and “not help” are still the two most common examples, we can also see pairings such as “no great”

and “never loved.” These are just a few examples of how finding consecutive words can give context to text

mining methods.

Figure 5.3: The most common positive or negative words to follow negations such as ‘never’, ‘no’, ‘not’, and

‘without’

5.1.4 Visualizing a network of bigrams with igraph

We may be interested in visualizing all of the relationships among words simultaneously, rather than just the

top few at a time. As one common visualization, we can arrange the words into a network, or “graph.” Here

we’ll be referring to a “graph” not in the sense of a visualization, but as a combination of connected nodes. A

graph can be constructed from a tidy object since it has three variables:

from: the node an edge is coming from

to: the node an edge is going towards

weight: A numeric value associated with each edge

The igraph package has many powerful functions for manipulating and analyzing networks. One way to

create an igraph object from tidy data is the graph_from_data_frame() function, which takes a data frame

that starts with “from”, “to”, and “node”, columns, in that order.

library(igraph)

original counts

bigram_counts

Source: local data frame [33,421 x 3]

Groups: word1 [6,711]

word1 word2 n

<chr> <chr> <int>

1 sir thomas 287

2 miss crawford 215

3 captain wentworth 170

4 miss woodhouse 162

5 frank churchill 132

6 lady russell 118

7 lady bertram 114

8 sir walter 113

9 miss fairfax 109

10 colonel brandon 108

... with 33,411 more rows

filter for only relatively common combinations

bigram_graph <- bigram_counts %>%

 filter(n > 20) %>%

 graph_from_data_frame()

bigram_graph

IGRAPH DN-- 91 77 --

+ attr: name (v/c), n (e/n)

+ edges (vertex names):

[1] sir ->thomas miss ->crawford captain ->wentworth miss ->woodhouse

[5] frank ->churchill lady ->russell lady ->bertram sir ->walter

[9] miss ->fairfax colonel ->brandon miss ->bates lady ->catherine

[13] sir ->john jane ->fairfax miss ->tilney lady ->middleton

[17] miss ->bingley thousand->pounds miss ->dashwood miss ->bennet

[21] john ->knightley miss ->morland captain ->benwick dear ->miss

[25] miss ->smith miss ->crawford's henry ->crawford miss ->elliot

[29] dr ->grant miss ->bertram sir ->thomas's ten ->minutes

+ ... omitted several edges

igraph has plotting functions built in, but they’re not what the package is designed to do, so many other

packages have developed visualization methods for graph objects. We recommend the ggraph package,

because it implements these visualizations in terms of the grammar of graphics, which we are already familiar

with from ggplot2.

We can convert an igraph object into a ggraph with the ggraph function, after which we add layers to it,

much like layers are added in ggplot2. For example, for a basic graph we need to add three layers: nodes,

edges, and text

library(ggraph)

set.seed(2017)

ggraph(bigram_graph, layout = "fr") +

 geom_edge_link() +

 geom_node_point() +

 geom_node_text(aes(label = name), vjust = 1, hjust = 1)

Figure 5.4: Common bigrams in Pride and Prejudice, showing those that occurred more than 20 times and

where neither word was a stop-word.

In Figure , we can visualize some details of the text structure. For example, we see that salutations such as

“miss”, “lady”, “sir”, “and”colonel" form common centers of nodes, which are often followed by names. We also

see pairs or triplets along the outside that form common short phrases (“half hour”, “thousand pounds”, or

“short time/pause”).

We conclude with a few polishing operations to make a better looking graph (Figure):

We add the edge_alpha aesthetic to the link layer to make links transparent based on how common or

rare the bigram is

We add directionality with an arrow, constructed using grid::arrow()

We tinker with the options to the node layer to make the nodes more attractive (larger, blue points)

We add a theme that’s useful for plotting networks, theme_void()

set.seed(2016)

a <- grid::arrow(type = "closed", length = unit(.15, "inches"))

ggraph(bigram_graph, layout = "fr") +

 geom_edge_link(aes(edge_alpha = n), show.legend = FALSE, arrow = a) +

 geom_node_point(color = "lightblue", size = 5) +

 geom_node_text(aes(label = name), vjust = 1, hjust = 1) +

 theme_void()

Figure 5.5: Common bigrams in Pride and Prejudice, with some polishing.

It may take a some experimentation with ggraph to get your networks into a presentable format like this, but

the network structure is useful and flexible way to visualize relational tidy data.

Note that this is a visualization of a Markov chain, a common model in text processing. In a Markov chain,

each choice of word depends only on the previous word. In this case, a random generator following this

model might spit out “dear”, then “sir”, then “william/walter/thomas/thomas’s”, by following each word to the

most common words that follow it. To make the visualization interpretable, we chose to show only the most

common word to word connections, but one could imagine an enormous graph representing all connections

that occur in the text.

5.1.5 Visualizing bigrams in other texts

We went to a good amount of work in cleaning and visualizing bigrams on a text dataset, so let’s collect it into

a function so that we can do it on other text datasets easily.

count_bigrams <- function(dataset) {

 dataset %>%

 unnest_tokens(bigram, text, token = "ngrams", n = 2) %>%

 separate(bigram, c("word1", "word2"), sep = " ") %>%

 filter(!word1 %in% stop_words$word,

 !word2 %in% stop_words$word) %>%

 count(word1, word2, sort = TRUE)

}

visualize_bigrams <- function(bigrams) {

 set.seed(2016)

 a <- grid::arrow(type = "closed", length = unit(.15, "inches"))

 bigrams %>%

 graph_from_data_frame() %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(edge_alpha = n), show.legend = FALSE, arrow = a) +

 geom_node_point(color = "lightblue", size = 5) +

 geom_node_text(aes(label = name), vjust = 1, hjust = 1) +

 theme_void()

}

At this point, we could visualize bigrams in other works, such as the King James Version of the Bible:

The King James version is book 10 on Project Gutenberg:

library(gutenbergr)

kjv <- gutenberg_download(10)

library(stringr)

kjv_bigrams <- kjv %>%

 count_bigrams()

filter out rare combinations, as well as digits

kjv_bigrams %>%

 filter(n > 40,

 !str_detect(word1, "\\d"),

 !str_detect(word2, "\\d")) %>%

 visualize_bigrams()

Figure 5.6: Directed graph of common bigrams in the King James Bible, showing those that occurred more

than 40 times.

Figure thus lays out a common “blueprint” of language within the Bible, particularly focused around “thy” and

“thou” (which could probably be considered stopwords!) You can use the gutenbergr package and these

 count_bigrams / visualize_bigrams functions to visualize bigrams in other classic books you’re

interested in.

5.2 Counting and correlating pairs of words with the

widyr package

Tokenizing by n-gram is a useful way to explore pairs of adjacent words. However, we may also be interested

in words that tend to co-occur within particular documents or particular chapters, even if they don’t occur next

to each other.

Tidy data is a useful structure for comparing between variables or grouping by rows, but it can be challenging

to compare between rows: for example, to count the number of times that two words appear within the same

document, or to see how correlated they are. Most operations for finding pairwise counts or correlations need

to turn the data into a wide matrix first.

knitr::include_graphics("images/widyr.jpg")

Figure 5.7: The philosophy behind the widyr package, which can perform operations such as counting and

correlating on pairs of values in a tidy dataset. The widyr package first ‘casts’ a tidy dataset into a wide matrix,

performs an operation such as a correlation on it, then re-tidies the result.

We’ll examine some of the ways tidy text can be turned into a wide matrix in Chapter 6, but in this case it isn’t

necessary. The widyr package makes operations such as computing counts and correlations easy, by

simplifying the pattern of “widen data, perform an operation, then re-tidy data” (Figure). We’ll focus on a set of

functions that make pairwise comparisons between groups of observations (for example, between

documents, or sections of text).

5.2.1 Counting and correlating among sections

Consider the book “Pride and Prejudice” divided into 10-line sections, as we did for sentiment analysis in

Chapter 3. We may be interested in what words tend to appear within the same section.

austen_section_words <- austen_books() %>%

 filter(book == "Pride & Prejudice") %>%

 mutate(section = row_number() %/% 10) %>%

 filter(section > 0) %>%

 unnest_tokens(word, text) %>%

 filter(!word %in% stop_words$word)

austen_section_words

A tibble: 37,240 × 3

book section word

<fctr> <dbl> <chr>

1 Pride & Prejudice 1 truth

2 Pride & Prejudice 1 universally

3 Pride & Prejudice 1 acknowledged

4 Pride & Prejudice 1 single

5 Pride & Prejudice 1 possession

6 Pride & Prejudice 1 fortune

7 Pride & Prejudice 1 wife

8 Pride & Prejudice 1 feelings

9 Pride & Prejudice 1 views

10 Pride & Prejudice 1 entering

... with 37,230 more rows

One useful function from widyr is the pairwise_count() function. The prefix pairwise_ means it will

result in one row for each pair of words in the word variable. This lets us count common pairs of words co-

appearing within the same section:

library(widyr)

count words co-occuring within sections

word_pairs <- austen_section_words %>%

 pairwise_count(word, section, sort = TRUE)

word_pairs

A tibble: 796,008 × 3

item1 item2 n

<chr> <chr> <dbl>

1 darcy elizabeth 144

2 elizabeth darcy 144

3 miss elizabeth 110

4 elizabeth miss 110

5 elizabeth jane 106

6 jane elizabeth 106

7 miss darcy 92

8 darcy miss 92

9 elizabeth bingley 91

10 bingley elizabeth 91

... with 795,998 more rows

Notice that while the input had one row for each pair of a document and a word, the output has one row for

each pair of words. This is also a tidy format, but of a very different structure that we can use to answer new

questions.

For example, we can see that the most common pair of words in a section is “Elizabeth” and “Darcy” (the two

main characters). We can easily find the words that most often occur with Darcy:

word_pairs %>%

 filter(item1 == "darcy")

A tibble: 2,930 × 3

item1 item2 n

<chr> <chr> <dbl>

1 darcy elizabeth 144

2 darcy miss 92

3 darcy bingley 86

4 darcy jane 46

5 darcy bennet 45

6 darcy sister 45

7 darcy time 41

8 darcy lady 38

9 darcy friend 37

10 darcy wickham 37

... with 2,920 more rows

5.2.2 Pairwise correlation

Pairs like “Elizabeth” and “Darcy” are the most common co-occurring words, but that’s not particularly

meaningful since they’re also the most common individual words. We may instead want to examine

correlation among words, which indicates how often they appear together relative to how often they appear

separately.

In particular, here we’ll focus on the phi coefficient, a common measure for binary correlation. The focus of the

phi coefficient is how much more likely it is that either both word X and Y appear, or neither do, than that one

appears without the other.

Consider the following table:

Has word Y No word Y Total

Has word X \(n_{11}\) \(n_{10}\) \(n_{1\cdot}\)

No word X \(n_{01}\) \(n_{00}\) \(n_{0\cdot}\)

Total \(n_{\cdot 1}\) \(n_{\cdot 0}\) n

For example, that \(n_{11}\) represents the number of documents where both word X and word Y appear, \

(n_{00}\) the number where neither appears, and \(n_{10}\) and \(n_{01}\) the cases where one appears

without the other. In terms of this table, the phi coefficient is:

\[\phi=\frac{n_{11}n_{00}-n_{10}n_{01}}{\sqrt{n_{1\cdot}n_{0\cdot}n_{\cdot0}n_{\cdot1}}}\]

(The phi coefficient is equivalent to the Pearson correlation, which you may have heard of elsewhere, when it

is applied to binary data).

The pairwise_cor() function in widyr lets us find the correlation correlation between words based on how

often they appear in the same section. Its syntax is similar to pairwise_count() .

library(widyr)

We need to filter for at least relatively common words first

word_cors <- austen_section_words %>%

 group_by(word) %>%

 filter(n() >= 20) %>%

 pairwise_cor(word, section, sort = TRUE)

word_cors

A tibble: 154,842 × 3

item1 item2 correlation

<chr> <chr> <dbl>

1 bourgh de 0.9508501

2 de bourgh 0.9508501

3 pounds thousand 0.7005808

4 thousand pounds 0.7005808

5 william sir 0.6644719

6 sir william 0.6644719

7 catherine lady 0.6633048

8 lady catherine 0.6633048

9 forster colonel 0.6220950

10 colonel forster 0.6220950

... with 154,832 more rows

This output format is helpful for exploration. For example, we could find the words most correlated with a word

like “pounds” using a filter operation.

word_cors %>%

 filter(item1 == "pounds")

A tibble: 393 × 3

item1 item2 correlation

<chr> <chr> <dbl>

1 pounds thousand 0.70058081

2 pounds ten 0.23057580

3 pounds fortune 0.16386264

4 pounds settled 0.14946049

5 pounds wickham's 0.14152401

6 pounds children 0.12900011

7 pounds mother's 0.11905928

8 pounds believed 0.09321518

9 pounds estate 0.08896876

10 pounds ready 0.08597038

... with 383 more rows

This would let us examine the most-correlated words with any selection of words. For example, we could pick

four words and visualize the words most associated with them (Figure).

word_cors %>%

 filter(item1 %in% c("elizabeth", "pounds", "married", "pride")) %>%

 group_by(item1) %>%

 top_n(6) %>%

 mutate(item2 = reorder(item2, correlation)) %>%

 ggplot(aes(item2, correlation)) +

 geom_bar(stat = "identity") +

 facet_wrap(~ item1, scales = "free") +

 coord_flip()

Figure 5.8: Words from Pride and Prejudice that were most correlated with ‘elizabeth’, ‘pounds’, ‘married’,

and ‘pride’.

Just as we used ggraph to visualize bigrams, we can use it to visualize the correlations and clusters of words

that were found by the widyr package (Figure).

set.seed(2016)

word_cors %>%

 filter(correlation > .15) %>%

 graph_from_data_frame() %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(edge_alpha = correlation), show.legend = FALSE) +

 geom_node_point(color = "lightblue", size = 5) +

 geom_node_text(aes(label = name), repel = TRUE) +

 theme_void()

Figure 5.9: Pairs of words in Pride and Prejudice that show at least a .15 correlation of appearing within the

same 10-line section.

Note that unlike the bigram analysis, the relationships here are symmetrical, rather than directional (there are

no arrows). We can also see that while pairings of names and titles that dominated bigram pairings are

common, such as “colonel/fitzwilliam”, we can also see pairings of words that appear close to each other,

such as “walk” and “park”, or “dance” and “ball”.

These network visualizations are a flexible tool for exploring relationships, and will play an important role in

the case studies in later chapters.

6 Tidying and casting document-term matrices

and corpus objects

In the previous chapters, we’ve been analyzing text arranged in the tidy text format: a table with one-token-

per-document-per-row, such as is constructed by the unnest_tokens function. This lets us use the popular

suite of tidy tools such as dplyr, tidyr, and ggplot2 to explore and visualize text data. We’ve demonstrated that

many informative text analyses can be performed using these tools.

However, most of the existing R tools for natural language processing, besides the tidytext package, aren’t

compatible with this format. The CRAN Task View for Natural Language Processing lists a large selection of

packages that take other structures of input and provide non-tidy outputs. These package are very useful in

text mining applications, and many existing text datasets are structured according to these formats.

Computer scientist Hal Abelson has observed that “No matter how complex and polished the individual

operations are, it is often the quality of the glue that most directly determines the power of the system.” In that

spirit, this chapter will discuss the “glue” that connects the tidy text format with other important packages and

data structures, allowing you to rely on both existing text mining packages and the suite of tidy tools to

perform your analysis. In particular, we’ll examine the process of tidying document-term matrices, as well as

casting a tidy data frame into a sparse matrix.

6.1 Tidying a document-term matrix

One of the most common structures that text mining packages work with is the document-term matrix (or

DTM). This is a matrix where:

each row represents one document (such as a book or article),

each column represents one term, and

each value (typically) contains the number of appearances of that term in that document.

DTMs are usually implemented as sparse matrices, meaning the vast majority of values are 0. These objects

can be treated as though they were matrices (for example, accessing particular rows and columns), but are

stored in a more efficient format. We’ll discuss several implementations of these matrices in this chapter.

DTMs are not tidy and cannot be used directly with tidy tools, just as tidy data frames cannot be given to text

mining packages. Thus, the tidytext package provides two verbs that convert between the two types of

formats.

 tidy turns a document-term matrix into a tidy data frame. This verb comes from the broom package

(Robinson et al. 2015), which provides tidiers for many statistical models and objects.

 cast turns a tidy one-term-per-row data frame into a matrix. tidytext provides three variations of this

verb, each converting to a different type of matrix: cast_sparse() (converting to a sparse matrix from

the Matrix package), cast_dtm() (converting to a DocumentTermMatrix object from tm), and

 cast_dfm() (converting to a dfm object from quanteda).

6.1.1 Tidying DocumentTermMatrix objects
Loading [Contrib]/a11y/accessibility-menu.js

Perhaps the most widely used implementation of DTMs in R is the DocumentTermMatrix class in the tm

package. Many available text mining datasets are provided in this format. For example, consider the corpus of

Associated Press newspaper articles included in the topicmodels package.

library(tm)

data("AssociatedPress", package = "topicmodels")

AssociatedPress

<<DocumentTermMatrix (documents: 2246, terms: 10473)>>

Non-/sparse entries: 302031/23220327

Sparsity : 99%

Maximal term length: 18

Weighting : term frequency (tf)

We see that this dataset contains documents (each of them an AP article) and terms (distinct words). Notice

that this DTM is 99% sparse (99% of document-word pairs are zero). We could access the terms in the

document with the Terms() function:

terms <- Terms(AssociatedPress)

head(terms)

[1] "aaron" "abandon" "abandoned" "abandoning" "abbott" "abboud"

If we wanted to analyze this data with tidy tools, we would first need to turn it into a data frame with one-token-

per-document-per-row. The broom package introduced the tidy verb, which takes a non-tidy object and

turns it into a tidy data frame. The tidytext package implements that method for DocumentTermMatrix

objects:

library(dplyr)

library(tidytext)

ap_td <- tidy(AssociatedPress)

ap_td

A tibble: 302,031 × 3

document term count

<int> <chr> <dbl>

1 1 adding 1

2 1 adult 2

3 1 ago 1

4 1 alcohol 1

5 1 allegedly 1

6 1 allen 1

7 1 apparently 2

8 1 appeared 1

9 1 arrested 1

10 1 assault 1

... with 302,021 more rows

Notice that we now have a tidy three-column tbl_df , with variables document , term , and count .

