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Abstract

This is a detailed set of notes for a workshop on Analysing spatial point patterns that has
been held several times in Australia and New Zealand in 2006–2008.

It covers statistical methods that are currently feasible in practice and available in public
domain software. Some of these techniques are well established in the applications literature,
while some are very recent developments.

The workshop uses the statistical package R and is based on spatstat, an add-on library
for R for the analysis of spatial data.

Topics covered include: statistical formulation and methodological issues; data input
and handling; R concepts such as classes and methods; nonparametric intensity estimates;
goodness-of-fit testing for Complete Spatial Randomness; maximum likelihood inference for
Poisson processes; model validation for Poisson processes; distance methods and summary
functions such as Ripley’s K function; non-Poisson point process models; simulation tech-
niques; fitting models using summary statistics; Gibbs point process models; fitting Gibbs
models; simulating Gibbs models; validating Gibbs models; multitype and marked point pat-
terns; exploratory analysis of marked point patterns; multitype Poisson process models and
maximum likelihood inference; multitype Gibbs process models and maximum pseudolikeli-
hood; and line segment data.

This workshop requires R version 2.6.0 or later, and spatstat version 1.12-6 or later.
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1 Introduction

1.1 Types of data

1.1.1 Points

A point pattern dataset gives the locations of objects/events occurring in a study region.

The points could represent trees, animal nests, earthquake epicentres, petty crimes, domiciles
of new cases of influenza, galaxies, etc.

The points might be situated in a region of the two-dimensional (2D) plane, or on the Earth’s
surface, or a 3D volume, etc. They could be points in space-time (e.g. earthquake epicentre
location and time). The software presented here is only applicable to 2D point patterns (but
we’re working on it).

1.1.2 Marks

The points may have extra information called marks attached to them. The mark represents an
“attribute” of the point. The mark variable could be categorical , e.g. species or disease status:

off
on

The mark variable could be continuous, e.g. tree diameter:
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6 Introduction

The mark could be multivariate, or even more complicated.

1.1.3 Covariates

Our dataset may also include covariates — any data that we treat as explanatory, rather than
as part of the ‘response’.

Covariate data may be a spatial function Z(u) defined at all spatial locations u, e.g. altitude,
soil pH, displayed as a pixel image or a contour plot:

12
0
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14
0
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0

Covariate data may be another spatial pattern such as another point pattern, or a line
segment pattern, e.g. a map of geological faults:
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98 Methods 6: inference using summary statistics

16 Methods 6: inference using summary statistics

Although summary statistics such as the K-function are intended primarily for exploratory
purposes, it is also possible to use them as a basis for parameter estimation and hypothesis
testing.

16.1 Envelopes and Monte Carlo tests

The graphical comparison of K̂ with Kpois, etc, can be formalised in terms of hypothesis testing.
The null hypothesis is Complete Spatial Randomness (a homogeneous Poisson process) and the
alternative comprises all other processes.

16.1.1 Pointwise Monte Carlo test

Following Besag [14] and Ripley [36, 38], formal hypothesis tests are conducted using the Monte
Carlo test principle [25, 15] rather than the Neyman-Pearson lemma. Suppose the reference
curve is the theoretical K function for a completely random (uniform Poisson) point process.
Generate M independent simulations of this process inside the study region W . Compute the
estimated K functions for each of these realisations, say K̂(j)(r) for j = 1, . . . ,M . Obtain the
pointwise upper and lower envelopes of these simulated curves,

L(r) = min
j

K̂(j)(r)

U(r) = max
j

K̂(j)(r).

For any fixed value of r, consider the probability that K̂(r) lies outside the envelope [L(r), U(r)]
for the simulated curves. If the data came from a uniform Poisson process, then K̂(r) and
K̂(1)(r), . . . , K̂(M)(r) are statistically equivalent and independent, so this probability is equal
to 2/(M + 1) by symmetry. That is, the test which rejects the null hypothesis of a uniform
Poisson process when K̂(r) lies outside [L(r), U(r)], has exact significance level α = 2/(M + 1).
Instead of the pointwise maximum and minimum, one could use the pointwise order statistics
(the pointwise kth largest and k smallest values) giving a test of exact size α = 2k/(M + 1).

16.1.2 Envelopes in spatstat

In spatstat the function envelope computes the pointwise envelopes.

> data(cells)

> E <- envelope(cells, Kest, nsim = 39, rank = 1)

> E

Pointwise critical envelopes for K(r)

Obtained from 39 simulations of simulations of CSR

Significance level of pointwise Monte Carlo test: 2/40 = 0.05

Data: cells

Function value object (class ’fv’)

for the function r -> K(r)

Entries:

id label description

-- ----- -----------
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16.1 Envelopes and Monte Carlo tests 99

r r distance argument r

obs obs(r) function value for data pattern

theo theo(r) theoretical value for CSR

lo lo(r) lower pointwise envelope of simulations

hi hi(r) upper pointwise envelope of simulations

--------------------------------------

Default plot formula:

. ~ r

Recommended range of argument r: [0, 0.25]

> plot(E, main = "pointwise envelopes")
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For example if r had been fixed at r = 0.10 we would have rejected the null hypothesis of
CSR at the 5% level. The value M = 39 is the smallest to yield a two-sided test with significance
level 5%.

Tip: A common and dangerous mistake is to misinterpret the simulation envelopes
as “confidence intervals” around K̂. They cannot be interpreted as a measure of
accuracy of the estimated K function! They are the critical values for a test of the
hypothesis that K(r) = πr2.

16.1.3 Simultaneous Monte Carlo test

Note that the theory of the Monte Carlo test, as presented above, requires that r be fixed in
advance. If we plot the envelope and check whether the empirical K function ever wanders
outside the envelope, this is equivalent to choosing the value of r in a data-dependent way, and
the true significance level is higher (less ‘significant’).

Copyright c©CSIRO 2008



100 Methods 6: inference using summary statistics

To avoid this problem we can construct simultaneous critical bands which have the property
that, under H0, the probability that K̂ ever wanders outside the critical bands is exactly 5%.

One simple way to achieve this is to compute, for each estimate K̂(r), its maximum deviation
from the Poisson K function, D = maxr |K̂(r) − Kpois(r)|. This is computed for each of the M
simulated datasets, and the maximum value Dmax obtained. Then the upper and lower limits
are

L(r) = πr2 − Dmax

U(r) = πr2 + Dmax.

The estimated K function for the data transgresses these limits if and only if the D-value for
the data exceeds Dmax. Under H0 this occurs with probability 1/(M + 1). Thus, a test of size
5% is obtained by taking M = 19.

> E <- envelope(cells, Kest, nsim = 19, rank = 1, global = TRUE)

> plot(E, main = "global envelopes")
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A more powerful test is obtained if we (approximately) stabilise the variance, by using the
L function in place of K.

> E <- envelope(cells, Lest, nsim = 19, rank = 1, global = TRUE)

> plot(E, main = "global envelopes of L(r)")
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16.1 Envelopes and Monte Carlo tests 101

16.1.4 Envelopes for any fitted model

In the explanation above, we assumed that the null hypothesis was CSR (complete spatial
randomness, a uniform Poisson process). In fact the Monte Carlo testing rationale can be
applied to any point process model serving as a null hypothesis. We simply have to generate
simulated realisations from the null hypothesis, and compute the summary function for each
simulated realisation.