This tidying operation is similar to the melt function from the reshape2 package (Wickham 2007) for non-

sparse matrices. Notice that only the non-zero values are included: document 1 includes terms such as

“adding” and “adult”, but not “aaron” or “abandon”, and thus the tidied version has no rows where count is

zero.

As we’ve seen in previous chapters, this form is convenient for analysis with the dplyr, tidytext and ggplot2

packages. For example, you can perform sentiment analysis on these newspaper articles with the approach

described in Chapter .

ap_sentiments <- ap_td %>%

 inner_join(get_sentiments("bing"), by = c(term = "word"))

ap_sentiments

A tibble: 30,094 × 4

document term count sentiment

<int> <chr> <dbl> <chr>

1 1 assault 1 negative

2 1 complex 1 negative

3 1 death 1 negative

4 1 died 1 negative

5 1 good 2 positive

6 1 illness 1 negative

7 1 killed 2 negative

8 1 like 2 positive

9 1 liked 1 positive

10 1 miracle 1 positive

... with 30,084 more rows

This would let us visualize which words from the AP articles most often contributed to positive or negative

sentiment, seen in Figure . We can see that the most common positive words include “like”, “work”, “support”,

and “good”, while the most negative words include “killed”, “death”, and “vice”. (The inclusion of “vice” as a

negative term is probably a mistake on the algorithm’s part, since it likely usually refers to “vice president”).

library(ggplot2)

ap_sentiments %>%

 count(sentiment, term, wt = count) %>%

 ungroup() %>%

 filter(n >= 200) %>%

 mutate(n = ifelse(sentiment == "negative", -n, n)) %>%

 mutate(term = reorder(term, n)) %>%

 ggplot(aes(term, n, fill = sentiment)) +

 geom_bar(alpha = 0.8, stat = "identity") +

 ylab("Contribution to sentiment") +

 coord_flip()

Figure 6.1: Words from AP articles with the greatest contribution to positive or negative sentiments, computed

as the product of the word’s AFINN sentiment score and its frequency.

6.1.2 Tidying dfm objects

Other text mining packages provide alternative implementations of document-term matrices, such as the

 dfm (document-feature matrix) class from the quanteda package (Benoit and Nulty 2016). For example, the

quanteda package comes with a corpus of presidential inauguration speeches, which can be converted to a

 dfm using the appropriate function.

library(methods)

data("inaugCorpus", package = "quanteda")

inaug_dfm <- quanteda::dfm(inaugCorpus)

inaug_dfm

Document-feature matrix of: 57 documents, 9,174 features (91.6% sparse).

The tidy method works on these document-feature matrices as well, turning them into a one-token-per-

document-per-row table:

inaug_td <- tidy(inaug_dfm)

inaug_td

A tibble: 44,178 × 3

document term count

<chr> <chr> <dbl>

1 1789-Washington fellow 3

2 1793-Washington fellow 1

3 1797-Adams fellow 3

4 1801-Jefferson fellow 7

5 1805-Jefferson fellow 8

6 1809-Madison fellow 1

7 1813-Madison fellow 1

8 1817-Monroe fellow 6

9 1821-Monroe fellow 10

10 1825-Adams fellow 3

... with 44,168 more rows

We may be interested in finding the words most specific to each inaugural speeches. This could be quantified

by calculating the TF-IDF of each term-speech pair using the bind_tf_idf function, as described in

Chapter .

inaug_tf_idf <- inaug_td %>%

 bind_tf_idf(term, document, count) %>%

 arrange(desc(tf_idf))

inaug_tf_idf

A tibble: 44,178 × 6

document term count tf idf tf_idf

<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 1793-Washington arrive 1 0.006802721 4.043051 0.02750375

2 1793-Washington upbraidings 1 0.006802721 4.043051 0.02750375

3 1793-Washington violated 1 0.006802721 3.349904 0.02278846

4 1793-Washington willingly 1 0.006802721 3.349904 0.02278846

5 1793-Washington incurring 1 0.006802721 3.349904 0.02278846

6 1793-Washington previous 1 0.006802721 2.944439 0.02003020

7 1793-Washington knowingly 1 0.006802721 2.944439 0.02003020

8 1793-Washington injunctions 1 0.006802721 2.944439 0.02003020

9 1793-Washington witnesses 1 0.006802721 2.944439 0.02003020

10 1793-Washington besides 1 0.006802721 2.656757 0.01807318

... with 44,168 more rows

We could use this data to pick four notable inaugural addresses (from Presidents Lincoln, Roosevelt,

Kennedy, and Obama), and visualize the words most specific to each speech, as shown in Figure .

Figure 6.2: The terms with the highest TF-IDF from each of four selected inaugural addresses.

As another example of a visualization possible with tidy data, we could extract the year from each document’s

name, and compute the total number of words within each year.

library(tidyr)

year_term_counts <- inaug_td %>%

 extract(document, "year", "(\\d+)", convert = TRUE) %>%

 complete(year, term, fill = list(count = 0)) %>%

 group_by(year) %>%

 mutate(year_total = sum(count))

This lets us pick several words and visualize how they changed in frequency over time, as shown in . We can

see that over time, American presidents became less likely to refer to the country as the “Union” and more

likely to refer to “America”. They also became less likely to talk about the “constitution” and foreign" countries,

and more likely to mention “freedom” and “God”.

year_term_counts %>%

 filter(term %in% c("god", "america", "foreign", "union", "constitution", "freedom")) %>%

 ggplot(aes(year, count / year_total)) +

 geom_point() +

 geom_smooth() +

 facet_wrap(~ term, scales = "free_y") +

 scale_y_continuous(labels = scales::percent_format()) +

 ylab("% frequency of word in inaugural address")

Figure 6.3: Changes in word frequency over time within Presidential inaugural addresses, for four selected

terms.

These examples show how you can use tidytext, and the related suite of tidy tools, to analyze sources even if

their origin was not in a tidy format.

6.2 Casting tidy text data into a matrix

Just as some existing text mining packages provide document-term matrices as sample data or output, some

algorithms expect such matrices as input. Therefore, tidytext provides cast_ verbs for converting from a

tidy form to these matrices.

For example, we could take the tidied AP dataset and cast it back into a document-term matrix using the

 cast_dtm function.

ap_td %>%

 cast_dtm(document, term, count)

<<DocumentTermMatrix (documents: 2246, terms: 10473)>>

Non-/sparse entries: 302031/23220327

Sparsity : 99%

Maximal term length: 18

Weighting : term frequency (tf)

Similarly, we could cast the table into a dfm object from quanteda’s dfm with cast_dfm .

ap_td %>%

 cast_dfm(term, document, count)

Document-feature matrix of: 10,473 documents, 2,246 features (98.7% sparse).

Some tools simply require a sparse matrix:

library(Matrix)

cast into a Matrix object

m <- ap_td %>%

 cast_sparse(document, term, count)

class(m)

[1] "dgCMatrix"

attr(,"package")

[1] "Matrix"

dim(m)

[1] 2246 10473

This kind of conversion could easily be done from any of the tidy text structures we’ve used so far in this

book. For example, we could create a DTM of Jane Austen’s books in just a few lines of code.

library(janeaustenr)

austen_dtm <- austen_books() %>%

 unnest_tokens(word, text) %>%

 count(book, word) %>%

 cast_dtm(book, word, n)

austen_dtm

<<DocumentTermMatrix (documents: 6, terms: 14520)>>

Non-/sparse entries: 40379/46741

Sparsity : 54%

Maximal term length: 19

Weighting : term frequency (tf)

This casting process allows for reading, filtering, and processing to be done using dplyr and other tidy tools,

after which the data can be converted into a document-term matrix for machine learning applications. In

Chapter , we’ll examine some examples where a tidy-text dataset has to be converted into a

DocumentTermMatrix for processing.

6.3 Tidying corpus objects with metadata

Some data structures are designed to store document collections before tokenization, often called a “corpus”.

One common example is Corpus objects from the tm package. These store text alongside metadata, which

may include an ID, date/time, title, or language for each document.

For example, the tm package comes with the acq corpus, containing 50 articles from the news service

Reuters.

data("acq")

acq

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 50

first document

acq[[1]]

<<PlainTextDocument>>

Metadata: 15

Content: chars: 1287

A corpus object is structured like a list, with each item containing both text and metadata (see the tm

documentation for more on working with Corpus documents). This is a flexible storage method for documents,

but doesn’t lend itself to processing with tidy tools.

We can thus use the tidy() method to construct a table with one row per document, including the

metadata (such as id and datetimestamp) as columns alongside the text .

acq_td <- tidy(acq)

acq_td

A tibble: 50 × 16

author datetimestamp description

<chr> <dttm> <chr>

1 <NA> 1987-02-26 15:18:06

2 <NA> 1987-02-26 15:19:15

3 <NA> 1987-02-26 15:49:56

4 By Cal Mankowski, Reuters 1987-02-26 15:51:17

5 <NA> 1987-02-26 16:08:33

6 <NA> 1987-02-26 16:32:37

7 By Patti Domm, Reuter 1987-02-26 16:43:13

8 <NA> 1987-02-26 16:59:25

9 <NA> 1987-02-26 17:01:28

10 <NA> 1987-02-26 17:08:27

heading id language origin topics

<chr> <chr> <chr> <chr> <chr>

1 COMPUTER TERMINAL SYSTEMS <CPML> COMPLETES SALE 10 en Reuters-21578 XML YES

2 OHIO MATTRESS <OMT> MAY HAVE LOWER 1ST QTR NET 12 en Reuters-21578 XML YES

3 MCLEAN'S <MII> U.S. LINES SETS ASSET TRANSFER 44 en Reuters-21578 XML YES

4 CHEMLAWN <CHEM> RISES ON HOPES FOR HIGHER BIDS 45 en Reuters-21578 XML YES

5 <COFAB INC> BUYS GULFEX FOR UNDISCLOSED AMOUNT 68 en Reuters-21578 XML YES

6 INVESTMENT FIRMS CUT CYCLOPS <CYL> STAKE 96 en Reuters-21578 XML YES

7 AMERICAN EXPRESS <AXP> SEEN IN POSSIBLE SPINNOFF 110 en Reuters-21578 XML YES

8 HONG KONG FIRM UPS WRATHER<WCO> STAKE TO 11 PCT 125 en Reuters-21578 XML YES

9 LIEBERT CORP <LIEB> APPROVES MERGER 128 en Reuters-21578 XML YES

10 GULF APPLIED TECHNOLOGIES <GATS> SELLS UNITS 134 en Reuters-21578 XML YES

... with 40 more rows, and 8 more variables: lewissplit <chr>, cgisplit <chr>, oldid <chr>,

places <list>, people <lgl>, orgs <lgl>, exchanges <lgl>, text <chr>

This can then be used with unnest_tokens() to, for example, find the most common words across the 50

Reuters articles, or the ones most specific to each article.

acq_tokens <- acq_td %>%

 select(-places) %>%

 unnest_tokens(word, text) %>%

 anti_join(stop_words, by = "word")

most common words

acq_tokens %>%

 count(word, sort = TRUE)

A tibble: 1,566 × 2

word n

<chr> <int>

1 dlrs 100

2 pct 70

3 mln 65

4 company 63

5 shares 52

6 reuter 50

7 stock 46

8 offer 34

9 share 34

10 american 28

... with 1,556 more rows

TF-IDF

acq_tokens %>%

 count(id, word) %>%

 bind_tf_idf(word, id, n) %>%

 arrange(desc(tf_idf))

Source: local data frame [2,853 x 6]

Groups: id [50]

id word n tf idf tf_idf

<chr> <chr> <int> <dbl> <dbl> <dbl>

1 186 groupe 2 0.13333333 3.912023 0.5216031

2 128 liebert 3 0.13043478 3.912023 0.5102639

3 474 esselte 5 0.10869565 3.912023 0.4252199

4 371 burdett 6 0.10344828 3.912023 0.4046920

5 442 hazleton 4 0.10256410 3.912023 0.4012331

6 199 circuit 5 0.10204082 3.912023 0.3991860

7 162 suffield 2 0.10000000 3.912023 0.3912023

8 498 west 3 0.10000000 3.912023 0.3912023

9 441 rmj 8 0.12121212 3.218876 0.3901668

10 467 nursery 3 0.09677419 3.912023 0.3785829

... with 2,843 more rows

6.3.1 Example: mining financial articles

 Corpus objects are a common output format for data ingesting packages, which means the tidy()

function gives us access to a wide variety of text data. One example is tm.plugin.webmining, which connects

to online feeds to retrieve news articles based on a keyword. For instance, performing

 WebCorpus(GoogleFinanceSource("NASDAQ:MSFT"))) allows us to retrieve the 20 most recent articles

related to the Microsoft (MSFT) stock.

Here we’ll retrieve recent articles relevant to nine major technology stocks: Microsoft, Apple, Google,

Amazon, Facebook, Twitter, IBM, Yahoo, and Netflix. (These results were downloaded in January 2017,

when this chapter was written, but you’ll certainly find different results if you ran it for yourself).

library(tm.plugin.webmining)

library(purrr)

company <- c("Microsoft", "Apple", "Google", "Amazon", "Facebook",

 "Twitter", "IBM", "Yahoo", "Netflix")

symbol <- c("MSFT", "AAPL", "GOOG", "AMZN", "FB", "TWTR", "IBM", "YHOO", "NFLX")

download_articles <- function(symbol) {

 WebCorpus(GoogleFinanceSource(paste0("NASDAQ:", symbol)))

}

stock_articles <- data_frame(company = company,

 symbol = symbol) %>%

 mutate(corpus = map(symbol, download_articles))

stock_articles

A tibble: 9 × 3

company symbol corpus

<chr> <chr> <list>

1 Microsoft MSFT <S3: WebCorpus>

2 Apple AAPL <S3: WebCorpus>

3 Google GOOG <S3: WebCorpus>

4 Amazon AMZN <S3: WebCorpus>

5 Facebook FB <S3: WebCorpus>

6 Twitter TWTR <S3: WebCorpus>

7 IBM IBM <S3: WebCorpus>

8 Yahoo YHOO <S3: WebCorpus>

9 Netflix NFLX <S3: WebCorpus>

Each of the items in the corpus list column is a WebCorpus object, which is a special case of a corpus

like acq . We can thus turn each into a data frame using the tidy() function, unnest it with tidyr’s

 unnest() , then tokenize the text column of the individual articles using unnest_tokens .

stock_tokens <- stock_articles %>%

 unnest(map(corpus, tidy)) %>%

 unnest_tokens(word, text) %>%

 select(company, datetimestamp, word, id, heading)

stock_tokens

A tibble: 105,057 × 5

company datetimestamp word id

<chr> <dttm> <chr> <chr>

1 Microsoft 2017-01-17 12:07:24 microsoft tag:finance.google.com,cluster:52779347599411

2 Microsoft 2017-01-17 12:07:24 corporation tag:finance.google.com,cluster:52779347599411

3 Microsoft 2017-01-17 12:07:24 data tag:finance.google.com,cluster:52779347599411

4 Microsoft 2017-01-17 12:07:24 privacy tag:finance.google.com,cluster:52779347599411

5 Microsoft 2017-01-17 12:07:24 could tag:finance.google.com,cluster:52779347599411

6 Microsoft 2017-01-17 12:07:24 send tag:finance.google.com,cluster:52779347599411

7 Microsoft 2017-01-17 12:07:24 msft tag:finance.google.com,cluster:52779347599411

8 Microsoft 2017-01-17 12:07:24 stock tag:finance.google.com,cluster:52779347599411

9 Microsoft 2017-01-17 12:07:24 soaring tag:finance.google.com,cluster:52779347599411

10 Microsoft 2017-01-17 12:07:24 by tag:finance.google.com,cluster:52779347599411

... with 105,047 more rows, and 1 more variables: heading <chr>

Here we see the some of each article’s metadata alongside the words used. We could use TF-IDF to

determine which words were most specific to each stock symbol.

library(stringr)

stock_tf_idf <- stock_tokens %>%

 count(company, word) %>%

 filter(!str_detect(word, "\\d+")) %>%

 bind_tf_idf(word, company, n) %>%

 arrange(-tf_idf)

The top terms for each are visualized in Figure . As we’d expect the company’s name and is typically

included, but so are several of their product offerings and executives, as well as companies they are making

deals with (such as Disney with Netflix).

Figure 6.4: The 8 words with the highest TF-IDF in recent articles specific to each company.

If we were interested in using recent news to analyze the market and make investment decisions, we’d likely

want to use sentiment analysis to determine whether the news coverage was positive or negative. Before we

run such an analysis, we should look at what words would contribute the most to positive and negative

sentiments, as was shown in Chapter . For example, we could examine this within the AFINN lexicon (Figure

).

stock_tokens %>%

 anti_join(stop_words, by = "word") %>%

 count(word, id, sort = TRUE) %>%

 inner_join(get_sentiments("afinn"), by = "word") %>%

 summarize(contribution = sum(n * score)) %>%

 top_n(12, abs(contribution)) %>%

 mutate(word = reorder(word, contribution)) %>%

 ggplot(aes(word, contribution)) +

 geom_col() +

 coord_flip() +

 labs(y = "Frequency of word * AFINN score")

Figure 6.5: The words with the largest contribution to sentiment scores in recent financial articles, according

to the AFINN dictionary. The ‘contribution’ is the product of the word and the sentiment score.

In the context of these financial articles, there are a few big red flags here. The words “share” and “shares” are

counted as positive verbs by the AFINN lexicon (“Alice will share her cake with Bob”), but they’re actually

neutral nouns (“The stock price was $X per share”) that could just as easily be in a positive sentence as a

negative one. The word “fool” is even more deceptive: it refers to Motley Fool, a financial services company.

In short, we can see that the AFINN sentiment lexicon is entirely unsuited to the context of financial data (as

are the NRC and Bing).

Instead, we introduce another sentiment lexicon: the Loughran and McDonald dictionary of financial

sentiment terms (???). This dictionary was developed based on analyses of financial reports, and

intentionally avoids words like “share” and “fool”, as well as subtler terms like “liability” and “risk” that may not

have a negative meaning in a financial context.

The Loughran data divides words into six sentiments: “positive”, “negative”, “litigious”, “uncertain”,

“constraining”, and “superfluous”. We could start by examining the most common words belonging to each

sentiment within this text dataset.

stock_tokens %>%

 count(word) %>%

 inner_join(get_sentiments("loughran"), by = "word") %>%

 group_by(sentiment) %>%

 top_n(5, n) %>%

 ungroup() %>%

 mutate(word = reorder(word, n)) %>%

 ggplot(aes(word, n)) +

 geom_col() +

 coord_flip() +

 facet_wrap(~ sentiment, scales = "free") +

 ylab("Frequency of this word in the recent financial articles")

Figure 6.6: The most common words in the financial news articles associated with each of the six sentiments

in the Loughran and McDonald lexicon

These assignments (Figure) of words to sentiments look more reasonable: common positive words include

“strong” and “better”, but not “shares” or “growth”, while negative words include “volatility” but not “fool”. The

other sentiments look reasonable as well: the most common “uncertainty” terms include “could” and “may”.

Now that we know we can trust the dictionary to approximate the articles’ sentiments, we can use our typical

methods for counting the number of uses of each sentiment-associated word in each corpus.

stock_sentiment_count <- stock_tokens %>%

 inner_join(get_sentiments("loughran"), by = "word") %>%

 count(sentiment, company) %>%

 spread(sentiment, n, fill = 0)

stock_sentiment_count

A tibble: 9 × 7

company constraining litigious negative positive superfluous uncertainty

* <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Amazon 7 8 84 144 3 70

2 Apple 9 11 161 156 2 132

3 Facebook 4 32 128 150 4 81

4 Google 7 8 60 103 0 58

5 IBM 8 22 147 148 0 104

6 Microsoft 6 19 92 129 3 116

7 Netflix 4 7 111 162 0 106

8 Twitter 4 12 157 79 1 75

9 Yahoo 3 28 130 74 0 71

It might be interesting to examine which company has the most news with “litigious” or “uncertain” terms. But

the simplest measure, much as it was for most analysis in Chapter , is to see whether the news is more

positive or negative. As a general quantitative measure of sentiment, we’ll use “(positive - negative) / (positive

+ negative)” (Figure).

stock_sentiment_count %>%

 mutate(score = (positive - negative) / (positive + negative)) %>%

 mutate(company = reorder(company, score)) %>%

 ggplot(aes(company, score, fill = score > 0)) +

 geom_col(show.legend = FALSE) +

 coord_flip() +

 labs(x = "Company",

 y = "Positivity score among 20 recent news articles")

Figure 6.7: ‘Positivity’ of the news coverage around each stock in January 2017, calculated as (positive -

negative) / (positive + negative), based on uses of positive and negative words in 20 recent news articles

about each company.

Based on this analysis, we’d say that in January 2017 most of the coverage of Yahoo and Twitter was

strongly negative, while coverage of Google and Amazon was the most positive. A glance at current financial

headlines suggest that it’s on the right track. If you were interested in further analysis, you could use one of

R’s many quantitative finance packages to compare these articles to recent stock prices and other metrics.

References

Robinson, David, Matthieu Gomez, Boris Demeshev, Dieter Menne, Benjamin Nutter, Luke Johnston, Ben

Bolker, Francois Briatte, and Hadley Wickham. 2015. Broom: Convert Statistical Analysis Objects into Tidy

Data Frames. https://CRAN.R-project.org/package=broom.

Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of Statistical Software 21 (12):

1–20. http://www.jstatsoft.org/v21/i12/.

Benoit, Kenneth, and Paul Nulty. 2016. Quanteda: Quantitative Analysis of Textual Data. https://CRAN.R-

project.org/package=quanteda.

7 Topic modeling

In text mining, we often have collections of documents, such as blog posts or news articles, that we’d like to

divide into natural groups so that we can understand them separately. Topic modeling is a method for

unsupervised classification of such documents, similar to “clustering” on numerical data, which finds natural

groups of items even when we’re not sure what we’re looking for.

Latent Dirichlet allocation is a particularly popular method for fitting a topic model. It treats each document as

a mixture of topics, and each topic as a mixture of words. This allows documents to “overlap” each other in

terms of content, rather than being separated into discrete groups, in a way that mirrors typical use of natural

language.

We can use tidy text principles to approach topic modeling using consistent and effective tools. In this

chapter, we’ll learn to tidy LDA objects from the topicmodels package to examine model results using ggplot2

and dplyr. We’ll also explore an example of clustering chapters from several books, where we can see that a

topic model “learns” to tell the difference between the four books based on the text content.

7.1 Latent Dirichlet allocation

Latent Dirichlet allocation is one of the most common algorithms for topic modeling. Without diving into the

math behind the model, we can understand it as being guided by two principles.

Every topic is a mixture of words. For example, we could imagine a two-topic model of American

news, with one topic for “politics” and one for “entertainment.” The most common words in the politics

topic might be “President”, “Congress”, and “government”, while the entertainment topic may be made up

of words such as “movies”, “television”, and “actor”. Importantly, words can be shared between topics- a

word like “budget” might appear in both equally.

Every document is a mixture of topics. We imagine that each document may contain words from

several topics in particular proportions. For example, in a two-topic model we could say “Document 1 is

90% topic A and 10% topic B, while Document 2 is 30% topic A and 70% topic B.”

LDA is a mathematical method for estimating both of these at the same time: finding the mixture of words that

is associated with each topic, while also determining the mixture of topics that describes each word. It has a

number of existing implementations, and we’ll explore one of them.

In Chapter we briefly introduced the AssociatedPress dataset provided by the topicmodels package, as an

example of a DocumentTermMatrix. This is a collection of 2246 news articles from an American news

agency, mostly published around 1988.

library(topicmodels)

data("AssociatedPress")

AssociatedPress

Processing math: 100%

<<DocumentTermMatrix (documents: 2246, terms: 10473)>>

Non-/sparse entries: 302031/23220327

Sparsity : 99%

Maximal term length: 18

Weighting : term frequency (tf)

We can then the LDA() function from the topicmodels package to create a two-topic Latent Dirichlet

allocation model. This function returns an object containing the full details of the fit, such as how words are

associated with topics and how topics are associated with documents.

set a seed so that the output of the model is predictable

ap_lda <- LDA(AssociatedPress, k = 2, control = list(seed = 1234))

ap_lda

A LDA_VEM topic model with 2 topics.

Fitting the model was the “easy part”: the remainder of the analysis will involve exploring and interpreting the

model using tidying functions.

7.1.1 Word-topic probabilities

In Chapter we introduced the tidy() method, originally from the broom package, for tidying model objects.

The tidytext package provides this method for extracting the per-topic-per-word probabilities, called β (“beta”),

from the model.

library(tidytext)

ap_lda_td <- tidy(ap_lda)

ap_lda_td

A tibble: 20,946 × 3

topic term beta

<int> <chr> <dbl>

1 1 aaron 1.686917e-12

2 2 aaron 3.895941e-05

3 1 abandon 2.654910e-05

4 2 abandon 3.990786e-05

5 1 abandoned 1.390663e-04

6 2 abandoned 5.876946e-05

7 1 abandoning 2.454843e-33

8 2 abandoning 2.337565e-05

9 1 abbott 2.130484e-06

10 2 abbott 2.968045e-05

... with 20,936 more rows

Notice that this has turned the model into a one-topic-per-term-per-row format. For each combination, the

model computes the probability of that term being generated from that topic. For example, the term

We could use dplyr’s top_n() to find the top 10 terms within each topic.As a tidy data frame, this lends

itself well to a ggplot2 visualization (Figure).

library(ggplot2)

ap_top_terms <- ap_lda_td %>%

 group_by(topic) %>%

 top_n(10, beta) %>%

 ungroup() %>%

 arrange(topic, -beta)

ap_top_terms %>%

 mutate(term = reorder(term, beta)) %>%

 ggplot(aes(term, beta, fill = factor(topic))) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 facet_wrap(~ topic, scales = "free") +

 coord_flip()

Figure 7.1: The terms that are most common within each topic

This visualization lets us understand the two topics that were extracted from the articles. The most common

words in topic 1 include “percent”, “million”, “billion”, and “company”, which suggests it may represent

business news. Those most common in topic 2 include “president”, “government”, and “soviet”, suggeting that

this topic represents political news. One important observation about the words in each topic is that some

words, such as “new” and “people”, are common within both topics. This is an advantage of topic modeling as

opposed to “hard clustering” methods: topics used in natural language often have some overlap.

As an alternative, we could consider the terms that had the greatest difference between topic 1 and topic 2.

This can be estimated based on the log ratio of the two: log2(
β2
β1

). (To constrain it to a set of especially

relevant words, we can filter for relatively common words, such as those that have a β greater than 1/1000 in

at least one topic).

beta_spread <- ap_lda_td %>%

 mutate(topic = paste0("topic", topic)) %>%

 spread(topic, beta) %>%

 filter(topic1 > .001 | topic2 > .001) %>%

 mutate(log_ratio = log2(topic2 / topic1))

beta_spread

A tibble: 198 × 4

term topic1 topic2 log_ratio

<chr> <dbl> <dbl> <dbl>

1 administration 4.309502e-04 1.382244e-03 1.6814189

2 ago 1.065216e-03 8.421279e-04 -0.3390353

3 agreement 6.714984e-04 1.039024e-03 0.6297728

4 aid 4.759043e-05 1.045958e-03 4.4580091

5 air 2.136933e-03 2.966593e-04 -2.8486628

6 american 2.030497e-03 1.683884e-03 -0.2700405

7 analysts 1.087581e-03 5.779708e-07 -10.8778386

8 area 1.371397e-03 2.310280e-04 -2.5695069

9 army 2.622192e-04 1.048089e-03 1.9989152

10 asked 1.885803e-04 1.559209e-03 3.0475641

... with 188 more rows

The words with the greatest differences between the two topics are visualized in Figure .

beta_spread %>%

 group_by(direction = log_ratio > 0) %>%

 top_n(10, abs(log_ratio)) %>%

 mutate(term = reorder(term, log_ratio)) %>%

 ggplot(aes(term, log_ratio)) +

 geom_col() +

 labs(y = "Log2 ratio of beta in topic 2 / topic 1") +

 coord_flip()

Figure 7.2: Words with the greatest difference in ‘beta’ between topic 2 and topic 1

We can see that the words more common in topic 2 include political parties such as “democratic” and

“republican”, as well as politician’s names such as “dukakis” and “gorbachev”. Topic 1 was more

characterized by currencies like “yen” and “dollar”, as well as financial terms such as “index”, “prices” and

“rates”. This helps confirm that the two topics the algorithm identified were political and financial news.

7.1.2 Document-topic probabilities

Besides estimating each topic as a mixture of words, LDA also models each document as a mixture of topics

We can examine the per-document-per-topic probabilities, called

γ

(“gamma”), with the matrix = "gamma" argument to tidy() .

ap_gamma <- tidy(ap_lda, matrix = "gamma")

ap_gamma

A tibble: 4,492 × 3

document topic gamma

<int> <int> <dbl>

1 1 1 0.2480616686

2 2 1 0.3615485445

3 3 1 0.5265844180

4 4 1 0.3566530023

5 5 1 0.1812766762

6 6 1 0.0005883388

7 7 1 0.7734215655

8 8 1 0.0044516994

9 9 1 0.9669915139

10 10 1 0.1468904793

... with 4,482 more rows

Each of these values is an estimated proportion of words from that document that are generated from that

topic. For example, the model estimates that each word in the first document has only a 24.8% probability of

coming from topic 1.

We can see that many of these documents were drawn from a mix of the two topics, but that document 6 was

drawn almost entirely from topic 2, having a gamma of only 5.910^{-4} from topic 1. To check this answer, we

could see what the most common words in that document were.

tidy(AssociatedPress) %>%

 filter(document == 6) %>%

 arrange(desc(count))

A tibble: 287 × 3

document term count

<int> <chr> <dbl>

1 6 noriega 16

2 6 panama 12

3 6 jackson 6

4 6 powell 6

5 6 administration 5

6 6 economic 5

7 6 general 5

8 6 i 5

9 6 panamanian 5

10 6 american 4

... with 277 more rows

Based on the most common words, this appears to be an article about the relationship between the American

government and Panamanian dictator Manuel Noriega, which means the algorithm was right to place it in

topic 2 (as political/national news).

7.2 Example: the great library heist

When examining a statistical method, it can be useful to try it on a very simple case where you know the “right

answer”. For example, we could collect a set of documents that definitely relate to four separate topics, then

perform topic modeling to see whether the algorithm can correctly distinguish the four groups. This lets us

double-check that the method is useful, and gain a sense of how and when it can go wrong.

Suppose a vandal has broken into your study and torn apart four of your books:

Great Expectations by Charles Dickens

The War of the Worlds by H.G. Wells

Twenty Thousand Leagues Under the Sea by Jules Verne

Pride and Prejudice by Jane Austen

This vandal has torn the books into individual chapters, and left them in one large pile. How can we restore

these disorganized chapters to their original books? This is a challenging problem since the individual

chapters are unlabeled: we don’t know what words might distinguish them into groups. We’ll thus use topic

modeling to discover how chapters cluster into distinct topics, each of them representing one of the books.

We’ll retrieve the text of these four books using the gutenbergr package introduced in Chapter .

library(dplyr)

titles <- c("Twenty Thousand Leagues under the Sea", "The War of the Worlds",

 "Pride and Prejudice", "Great Expectations")

library(gutenbergr)

books <- gutenberg_works(title %in% titles) %>%

 gutenberg_download(meta_fields = "title")

As pre-processing, we divide these into chapters, use tidytext’s unnest_tokens() to separate them into

words, then remove stop_words . We’re treating every chapter as a separate “document”, each with a name

like Great Expectations_1 or Pride and Prejudice_11 . (In practice, each document might be one

newspaper article, or one blog post).

library(tidytext)

library(stringr)

library(tidyr)

divide into documents, each representing one chapter

by_chapter <- books %>%

 group_by(title) %>%

 mutate(chapter = cumsum(str_detect(text, regex("^chapter ", ignore_case = TRUE)))) %>%

 ungroup() %>%

 filter(chapter > 0) %>%

 unite(document, title, chapter)

split into words

by_chapter_word <- by_chapter %>%

 unnest_tokens(word, text)

find document-word counts

word_counts <- by_chapter_word %>%

 anti_join(stop_words) %>%

 count(document, word, sort = TRUE) %>%

 ungroup()

word_counts

A tibble: 104,721 × 3

document word n

<chr> <chr> <int>

1 Great Expectations_57 joe 88

2 Great Expectations_7 joe 70

3 Great Expectations_17 biddy 63

4 Great Expectations_27 joe 58

5 Great Expectations_38 estella 58

6 Great Expectations_2 joe 56

7 Great Expectations_23 pocket 53

8 Great Expectations_15 joe 50

9 Great Expectations_18 joe 50

10 The War of the Worlds_16 brother 50

... with 104,711 more rows

7.2.1 LDA on chapters

Right now our data frame word_counts is in a tidy form, with one-term-per-document-per-row. However, the

topicmodels package requires a DocumentTermMatrix (from the tm package). As described in Chapter , we

can cast a one-token-per-row table into a DocumentTermMatrix with tidytext’s cast_dtm() .

chapters_dtm <- word_counts %>%

 cast_dtm(document, word, n)

chapters_dtm

<<DocumentTermMatrix (documents: 193, terms: 18215)>>

Non-/sparse entries: 104721/3410774

Sparsity : 97%

Maximal term length: 19

Weighting : term frequency (tf)

We can then use the LDA() function to create a four-topic model. In this case we know we’re looking for

four topics because there are four books; in other problems we may need to try a few different values of k .

library(topicmodels)

chapters_lda <- LDA(chapters_dtm, k = 4, control = list(seed = 1234))

chapters_lda

A LDA_VEM topic model with 4 topics.

Much as we did on the Associated Press data, we can examine per-topic-per-word probabilities.

chapters_lda_td <- tidy(chapters_lda)

chapters_lda_td

A tibble: 72,860 × 3

topic term beta

<int> <chr> <dbl>

1 1 joe 5.830326e-17

2 2 joe 3.194447e-57

3 3 joe 4.162676e-24

4 4 joe 1.445030e-02

5 1 biddy 7.846976e-27

6 2 biddy 4.672244e-69

7 3 biddy 2.259711e-46

8 4 biddy 4.767972e-03

9 1 estella 3.827272e-06

10 2 estella 5.316964e-65

... with 72,850 more rows

Notice that this has turned the model into a one-topic-per-term-per-row format. For each combination, the

model computes the probability of that term being generated from that topic. For example, the term “joe” has

an almost zero probability of being generated from topics 1, 2, or 3, but it makes up 1.45% chance of being

generated from topic 4.

We could use dplyr’s top_n() to find the top 5 terms within each topic:

top_terms <- chapters_lda_td %>%

 group_by(topic) %>%

 top_n(5, beta) %>%

 ungroup() %>%

 arrange(topic, -beta)

top_terms

A tibble: 20 × 3

topic term beta

<int> <chr> <dbl>

1 1 elizabeth 0.014107538

2 1 darcy 0.008814258

3 1 miss 0.008706741

4 1 bennet 0.006947431

5 1 jane 0.006497512

6 2 captain 0.015507696

7 2 nautilus 0.013050048

8 2 sea 0.008850073

9 2 nemo 0.008708397

10 2 ned 0.008030799

11 3 people 0.006797400

12 3 martians 0.006512569

13 3 time 0.005347115

14 3 black 0.005278302

15 3 night 0.004483143

16 4 joe 0.014450300

17 4 time 0.006847574

18 4 pip 0.006817363

19 4 looked 0.006365257

20 4 miss 0.006228387

This output lends itself well to a ggplot2 visualization (Figure).

library(ggplot2)

top_terms %>%

 mutate(term = reorder(term, beta)) %>%

 ggplot(aes(term, beta, fill = factor(topic))) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 facet_wrap(~ topic, scales = "free") +

 coord_flip()

Figure 7.3: The terms that are most common within each topic

These topics are pretty clearly associated with the four books! There’s no question that the topic of “nemo”,

“sea”, and “nautilus” belongs to Twenty Thousand Leagues Under the Sea, and that “jane”, “darcy”, and

“elizabeth” belongs to Pride and Prejudice. We see “pip” and “joe” from Great Expectations and “martians”,

“black”, and “night” from The War of the Worlds.