To simulate from a fitted point process model (object of class "ppm"), call the envelope

function, giving the fitted model as the first argument of envelope. Then the simulated patterns
will be generated according to this fitted model. The original data point pattern, to which the
model was fitted, is stored in the fitted model object; the original data are extracted and the
summary function for the data is also computed.

The following code fits an inhomogeneous Poisson process to the Beilschmiedia pattern, then
generates simulation envelopes of the L function by simulating from the fitted inhomogeneous
Poisson model.

> data(bei)

> fit <- ppm(bei, ~elev + grad, covariates = bei.extra)

> E <- envelope(fit, Lest, nsim = 19, global = TRUE, correction = "border")

> plot(E, main = "envelope for inhomogeneous Poisson")
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16.1.5 Envelopes based on any simulation procedure

Envelopes can also be computed using any user-specified procedure to generate the simulated
realisations. This allows us to perform randomisation tests, for example.

The simulation procedure should be encoded as an R expression, which will be evaluated
each time a simulation is required. For example if we type

> sim <- expression(rpoispp(100))

then each time the expression sim is evaluated, it will yield a different random outcome of the
Poisson process with intensity 100 in the unit square.

This expression should be passed to the envelope function as the argument simulate.

The following code generates simulation envelopes for the L function based on simulations
of CSR which have the same number of points as the data pattern.
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102 Methods 6: inference using summary statistics

> data(cells)

> e <- expression(runifpoint(cells$n, cells$window))

> E <- envelope(cells, Lest, nsim = 19, global = TRUE, simulate = e)

> plot(E, main = "envelope with fixed n")
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16.1.6 Envelopes based on a set of point patterns

Envelopes can also be computed from a user-supplied list of point patterns, instead of the
simulated point patterns generated by a chosen simulation procedure.

This improves efficiency and consistency if, for example, we are going to calculate the en-
velopes of several different summary statistics.

> data(cells)

> SimPatList <- list()

> for (i in 1:1000) SimPatList[[i]] <- runifpoint(cells$n)

> EK <- envelope(cells, Kest, simulate = SimPatList, nsim = 1000)

> Ep <- envelope(cells, pcf, simulate = SimPatList, nsim = 1000)

16.2 Model-fitting using summary statistics

In the ‘method of moments’ we estimate a parameter θ by solving

Eθ[S(X)] = S(x)

where S(x) is the observed value of a statistic S for our data x, and the left side is the theoretical
mean of S for the model governed by parameter θ.

The analogue for point process models is to fit the model by matching a summary statistic
such as the K function to its theoretical value under the model.

16.2.1 Theoretical mean known analytically

In a precious few cases, the K function of a point process is known exactly as an analytic
expression in terms of the model parameters. These include many Neyman-Scott processes. For
example, the K-function of the Thomas process with parameters θ = (κ, µ, σ) is

Kθ(r) = πr2 +
1

κ
(1 − exp(− r2

4σ2
)). (26)
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16.2 Model-fitting using summary statistics 103

We may thus fit a Thomas model by solving Kθ(r) = K̂(r) for some values of r. More efficiently
we choose θ to minimise the discrepancy between the two functions over some range [a, b]:

D =

∫ b

a

∣∣∣K̂(r)q − Kθ(r)
q
∣∣∣
p

dr (27)

where 0 ≤ a < b, and where p, q > 0 are indices. This method was originally advocated by Peter
Diggle and collaborators, and is now known as the method of minimum contrast . See [21].

To fit the Thomas model by minimum contrast to the K function, use thomas.estK.

> data(redwood)

> fit <- thomas.estK(redwood, c(kappa = 10, sigma2 = 0.1))

The second argument to thomas.estK gives a set of starting values for the parameters, used
in the minimisation search.

The fitted model, fit, is an object of class minconfit. There are methods for printing and
plotting objects of this class.

> fit

Minimum contrast fit (object of class "minconfit")

Model: Thomas process

Fitted by matching theoretical K function to Kest(redwood)

Parameters fitted by minimum contrast ($par):

kappa sigma2

23.545183910 0.002214530

Derived parameters of Thomas process ($modelpar):

kappa sigma mu

23.54518391 0.04705879 2.63323490

Converged successfully after 139 iterations.

Domain of integration: [ 0 , 0.25 ]

Exponents: p= 2, q= 0.25

> plot(fit)
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104 Methods 6: inference using summary statistics

The plot shows the theoretical K function of the fitted Thomas process (fit), three non-
parametric estimates of the K function (iso, trans, border) and the Poisson K function
(theo).

Other models can be fitted using matclust.estK (Matérn cluster process), lgcp.estK (log-
Gaussian Cox process), or mincontrast (generic fitting algorithm for method of minimum con-
trast).

16.2.2 Monte Carlo

For the vast majority of point process models, the true K function Kθ(r) is not known analyti-
cally in terms of the parameter θ. In principle we could use Monte Carlo simulation to determine
an approximation to Kθ(r), for any given θ, by generating a large number of simulated realisa-
tions of the process with parameter θ, computing the estimated K-function for each realisation,
and taking the pointwise sample average. It’s possible to do this in spatstat using the generic
algorithm mincontrast. Details are not given here as it is rather fiddly at present, and will
change soon.

Copyright c©CSIRO 2008



105

17 Methods 7: adjusting for inhomogeneity

If a point pattern is known or suspected to be spatially inhomogeneous, then our statistical
analysis of the pattern should take account of this inhomogeneity.

17.1 Inhomogeneous K function

There is a modification of the K function that applies to inhomogeneous processes [2]. If λ(u)
is the true intensity function of the point process X, then the idea is that each point xi will be
weighted by wi = 1/λ(xi).

The inhomogeneous K-function is defined as

Kinhom(r) = E


 1

λ(u)

∑

xj∈X

1

λ(xj)
1 {0 < ||u − xj|| ≤ r}

∣∣∣∣∣ u ∈ X


 (28)

assuming that this does not depend on location u. Thus, λ(u)K(r) is the expected total ‘weight’
of all random points within a distance r of the point u, where the ‘weight’ of a point xi is 1/λ(xi).

If the process is actually homogeneous, then λ(u) is constant and Kinhom(r) reduces to the
usual K function (21).

It turns out that, for an inhomogeneous Poisson process with intensity function λ(u), the
inhomogeneous K function is

Kinhom, pois(r) = πr2 (29)

exactly as for the homogeneous case.

The standard estimators of K can be extended to the inhomogeneous K function:

K̂inhom(r) =
1

area(W )

∑

i

∑

j 6=i

1 {||xi − xj|| ≤ r}
λ̂(xi)λ̂(xj)

e(xi, xj; r) (30)

where e(u, v, r) is an edge correction weight as before, and λ̂(u) is an estimate of the intensity
function λ(u).

There remains the question of how to estimate the intensity function λ(u). It is usually
advisable to obtain the intensity estimate λ̂(u) by fitting a parametric model, to avoid overfitting.
Here is an example for the tropical rainforest data, using the covariate data to suggest a model
for the intensity.

> data(bei)

> fit <- ppm(bei, ~elev + grad, covariates = bei.extra)

> lam <- predict(fit, locations = bei)

> Ki <- Kinhom(bei, lam)

> plot(Ki, main = "Inhomogeneous K function")
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The plot suggests that, even after accounting for dependence on altitude and slope, the trees
still appear to be clustered.

The intensity function λ(u) could also be estimated by kernel smoothing the point pattern
data. However, notice that the estimator (30) of the inhomogeneous K function depends on
the estimated intensity values at the data points, λ̂(xi). These are positively biased estimates
of the true values λ(xi). In order to avoid bias, the value λ̂(xi) should be estimated by kernel
smoothing of the point pattern with the point xi deleted . This “leave-one-out” estimator is
implemented in Kinhom and is invoked when the argument lambda is not given:

> Ki2 <- Kinhom(bei)

> plot(Ki2, main = "Kinhom using leave-one-out")

lty col

bord.modif 1 1

border 2 2

theo 3 3

(the smoothing parameter σ can also be controlled.)

The inhomogeneous analogue of the L-function is defined by

L̂inhom(r) =

√
K̂inhom(r)

2πr
.

This can be computed using Linhom. For an inhomogeneous Poisson process, Linhom(r) ≡ r.

The inhomogeneous analogue of the pair correlation function can be defined, similarly to the
homogeneous case, as

ginhom(r) =
K ′

inhom(r)

2πr
.

It has the same interpretation, namely, that ginhom(r) is the probability of observing a pair of
points at certain locations separated by a distance r, divided by the corresponding probability
for a Poisson process of the same (inhomogeneous) intensity.

The inhomogeneous pair correlation function is currently computed by calling Kinhom fol-
lowed by pcf.fv (which does numerical differentiation):

> g <- pcf(Kinhom(bei))

Copyright c©CSIRO 2008



17.2 Inhomogeneous cluster models 107

17.2 Inhomogeneous cluster models

The inhomogeneous Poisson process was described in Section 11.1. We can also introduce spatial
inhomogeneity into any of the non-Poisson models described in Section 14.

In the case of Poisson cluster processes (Section 14.1) we can introduce inhomogeneity in
either the parent process or the offspring processes.

To make the parents inhomogeneous, we simply generate the parent points from an inhomo-
geneous Poisson process with some intensity function κ(u).

To make the clusters inhomogeneous, we use a clever construction by Waagepetersen [45].
For a parent point at location (x0, y0), the offspring are generated from a Poisson process with
intensity β(x, y) = µ(x, y)f(x − x0, y − y0), where f(u, v) is either the Gaussian probability
density (for the Thomas process) or the uniform probability density in a disc (for the Matérn
cluster process), and µ(x, y) is the reference or modulating intensity. The number of offspring
from a given parent (x0, y0) is a Poisson random variable with mean

B(x0, y0) =

∫
β(x, y) dxdy =

∫
f(x − x0, y − y0)µ(x, y) dxdy.

The simulation algorithms rMatClust and rThomas allow these options. If the parent in-
tensity parameter kappa is given as a function(x,y) or a pixel image, then the parents are
Poisson with inhomogeneous intensity kappa. If the offspring mean parameter mu is given as a
function(x,y) or a pixel image, then this determines an inhomogeneous reference density for
the clusters.

> Z <- as.im(function(x, y) {

+ 6 * exp(2 * x - 1)

+ }, owin())

> plot(rMatClust(10, 0.05, Z))

rMatClust(10, 0.05, Z)

17.3 Fitting inhomogeneous models by minimum contrast

Minimum contrast methods can be applied to inhomogeneous point process models.

In principle we could fit any model (homogeneous or inhomogeneous) by the method of
minimum contrast using any summary statistic. However, the method works best when we
have an exact formula for the true value of the summary function for the model, expressed as a
function of the parameters of the model.

Copyright c©CSIRO 2008



108 Methods 7: adjusting for inhomogeneity

Waagepetersen [45] pointed out that, if we take a Thomas process or Matérn cluster process
(or in general a Neyman-Scott process) with homogeneous parent intensity κ and inhomoge-
neous cluster reference density µ(u), then the overall intensity of the process is

λ(u) = κµ(u)

and the inhomogeneous K-function is the same as it would be if µ were constant.
Thus, we can fit a Thomas process or Matérn cluster process with inhomogeneous clusters

as follows:

1. estimate the inhomogeneous intensity λ(u) of the process.

2. derive an estimate of the inhomogeneous K-function.

3. use the method of minimum contrast to estimate the parent intensity κ and the cluster
scale parameter (Gaussian standard deviation or disc radius), exactly as we would in the
homogeneous case.

Here is an application to the rainforest data.

> data(bei)

> fit <- ppm(bei, ~elev + grad, covariates = bei.extra)

> lam <- predict(fit, locations = bei)

> Ki <- Kinhom(bei, lam)

> thomas.estK(Ki, c(kappa = 4e-04, sigma2 = 1))

Minimum contrast fit (object of class "minconfit")

Model: Thomas process

Fitted by matching theoretical K function to Ki

Parameters fitted by minimum contrast ($par):

kappa sigma2

4.267423e-04 2.941906e+01

Derived parameters of Thomas process ($modelpar):

kappa sigma mu

0.0004267423 5.4239342345 NA

Converged successfully after 113 iterations.

Domain of integration: [ 0 , 125 ]

Exponents: p= 2, q= 0.25
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18 Gibbs models

One way to construct a statistical model (in any field of statistics) is to write down its probability
density. Advantages of doing this are:

• the functional form of the density reflects its probabilistic properties.

• terms or factors in the density often have an interpretation as ‘components’ of the model.

• it is easy to introduce terms that represent the dependence of the model on covariates, etc.

This approach is useful provided the density can be written down, and provided the density
is tractable.

Spatial point process models that are constructed by writing down their probability densities
are called ‘Gibbs processes’. Good references on Gibbs point processes are [43, 18].

18.1 Probability densities

It is possible to define probability densities for spatial point processes that live inside a bounded
window W .

The probability density will be a function f(x) defined for each finite configuration x =
{x1, . . . , xn} of points xi ∈ W for any n ≥ 0. Notice that the number of points n is not fixed,
and may be zero. Apart from this peculiarity, probability densities for point processes behave
much like probability densities in more familiar contexts.

That’s all you need to know for applications. If you’re interested in the mathematical
technicalities, read on; otherwise, skip to section 18.2.

A point process X inside W is defined to have probability density f if and only if, for any
nonnegative integrable function h,

E[h(X)] = e−|W |h(∅)f(∅) + e−|W |
∞∑

n=1

1

n!

∫

W
· · ·
∫

W
h({x1, . . . , xn})f({x1, . . . , xn}) dx1 · · · dxn

(31)
where |W | denotes the area of W .

In particular, the probability that X contains exactly n points is

pn = P{n(X) = n} =
e−|W |

n!

∫

W
· · ·
∫

W
f({x1, . . . , xn}) dx1 · · · dxn

for n ≥ 1 and p0 = P{n(X) = 0} = e−|W |f(∅). Given that there are exactly n points, the
conditional joint density of the locations x1, . . . , xn is f({x1, . . . , xn})/pn.

18.2 Poisson processes

The uniform Poisson process with intensity 1 has probability density f(x) ≡ 1.

The uniform Poisson process in W with intensity λ has probability density

f(x) = α λn(x) (32)

where n(x) is the number of points in the configuration x, and the constant α is

α = e(1−λ)|W |.
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The inhomogeneous Poisson process in W with intensity function λ(u) has probability density

f(x) = α

n∏

i=1

λ(xi). (33)

where the constant α is

α = exp

[∫

W
(1 − λ(u)) du

]
.

The densities (32) and (33) are products of terms associated with individual points xi. This
reflects the conditional independence property (PP4) of the Poisson process.