We also notice that there can be words in common between multiple topics, such as “miss” in topics 1 and 4,

and “time” in topics 3 and 4. This shows how LDA is a “fuzzy clustering” method: rather than giving particular

words to each topic, it treats them as a mixture of all words, with different proportions.

7.3 Per-document classification

Each chapter was a “document” in this analysis. Thus, we may want to know which topics are associated with

each document. Can we put the chapters back together in the correct books? We can find this by examining

the

chapters_lda_gamma <- tidy(chapters_lda, matrix = "gamma")

chapters_lda_gamma

A tibble: 772 × 3

document topic gamma

<chr> <int> <dbl>

1 Great Expectations_57 1 1.351886e-05

2 Great Expectations_7 1 1.470726e-05

3 Great Expectations_17 1 2.117127e-05

4 Great Expectations_27 1 1.919746e-05

5 Great Expectations_38 1 3.544403e-01

6 Great Expectations_2 1 1.723723e-05

7 Great Expectations_23 1 5.507241e-01

8 Great Expectations_15 1 1.682503e-02

9 Great Expectations_18 1 1.272044e-05

10 The War of the Worlds_16 1 1.084337e-05

... with 762 more rows

Each of these values is an estimated proportion of words from that document that are generated from that

topic. For example, the model estimates that each word in the Great Expectations_57 document has only a

0.00135% probability of coming from topic 1.

Now that we have these document classifiations, we can see how well our unsupervised learning did at

distinguishing the four books. We’d expect that chapters within a book would be found to be mostly (or

entirely), generated from the corresponding topic.

First we re-separate the document name into title and chapter, after which we can visualize the per-

document-per-topic probability for each (Figure).

chapters_lda_gamma <- chapters_lda_gamma %>%

 separate(document, c("title", "chapter"), sep = "_", convert = TRUE)

chapters_lda_gamma

A tibble: 772 × 4

title chapter topic gamma

* <chr> <int> <int> <dbl>

1 Great Expectations 57 1 1.351886e-05

2 Great Expectations 7 1 1.470726e-05

3 Great Expectations 17 1 2.117127e-05

4 Great Expectations 27 1 1.919746e-05

5 Great Expectations 38 1 3.544403e-01

6 Great Expectations 2 1 1.723723e-05

7 Great Expectations 23 1 5.507241e-01

8 Great Expectations 15 1 1.682503e-02

9 Great Expectations 18 1 1.272044e-05

10 The War of the Worlds 16 1 1.084337e-05

... with 762 more rows

ggplot(chapters_lda_gamma, aes(factor(topic), gamma)) +

 geom_boxplot() +

 facet_wrap(~ title)

Figure 7.4: The gamma probabilities for each chapter within each book

We notice that almost all of the chapters from Pride and Prejudice, War of the Worlds, and Twenty Thousand

Leagues Under the Sea were uniquely identified as a single topic each.

It does look like some chapters from Great Expectations (which should be topic 4) were somewhat associated

with other topics. Are there any cases where the topic most associated with a chapter belonged to another

book? First we’d find the topic that was most associated with each chapter using top_n() , which is

effectively the “classification” of that chapter.

chapter_classifications <- chapters_lda_gamma %>%

 group_by(title, chapter) %>%

 top_n(1, gamma) %>%

 ungroup()

chapter_classifications

A tibble: 193 × 4

title chapter topic gamma

<chr> <int> <int> <dbl>

1 Great Expectations 23 1 0.5507241

2 Pride and Prejudice 43 1 0.9999610

3 Pride and Prejudice 18 1 0.9999654

4 Pride and Prejudice 45 1 0.9999038

5 Pride and Prejudice 16 1 0.9999466

6 Pride and Prejudice 29 1 0.9999300

7 Pride and Prejudice 10 1 0.9999203

8 Pride and Prejudice 8 1 0.9999134

9 Pride and Prejudice 56 1 0.9999337

10 Pride and Prejudice 47 1 0.9999506

... with 183 more rows

We can then compare each to the “consensus” topic for each book (the most common topic among its

chapters), and see which were most often misidentified.

book_topics <- chapter_classifications %>%

 count(title, topic) %>%

 top_n(1, n) %>%

 ungroup() %>%

 transmute(consensus = title, topic)

chapter_classifications %>%

 inner_join(book_topics, by = "topic") %>%

 filter(title != consensus)

A tibble: 2 × 5

title chapter topic gamma consensus

<chr> <int> <int> <dbl> <chr>

1 Great Expectations 23 1 0.5507241 Pride and Prejudice

2 Great Expectations 54 3 0.4803234 The War of the Worlds

We see that only two chapters from Great Expectations were misclassified, as LDA described one as coming

from the “Pride and Prejudice” topic (topic 1) and one from The War of the Worlds (topic 3). That’s not bad for

unsupervised clustering!

7.4 By word assignments: augment

One step that LDA performs is assigning each word in each document to a topic. The more words in a

document are assigned to that topic, generally, the more weight (gamma) will go on that document-topic

classification.

We may want to take the original document-word pairs and find which words in each document were

assigned to which topic. This is the job of the augment() function, which also originated in the broom

package as a way of tidying model output. While tidy() retrieves the statistical components of the model,

 augment() uses a model to add information to each observation in the original data.

assignments <- augment(chapters_lda, data = chapters_dtm)

assignments

A tibble: 104,721 × 4

document term count .topic

<chr> <chr> <dbl> <dbl>

1 Great Expectations_57 joe 88 4

2 Great Expectations_7 joe 70 4

3 Great Expectations_17 joe 5 4

4 Great Expectations_27 joe 58 4

5 Great Expectations_2 joe 56 4

6 Great Expectations_23 joe 1 4

7 Great Expectations_15 joe 50 4

8 Great Expectations_18 joe 50 4

9 Great Expectations_9 joe 44 4

10 Great Expectations_13 joe 40 4

... with 104,711 more rows

This returns a tidy data frame of book-term counts, but adds an extra column: .topic , with the topic each

term was assigned to within each document. (Extra columns added by augment always start with . , to

prevent overwriting existing columns). We can combine this assignments with the consensus book titles to

find which words were incorrectly classified.

assignments <- assignments %>%

 separate(document, c("title", "chapter"), sep = "_", convert = TRUE) %>%

 inner_join(book_topics, by = c(".topic" = "topic"))

assignments

A tibble: 104,721 × 6

title chapter term count .topic consensus

<chr> <int> <chr> <dbl> <dbl> <chr>

1 Great Expectations 57 joe 88 4 Great Expectations

2 Great Expectations 7 joe 70 4 Great Expectations

3 Great Expectations 17 joe 5 4 Great Expectations

4 Great Expectations 27 joe 58 4 Great Expectations

5 Great Expectations 2 joe 56 4 Great Expectations

6 Great Expectations 23 joe 1 4 Great Expectations

7 Great Expectations 15 joe 50 4 Great Expectations

8 Great Expectations 18 joe 50 4 Great Expectations

9 Great Expectations 9 joe 44 4 Great Expectations

10 Great Expectations 13 joe 40 4 Great Expectations

... with 104,711 more rows

We can, for example, create a “confusion matrix,” showing how often words from one book were assigned to

another, using dplyr’s count() and tidyr’s spread() .

assignments %>%

 count(title, consensus, wt = count) %>%

 spread(consensus, n, fill = 0)

Source: local data frame [4 x 5]

Groups: title [4]

title `Great Expectations` `Pride and Prejudice`

* <chr> <dbl> <dbl>

1 Great Expectations 49770 3876

2 Pride and Prejudice 1 37229

3 The War of the Worlds 0 0

4 Twenty Thousand Leagues under the Sea 0 5

`The War of the Worlds` `Twenty Thousand Leagues under the Sea`

* <dbl> <dbl>

1 1845 77

2 7 5

3 22561 7

4 0 39629

We notice that almost all the words for Pride and Prejudice, Twenty Thousand Leagues Under the Sea, and

War of the Worlds were correctly assigned, while Great Expectations had a fair amount of misassignment

(which, as we saw above, led to two chapters getting misclassified).

What were the most commonly mistaken words?

wrong_words <- assignments %>%

 filter(title != consensus)

wrong_words

A tibble: 4,535 × 6

title chapter term count .topic

<chr> <int> <chr> <dbl> <dbl>

1 Great Expectations 38 brother 2 1

2 Great Expectations 22 brother 4 1

3 Great Expectations 23 miss 2 1

4 Great Expectations 22 miss 23 1

5 Twenty Thousand Leagues under the Sea 8 miss 1 1

6 Great Expectations 31 miss 1 1

7 Great Expectations 5 sergeant 37 1

8 Great Expectations 46 captain 1 2

9 Great Expectations 32 captain 1 2

10 The War of the Worlds 17 captain 5 2

consensus

<chr>

1 Pride and Prejudice

2 Pride and Prejudice

3 Pride and Prejudice

4 Pride and Prejudice

5 Pride and Prejudice

6 Pride and Prejudice

7 Pride and Prejudice

8 Twenty Thousand Leagues under the Sea

9 Twenty Thousand Leagues under the Sea

10 Twenty Thousand Leagues under the Sea

... with 4,525 more rows

wrong_words %>%

 count(title, consensus, term, wt = count) %>%

 ungroup() %>%

 arrange(desc(n))

A tibble: 3,500 × 4

title consensus term n

<chr> <chr> <chr> <dbl>

1 Great Expectations Pride and Prejudice love 44

2 Great Expectations Pride and Prejudice sergeant 37

3 Great Expectations Pride and Prejudice lady 32

4 Great Expectations Pride and Prejudice miss 26

5 Great Expectations The War of the Worlds boat 25

6 Great Expectations Pride and Prejudice father 19

7 Great Expectations The War of the Worlds water 19

8 Great Expectations Pride and Prejudice baby 18

9 Great Expectations Pride and Prejudice flopson 18

10 Great Expectations Pride and Prejudice family 16

... with 3,490 more rows

We can see that a number of words were often assigned to the Pride and Prejudice or War of the Worlds

cluster even when they appeared in Great Expectations. For some of these words, such as “love” and “lady”,

that’s because they’re more common in Pride and Prejudice (we could confirm that by examining the counts).

On the other hand, there are a few wrongly classified words that never appeared in the novel they were

misassigned to. For example, we can confirm “flopson” appears only in Great Expectations, even though it’s

assigned to the “Pride and Prejudice” cluster.

word_counts %>%

 filter(word == "flopson")

A tibble: 3 × 3

document word n

<chr> <chr> <int>

1 Great Expectations_22 flopson 10

2 Great Expectations_23 flopson 7

3 Great Expectations_33 flopson 1

The algorithm is stochastic and iterative, and it can accidentally land on a topic that spans multiple books.

7.5 Alternative LDA implementations

TODO: this section is not complete.

The LDA function in the topicmodels package is only one implementation of the latent Dirichlet allocation

algorithm. For example, the mallet package implements a wrapper around the MALLET package for text

classification tools.

The way an algorithm is run with this algorithm is very different from LDA: it takes non-tokenized documents

and performs the tokenization itself, and requires a separate file of stopwords.

library(mallet)

Create a vector with one string per chapter

collapsed <- by_chapter_word %>%

 anti_join(stop_words, by = "word") %>%

 mutate(word = str_replace(word, "'", "")) %>%

 group_by(document) %>%

 summarize(text = paste(word, collapse = " "))

The mallet package requires a file of stopwords

Since we've already filtered them, we can give it an empty file

file.create(empty_file <- tempfile())

docs <- mallet.import(collapsed$document, collapsed$text, empty_file)

mallet_model <- MalletLDA(num.topics = 4)

mallet_model$loadDocuments(docs)

mallet_model$train(100)

Once the model is created, however, are almost identical to the tidiers described in this rest of this chapter.

word-topic pairs

tidy(mallet_model)

A tibble: 71,064 × 3

topic term beta

<int> <chr> <dbl>

1 1 limping 2.761847e-07

2 2 limping 1.107103e-04

3 3 limping 1.852309e-07

4 4 limping 3.454630e-07

5 1 pirate 2.761847e-07

6 2 pirate 1.107103e-04

7 3 pirate 1.852309e-07

8 4 pirate 3.454630e-07

9 1 gibbet 8.313158e-05

10 2 gibbet 2.760855e-07

... with 71,054 more rows

document-topic pairs

tidy(mallet_model, matrix = "gamma")

A tibble: 772 × 3

document topic gamma

<chr> <int> <dbl>

1 Great Expectations_1 1 0.3959413

2 Great Expectations_10 1 0.2715783

3 Great Expectations_11 1 0.4302147

4 Great Expectations_12 1 0.3161451

5 Great Expectations_13 1 0.3373596

6 Great Expectations_14 1 0.2469262

7 Great Expectations_15 1 0.3470206

8 Great Expectations_16 1 0.2863790

9 Great Expectations_17 1 0.3216292

10 Great Expectations_18 1 0.3005751

... with 762 more rows

column needs to be named "term" for "augment"

term_counts <- rename(word_counts, term = word)

augment(mallet_model, term_counts)

A tibble: 104,721 × 4

document term n .topic

<chr> <chr> <int> <int>

1 Great Expectations_57 joe 88 2

2 Great Expectations_7 joe 70 2

3 Great Expectations_17 biddy 63 3

4 Great Expectations_27 joe 58 3

5 Great Expectations_38 estella 58 1

6 Great Expectations_2 joe 56 2

7 Great Expectations_23 pocket 53 3

8 Great Expectations_15 joe 50 2

9 Great Expectations_18 joe 50 2

10 The War of the Worlds_16 brother 50 2

... with 104,711 more rows

8 Case study: comparing Twitter archives

One type of text that gets plenty of attention is text shared online via Twitter. In fact, several of the sentiment

lexicons used in this book (and commonly used in general) were designed for use with and validated on

tweets. Both of the authors of this book are on Twitter and are fairly regular users of it so in this case study,

let’s compare the entire Twitter archives of Julia and David.

8.1 Getting the data and distribution of tweets

An individual can download their own Twitter archive by following directions available on Twitter’s website.

We each downloaded ours and will now open them up. Let’s use the lubridate package to convert the string

timestamps to date-time objects and initially take a look at our tweeting patterns overall.

library(lubridate)

library(ggplot2)

library(dplyr)

library(readr)

tweets_julia <- read_csv("data/tweets_julia.csv")

tweets_dave <- read_csv("data/tweets_dave.csv")

tweets <- bind_rows(tweets_julia %>%

 mutate(person = "Julia"),

 tweets_dave %>%

 mutate(person = "David")) %>%

 mutate(timestamp = ymd_hms(timestamp))

ggplot(tweets, aes(x = timestamp, fill = person)) +

 geom_histogram(alpha = 0.5, position = "identity", bins = 20)

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Figure 8.1: All tweets from our accounts

David and Julia tweet at about the same rate currently and joined Twitter about a year apart from each other,

but there were about 5 years where David was not active on Twitter and Julia was. In total, Julia has about 4

times as many tweets as David.

8.2 Word frequencies

Let’s use unnest_tokens() to make a tidy data frame of all the words in our tweets, and remove the

common English stop words. There are certain conventions in how people use text on Twitter, so we will do a

bit more work with our text here than, for example, we did with the narrative text from Project Gutenberg.

First, we will remove tweets from this dataset that are retweets so that we only have tweets that we wrote

ourselves. Next, the mutate() line removes links and cleans out some characters that we don’t want like

ampersands and such. In the call to unnest_tokens() , we unnest using a regex pattern, instead of just

looking for single unigrams (words). This regex pattern is very useful for dealing with Twitter text; it retains

hashtags and mentions of usernames with the @ symbol. Because we have kept these types of symbols in

the text, we can’t use a simple anti_join() to remove stop words. Instead, we can take the approach

shown in the filter() line that uses str_detect() from the stringr library.

library(tidytext)

library(stringr)

reg <- "([^A-Za-z_\\d#@']|'(?![A-Za-z_\\d#@]))"

tidy_tweets <- tweets %>%

 filter(!str_detect(text, "^RT")) %>%

 mutate(text = str_replace_all(text, "https://t.co/[A-Za-z\\d]+|http://[A-Za-z\\d]+|&|<|>|RT|https"

, "")) %>%

 unnest_tokens(word, text, token = "regex", pattern = reg) %>%

 filter(!word %in% stop_words$word,

 str_detect(word, "[a-z]"))

Now we can calculate word frequencies for each person. First, we group by person and count how many

times each person used each word. Then we use left_join() to add a column of the total number of

words used by each person. (This is higher for Julia than David since she has more tweets than David.)