18.3 Pairwise interaction models

In order to construct spatial point processes which exhibit interpoint interaction (stochastic
dependence between points), we need to introduce terms in the density that depend on more
than one point. The simplest are pairwise interaction models, which have probability densities
of the form

f(x) = α




n(x)∏

i=1

b(xi)





∏

i<j

c(xi, xj)


 (34)

where α is a normalising constant, b(u), u ∈ W is the ‘first order’ term, and c(u, v), u, v ∈ W
is the ‘second order’ or ‘pairwise interaction’ term. The pairwise interaction term introduces
dependence between points. The interaction function must be symmetric, c(u, v) = c(v, u). In
principle we are free to choose any functions b and c, provided the resulting density is integrable
(the right side of (31) should be finite when h ≡ 1).

18.3.1 Hard core process

If we take b(u) ≡ β and

c(u, v) =

{
1 if ||u − v|| > r
0 if ||u − v|| ≤ r

(35)

where ||u − v|| denotes the distance between u and v, and r > 0 is a fixed distance, then the
density becomes

f(x) =

{
αβn(x) if ||xi − xj|| > r for all i 6= j
0 otherwise

This is the density of the Poisson process of intensity β in W conditioned on the event that no
two points of the pattern lie closer than r units apart. It is known as the (classical) hard core
process.
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Hard core process

18.3.2 Strauss process

Generalising the hard core process, suppose we take b(u) ≡ β and

c(u, v) =

{
1 if ||u − v|| > r
γ if ||u − v|| ≤ r

(36)

where γ is a parameter. Then the density becomes

f(x) = αβn(x)γs(x) (37)

where s(x) is the number of pairs of distinct points in x that lie closer than r units apart.

The parameter γ controls the ‘strength’ of interaction between points. If γ = 1 the model
reduces to a Poisson process with intensity β. If γ = 0 the model is a hard core process. For
values 0 < γ < 1, the process exhibits inhibition (negative association) between points.

Strauss(γ = 0.2) Strauss(γ = 0.7)

For γ > 1, the density (37) is not integrable. Hence the Strauss process is defined only for
0 ≤ γ ≤ 1 and is a model for inhibition between points. This is typical of most Gibbs models.

Copyright c©CSIRO 2008



112 Gibbs models

18.3.3 Other pairwise interaction models

Other pairwise interactions that are considered in spatstat include the Strauss-hard core inter-
action (with hard core distance h > 0 and interaction distance r > h)

c(u, v) =





0 if ||u − v|| ≤ h
γ if h < ||u − v|| ≤ r
1 if ||u − v|| > r

,

the soft-core interaction (with scale σ > 0 and index 0 < κ < 1)

c(u, v) =

(
σ

||u − v||

)2/κ

,

the Diggle-Gates-Stibbard interaction (with interaction range ρ)

c(u, v) =

{
sin
(

π||u−v||
2ρ

)2
if ||u − v|| ≤ ρ

1 if ||u − v|| > ρ
,

the Diggle-Gratton interaction (with hard core distance δ, interaction distance ρ and index κ)

c(u, v) =





0 if ||u − v|| ≤ δ(
||u−v||−δ

ρ−δ

)κ
if δ < ||u − v|| ≤ ρ

1 if ||u − v|| > ρ

,

and the general piecewise constant interaction in which c(||u− v||) is a step function of ||u− v||.
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Piecewise constant interaction

18.4 Higher-order interactions

There are some useful Gibbs point process models which exhibit interactions of higher order,
that is, in which the probability density has contributions from m-tuples of points, where m > 2.

One example is the area-interaction or Widom-Rowlinson process [11] with probability den-
sity

f(x) = αβn(x)γ−A(x) (38)

where α is the normalising constant, β > 0 is an intensity parameter, and γ > 0 is an interaction
parameter. Here A(x) denotes the area of the region obtained by drawing a disc of radius r
centred at each point xi, and taking the union of these discs. The value γ = 1 again corresponds
to a Poisson process, while γ < 1 produces a regular process and γ > 1 a clustered process.
This process has interactions of all orders. It can be used as a model for moderate regularity or
clustering.
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18.5 Conditional intensity

The main tool for analysing a Gibbs point process is its conditional intensity λ(u,X). Intuitively
this determines the conditional probability of finding a point of the process at the location u given
complete information about the rest of the process. For formal definitions see [18]. Informally,
the conditional probability of finding a point of the process inside an infinitesimal neighbourhood
of the location u, given the complete point pattern at all other locations, is λ(u,X) du.

u

For point processes in a bounded window, the conditional intensity at a location u given the
configuration x is related to the probability density f by

λ(u,x) =
f(x ∪ {u})

f(x)
(39)

(for u 6∈ x), the ratio of the probability densities for the configuration x with and without the
point u added.

The homogeneous Poisson process with intensity λ has conditional intensity

λ(u,x) = λ

while the inhomogeneous Poisson process with intensity function λ(u) has conditional intensity

λ(u,x) = λ(u)

. The conditional intensity for a Poisson process does not depend on the configuration x, because
the points of a Poisson process are independent.

For the general pairwise interaction process (34) the conditional intensity is

λ(u,x) = b(u)

n(x)∏

i=1

c(u, xi). (40)

For the hard core process,

λ(u,x) =

{
β if ||u − xi|| > r for all i
0 otherwise

(41)

which has the nice interpretation that a point u is either ‘permitted’ or ‘not permitted’ depending
on whether it satisfies the hard core requirement.

For the Strauss process

λ(u,x) = βγt(u,x) (42)

where t(u,x) = s(x∪{u})− s(x) is the number of points of x that lie within a distance r of the
location u. For γ < 1, this has the interpretation that a random point is less likely to occur at
the location u if there are many points in the neighbourhood.
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Strauss

+

area−interaction

+

For the area-interaction process,

λ(u,x) = βγ−B(u,x) (43)

where B(u,x) = A(x ∪ {u}) − A(x) is the area of that part of the disc of radius r centred on u
that is not covered by discs of radius r centred at the other points xi ∈ x. If the points represent
trees or plants, we may imagine that each tree takes nutrients and water from the soil inside a
circle of radius r. Then we may interpret B(u,x) as the area of the ‘unclaimed zone’ where a
new plant at location u would be able to draw nutrients and water without competition from
other plants. For γ < 1 we can interpret (43) as saying that a random point is less likely to
occur when the unclaimed area is small.

The conditional intensity of a point process determines the probability density, through (39).
Hence we can use the conditional intensity to define a point process. The conditional intensity
is the preferred modelling tool for Gibbs processes: it has a direct interpretation, and it is easier
to handle than the probability density.

18.6 Simulating Gibbs models

Gibbs models can be simulated by Markov chain Monte Carlo algorithms. Indeed, MCMC
algorithms were invented to simulate Gibbs processes [32, 37].

In brief, these algorithms simulate a Markov chain whose states are point patterns. The chain
is designed so that its equilibrium distribution is the distribution of the point process we want
to simulate. If the chain were run for an infinite time, the state would converge in distribution
to the desired point process. In practice the chain is run for a long finite time. Further details
are beyond the scope of this workshop; consult [33, 34] for more information.

Currently spatstat offers the function rmh which simulates Gibbs processes using the
Metropolis-Hastings algorithm.

> rmh(model, start, control)

• model determines the point process model to be simulated (see help(rmhmodel)).

• start determines the initial state of the Markov chain (see help(rmhstart)).

• control specifies control parameters for running the Markov chain, such as the number
of iteration steps (see help(rmhcontrol)).
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In the simplest uses of rmh, the three arguments are lists of parameter values. To generate a
simulated realisation of the Strauss process with parameters β = 2, γ = 0.7, r = 0.7 in a square
of side 10,

> mo <- list(cif = "strauss", par = c(beta = 2, gamma = 0.2, r = 0.7),

+ w = square(10))

> X <- rmh(model = mo, start = list(n.start = 42), control = list(nrep = 1e+06))

The other arguments specify a random initial state of 42 points, and that the algorithm shall
be run for a million iterations.
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19 Methods 8: fitting Gibbs models

19.1 Maximum pseudolikelihood

Maximum likelihood estimation is intractable for most point process models. At the very least
it requires Monte Carlo simulation to evaluate the likelihood (or the score and the Fisher infor-
mation).

A workable alternative, at least for investigative purposes, is to maximise the log pseudolike-
lihood

log PL (θ;x) =
∑

i

log λ(xi;x) −
∫

W
λ(u,x) du. (44)

You may recognise this as being very similar to the likelihood (4) of the Poisson process. In
general it is not a likelihood, but the analogue of the score equation

∂

∂θ
log PL (θ) = 0

is an unbiased estimating equation. Thus the maximum pseudolikelihood estimator is asymp-
totically unbiased, consistent and asymptotically normal under appropriate conditions.

The main advantage of maximum pseudolikelihood is that, at least for popular Gibbs models,
the conditional intensity λ(u,x) is easily computable, so that the pseudolikelihood is easy to
compute and to maximise. The main disadvantage is the bias and inefficiency of maximum
pseudolikelihood in small samples.

More computationally-intensive estimation procedures typically use the maximum pseudo-
likelihood estimate as their initial guess. We are implementing such procedures in spatstat as
well.

19.2 Fitting Gibbs models in spatstat

We have already met the function ppm for fitting Poisson point process models. In fact this
function will fit a wide class of Gibbs models.

ppm contains an implementation of the algorithm of Baddeley and Turner [3] for maximum
pseudolikelihood (which extends the Berman-Turner device for Poisson processes to a general
Gibbs process). The conditional intensity of the model, λθ(u,x), must be loglinear in the
parameters θ:

log λθ(u,x) = θ · S(u,x), (45)

generalising (5), where S(u,x) is a real-valued or vector-valued function of location u and config-
uration x. Parameters θ appearing in the loglinear form (45) are called ‘regular’ parameters, and
all other parameters are ‘irregular’ parameters. For example, the Strauss process conditional
intensity (42) can be recast as

log λ(u,x) = log β + (log γ)t(u,x)

so that θ = (log β, log γ) are regular parameters, but the interaction distance r is an irregular
parameter (technically called a ‘bloody nuisance parameter’).

In spatstat we split the conditional intensity into first-order and higher-order terms:

log λθ(u,x) = η · S(u) + ϕ · V (u,x). (46)

The ‘first order term’ S(u) describes spatial inhomogeneity and/or covariate effects. The ‘higher
order term’ V (u,x) describes interpoint interaction.

The model with conditional intensity (46) is fitted by calling ppm in the form
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ppm(X, ~ terms, V)

The first argument X is the point pattern dataset. The second argument ~terms is a model
formula, specifying the first order term S(u) in (46), in the manner described in Section 11.
Thus the first order term S(u) in (46) may take very general forms.

The third argument V is an object of the special class "interact" which describes the
interpoint interaction term V (u,x) in (46). It may be compared to the ‘family’ argument
which determines the distribution of the responses in a linear model or generalised linear model.
Only a limited number of canned interactions are available in spatstat, because they must be
constructed carefully to ensure that the point process exists.

To fit the Strauss process to the cells data using ppm,

> data(cells)

> ppm(cells, ~1, Strauss(r = 0.1))

Stationary Strauss process

First order term:

beta

294.2333

Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.0128

Relevant coefficients:

Interaction

-4.359277

Here Strauss is a special function that creates an ‘interaction’ object (class "interact")
describing the interaction structure of the Strauss process. Notice that we had to specify the
value of the irregular parameter r (more about that later).

To fit the inhomogeneous Strauss process with conditional intensity

λ(u,x) = b(u)γt(u,x)

where, say, b(u) is loglinear in the Cartesian coordinates,

log b((x, y)) = β0 + β1x + β2y

we simply type

> ppm(cells, ~x + y, Strauss(r = 0.1))

Nonstationary Strauss process

Trend formula: ~x + y

Fitted coefficients for trend formula:

(Intercept) x y

5.7460724 0.1465176 -0.2724205
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Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.0128

Relevant coefficients:

Interaction

-4.357253

To fit an inhomogeneous Strauss process with log-quadratic first order term,

> ppm(cells, ~polynom(x, y, 2), Strauss(r = 0.1))

Nonstationary Strauss process

Trend formula: ~polynom(x, y, 2)

Fitted coefficients for trend formula:

(Intercept) polynom(x, y, 2)[x] polynom(x, y, 2)[y]

3.019133 11.064005 6.154949

polynom(x, y, 2)[x^2] polynom(x, y, 2)[x.y] polynom(x, y, 2)[y^2]

-9.853849 -1.761367 -5.579568

Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.0071

Relevant coefficients:

Interaction

-4.945833

19.3 Interpoint interactions

Instead of Strauss we may use any of the following functions to create an interaction:
Poisson() the Poisson point process (the default)
Strauss() the Strauss process
StraussHard() the Strauss/hard core point process
Softcore() pairwise interaction, soft core potential
PairPiece() pairwise interaction, piecewise constant
DiggleGratton() Diggle-Gratton potential
LennardJones() Lennard-Jones potential
Pairwise() pairwise interaction, user-supplied potential
AreaInter() area-interaction process
Geyer() Geyer’s saturation process
Saturated() Saturated pair model, user-supplied potential
OrdThresh() Ord process, threshold potential
Ord() Ord model, user-supplied potential

(There are two additional ones for multitype point processes, described in section 25.3.2.)

The area-interaction model and the Geyer saturation model are quite handy, as they can be
used to model both clustering and regularity.
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> data(redwood)

> ppm(redwood, ~1, Geyer(r = 0.07, sat = 2))

Stationary Geyer saturation process

First order term:

beta

17.0143

Interaction: Geyer saturation process

interaction distance: 0.07

saturation parameter: 2

Fitted interaction parameter gamma: 2.3509

Relevant coefficients:

Interaction

0.8547814

> ppm(redwood, ~1, AreaInter(r = 0.03))

Stationary Area-interaction process

First order term:

beta

571.5617

Interaction: Area-interaction process

disc radius: 0.03

Fitted interaction parameter eta: 19.11

Relevant coefficients:

Interaction

2.950212

For more detailed explanation of modelling, see [5].

19.4 Fitted point process models

The result of the ppm call is an object of class "ppm" (‘point process model’). This is very closely
analogous to a fitted linear model (lm) or fitted generalised linear model (glm).

Standard R operations that are defined for fitted point process models (i.e. that have methods
for the class "ppm") include:
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print print basic information
summary print detailed summary information
plot plot the fitted (conditional) intensity
predict fitted (conditional) intensity
fitted fitted (conditional) intensity at data points
update re-fit the model

coef extract the fitted coefficient vector θ̂

vcov variance-covariance matrix of θ̂
anova analysis of deviance
logLik evaluate log-pseudolikelihood

(the methods for anova and vcov are only available for Poisson models).