Finally, we calculate a frequency for each person and word.

frequency <- tidy_tweets %>%

 group_by(person) %>%

 count(word, sort = TRUE) %>%

 left_join(tidy_tweets %>%

 group_by(person) %>%

 summarise(total = n())) %>%

 mutate(freq = n/total)

frequency

Source: local data frame [20,736 x 5]

Groups: person [2]

person word n total freq

<chr> <chr> <int> <int> <dbl>

1 Julia time 584 74572 0.007831358

2 Julia @selkie1970 570 74572 0.007643620

3 Julia @skedman 531 74572 0.007120635

4 Julia day 467 74572 0.006262404

5 Julia baby 408 74572 0.005471222

6 David @hadleywickham 315 20161 0.015624225

7 Julia love 304 74572 0.004076597

8 Julia @haleynburke 299 74572 0.004009548

9 Julia house 289 74572 0.003875449

10 Julia morning 278 74572 0.003727941

... with 20,726 more rows

This is a nice and tidy data frame but we would actually like to plot those frequencies on the x- and y-axes of

a plot, so we will need to use spread() from tidyr make a differently shaped data frame.

library(tidyr)

frequency <- frequency %>%

 select(person, word, freq) %>%

 spread(person, freq) %>%

 arrange(Julia, David)

frequency

A tibble: 17,640 × 3

word David Julia

<chr> <dbl> <dbl>

1 's 4.960071e-05 1.340986e-05

2 @accidental__art 4.960071e-05 1.340986e-05

3 @alice_data 4.960071e-05 1.340986e-05

4 @alistaire 4.960071e-05 1.340986e-05

5 @corynissen 4.960071e-05 1.340986e-05

6 @jennybryan's 4.960071e-05 1.340986e-05

7 @jsvine 4.960071e-05 1.340986e-05

8 @lizasperling 4.960071e-05 1.340986e-05

9 @ognyanova 4.960071e-05 1.340986e-05

10 @rbloggers 4.960071e-05 1.340986e-05

... with 17,630 more rows

Now this is ready for us to plot. Let’s use geom_jitter() so that we don’t see the discreteness at the low

end of frequency as much.

library(scales)

ggplot(frequency, aes(Julia, David)) +

 geom_jitter(alpha = 0.1, size = 2.5, width = 0.25, height = 0.25) +

 geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +

 scale_x_log10(labels = percent_format()) +

 scale_y_log10(labels = percent_format()) +

 geom_abline(color = "red")

Figure 8.2: Comparing the frequency of words used by Julia and David

Words near the red line in Figure 8.2 are used with about equal frequencies by David and Julia, while words

far away from the line are used much more by one person compared to the other. Words, hashtags, and

usernames that appear in this plot are ones that we have both used at least once in tweets.

This may not even need to be pointed out, but David and Julia have used their Twitter accounts rather

differently over the course of the past several years. David has used his Twitter account almost exclusively for

professional purposes since he became more active, while Julia used it for entirely personal purposes until

late 2015 and still uses it more personally than David. We see these differences immediately in this plot

exploring word frequencies, and they will continue to be obvious in the rest of this chapter.

8.3 Comparing word usage

We just made a plot comparing raw word frequencies over our whole Twitter histories; now let’s find which

words are more or less likely to come from each person’s account using the log odds ratio. First, let’s restrict

the analysis moving forward to tweets from David and Julia sent during 2016. David was consistently active

on Twitter for all of 2016 and this was about when Julia transitioned into data science as a career.

tidy_tweets <- tidy_tweets %>%

 filter(timestamp >= as.Date("2016-01-01"),

 timestamp < as.Date("2017-01-01"))

Next, let’s use str_detect() to remove Twitter usernames from the word column, because otherwise,

the results here are dominated only by people who Julia or David know and the other does not. After

removing these, we count how many times each person uses each word and keep only the words used more

than 10 times. After a spread() operation, we can calculate the log odds ratio for each word, using

log odds ratio = ln

n + 1
total+ 1 David

n + 1
total+ 1 Julia

where n is the number of times the word in question is used by each person and the total indicates the total

words for each person.

word_ratios <- tidy_tweets %>%

 filter(!str_detect(word, "^@")) %>%

 count(word, person) %>%

 filter(sum(n) >= 10) %>%

 spread(person, n, fill = 0) %>%

 ungroup() %>%

 mutate_each(funs((. + 1) / sum(. + 1)), -word) %>%

 mutate(logratio = log(David / Julia)) %>%

 arrange(desc(logratio))

What are some words that have been about equally likely to come from David or Julia’s account during

2016?

word_ratios %>%

 arrange(abs(logratio))

A tibble: 377 × 4

word David Julia logratio

<chr> <dbl> <dbl> <dbl>

1 map 0.002321655 0.002314815 0.002950476

2 email 0.002110595 0.002083333 0.013000812

3 file 0.002110595 0.002083333 0.013000812

4 names 0.003799071 0.003703704 0.025423332

5 account 0.001688476 0.001620370 0.041171689

6 api 0.001688476 0.001620370 0.041171689

7 function 0.003376952 0.003240741 0.041171689

8 population 0.001688476 0.001620370 0.041171689

9 sad 0.001688476 0.001620370 0.041171689

10 words 0.003376952 0.003240741 0.041171689

... with 367 more rows

We are about equally likely to tweet about maps, email, APIs, and functions.

Which words are most likely to be from Julia’s account or from David’s account? Let’s just take the top 15

([]
[])

most distinctive words for each account and plot them.

word_ratios %>%

 group_by(logratio < 0) %>%

 top_n(15, abs(logratio)) %>%

 ungroup() %>%

 mutate(word = reorder(word, logratio)) %>%

 ggplot(aes(word, logratio, fill = logratio < 0)) +

 geom_bar(alpha = 0.8, stat = "identity") +

 coord_flip() +

 ylab("log odds ratio (David/Julia)") +

 scale_fill_discrete(name = "", labels = c("David", "Julia"))

Figure 8.3: Comparing the odds ratios of words from our accounts

So David has tweeted about specific conferences he has gone to, genes, Stack Overflow, and matrices while

Julia tweeted about Utah, physics, Census data, Christmas, and her family.

8.4 Changes in word use

The section above looked at overall word use, but now let’s ask a different question. Which words’

frequencies have changed the fastest in our Twitter feeds? Or to state this another way, which words have we

tweeted about at a higher or lower rate as time has passed? To do this, we will define a new time variable in

the data frame that defines which unit of time each tweet was posted in. We can use floor_date() from

lubridate to do this, with a unit of our choosing; using 1 month seems to work well for this year of tweets from

both of us.

After we have the time bins defined, we count how many times each of us used each word in each time bin.

After that, we add columns to the data frame for the total number of words used in each time bin by each

person and the total number of times each word was used by each person. We can then filter() to only

keep words used at least some minimum number of times (30, in this case).

words_by_time <- tidy_tweets %>%

 filter(!str_detect(word, "^@")) %>%

 mutate(time_floor = floor_date(timestamp, unit = "1 month")) %>%

 count(time_floor, person, word) %>%

 ungroup() %>%

 group_by(person, time_floor) %>%

 mutate(time_total = sum(n)) %>%

 group_by(word) %>%

 mutate(word_total = sum(n)) %>%

 ungroup() %>%

 rename(count = n) %>%

 filter(word_total > 30)

words_by_time

A tibble: 970 × 6

time_floor person word count time_total word_total

<dttm> <chr> <chr> <int> <int> <int>

1 2016-01-01 David #rstats 2 307 324

2 2016-01-01 David bad 1 307 33

3 2016-01-01 David bit 2 307 45

4 2016-01-01 David blog 1 307 60

5 2016-01-01 David broom 2 307 41

6 2016-01-01 David call 2 307 31

7 2016-01-01 David check 1 307 42

8 2016-01-01 David code 3 307 49

9 2016-01-01 David data 2 307 276

10 2016-01-01 David day 2 307 65

... with 960 more rows

Each row in this data frame corresponds to one person using one word in a given time bin. The count

column tells us how many times that person used that word in that time bin, the time_total column tells us

how many words that person used during that time bin, and the word_total column tells us how many

times that person used that word over the whole year. This is the data set we can use for modeling.

We can use nest() from tidyr to make a data frame with a list column that contains little miniature data

frames for each word. Let’s do that now and take a look at the resulting structure.

nested_data <- words_by_time %>%

 nest(-word, -person)

nested_data

A tibble: 112 × 3

person word data

<chr> <chr> <list>

1 David #rstats <tibble [12 × 4]>

2 David bad <tibble [9 × 4]>

3 David bit <tibble [10 × 4]>

4 David blog <tibble [12 × 4]>

5 David broom <tibble [10 × 4]>

6 David call <tibble [9 × 4]>

7 David check <tibble [12 × 4]>

8 David code <tibble [10 × 4]>

9 David data <tibble [12 × 4]>

10 David day <tibble [8 × 4]>

... with 102 more rows

This data frame has one row for each person-word combination; the data column is a list column that

contains data frames, one for each combination of person and word. Let’s use map() from the purrr library

to apply our modeling procedure to each of those little data frames inside our big data frame. This is count

data so let’s use glm() with family = "binomial" for modeling. We can think about this modeling

procedure answering a question like, “Was a given word mentioned in a given time bin? Yes or no? How

does the count of word mentions depend on time?”

library(purrr)

nested_models <- nested_data %>%

 mutate(models = map(data, ~ glm(cbind(count, time_total) ~ time_floor, .,

 family = "binomial")))

nested_models

A tibble: 112 × 4

person word data models

<chr> <chr> <list> <list>

1 David #rstats <tibble [12 × 4]> <S3: glm>

2 David bad <tibble [9 × 4]> <S3: glm>

3 David bit <tibble [10 × 4]> <S3: glm>

4 David blog <tibble [12 × 4]> <S3: glm>

5 David broom <tibble [10 × 4]> <S3: glm>

6 David call <tibble [9 × 4]> <S3: glm>

7 David check <tibble [12 × 4]> <S3: glm>

8 David code <tibble [10 × 4]> <S3: glm>

9 David data <tibble [12 × 4]> <S3: glm>

10 David day <tibble [8 × 4]> <S3: glm>

... with 102 more rows

Now notice that we have a new column for the modeling results; it is another list column and contains glm

objects. The next step is to use map() and tidy() from the broom package to pull out the slopes for

each of these models and find the important ones. We are comparing many slopes here and some of them

are not statistically significant, so let’s apply an adjustment to the p-values for multiple comparisons.

library(broom)

slopes <- nested_models %>%

 unnest(map(models, tidy)) %>%

 filter(term == "time_floor") %>%

 mutate(adjusted.p.value = p.adjust(p.value))

Now let’s find the most important slopes. Which words have changed in frequency at a moderately significant

level in our tweets?

top_slopes <- slopes %>%

 filter(adjusted.p.value < 0.1)

top_slopes

A tibble: 6 × 8

person word term estimate std.error statistic p.value adjusted.p.value

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 David ggplot2 time_floor -8.262540e-08 1.969448e-08 -4.195359 2.724397e-05 2.996837e-03

2 Julia #rstats time_floor -4.496395e-08 1.119780e-08 -4.015427 5.933815e-05 6.467858e-03

3 Julia post time_floor -4.818545e-08 1.454440e-08 -3.312990 9.230419e-04 9.784245e-02

4 Julia read time_floor -9.327168e-08 2.542485e-08 -3.668524 2.439548e-04 2.634712e-02

5 David stack time_floor 8.041202e-08 2.193375e-08 3.666132 2.462468e-04 2.634841e-02

6 David #user2016 time_floor -8.175896e-07 1.550152e-07 -5.274253 1.332976e-07 1.479603e-05

To visualize our results, we can plot these words’ use for both David and Julia over this year of tweets.

words_by_time %>%

 inner_join(top_slopes, by = c("word", "person")) %>%

 filter(person == "David") %>%

 ggplot(aes(time_floor, count/time_total, color = word)) +

 geom_line(alpha = 0.8, size = 1.3) +

 labs(x = NULL, y = "Word frequency")

Figure 8.4: Trending words in David’s tweets

David tweeted a lot about the UseR conference while he was there and then quickly stopped. He has

tweeted more about Stack Overflow toward the end of the year and less about ggplot2 as the year has

progressed.

Me: I'm so sick of data science wars. #rstats vs Python, frequentist vs
Bayesian...

Them: base vs ggplot2...

Me: WHY WHICH SIDE ARE YOU ON
8:58 AM - 23 Mar 2016

 35 115

David Robinson
@drob

Now let’s plot words that have changed frequency in Julia’s tweets.

words_by_time %>%

 inner_join(top_slopes, by = c("word", "person")) %>%

 filter(person == "Julia") %>%

 ggplot(aes(time_floor, count/time_total, color = word)) +

 geom_line(alpha = 0.8, size = 1.3) +

 labs(x = NULL, y = "Word frequency")

Figure 8.5: Trending words in Julia’s tweets

All the significant slopes for Julia are negative. This means she has not tweeted at a higher rate using any

specific words, but instead using a variety of different words; her tweets earlier in the year contained the

words shown in this plot at higher proportions. Words she uses when publicizing a new blog post like the

#rstats hashtag and “post” have gone down in frequency, and she has tweeted less about reading.

8.5 Favorites and retweets

Another important characteristic of tweets is how many times they are favorited or retweeted. Let’s explore

which words are more likely to be retweeted or favorited for Julia’s and David’s tweets. When a user

downloads their own Twitter archive, favorites and retweets are not included, so we constructed another

dataset of the authors’ tweets that includes this information. We accessed our own tweets via the Twitter API

and downloaded about 3200 tweets for each person. In both cases, that is about the last 18 months worth of

Twitter activity. This corresponds to a period of increasing activity and increasing numbers of followers for

both of us.

tweets_julia <- read_csv("data/juliasilge_tweets.csv")

tweets_dave <- read_csv("data/drob_tweets.csv")

tweets <- bind_rows(tweets_julia %>%

 mutate(person = "Julia"),

 tweets_dave %>%

 mutate(person = "David")) %>%

 mutate(created_at = ymd_hms(created_at))

Now that we have this second, smaller set of only recent tweets, let’s use unnest_tokens() to transform

these tweets to a tidy data set. Let’s remove all retweets and replies from this data set so we only look at

regular tweets that David and Julia have posted directly.

tidy_tweets <- tweets %>%

 filter(!str_detect(text, "^(RT|@)")) %>%

 mutate(text = str_replace_all(text, "https://t.co/[A-Za-z\\d]+|http://[A-Za-z\\d]+|&|<|>|RT|https"

, "")) %>%

 unnest_tokens(word, text, token = "regex", pattern = reg) %>%

 anti_join(stop_words)

tidy_tweets

A tibble: 11,078 × 7

id created_at source retweets favorites person word

<dbl> <dttm> <chr> <int> <int> <chr> <chr>

1 8.044026e+17 2016-12-01 19:11:43 Twitter Web Client 1 15 David worry

2 8.043967e+17 2016-12-01 18:48:07 Twitter Web Client 4 6 David j's

3 8.043611e+17 2016-12-01 16:26:39 Twitter Web Client 8 12 David bangalore

4 8.043611e+17 2016-12-01 16:26:39 Twitter Web Client 8 12 David london

5 8.043611e+17 2016-12-01 16:26:39 Twitter Web Client 8 12 David developers

6 8.041571e+17 2016-12-01 02:56:10 Twitter Web Client 0 11 Julia management

7 8.041571e+17 2016-12-01 02:56:10 Twitter Web Client 0 11 Julia julie

8 8.040582e+17 2016-11-30 20:23:14 Twitter Web Client 30 41 David sf

9 8.040324e+17 2016-11-30 18:40:27 Twitter Web Client 0 17 Julia zipped

10 8.040324e+17 2016-11-30 18:40:27 Twitter Web Client 0 17 Julia gb

... with 11,068 more rows

To start with, let’s look at retweets. Let’s find the total number of retweets for each person.

totals <- tidy_tweets %>%

 group_by(person, id) %>%

 summarise(rts = sum(retweets)) %>%

 group_by(person) %>%

 summarise(total_rts = sum(rts))

totals

A tibble: 2 × 2

person total_rts

<chr> <int>

1 David 110171

2 Julia 12701

Now let’s find the median number of retweets for each word and person. We probably want to count each

tweet/word combination only once, so we will use group_by() and summarise() twice, one right after the

other. In the second summarise() statement, we can also count the number of times each word was used

ever and keep that in uses . Next, we can join this to the data frame of retweet totals. Let’s filter() to

only keep words mentioned at least 5 times.

word_by_rts <- tidy_tweets %>%

 group_by(id, word, person) %>%

 summarise(rts = first(retweets)) %>%

 group_by(person, word) %>%

 summarise(retweets = median(rts), uses = n()) %>%

 left_join(totals) %>%

 filter(retweets != 0) %>%

 ungroup()

word_by_rts %>%

 filter(uses >= 5) %>%

 arrange(desc(retweets))

A tibble: 178 × 5

person word retweets uses total_rts

<chr> <chr> <dbl> <int> <int>

1 David animation 85.0 5 110171

2 David download 52.0 5 110171

3 David start 51.0 7 110171

4 Julia tidytext 50.0 7 12701

5 David gganimate 45.0 8 110171

6 David introducing 45.0 6 110171

7 David understanding 37.0 6 110171

8 David 0 35.0 7 110171

9 David error 34.5 8 110171

10 David bayesian 34.0 7 110171

... with 168 more rows

At the top of this sorted data frame, we see tweets from Julia and David about packages that they work on,

like gutenbergr, gganimate, and tidytext. Let’s plot the words that have the highest median retweets for each

of our accounts.

word_by_rts %>%

 filter(uses >= 5) %>%

 group_by(person) %>%

 top_n(10, retweets) %>%

 arrange(retweets) %>%

 mutate(word = factor(word, unique(word))) %>%

 ungroup() %>%

 ggplot(aes(word, retweets, fill = person)) +

 geom_bar(stat = "identity", alpha = 0.8, show.legend = FALSE) +

 facet_wrap(~ person, scales = "free", ncol = 2) +

 coord_flip() +

 labs(x = NULL,

 y = "Median # of retweets for tweets containing each word")

Figure 8.6: Words with highest median retweets

We see lots of word about R packages, including tidytext, a package about which you are reading right now!

The “0” for David comes from tweets where he mentions version numbers of packages, like “broom 0.4.0” or

similar.