Plotting a fitted model generates a series of image and contour plots of

• the fitted first order term exp(η̂ · S(u))

• the fitted conditional intensity λθ̂(u,x) evaluated for the data pattern x

For Poisson models, the two plots are equivalent, and give the fitted intensity function.

> fit <- ppm(cells, ~polynom(x, y, 2), Strauss(r = 0.1))

> par(mfrow = c(1, 2))

> plot(fit, how = "image", ngrid = 256)

Fitted trend 
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For non-Poisson models, it is also possible to extract and plot the interpoint interaction
function, using fitin.

> model <- ppm(X, ~1, PairPiece(seq(10, 100, by = 10)))

> f <- fitin(model)

> plot(f)
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19.5 Simulation from fitted models

A fitted Gibbs model can also be simulated automatically using rmh.

> fit <- ppm(swedishpines, ~1, Strauss(r = 7))

> Xsim <- rmh(fit)

> plot(Xsim, main = "Simulation from fitted Strauss model")

Simulation from fitted Strauss model

The envelope command will also generate simulation envelopes for a fitted model.

> plot(envelope(fit, nsim = 39))
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19.6 Dealing with nuisance parameters

Irregular parameters, such as the interaction radius r in the Strauss process, cannot be estimated
directly using ppm. Indeed the statistical theory for estimating such parameters is unclear.

For some special cases, a maximum likelihood estimator of the nuisance parameter is avail-
able. For example, for the ‘hard core process’ (Strauss process with interaction parameter γ = 0)
with interaction radius r, the maximum likelihood estimator is the minimum nearest-neighbour
distance. Thus the following is a reasonable approach to the cells dataset:

> rhat <- min(nndist(cells))

> rhat <- rhat * 0.99999

> ppm(cells, ~1, Strauss(r = rhat))

Stationary Strauss process

First order term:

beta

168.2692

Interaction: Strauss process

interaction distance: 0.0836293018068393

Fitted interaction parameter gamma: 0

Relevant coefficients:

Interaction

-19.29955

The analogue of profile likelihood, profile pseudolikelihood , provides a general solution which
may or may not perform well. If θ = (φ, η) where φ denotes the nuisance parameters and η the
regular parameters, define the profile log pseudolikelihood by

PLP(φ,x) = max
η

log PL ((φ, η);x) .

The right hand side can be computed, for each fixed value of φ, by the algorithm ppm. Then we
just have to maximise PLP(φ) over φ. This is done by the command profilepl:
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> data(simdat)

> df <- data.frame(r = seq(0.05, 2, by = 0.025))

> pfit <- profilepl(df, Strauss, simdat, ~1)

> pfit

Profile log pseudolikelihood values

for model: ppm(simdat, ~1, interaction = Strauss)

fitted with rbord= 2

Interaction: Strauss

with irregular parameter ’r’ in [0.05, 2]

Optimum value of irregular parameter: r = 0.275

The result is an object of class profilepl containing the profile log pseudolikelihood function,
the optimised value of the irregular parameter r, and the final fitted model. To plot the profile
log pseudolikelihood,

> plot(pfit)
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To extract the final fitted model,

> pfit$fit

Stationary Strauss process

First order term:

beta

2.583110

Interaction: Strauss process

interaction distance: 0.275

Fitted interaction parameter gamma: 0.5631

Relevant coefficients:

Interaction

-0.5743608

There is a summary method for these objects as well.
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19.7 Improvements over maximum pseudolikelihood

Maximum pseudolikelihood is quick and dirty. There are statistically more efficient alternatives,
but they are computationally intensive.

Currently we have implemented the easiest of these alternatives, the Huang-Ogata [27] one-
step approximation to maximum likelihood. Starting from the maximum pseudolikelihood esti-
mate θ̂PL, we simulate M independent realisations of the model with parameters θ̂PL, evaluate
the canonical sufficient statistics, and use them to form estimates of the score and Fisher in-
formation at θ = θ̂PL. Then we take one Newton-Raphson step, updating the value of θ. The
rationale is that the log-likelihood is approximately quadratic in a neighbourhood of the maxi-
mum pseudolikelihood estimator, so that one Newton-Raphson step is almost enough.

To use the Huang-Ogata method instead of maximum pseudolikelihood, add the argument
method="ho".

> fit <- ppm(simdat, ~1, Strauss(r = 0.275), method = "ho")

> fit

Stationary Strauss process

First order term:

beta

2.500546

Interaction: Strauss process

interaction distance: 0.275

Fitted interaction parameter gamma: 0.6951

Relevant coefficients:

Interaction

-0.3637451

> vcov(fit)

[,1] [,2]

[1,] 0.01070257 -0.01264063

[2,] -0.01264063 0.03635432

For models fitted by Huang-Ogata, the variance-covariance matrix returned by vcov is com-
puted from the simulations.
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20 Methods 9: validation of fitted Gibbs models

Goodness-of-fit testing and model validation for Poisson models were described in Section 12.
Checking a fitted Gibbs point process model is more difficult. There is little theory available to
support goodness-of-fit tests and the like.

As an example, consider the following data:

> data(residualspaper)

> X <- residualspaper$Fig4b

> plot(X)

X

We fit a Strauss process model with a log-quadratic intensity term:

> fit <- ppm(X, ~polynom(x, y, 2), Strauss(0.05), correction = "isotropic")

The question is how to confirm or validate this model.

20.1 Goodness-of-fit testing for Gibbs processes

For a fitted Gibbs process, no theory is available to support the χ2 goodness-of-fit test or the
Kolmogorov-Smirnov test. The predicted mean number of points in a given region is not known
in closed form for a Gibbs process. Thus, the appropriate test statistic for a χ2 test is not even
available in closed form, let alone the null distribution of this statistic.

Instead, goodness-of-fit for fitted Gibbs models often relies on the summary functions K and
G. The command envelope will accept as its first argument a fitted Gibbs model, and will
simulate from this model to determine the critical envelope.

> plot(envelope(fit, Lest, nsim = 19, global = TRUE))
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Let’s subtract the theoretical Poisson value L(r) = r to get a more readable plot:

> plot(envelope(fit, Lest, nsim = 19, global = TRUE), . - r ~ r)
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This is fairly consistent with a Strauss process.
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20.2 Residuals for Gibbs processes

Residuals for a general Gibbs model were defined only recently [6, 1]. The total residual in a
region B ⊂ R

2 is defined as

R(B) = n(x ∩ B) −
∫

B
λ̂(u,x) du (47)

where again n(x ∩ B) is the observed number of points in the region B, and λ̂(u,x) is the
conditional intensity of the fitted model, evaluated for the data point pattern x. If the fitted
model is correct, the residuals have mean zero.

This definition is similar to the definition of residuals for Poisson processes (Section 12.2)
except that the intensity λ̂(u) of the fitted Poisson process has been replaced by the conditional
intensity λ̂(u,x) of the fitted Gibbs process evaluated for the data point pattern x.

Residuals for Gibbs processes can be plotted as explained in Section 12.2.

> diagnose.ppm(fit)
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At the time of writing, spatstat does not yet display 2σ significance bands for the lurking
variable plots when the fitted model is not Poisson. The interpretation of the lurking variable
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plots is a little more difficult without the significance bands. One tends to place a little more
emphasis on the smoothed residual field.

Interaction between points in a point process corresponds roughly to the distribution of the
responses in loglinear regression. To validate the interaction terms in a point process model, we
should plot the distribution of the residuals.

> qqplot.ppm(fit, nsim = 39)
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This shows a Q–Q plot of the smoothed residuals, with pointwise 5% critical envelopes from
simulations of the fitted model. This suggests that the Strauss model is reasonable.

These validation techniques generalise and unify many existing exploratory methods. For
particular models of interpoint interaction, the Q–Q plot is closely related to the summary
functions F , G and K. See [6].
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21 Marked point patterns

21.1 Marked point patterns

Each point in a spatial point pattern may carry additional information called a ‘mark’. For
example, points which are classified into two or more different types (on/off, case/control, species,
colour, etc) may be regarded as marked points, with a mark which identifies which type they
are. Data recording the locations and heights of trees in a forest can be regarded as a marked
point pattern where the mark attached to a tree’s location is the tree height.

In our current implementation, the mark attached to each point must be a single value (which
may be numeric, character, complex, logical, or factor). Many of the functions in spatstat

handle marked point patterns in which the mark attached to each point is either

• a continuous variate or “real number”. An example is the Longleaf Pines dataset
(longleaf) in which each tree is marked with its diameter at breast height. The marks

component must be a numeric vector such that marks[i] is the mark value associated
with the ith point. We say the point pattern has continuous marks.

• a categorical variate. An example is the Amacrine Cells dataset (amacrine) in which
each cell is identified as either “on” or “off”. Such point patterns may be regarded as
consisting of points of different “types”. The marks component must be a factor such
that marks[i] is the label or type of the ith point. We call this a multitype point pattern
and the levels of the factor are the possible types.

longleaf

amacrine

Note that, in some other packages, a point pattern dataset consisting of points of two different
types (A and B say) is represented by two datasets, one representing the points of type A and
another containing the points of type B. In spatstat we take a different approach, in which
all the points are collected together in one point pattern, and the points are then labelled by
the type to which they belong. An advantage of this approach is that it is easy to deal with
multitype point patterns with more than 2 types. For example the classic Lansing Woods dataset
represents the positions of trees of 6 different species. This is available in spatstat as a single
dataset, a marked point pattern, with the marks having 6 levels.

21.2 Formulation

A mark variable may be interpreted as an additional coordinate for the point: for example
a point process of earthquake epicentre locations (longitude, latitude), with marks giving the
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occurrence time of each earthquake, can alternatively be viewed as a point process in space-time
with coordinates (longitude, latitude, time).

A marked point process of points in space S with marks belonging to a set M is mathemati-
cally defined as a point process in the cartesian product S ×M . The space M of possible marks
may be ‘anything’. In current applications, typically the mark is either a categorical variable
(so that the points are grouped into ‘types’) or a real number. Multivariate marks consisting of
several such variables are also common.

A marked point pattern is an unordered set

y = {(x1,m1), . . . , (xn,mn)}, xi ∈ W, mi ∈ M

where xi are the locations and mi are the corresponding marks.

21.3 Methodological issues

21.3.1 Should the data be treated as a marked point process?

In a marked point process the points are random. Treating the data as a point process is
inappropriate if the locations are fixed, or if the locations are not part of the ‘response’.

Example 16 Today’s maximum temperatures at 25 Australian cities are displayed on a map.

This is not a point process in any useful sense. The cities are fixed locations. The temper-
atures are observations of a spatial variable at a fixed set of locations. See the R packages sp,
spdep, spgwr for suitable methods.

Example 17 A mineral exploration dataset records the map coordinates where 15 core samples
were drilled, and for each core sample, the assayed concentration of iron in the sample.

This should not be treated as a point process. The core sample locations were chosen by a
geologist, and are part of the experimental design. The main interest is in the iron concentration
at these locations. This should probably be analysed as a geostatistical dataset. See the R

packages geoR, geoRglm for suitable methods.

21.3.2 Joint vs. conditional analysis

There are more choices for analysis (and more traps) when marks are present. Schematically, if
we write X for the points and M for the marks, then a statistical model for the marked point
pattern could be formulated in several ways:

• [X] [M |X] — ‘conditional on locations’ — points X are first generated according to a
spatial point process, then marks M are ‘assigned’ to the points by a random mechanism
[M |X];

• [M ] [X|M ] — ‘conditional on marks’ or ‘split by marks’ — marks M are first generated
according to some random mechanism [M ], then they are placed at certain locations X by
point process(es) [X|M ];

• [X,M ] — ‘joint’ — marked points are generated according to a marked point process.

These approaches typically lead to different stochastic models and have different inferential
interpretations. Correspondingly, there are different null hypotheses that can be tested:
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• random labelling: given the locations X, the marks are conditionally independent and
identically distributed;

• independence of components: the sub-processes Xm of points of each mark m, are inde-
pendent point processes;

• complete spatial randomness and independence (CSRI): the locations X are a uniform
Poisson point process, and the marks are independent and identically distributed. (This
implies both random labelling and independence of components).

These null hypotheses are not equivalent.

The properties of random labelling and independence of components are not equivalent. For
example, take a point process X where nearest neighbour distances are always larger than a
threshold r, and attach random marks to the points. The resulting marked point process cannot
be generated using the independence construction, because if points with different marks are
independent, they can come arbitrarily close to one another.

Example 18 (Ant nests data) Two species of ants build nests in a desert. We want to inves-
tigate ecological interaction between the species, and between different nests of the same species.
The locations of all nests are mapped, and marked by the species.

These data can be analysed as a marked point process consisting of two different types of
points. The ‘mark’ attached to each point is its species (a categorical variable). The most
natural kind of modelling and analysis is either joint [X,M ] or split by species [M ] [X|M ]. We
could also treat one of the species as a covariate and analyse the other species conditional on it.

Example 19 Trees in an orchard are examined and their disease status (infected/not infected)
is recorded. We are interested in the spatial characteristics of the disease, such as contagion
between neighbouring trees.

These data probably should not be treated as a point process. The response is ‘disease
status’. We can think of disease status as a label applied to the trees after their locations have
been determined. Since we are interested in the spatial correlation of disease status, the tree
locations are effectively fixed covariate values. It would probably be best to treat these data
as a discrete random field (of disease status values) observed at a finite known set of sites (the
trees).

21.3.3 Grey areas

There are some ‘grey areas’ which permit several alternative choices of analysis. It could be
appropriate either to analyse the locations and marks jointly (denoted [X,M ]), or to analyse
the marks conditional on the locations ([M |X]) or to analyse the locations given the marks
([X|M ]).

One grey area occurs when the locations are random, but may be ancillary for the parameters
of interest.

Example 20 Case-control study of cancer [20, 24]. The domicile locations of all new cases
of a rare cancer are mapped. To allow for spatial variation in the density of the susceptible
population, domicile locations are recorded for a random sample of (matched) controls.
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This can be analysed either as a marked point pattern (where the mark is the case/control
label) or, by conditioning on locations, as a random field of case/control values attached to the
known domicile locations.

Chorley−Ribble Data
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22 Handling marked point pattern data

This section explains how to create a marked point pattern dataset in spatstat, and how to
manipulate it.

22.1 Creating datasets

In spatstat version 1, each point in a point pattern can be marked with a single value (i.e.
one mark value per point). The marks are stored in a vector, of the same length as the number
of points. The marks can be of any atomic type: numeric, integer, character, factor, logical or
complex.