We can follow a similar procedure to see which words led to more favorites. Are they different than the words

that lead to more retweets?

totals <- tidy_tweets %>%

 group_by(person, id) %>%

 summarise(favs = sum(favorites)) %>%

 group_by(person) %>%

 summarise(total_favs = sum(favs))

word_by_favs <- tidy_tweets %>%

 group_by(id, word, person) %>%

 summarise(favs = first(favorites)) %>%

 group_by(person, word) %>%

 summarise(favorites = median(favs), uses = n()) %>%

 left_join(totals) %>%

 filter(favorites != 0) %>%

 ungroup()

We have built the data frames we need. Now let’s make our visualization.

word_by_favs %>%

 filter(uses >= 5) %>%

 group_by(person) %>%

 top_n(10, favorites) %>%

 arrange(favorites) %>%

 mutate(word = factor(word, unique(word))) %>%

 ungroup() %>%

 ggplot(aes(word, favorites, fill = person)) +

 geom_bar(stat = "identity", alpha = 0.8, show.legend = FALSE) +

 facet_wrap(~ person, scales = "free", ncol = 2) +

 coord_flip() +

 labs(x = NULL,

 y = "Median # of favorites for tweets containing each word")

Figure 8.7: Words with highest median favorites

We see some minor differences between Figures 8.6 and 8.7, especially near the bottom of the top 10 list, but

these are largely the same words as for retweets. In general, the same words that lead to retweets lead to

favorites. A prominent word for Julia in both plots is the hashtag for the NASA Datanauts program that she

has participated in; read on to Chapter 9 to learn more about NASA data and what we can learn from text

analysis of NASA datasets.

9 Case study: mining NASA metadata

There are over 32,000 datasets hosted and/or maintained by NASA; these datasets cover topics from Earth

science to aerospace engineering to management of NASA itself. We can use the metadata for these

datasets to understand the connections between them.

What is metadata? Metadata is a term that refers to data that gives information about other data; in this case,

the metadata informs users about what is in these numerous NASA datasets but does not include the content

of the datasets themselves. The metadata includes information like the title of the dataset, a description field,

what organization(s) within NASA is responsible for the dataset, keywords for the dataset that have been

assigned by a human being, and so forth. NASA places a high priority on making its data open and

accessible, even requiring all NASA-funded research to be openly accessible online. The metadata for all its

datasets is publicly available online in JSON format.

In this chapter, we will treat the NASA metadata as a text dataset and show how to implement several tidy

text approaches with this real-life text. We will use word co-occurrences and correlations, tf-idf, and topic

modeling to explore the connections between the datasets. Can we find datasets that are related to each

other? Can we find clusters of similar datasets? Since we have several text fields in the NASA metadata,

most importantly the title, description, and keyword fields, we can explore the connections between the fields

to better understand the complex world of data at NASA. This type of approach can be extended to any

domain that deals with text, so let’s take a look at this metadata and get started.

9.1 How data is organized at NASA

First, let’s download the JSON file and take a look at the names of what is stored in the metadata.

library(jsonlite)

metadata <- fromJSON("https://data.nasa.gov/data.json")

names(metadata$dataset)

[1] "_id" "@type" "accessLevel" "accrualPeriodicity"

[5] "bureauCode" "contactPoint" "description" "distribution"

[9] "identifier" "issued" "keyword" "landingPage"

[13] "language" "modified" "programCode" "publisher"

[17] "spatial" "temporal" "theme" "title"

[21] "license" "isPartOf" "references" "rights"

[25] "describedBy"

We see here that we could extract information from who publishes each dataset to what license they are

released under.

It seems likely that the title, description, and keywords for each dataset may be most fruitful for drawing

connections between datasets. Let’s check them out.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

class(metadata$dataset$title)

[1] "character"

class(metadata$dataset$description)

[1] "character"

class(metadata$dataset$keyword)

[1] "list"

The title and description fields are stored as character vectors, but the keywords are stored as a list of

character vectors.

9.1.1 Wrangling and tidying the data

Let’s set up separate tidy data frames for title, description, and keyword, keeping the dataset ids for each so

that we can connect them later in the analysis if necessary.

library(dplyr)

nasa_title <- data_frame(id = metadata$dataset$`_id`$`$oid`,

 title = metadata$dataset$title)

nasa_title

A tibble: 32,089 × 2

id title

<chr> <chr>

1 55942a57c63a7fe59b495a77 15 Minute Stream Flow Data: USGS (FIFE)

2 55942a57c63a7fe59b495a78 15 Minute Stream Flow Data: USGS (FIFE)

3 55942a58c63a7fe59b495a79 15 Minute Stream Flow Data: USGS (FIFE)

4 55942a58c63a7fe59b495a7a 2000 Pilot Environmental Sustainability Index (ESI)

5 55942a58c63a7fe59b495a7b 2000 Pilot Environmental Sustainability Index (ESI)

6 55942a58c63a7fe59b495a7c 2000 Pilot Environmental Sustainability Index (ESI)

7 55942a58c63a7fe59b495a7d 2001 Environmental Sustainability Index (ESI)

8 55942a58c63a7fe59b495a7e 2001 Environmental Sustainability Index (ESI)

9 55942a58c63a7fe59b495a7f 2001 Environmental Sustainability Index (ESI)

10 55942a58c63a7fe59b495a80 2001 Environmental Sustainability Index (ESI)

... with 32,079 more rows

These are just a few example titles from the datasets we will be exploring. Notice that we have the NASA-

assigned ids here, and also that there are duplicate titles on separate datasets.

nasa_desc <- data_frame(id = metadata$dataset$`_id`$`$oid`,

 desc = metadata$dataset$description)

nasa_desc %>%

 select(desc) %>%

 sample_n(5)

A tibble: 5 × 1

desc

<chr>

1 A WiMAX networked UAV Telemetry System (WNUTS) is designed for\nnet-centric remote sensing and launch

2 ML3DZMBRO is the EOS Aura Microwave Limb Sounder (MLS) daily zonal mean product for bromine monoxide

3 This Level 2 data collection contains derived precipitable column water vapor amounts, during daytim

4 To address the NASA GSFC need for significant improvements in wide bandgap materials and detectors f

5 This data set includes brightness temperature data measured over the Sea of Japan, the Western Pacif

Here we see the first part of several selected description fields from the metadata.

Now we can build the tidy data frame for the keywords. For this one, we need to use unnest() from tidyr,

because they are in a list-column.

library(tidyr)

nasa_keyword <- data_frame(id = metadata$dataset$`_id`$`$oid`,

 keyword = metadata$dataset$keyword) %>%

 unnest(keyword)

nasa_keyword

A tibble: 126,814 × 2

id keyword

<chr> <chr>

1 55942a57c63a7fe59b495a77 EARTH SCIENCE

2 55942a57c63a7fe59b495a77 HYDROSPHERE

3 55942a57c63a7fe59b495a77 SURFACE WATER

4 55942a57c63a7fe59b495a78 EARTH SCIENCE

5 55942a57c63a7fe59b495a78 HYDROSPHERE

6 55942a57c63a7fe59b495a78 SURFACE WATER

7 55942a58c63a7fe59b495a79 EARTH SCIENCE

8 55942a58c63a7fe59b495a79 HYDROSPHERE

9 55942a58c63a7fe59b495a79 SURFACE WATER

10 55942a58c63a7fe59b495a7a EARTH SCIENCE

... with 126,804 more rows

This is a tidy data frame because we have one row for each keyword; this means we will have multiple rows

for each dataset because a dataset can have more than one keyword.

Now it is time to use tidytext’s unnest_tokens() for the title and description fields so we can do the text

analysis. Let’s also remove common English words from the titles and descriptions. We will not remove stop

words from the keywords, because those are short, human-assigned keywords like RADIATION or CLIMATE

INDICATORS.

library(tidytext)

nasa_title <- nasa_title %>%

 unnest_tokens(word, title) %>%

 anti_join(stop_words)

nasa_desc <- nasa_desc %>%

 unnest_tokens(word, desc) %>%

 anti_join(stop_words)

These are now in the tidy text format that we have been working with throughout this book, with one token

(word, in this case) per row; let’s take a look before we move on in our analysis.

nasa_title

A tibble: 210,914 × 2

id word

<chr> <chr>

1 56d07ee5a759fdadc44e5923 marble

2 56d07ee5a759fdadc44e5923 epic

3 56d07c16a759fdadc44e5922 fitara

4 56d07c16a759fdadc44e5922 ocio

5 56cf5b00a759fdadc44e5849 implementing

6 56cf5b00a759fdadc44e5846 receding

7 56cf5b00a759fdadc44e5846 recursive

8 56cf5b00a759fdadc44e5840 complaints

9 56cf5b00a759fdadc44e583b score

10 56cf5b00a759fdadc44e583a fix

... with 210,904 more rows

nasa_desc

A tibble: 2,677,811 × 2

id word

<chr> <chr>

1 56d07c16a759fdadc44e5922 fitara

2 56d07c16a759fdadc44e5922 ocio

3 56cf5b00a759fdadc44e584a degradation's

4 56cf5b00a759fdadc44e5847 dchwp1s

5 56cf5b00a759fdadc44e5847 dchwp1sp

6 56cf5b00a759fdadc44e5847 dchwdp

7 56cf5b00a759fdadc44e5847 dchwsnf

8 56cf5b00a759fdadc44e5847 dchwssf

9 56cf5b00a759fdadc44e5847 bursting

10 56cf5b00a759fdadc44e5847 consequentially

... with 2,677,801 more rows

9.1.2 Some initial simple exploration

What are the most common words in the NASA dataset titles? We can use count() from dplyr to check this

out.

nasa_title %>%

 count(word, sort = TRUE)

A tibble: 11,614 × 2

word n

<chr> <int>

1 project 7735

2 data 3354

3 1 2841

4 level 2400

5 global 1809

6 v1 1478

7 daily 1397

8 3 1364

9 aura 1363

10 l2 1311

... with 11,604 more rows

What about the descriptions?

nasa_desc %>%

 count(word, sort = TRUE)

A tibble: 35,940 × 2

word n

<chr> <int>

1 data 68871

2 modis 24420

3 global 23028

4 2 16599

5 1 15770

6 system 15480

7 product 14780

8 aqua 14738

9 earth 14373

10 resolution 13879

... with 35,930 more rows

Words like “data” and “global” are used very often in NASA titles and descriptions. We may want to remove

digits and some “words” like “v1” from these data frames for many types of analyses; they are not too

meaningful for most audiences. We can do this by making a list of custom stop words and using

 anti_join() to remove them from the data frame, just like we removed the default stop words that are in

the tidytext package. This approach can be used in many instances and is a great tool to bear in mind.

my_stopwords <- data_frame(word = c(as.character(1:10),

 "v1", "v03", "l2", "l3", "l4", "v5.2.0",

 "v003", "v004", "v005", "v006", "v7"))

nasa_title <- nasa_title %>%

 anti_join(my_stopwords)

nasa_desc <- nasa_desc %>%

 anti_join(my_stopwords)

What are the most common keywords?

nasa_keyword %>%

 group_by(keyword) %>%

 count(sort = TRUE)

A tibble: 1,774 × 2

keyword n

<chr> <int>

1 EARTH SCIENCE 14362

2 Project 7452

3 ATMOSPHERE 7321

4 Ocean Color 7268

5 Ocean Optics 7268

6 Oceans 7268

7 completed 6452

8 ATMOSPHERIC WATER VAPOR 3142

9 OCEANS 2765

10 LAND SURFACE 2720

... with 1,764 more rows

Many NASA datasets have Project completed as a set of keywords. We likely want to change all of the

keywords to either lower or upper case to get rid of duplicates like OCEANS and Oceans. Let’s do that here.

nasa_keyword <- nasa_keyword %>%

 mutate(keyword = toupper(keyword))

9.2 Word co-ocurrences and correlations

As a next step, let’s examine which words commonly occur together in the titles, descriptions, and keywords

of NASA datasets, as described in Chapter 5. We can then examine word networks for these fields; this may

help us see, for example, which datasets are related to each other.

9.2.1 Networks of Description and Title Words

We can use pairwise_count() from the widyr package to count how many times each pair of words occurs

together in a title or description field.

library(widyr)

title_words <- nasa_title %>%

 pairwise_count(word, id, sort = TRUE, upper = FALSE)

title_words

A tibble: 156,689 × 3

item1 item2 n

<chr> <chr> <dbl>

1 system project 796

2 lba eco 683

3 airs aqua 641

4 level aqua 623

5 level airs 612

6 aura omi 607

7 global grid 597

8 global daily 574

9 data boreas 551

10 ground gpm 550

... with 156,679 more rows

These are the pairs of words that occur together most often in title fields. Some of these words are obviously

acronyms used within NASA, and we see how often words like “project” and “system” are used.

desc_words <- nasa_desc %>%

 pairwise_count(word, id, sort = TRUE, upper = FALSE)

desc_words

A tibble: 10,889,084 × 3

item1 item2 n

<chr> <chr> <dbl>

1 data global 9864

2 data resolution 9302

3 instrument resolution 8189

4 data surface 8180

5 global resolution 8139

6 data instrument 7994

7 data system 7870

8 resolution bands 7584

9 data earth 7576

10 orbit resolution 7462

... with 10,889,074 more rows

These are the pairs of words that occur together most often in descripton fields. “Data” is a very common word

in description fields; there is no shortage of data in the datasets at NASA!

Let’s plot networks of these co-occurring words so we can see these relationships better in Figure 9.1. We

will again use the ggraph package for visualizing our networks.

library(ggplot2)

library(igraph)

library(ggraph)

set.seed(1234)

title_words %>%

 filter(n >= 250) %>%

 graph_from_data_frame() %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(edge_alpha = n, edge_width = n)) +

 geom_node_point(color = "darkslategray4", size = 5) +

 geom_node_text(aes(label = name), repel = TRUE) +

 theme_void()

Figure 9.1: Word network in NASA dataset titles

We see some clear clustering in this network of title words; words in NASA dataset titles are largely

organized into several families of words that tend to go together.

What about the words from the description fields?

set.seed(1234)

desc_words %>%

 filter(n >= 5000) %>%

 graph_from_data_frame() %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(edge_alpha = n, edge_width = n)) +

 geom_node_point(color = "indianred4", size = 5) +

 geom_node_text(aes(label = name), repel = TRUE) +

 theme_void()

Figure 9.2: Word network in NASA dataset descriptions

Figure 9.2 shows such strong connections between the top dozen or so words (words like “data”, “global”,

“resolution”, and “instrument”) that we do not see clear clustering structure in the network. We may want to

use tf-idf (as described in detail in Chapter 4) as a metric to find characteristic words for each description field,

instead of looking at counts of words.

9.2.2 Networks of Keywords

Next, let’s make a network of the keywords to see which keywords commonly occur together in the same

datasets.

keyword_counts <- nasa_keyword %>%

 pairwise_count(keyword, id, sort = TRUE, upper = FALSE)

keyword_counts

A tibble: 13,390 × 3

item1 item2 n

<chr> <chr> <dbl>

1 OCEANS OCEAN OPTICS 7324

2 EARTH SCIENCE ATMOSPHERE 7318

3 OCEANS OCEAN COLOR 7270

4 OCEAN OPTICS OCEAN COLOR 7270

5 PROJECT COMPLETED 6450

6 EARTH SCIENCE ATMOSPHERIC WATER VAPOR 3142

7 ATMOSPHERE ATMOSPHERIC WATER VAPOR 3142

8 EARTH SCIENCE OCEANS 2762

9 EARTH SCIENCE LAND SURFACE 2718

10 EARTH SCIENCE BIOSPHERE 2448

... with 13,380 more rows

set.seed(1234)

keyword_counts %>%

 filter(n >= 700) %>%

 graph_from_data_frame() %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(edge_alpha = n, edge_width = n)) +

 geom_node_point(color = "royalblue3", size = 5) +

 geom_node_text(aes(label = name), repel = TRUE) +

 theme_void()

Figure 9.3: Co-occurrence network in NASA dataset keywords

We definitely see clustering here, and strong connections between keywords like OCEANS, OCEAN

OPTICS, and OCEAN COLOR, or **PROJECT* and *COMPLETED**. These are the most commonly co-

occurring words, but also just the most common keywords in general. To examine the relationships among

keywords in a different way, we can find the correlation among the keywords as described in Chapter 5. This

looks for those keywords that are more likely to occur together than with other keywords in a description field.

keyword_cors <- nasa_keyword %>%

 group_by(keyword) %>%

 filter(n() >= 50) %>%

 pairwise_cor(keyword, id, sort = TRUE, upper = FALSE)

keyword_cors

A tibble: 7,875 × 3

item1 item2 correlation

<chr> <chr> <dbl>

1 KNOWLEDGE SHARING 1.0000000

2 DASHLINK AMES 1.0000000

3 SCHEDULE EXPEDITION 1.0000000

4 TURBULENCE MODELS 0.9971871

5 APPEL KNOWLEDGE 0.9967945

6 APPEL SHARING 0.9967945

7 OCEAN OPTICS OCEAN COLOR 0.9952123

8 ATMOSPHERIC SCIENCE CLOUD 0.9938681

9 LAUNCH SCHEDULE 0.9837078

10 LAUNCH EXPEDITION 0.9837078

... with 7,865 more rows

Notice that these keywords at the top of this sorted data frame have correlation coefficients equal to 1; they

always occur together. This means these are redundant keywords. It may not make sense to continue to use

both of the keywords in these sets of pairs; instead, just one keyword could be used.

Let’s visualize the network of keyword correlations, just as we did for keyword co-occurences.

set.seed(1234)

keyword_cors %>%

 filter(correlation > .6) %>%

 graph_from_data_frame() %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(edge_alpha = correlation, edge_width = correlation)) +

 geom_node_point(color = "royalblue3", size = 5) +

 geom_node_text(aes(label = name), repel = TRUE) +

 theme_void()

Figure 9.4: Correlation network in NASA dataset keywords

This network appears much different than the co-occurence network. The difference is that the co-occurrence

network asks a question about which keyword pairs occur most often, and the correlation network asks a

question about which keywordsoccur more often together than with other keywords. Notice here the high

number of small clusters of keywords; the network structure can be extracted (for further analysis) from the

 graph_from_data_frame() function above.

9.3 Calculating tf-idf for the description fields

The network graph in Figure 9.2 showed us that the description fields are dominated by a few common words

like “data”, “global”, and “resolution”; this would be an excellent opportunity to use tf-idf as a statistic to find

characteristic words for individual description fields. As discussed in Chapter 4, we can use tf-idf, the term

frequency times inverse document frequency, to identify words that are especially important to a document

within a collection of documents. Let’s apply that approach to the description fields of these NASA datasets.

9.3.1 What is tf-idf for the description field words?

We will consider each description field a document, and the whole set of description fields the collection or

corpus of documents. We have already used unnest_tokens() earlier in this chapter to make a tidy data

frame of the words in the description fields, so now we can use bind_tf_idf() to calculate tf-idf for each

word.

desc_tf_idf <- nasa_desc %>%

 count(id, word, sort = TRUE) %>%

 ungroup() %>%

 bind_tf_idf(word, id, n)

What are the highest tf-idf words in the NASA description fields?

desc_tf_idf %>%

 arrange(-tf_idf)

A tibble: 1,913,224 × 6

id word n tf idf

<chr> <chr> <int> <dbl> <dbl>

1 55942a7cc63a7fe59b49774a rdr 1 1 10.375052

2 55942ac9c63a7fe59b49b688 palsar_radiometric_terrain_corrected_high_res 1 1 10.375052

3 55942ac9c63a7fe59b49b689 palsar_radiometric_terrain_corrected_low_res 1 1 10.375052

4 55942a7bc63a7fe59b4976ca lgrs 1 1 8.765615

5 55942a7bc63a7fe59b4976d2 lgrs 1 1 8.765615

6 55942a7bc63a7fe59b4976e3 lgrs 1 1 8.765615

7 55942a7dc63a7fe59b497820 mri 1 1 8.583293

8 55942ad8c63a7fe59b49cf6c template_proddescription 1 1 8.295611

9 55942ad8c63a7fe59b49cf6d template_proddescription 1 1 8.295611

10 55942ad8c63a7fe59b49cf6e template_proddescription 1 1 8.295611

... with 1,913,214 more rows, and 1 more variables: tf_idf <dbl>

These are the most important words in the description fields as measured by tf-idf, meaning they are common

but not too common. Notice we have run into an issue here; both n and term frequency are equal to 1 for

these terms, meaning that these were description fields that only had a single word in them. If a description

field only contains one word, the tf-idf algorithm will think that is a very important word. Depending on our

analytic goals, it might be a good idea to throw out all description fields that have very few words.

9.3.2 Connecting description fields to keywords

We now know which words in the descriptions have high tf-idf, and we also have labels for these descriptions

in the keywords. Let’s do a full join of the keyword data frame and the data frame of description words with tf-

idf, and then find the highest tf-idf words for a given keyword.

desc_tf_idf <- full_join(desc_tf_idf, nasa_keyword, by = "id")

Let’s plot some of the most important words, as measured by tf-idf, for a few example keywords used on

NASA datasets. First, let’s use dplyr operations to filter for the keywords we want to examine and take just the

top 15 words for each keyword. Then, let’s plot those words in Figure 9.5.

desc_tf_idf %>%

 filter(!near(tf, 1)) %>%

 filter(keyword %in% c("SOLAR ACTIVITY", "CLOUDS",

 "SEISMOLOGY", "ASTROPHYSICS",

 "HUMAN HEALTH", "BUDGET")) %>%

 arrange(desc(tf_idf)) %>%

 group_by(keyword) %>%

 distinct(word, keyword, .keep_all = TRUE) %>%

 top_n(15, tf_idf) %>%

 ungroup() %>%

 mutate(word = factor(word, levels = rev(unique(word)))) %>%

 ggplot(aes(word, tf_idf, fill = keyword)) +

 geom_bar(stat = "identity", alpha = 0.8, show.legend = FALSE) +

 facet_wrap(~keyword, ncol = 3, scales = "free") +

 coord_flip() +

 labs(title = "Highest tf-idf words in NASA metadata description fields",

 caption = "NASA metadata from https://data.nasa.gov/data.json",

 x = NULL, y = "tf-idf")

Figure 9.5: Distribution of tf-idf for words from datasets labeled with select keywords

Using tf-idf has allowed us to identify important description words for each of these keywords. Datasets

labeled with the keyword SEISMOLOGY have words like “earthquake”, “risk”, and “hazard” in their

description, while those labeled with HUMAN HEALTH have descriptions characterized by words like

“wellbeing”, “vulnerability”, and “children.” Most of the combinations of letters that are not English words are

certainly acronyms (like OMB for the Office of Management and Budget), and the examples of years and

numbers are important for these topics. The tf-idf statistic has identified the kinds of words it is intended to,

important words for individual documents within a collection of documents.

9.4 Topic modeling

Using tf-idf as a statistic has already given us insight into the content of NASA description fields, but let’s try

an additional approach to the question of what the NASA descriptions fields are about. We can use topic

modeling as described in Chapter 7 to model each document (description field) as a mixture of topics and

each topic as a mixture of words. As in earlier chapters, we will use latent Dirichlet allocation (LDA) for our

topic modeling; there are other possible approaches for topic modeling.

9.4.1 Casting to a document-term matrix

To do the topic modeling as implemented here, we need to make a DocumentTermMatrix , a special kind of

matrix from the tm package (of course, this is just a specific implementation of the general concept of a

“document-term matrix”). Rows correspond to documents (description texts in our case) and columns

correspond to terms (i.e., words); it is a sparse matrix and the values are word counts.

Let’s clean up the text a bit using stop words to remove some of the nonsense “words” leftover from HTML or

other character encoding. We can use bind_rows() to add our custom stop words to the list of default stop

words from the tidytext package, and then all at once use anti_join() to remove them all from our data

frame.

my_stop_words <- bind_rows(stop_words,

 data_frame(word = c("nbsp", "amp", "gt", "lt",

 "timesnewromanpsmt", "font",

 "td", "li", "br", "tr", "quot",

 "st", "img", "src", "strong",

 "http", "file", "files",

 as.character(1:12)),

 lexicon = rep("custom", 30)))

word_counts <- nasa_desc %>%

 anti_join(my_stop_words) %>%

 count(id, word, sort = TRUE) %>%

 ungroup()

word_counts

A tibble: 1,895,310 × 3

id word n

<chr> <chr> <int>

1 55942a8ec63a7fe59b4986ef suit 82

2 55942a8ec63a7fe59b4986ef space 69

3 56cf5b00a759fdadc44e564a data 41

4 56cf5b00a759fdadc44e564a leak 40

5 56cf5b00a759fdadc44e564a tree 39

6 55942a8ec63a7fe59b4986ef pressure 34

7 55942a8ec63a7fe59b4986ef system 34

8 55942a89c63a7fe59b4982d9 em 32

9 55942a8ec63a7fe59b4986ef al 32

10 55942a8ec63a7fe59b4986ef human 31

... with 1,895,300 more rows

This is the information we need, the number of times each word is used in each document, to make a

 DocumentTermMatrix . We can cast() from our tidy text format to this non-tidy format as described in

detail in Chapter 6.

desc_dtm <- word_counts %>%

 cast_dtm(id, word, n)

desc_dtm

<<DocumentTermMatrix (documents: 32003, terms: 35901)>>

Non-/sparse entries: 1895310/1147044393

Sparsity : 100%

Maximal term length: 166

Weighting : term frequency (tf)

We see that this dataset contains documents (each of them a NASA description field) and terms (words).

Notice that this example document-term matrix is (very close to) 100% sparse, meaning that almost all of the

entries in this matrix are zero. There are non-zero entries everywhere in the matrix that corresponds to a

certain word appearing in a certain document.

9.4.2 Ready for topic modeling

Now let’s use the topicmodels package to create an LDA model. How many topics will we tell the algorithm to

make? This is a question much like in k-means clustering; we don’t really know ahead of time. We tried the

following modeling procedure using 8, 16, 24, 32, and 64 topics; we found that at 24 topics, documents are

still getting sorted into topics cleanly but going much beyond that caused the distributions of γ, the probability

that each document belongs in each topic, to look worrisome. We will show more details on this later.

library(topicmodels)

desc_lda <- LDA(desc_dtm, k = 24, control = list(seed = 1234))

desc_lda

A LDA_VEM topic model with 24 topics.

This is a stochastic algorithm that could have different results depending on where the algorithm starts, so we

need to specify a seed for reproducibility as shown here.

9.4.3 Interpreting the topic model

Now that we have built the model, let’s tidy() the results of the model, i.e., construct a tidy data frame that

summarizes the results of the model. The tidytext package includes a tidying method for LDA models from the

topicmodels package.

tidy_lda <- tidy(desc_lda)

tidy_lda

A tibble: 861,624 × 3

topic term beta

<int> <chr> <dbl>

1 1 suit 1.003981e-121

2 2 suit 2.630614e-145

3 3 suit 1.916240e-79

4 4 suit 6.715725e-45

5 5 suit 1.738334e-85

6 6 suit 7.692116e-84

7 7 suit 3.283851e-04

8 8 suit 3.738586e-20

9 9 suit 4.846953e-15

10 10 suit 4.765471e-10

... with 861,614 more rows

The column β tells us the probability of that term being generated from that topic for that document. It is the

probability of that term (word) belonging to that topic. Notice that some of the values for β are very, very low,

and some are not so low.

What is each topic about? Let’s examine the top 10 terms for each topic.

top_terms <- tidy_lda %>%

 group_by(topic) %>%

 top_n(10, beta) %>%

 ungroup() %>%

 arrange(topic, -beta)

top_terms

A tibble: 240 × 3

topic term beta

<int> <chr> <dbl>

1 1 data 0.04488960

2 1 soil 0.03676198

3 1 moisture 0.02954555

4 1 amsr 0.02437751

5 1 sst 0.01684001

6 1 validation 0.01322457

7 1 temperature 0.01317075

8 1 surface 0.01290046

9 1 accuracy 0.01225131

10 1 set 0.01155372

... with 230 more rows

It is not very easy to interpret what the topics are about from a data frame like this so let’s look at this

information visually in Figure 9.6.

top_terms %>%

 mutate(term = reorder(term, beta)) %>%

 group_by(topic, term) %>%

 arrange(desc(beta)) %>%

 ungroup() %>%

 mutate(term = factor(paste(term, topic, sep = "__"), levels = rev(paste(term, topic, sep =

"__")))) %>%

 ggplot(aes(term, beta, fill = as.factor(topic))) +

 geom_bar(stat = "identity", show.legend = FALSE, alpha = 0.8) +

 coord_flip() +

 scale_x_discrete(labels = function(x) gsub("__.+$", "", x)) +

 labs(title = "Top 10 terms in each LDA topic",

 x = NULL, y = expression(beta)) +

 facet_wrap(~ topic, ncol = 4, scales = "free")

Figure 9.6: Top terms in topic modeling of NASA metadata description field texts

We can see what a dominant word “data” is in these description texts. In addition, there are meaningful

differences between these collections of terms, from terms about soil, forests, and biomass in topic 12 to

terms about design, systems, and technology in topic 21. The topic modeling process has identified

groupings of terms that we can understand as human readers of these description fields.

We just explored which words are associated with which topics. Next, let’s examine which topics are

associated with which description fields (i.e., documents). We will look at a different probability for this, γ, the

probability that each document belongs in each topic, again using the tidy verb.

lda_gamma <- tidy(desc_lda, matrix = "gamma")

lda_gamma

A tibble: 768,072 × 3

document topic gamma

<chr> <int> <dbl>

1 55942a8ec63a7fe59b4986ef 1 6.453820e-06

2 56cf5b00a759fdadc44e564a 1 1.158393e-05

3 55942a89c63a7fe59b4982d9 1 4.917441e-02

4 56cf5b00a759fdadc44e55cd 1 2.249043e-05

5 55942a89c63a7fe59b4982c6 1 6.609442e-05

6 55942a86c63a7fe59b498077 1 5.666520e-05

7 56cf5b00a759fdadc44e56f8 1 4.752082e-05

8 55942a8bc63a7fe59b4984b5 1 4.308534e-05

9 55942a6ec63a7fe59b496bf7 1 4.408626e-05

10 55942a8ec63a7fe59b4986f6 1 2.878188e-05

... with 768,062 more rows

Notice that some of the probabilites visible at the top of the data frame are low and some are higher. Our

model has assigned a probability to each description belonging to each of the topics we constructed from the

sets of words. How are the probabilities distributed? Let’s visualize them.

ggplot(lda_gamma, aes(gamma, fill = as.factor(topic))) +

 geom_histogram(show.legend = FALSE, alpha = 0.8) +

 facet_wrap(~ topic, ncol = 4) +

 scale_y_log10() +

 labs(title = "Distribution of probability for each topic",

 y = "Number of documents", x = expression(gamma))

Figure 9.7: Probability distribution in topic modeling of NASA metadata description field texts

First notice that the y-axis is plotted on a log scale; otherwise it is difficult to make out any detail in the plot.

Next, notice that γ runs from 0 to 1 in each panel. Remember that this is the probability that a given document

belongs in a given topic. There are many values near zero, which means there are many documents that do

not belong in each topic. Also, most of these panels show a higher number of documents near γ = 1; these

are the documents that do belong in those topics. For example, let’s look specifically at topic 18 in Figure 9.7,

a topic that had documents cleanly sorted in and out of it. There are many documents with γ close to 1; these

are the documents that do belong to topic 18 according to the model. There are also many documents with γ

close to 0; these are the documents that do not belong to topic 18. Each document appears in each panel in

this plot, and its γ for that topic tells us that document’s probability of belonging in that topic.

This plot displays the type of information we used to choose how many topics for our topic modeling

procedure. When we tried options higher than 24 (such as 32 or 64), the distributions for γ started to look very

flat toward γ = 1; documents were not getting sorted into topics very well.

9.4.4 Connecting topic modeling with keywords

Let’s connect these topic models with the keywords and see what relationships we can find. We can

 full_join() this to the human-tagged keywords and discover which keywords are associated with which

topic.

lda_gamma <- full_join(lda_gamma, nasa_keyword, by = c("document" = "id"))

lda_gamma

A tibble: 3,037,671 × 4

document topic gamma keyword

<chr> <int> <dbl> <chr>

1 55942a8ec63a7fe59b4986ef 1 6.453820e-06 JOHNSON SPACE CENTER

2 55942a8ec63a7fe59b4986ef 1 6.453820e-06 PROJECT

3 55942a8ec63a7fe59b4986ef 1 6.453820e-06 COMPLETED

4 56cf5b00a759fdadc44e564a 1 1.158393e-05 DASHLINK

5 56cf5b00a759fdadc44e564a 1 1.158393e-05 AMES

6 56cf5b00a759fdadc44e564a 1 1.158393e-05 NASA

7 55942a89c63a7fe59b4982d9 1 4.917441e-02 GODDARD SPACE FLIGHT CENTER

8 55942a89c63a7fe59b4982d9 1 4.917441e-02 PROJECT

9 55942a89c63a7fe59b4982d9 1 4.917441e-02 COMPLETED

10 56cf5b00a759fdadc44e55cd 1 2.249043e-05 DASHLINK

... with 3,037,661 more rows

Now we can use filter() to keep only the document-topic entries that have probabilities (γ) greater than

some cut-off value; let’s use 0.9.

top_keywords <- lda_gamma %>%

 filter(gamma > 0.9) %>%

 group_by(topic, keyword) %>%

 count(keyword, sort = TRUE)

top_keywords

Source: local data frame [1,022 x 3]

Groups: topic [24]

topic keyword n

<int> <chr> <int>

1 13 OCEAN COLOR 4480

2 13 OCEAN OPTICS 4480

3 13 OCEANS 4480

4 11 OCEAN COLOR 1216

5 11 OCEAN OPTICS 1216

6 11 OCEANS 1216

7 9 PROJECT 926

8 12 EARTH SCIENCE 909

9 9 COMPLETED 834

10 16 OCEAN COLOR 768

... with 1,012 more rows

What are the top keywords for each topic?

top_keywords %>%

 top_n(5, n) %>%

 group_by(topic, keyword) %>%

 arrange(desc(n)) %>%

 ungroup() %>%

 mutate(keyword = factor(paste(keyword, topic, sep = "__"),

 levels = rev(paste(keyword, topic, sep = "__")))) %>%

 ggplot(aes(keyword, n, fill = as.factor(topic))) +

 geom_bar(stat = "identity", show.legend = FALSE, alpha = 0.8) +

 labs(title = "Top keywords for each LDA topic",

 x = NULL, y = "Number of documents") +

 coord_flip() +

 scale_x_discrete(labels = function(x) gsub("__.+$", "", x)) +

 facet_wrap(~ topic, ncol = 4, scales = "free")

Figure 9.8: Top keywords in topic modeling of NASA metadata description field texts

Let’s take a step back and remind ourselves what Figure 9.8 is telling us. NASA datasets are tagged with

keywords by human beings, and we have built an LDA topic model (with 24 topics) for the description fields

of the NASA datasets. This plot answers the question, “For the datasets with description fields that have a

high probability of belonging to a given topic, what are the most common human-assigned keywords?”

It’s interesting that the keywords for topics 13, 16, and 18 are essentially duplicates of each other, because

the top terms in those topics do exhibit meaningful differences. Also note that by number of documents, the

combination of 13, 16, and 18 is quite a large percentage of the total number of datasets represented in this

plot, and even more if we were to include topic 11. By number, there are many datasets at NASA that deal

with oceans, ocean color, and ocean optics. We see PROJECT COMPLETED in topics 9, 10, and 21, along

with the names of NASA laboratories and research centers. Other important subject areas that stand out are

groups of keywords about atmospheric science, budget/finance, and population/human dimensions. We can

go back to Figure 9.6 on terms and topics to see which words in the description fields are driving datasets

being assigned to these topics. For example, topic 4 is associated with keywords about population and

human dimensions, and some of the top terms for that topic are “population”, “international”, “center”, and

“university”.

By using a combination of network analysis, tf-idf, and topic modeling, we have come to a greater

understanding of how datasets are related at NASA. Specifically, we have more information now about how

keywords are connected to each other and which datasets are likely to be related. The topic model could be

used to suggest keywords based on the words in the description field, or the work on the keywords could

suggest the most important combination of keywords for certain areas of study.

10 Case study: analyzing usenet text

In our final chapter, we’ll use what we’ve learned in this book to perform a start-to-finish analysis of a set of

20,000 messages sent to 20 Usenet bulletin boards in 1993. The Usenet bulletin boards in this data set

include boards for topics like politics, autos, “for sale”, atheism, etc. This data set is publicly available and has

become popular for testing and exercises in text analysis and machine learning.

10.1 Wrangling the data

We’ll start by reading in all the messages. (Note that this step takes several minutes).

library(dplyr)

library(tidyr)

library(purrr)

library(readr)

library(stringr)

training_folder <- "data/20news-bydate/20news-bydate-train/"

read_folder <- function(infolder) {

 print(infolder)

 data_frame(file = dir(infolder, full.names = TRUE)) %>%

 mutate(text = map(file, read_lines)) %>%

 transmute(id = basename(file), text) %>%

 unnest(text)

}

raw_text <- data_frame(folder = dir(training_folder, full.names = TRUE)) %>%

 unnest(map(folder, read_folder)) %>%

 transmute(board = basename(folder), id, text)

Each email has structure we need to remove. For starters:

Every email has one or more headers (e.g. “from:”, “in_reply_to:”)

Many have signatures, which (since they’re constant for each user) we wouldn’t want to examine

alongside the content

We need to remove headers and signatures.

Loading [Contrib]/a11y/accessibility-menu.js

remove headers and signatures

cleaned_text <- raw_text %>%

 group_by(id) %>%

 filter(cumsum(text == "") > 0,

 cumsum(str_detect(text, "^--")) == 0) %>%

 ungroup()

remove nested text (starting with ">") and lines that note the author

of those

cleaned_text <- cleaned_text %>%

 filter(str_detect(text, "^[^>]+[A-Za-z\\d]") | text == "",

 !str_detect(text, "writes(:|\\.\\.\\.)$"),

 !str_detect(text, "^In article <"),

 !id %in% c(9704, 9985))

Now it is time to use unnest_tokens to identify the words in this data set.

library(tidytext)

usenet_words <- cleaned_text %>%

 unnest_tokens(word, text) %>%

 filter(str_detect(word, "^[a-z]"),

 str_detect(word, "[a-z]$"),

 !word %in% stop_words$word)

What are the most common words?

usenet_words %>%

 count(word, sort = TRUE)

A tibble: 63,937 × 2

word n

<chr> <int>

1 people 3397

2 time 2569

3 god 1611

4 system 1571

5 subject 1312

6 lines 1188

7 program 1086

8 windows 1085

9 bit 1070

10 space 1062

... with 63,927 more rows

Or perhaps more sensibly, we could examine the most common words by board.

words_by_board <- usenet_words %>%

 count(board, word) %>%

 ungroup()

words_by_board %>%

 group_by(board) %>%

 top_n(3)

Source: local data frame [60 x 3]

Groups: board [20]

board word n

<chr> <chr> <int>

1 alt.atheism god 268

2 alt.atheism jesus 129

3 alt.atheism people 276

4 comp.graphics graphics 217

5 comp.graphics image 169

6 comp.graphics program 134

7 comp.os.ms-windows.misc dos 194

8 comp.os.ms-windows.misc file 232

9 comp.os.ms-windows.misc windows 625

10 comp.sys.ibm.pc.hardware card 237

... with 50 more rows

These look sensible and illuminating so far; let’s move on to some more sophisticated analysis!

10.2 Term frequency and inverse document frequency:

tf-idf

Some words are likely to be more common on particular boards. Let’s try quantifying this using the tf-idf metric

we learned in Chapter 4.

tf_idf <- words_by_board %>%

 bind_tf_idf(word, board, n) %>%

 arrange(desc(tf_idf))

tf_idf

A tibble: 166,528 × 6

board word n tf idf tf_idf

<chr> <chr> <int> <dbl> <dbl> <dbl>

1 comp.sys.ibm.pc.hardware scsi 483 0.018138801 1.203973 0.02183862

2 rec.motorcycles bike 321 0.013750268 1.386294 0.01906192

3 talk.politics.mideast armenian 440 0.007348275 2.302585 0.01692003

4 sci.crypt encryption 410 0.008311878 1.897120 0.01576863

5 talk.politics.mideast armenians 396 0.006613447 2.302585 0.01522803

6 rec.sport.hockey nhl 151 0.004291114 2.995732 0.01285503

7 comp.sys.ibm.pc.hardware ide 208 0.007811326 1.609438 0.01257184

8 talk.politics.misc stephanopoulos 158 0.004175145 2.995732 0.01250762

9 rec.motorcycles bikes 97 0.004155065 2.995732 0.01244746

10 rec.sport.hockey hockey 265 0.007530762 1.609438 0.01212029

... with 166,518 more rows

We can visualize this for a few select boards. First, let’s look at all the sci. boards.

library(ggplot2)

tf_idf %>%

 filter(str_detect(board, "^sci\\.")) %>%

 group_by(board) %>%

 top_n(12, tf_idf) %>%

 mutate(word = reorder(word, tf_idf)) %>%

 ggplot(aes(word, tf_idf, fill = board)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 facet_wrap(~ board, scales = "free") +

 ylab("tf-idf") +

 coord_flip()

We could use almost the same code (not shown) to compare the “rec.” (recreation) or “talk.” boards:

We see lots of characteristic words for these boards, from “pitching” and “hitter” for the baseball board to

“firearm” and “militia” on the guns board. Notice how high tf-idf is for words like “Stephanopoulos” or

“Armenian”; this means that these words are very unique among the documents as a whole and important to

those particular boards.

10.3 Sentiment analysis

We can use the sentiment analysis techniques we explored in Chapter 3 to examine how positive and

negative words were used in these Usenet posts. Which boards used the most positive and negative words?

AFINN <- get_sentiments("afinn")

word_board_sentiments <- words_by_board %>%

 inner_join(AFINN, by = "word")

board_sentiments <- word_board_sentiments %>%

 group_by(board) %>%

 summarize(score = sum(score * n) / sum(n))

board_sentiments %>%

 mutate(board = reorder(board, score)) %>%

 ggplot(aes(board, score, fill = score > 0)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 coord_flip() +

 ylab("Average sentiment score")

10.4 Sentiment analysis by word

It’s worth looking deeper to understand why some boards ended up more positive than others. For that, we

can examine the total positive and negative contributions of each word.

contributions <- usenet_words %>%

 inner_join(AFINN, by = "word") %>%

 group_by(word) %>%

 summarize(occurences = n(),

 contribution = sum(score))

contributions

A tibble: 1,891 × 3

word occurences contribution

<chr> <int> <int>

1 abandon 12 -24

2 abandoned 18 -36

3 abandons 3 -6

4 abduction 1 -2

5 abhor 3 -9

6 abhorred 1 -3

7 abhorrent 2 -6

8 abilities 16 32

9 ability 160 320

10 aboard 8 8

... with 1,881 more rows

Which words had the most effect?

contributions %>%

 top_n(25, abs(contribution)) %>%

 mutate(word = reorder(word, contribution)) %>%

 ggplot(aes(word, contribution, fill = contribution > 0)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 coord_flip()

These words look generally reasonable as indicators of each message’s sentiment, but we can spot possible

problems with the approach. “True” could just as easily be a part of “not true” or a similar negative expression,

and the words “God” and “Jesus” are apparently very common on Usenet but could easily be used in many

contexts, positive or negative.

The important point is that we may also care about which words contributed the most within each board. We

can calculate each word’s contribution to each board’s sentiment score from our word_board_sentiments

variable:

top_sentiment_words <- word_board_sentiments %>%

 mutate(contribution = score * n / sum(n))

top_sentiment_words %>%

 group_by(board) %>%

 top_n(8, abs(contribution)) %>%

 ungroup() %>%

 mutate(board = reorder(board, contribution),

 word = reorder(word, contribution)) %>%

 ggplot(aes(word, contribution, fill = contribution > 0)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 facet_wrap(~ board, scales = "free") +

 theme(axis.text.x = element_text(angle = 90, hjust = 1))

We can see here how much sentiment is confounded with topic in this particular approach. An atheism board

is likely to discuss “god” in detail even in a negative context, and we can see it makes the board look more

positive. Similarly, the negative contribution of the word “gun” to the “talk.politics.guns” board would occur

even if the board members were discussing guns positively.

10.5 Sentiment analysis by message

We can also try finding the most positive and negative messages.

sentiment_messages <- usenet_words %>%

 inner_join(AFINN, by = "word") %>%

 group_by(board, id) %>%

 summarize(sentiment = mean(score),

 words = n()) %>%

 ungroup() %>%

 filter(words >= 5)

As a simple measure to reduce the role of randomness, we filtered out messages that had fewer than five

words that contributed to sentiment.

What were the most positive messages?

sentiment_messages %>%

 arrange(desc(sentiment))

A tibble: 3,385 × 4

board id sentiment words

<chr> <chr> <dbl> <int>

1 rec.sport.hockey 53560 3.888889 18

2 rec.sport.hockey 53602 3.833333 30

3 rec.sport.hockey 53822 3.833333 6

4 rec.sport.hockey 53645 3.230769 13

5 rec.autos 102768 3.200000 5

6 misc.forsale 75965 3.000000 5

7 misc.forsale 76037 3.000000 5

8 rec.sport.baseball 104458 2.916667 12

9 comp.os.ms-windows.misc 9620 2.857143 7

10 misc.forsale 74787 2.833333 6

... with 3,375 more rows

Let’s check this by looking at the most positive message in the whole data set.

print_message <- function(message_id) {

 cleaned_text %>%

 filter(id == message_id) %>%

 filter(text != "") %>%

 .$text %>%

 cat(sep = "\n")

}

print_message(53560)

Everybody. Please send me your predictions for the Stanley Cup Playoffs!

I want to see who people think will win.!!!!!!!

Please Send them in this format, or something comparable:

1. Winner of Buffalo-Boston

2. Winner of Montreal-Quebec

3. Winner of Pittsburgh-New York

4. Winner of New Jersey-Washington

5. Winner of Chicago-(Minnesota/St.Louis)

6. Winner of Toronto-Detroit

7. Winner of Vancouver-Winnipeg

8. Winner of Calgary-Los Angeles

9. Winner of Adams Division (1-2 above)

10. Winner of Patrick Division (3-4 above)

11. Winner of Norris Division (5-6 above)

12. Winner of Smythe Division (7-8 above)

13. Winner of Wales Conference (9-10 above)

14. Winner of Campbell Conference (11-12 above)

15. Winner of Stanley Cup (13-14 above)

I will summarize the predictions, and see who is the biggest

INTERNET GURU PREDICTING GUY/GAL.

Send entries to Richard Madison

rrmadiso@napier.uwaterloo.ca

PS: I will send my entries to one of you folks so you know when I say

I won, that I won!!!!!

From: sknapp@iastate.edu (Steven M. Knapp)

Subject: Re: Radar detector DETECTORS?

Organization: Iowa State University, Ames, IA

Lines: 16

Yes some radar detectors are less detectable by radar detector

detectors. ;-)

Look in Car and Driver (last 6 months should do), they had a big

review of the "better" detectors, and stealth was a factor.

Steven M. Knapp Computer Engineering Student

sknapp@iastate.edu President Cyclone Amateur Radio Club

Iowa State University; Ames, IA; USA Durham Center Operations Staff

Looks like it’s because the message uses the word “winner” a lot! How about the most negative message?

Turns out it’s also from the hockey site, but has a very different attitude.

sentiment_messages %>%

 arrange(sentiment)

A tibble: 3,385 × 4

board id sentiment words

<chr> <chr> <dbl> <int>

1 rec.sport.hockey 53907 -3.000000 6

2 sci.electronics 53899 -3.000000 5

3 rec.autos 101627 -2.833333 6

4 comp.graphics 37948 -2.800000 5

5 comp.windows.x 67204 -2.700000 10

6 talk.politics.guns 53362 -2.666667 6

7 alt.atheism 51309 -2.600000 5

8 comp.sys.mac.hardware 51513 -2.600000 5

9 rec.autos 102883 -2.600000 5

10 rec.motorcycles 72052 -2.600000 5

... with 3,375 more rows

print_message(53907)

Losers like us? You are the fucking moron who has never heard of the Western

Business School, or the University of Western Ontario for that matter. Why

don't you pull your head out of your asshole and smell something other than

shit for once so you can look on a map to see where UWO is! Back to hockey,

the North Stars should be moved because for the past few years they have

just been SHIT. A real team like Toronto would never be moved!!!

Andrew--

Well then.

10.6 N-grams

We can also examine the effect of words that are used in negation, like we did in Chapter 5. Let’s start by

finding all the bigrams in the Usenet posts.

usenet_bigrams <- cleaned_text %>%

 unnest_tokens(bigram, text, token = "ngrams", n = 2)

usenet_bigrams

A tibble: 1,762,089 × 3

board id bigram

<chr> <chr> <chr>

1 alt.atheism 49960 archive name

2 alt.atheism 49960 name atheism

3 alt.atheism 49960 atheism resources

4 alt.atheism 49960 resources alt

5 alt.atheism 49960 alt atheism

6 alt.atheism 49960 atheism archive

7 alt.atheism 49960 archive name

8 alt.atheism 49960 name resources

9 alt.atheism 49960 resources last

10 alt.atheism 49960 last modified

... with 1,762,079 more rows

Now let’s count how many of these bigrams are used in each board.

usenet_bigram_counts <- usenet_bigrams %>%

 count(board, bigram)

usenet_bigram_counts %>%

 arrange(desc(n))

Source: local data frame [1,006,415 x 3]

Groups: board [20]

board bigram n

<chr> <chr> <int>

1 soc.religion.christian of the 1141

2 talk.politics.mideast of the 1135

3 talk.politics.mideast in the 857

4 sci.space of the 684

5 sci.crypt of the 671

6 talk.politics.misc of the 645

7 soc.religion.christian in the 637

8 talk.religion.misc of the 630

9 talk.politics.guns of the 618

10 alt.atheism of the 474

... with 1,006,405 more rows

Next, we can calculate tf-idf for the bigrams to find the ones that are important for each board.

bigram_tf_idf <- usenet_bigram_counts %>%

 bind_tf_idf(bigram, board, n)

bigram_tf_idf %>%

 arrange(desc(tf_idf))

Source: local data frame [1,006,415 x 6]

Groups: board [20]

board bigram n tf idf tf_idf

<chr> <chr> <int> <dbl> <dbl> <dbl>

1 talk.politics.misc mr stephanopoulos 155 0.001477344 2.995732 0.004425728

2 comp.windows.x n x 177 0.001917577 2.302585 0.004415384

3 comp.windows.x x printf 130 0.001408390 2.995732 0.004219158

4 rec.motorcycles the bike 104 0.001675663 2.302585 0.003858356

5 comp.sys.ibm.pc.hardware scsi 2 107 0.001478983 2.302585 0.003405485

6 comp.windows.x file x 104 0.001126712 2.995732 0.003375327

7 talk.politics.mideast the armenians 169 0.001111988 2.995732 0.003331220

8 rec.sport.hockey 1 0 256 0.002733816 1.203973 0.003291440

9 comp.windows.x output oname 100 0.001083377 2.995732 0.003245506

10 comp.windows.x x char 98 0.001061709 2.995732 0.003180596

... with 1,006,405 more rows

Now we come back to the words used in negation that we are interested in examining. Let’s define a vector of

words that we suspect are used in negation, and use the same joining and counting approach from Chapter 5

to examine all of them at once.

negate_words <- c("not", "without", "no", "can't", "don't", "won't")

usenet_bigram_counts %>%

 ungroup() %>%

 separate(bigram, c("word1", "word2"), sep = " ") %>%

 filter(word1 %in% negate_words) %>%

 count(word1, word2, wt = n, sort = TRUE) %>%

 inner_join(AFINN, by = c(word2 = "word")) %>%

 mutate(contribution = score * nn) %>%

 top_n(10, abs(contribution)) %>%

 ungroup() %>%

 mutate(word2 = reorder(word2, contribution)) %>%

 ggplot(aes(word2, contribution, fill = contribution > 0)) +

 geom_bar(alpha = 0.8, stat = "identity", show.legend = FALSE) +

 facet_wrap(~ word1, scales = "free", nrow = 3) +

 xlab("Words preceded by negation") +

 ylab("Sentiment score * # of occurrences") +

 theme(axis.text.x = element_text(angle = 90, hjust = 1))

These words are the ones that contribute the most to the sentiment scores in the wrong direction, because

they are being used with negation words before them. Phrases like “no problem” and “don’t want” are

important sources of misidentification.

11 References

Benoit, Kenneth, and Paul Nulty. 2016. Quanteda: Quantitative Analysis of Textual Data. https://CRAN.R-

project.org/package=quanteda.

Ingo Feinerer, Kurt Hornik, and David Meyer. 2008. “Text Mining Infrastructure in R.” Journal of Statistical

Software 25 (5): 1–54. http://www.jstatsoft.org/v25/i05/.

Mullen, Lincoln. 2016. Tokenizers: A Consistent Interface to Tokenize Natural Language Text.

https://CRAN.R-project.org/package=tokenizers.

Robinson, David. 2016. Gutenbergr: Download and Process Public Domain Works from Project Gutenberg.

https://cran.rstudio.com/package=gutenbergr.

Robinson, David, Matthieu Gomez, Boris Demeshev, Dieter Menne, Benjamin Nutter, Luke Johnston, Ben

Bolker, Francois Briatte, and Hadley Wickham. 2015. Broom: Convert Statistical Analysis Objects into Tidy

Data Frames. https://CRAN.R-project.org/package=broom.

Silge, Julia. 2016. Janeaustenr: Jane Austen’s Complete Novels. https://CRAN.R-

project.org/package=janeaustenr.

Silge, Julia, and David Robinson. 2016. “Tidytext: Text Mining and Analysis Using Tidy Data Principles in R.”

JOSS 1 (3). The Open Journal. doi:10.21105/joss.00037.

Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of Statistical Software 21 (12):

1–20. http://www.jstatsoft.org/v21/i12/.

———. 2009. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.org.

———. 2014. “Tidy Data.” Journal of Statistical Software 59 (1): 1–23. doi:10.18637/jss.v059.i10.

———. 2016. Tidyr: Easily Tidy Data with `spread()` and `gather()` Functions. https://CRAN.R-

project.org/package=tidyr.

Wickham, Hadley, and Romain Francois. 2016. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-

project.org/package=dplyr.

Loading [Contrib]/a11y/accessibility-menu.js