A marked point pattern dataset can be created using any of the following tools:
ppp create point pattern dataset
as.ppp convert other data to point pattern
superimpose combine several point patterns into a marked point pattern
marks extract marks from a point pattern
marks<- attach marks to a point pattern
%mark% attach marks to a point pattern
unmark delete marks from a point pattern
scanpp read point pattern data from text file
clickppp create a pattern using point-and-click on the screen

The command ppp can be used to create a marked point pattern dataset from raw data. The
syntax is

> ppp(x, y, ..., marks = m)

where x, y and m are vectors of equal length containing the (x, y) coordinates and the corre-
sponding mark values, and ... are arguments that determine the window for the point pattern.

Tip: If the marks are intended to be a categorical variable (representing the types
in a multitype point pattern),

• ensure that m is stored as a factor in R.

• when the point pattern X has been created, check that it is multitype using
is.multitype(X).

• check that the factor levels are as you intended, using levels(m) or levels(marks(X))
where X is the marked point pattern. If the factor levels are character strings,
they will be sorted into alphabetical order by default.

• be careful when performing equality/inequality comparisons involving a fac-
tor. Particular danger occurs when the factor levels are strings that represent
integers.

The command as.ppp will convert data in another format (for example, a 2-column or 3-
column matrix or data frame) to a point pattern object of class "ppp". The third column of a
matrix or data frame will be interpreted as containing the marks.

> mydata <- data.frame(x = runif(10), y = runif(10), m = sample(letters[1:3],

+ 10, replace = TRUE))

> as.ppp(mydata, square(1))
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marked planar point pattern: 10 points

multitype, with levels = a b c

window: rectangle = [0, 1] x [0, 1] units

If point pattern data are stored in a text file, the command scanpp will read the data and
create a point pattern object of class "ppp". The argument multitype=TRUE will ensure that
the mark values are interpreted as a factor.

> X <- scanpp("myfile.txt", window = square(1), multitype = TRUE)

The command superimpose combines several point patterns within the same window. It
can be used to create a multitype point pattern, if you have already created separate point
patterns containing the points of each type. Suppose X1 and X2 are unmarked point patterns
Then superimpose(A=X1, B=X2) will create a multitype point pattern by attaching the mark
A to each point of X1, attaching the mark B to each point of X2, and combining the points.

X1 X2 superimpose(A = X1, B = X2)

Marks can be attached to an existing point pattern X using the function marks<- as in

> marks(X) <- m

or using the binary operator %mark%,

> Y <- X %mark% m

These are convenient when you want to assign new marks to a dataset that are computed
using another variable, or perhaps to randomise the marks in a dataset.

A multitype point pattern can also be created interactively using clickppp, using the argu-
ment types to specify the possible types.

22.2 Inspecting a marked point pattern

Basic tools for inspecting a marked point pattern include the print, plot and summary methods.

> data(amacrine)

> amacrine

marked planar point pattern: 294 points

multitype, with levels = off on

window: rectangle = [0, 1.6012] x [0, 1] units (one unit = 662 microns)

> summary(amacrine)
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Marked planar point pattern: 294 points

Average intensity 184 points per square unit (one unit = 662 microns)

Multitype:

frequency proportion intensity

off 142 0.483 88.7

on 152 0.517 94.9

Window: rectangle = [0, 1.6012] x [0, 1] units

Window area = 1.60121 square units

Unit of length: 662 microns

> plot(amacrine)

off on

1 2

amacrine

You can also convert a marked point pattern into a data frame for closer inspection of the
coordinates and mark values:

> as.data.frame(amacrine)

x y marks

1 0.0224 0.0243 on

2 0.0243 0.1028 on

3 0.1626 0.1477 on

........

The marks can be extracted using the function marks:

> data(longleaf)

> m <- marks(longleaf)

Beware the possibility that two points with different marks may occupy the same spatial
location. This is not currently detected by ppp since, for a marked point pattern, the function
duplicated.ppp regards two points as identical only when their coordinates and mark values
are identical. To detect duplication of the spatial locations, use duplicated(unmark(X)).

Further tools are presented in the next section.
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22.3 Manipulating data

22.3.1 Manipulating marks

The following tools can manipulate the marks in a point pattern:
marks extract marks
marks<- attach marks to a point pattern
%mark% attach marks to a point pattern
unmark remove marks from point pattern

For example, the Lansing Woods data are tree locations marked by diameter at breast height
(dbh) in centimetres. To convert the marks from diameters to circular areas,

> data(lansing)

> d <- marks(lansing)

> a <- (pi/4) * d^2

> marks(lansing) <- a

22.3.2 Separating points of different types

A multitype point pattern can be separated into the sub-patterns of points of each type, using
the split command.

> data(amacrine)

> Y <- split(amacrine)

In fact split is a generic function and the commands above invoke the split method for
the class of point patterns, split.ppp. The result Y is a list of point patterns, with names
that correspond to the type labels. This list also belongs to the class "splitppp" which can be
plotted automatically:

> plot(split(amacrine))

split(amacrine)

off on

22.3.3 Cutting the numerical scale into bands

For a point pattern with numeric marks, the marks can be converted to a factor, using a method
for the generic function cut. The user specifies a series of cut-points on the numerical scale; all
mark values between two cut-points are given the same label.
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For example, the Longleaf Pines data are the locations of trees marked with their diameter
at breast height, dbh, in centimetres. By convention we define “adult” trees to be those with
dbh greater than 30 centimetres. To obtain the bivariate point pattern of adult and juvenile
trees,

> data(longleaf)

> longleaf

marked planar point pattern: 584 points

marks are numeric, of type ’double’

window: rectangle = [0, 200] x [0, 200] metres

> X <- cut(longleaf, breaks = c(0, 30, 80), labels = c("juvenile",

+ "adult"))

> X

marked planar point pattern: 584 points

multitype, with levels = juvenile adult

window: rectangle = [0, 200] x [0, 200] metres

> par(mfrow = c(1, 2))

> plot(longleaf)

0 20 40 60 80

0.000000 1.722522 3.445045 5.167567 6.890090

> plot(X, main = "cut(longleaf)")

juvenile adult

1 2

> par(mfrow = c(1, 1))

longleaf cut(longleaf)
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23 Methods 10: exploratory tools for marked point patterns

This section covers some tools for exploratory data analysis of marked point patterns. Most of
the tools have been developed for the special case of multitype point patterns (i.e. where the
marks are categorical).

23.1 Intensity

The Lansing Woods data give the locations of 6 species of trees in a forest in Michigan. Ele-
mentary estimates of the frequency distribution of species, and the intensity of each species, are
available from summary.ppp.

> data(lansing)

> summary(lansing)

Marked planar point pattern: 2251 points

Average intensity 2250 points per square unit (one unit = 924 feet)

*Pattern contains duplicated points*

Multitype:

frequency proportion intensity

blackoak 135 0.0600 135

hickory 703 0.3120 703

maple 514 0.2280 514

misc 105 0.0466 105

redoak 346 0.1540 346

whiteoak 448 0.1990 448

Window: rectangle = [0, 1] x [0, 1] units

Window area = 1 square unit

Unit of length: 924 feet

It’s sensible to examine the sub-patterns of different types separately, using split.ppp.

> plot(split(lansing))
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split(lansing)

blackoak hickory maple

misc redoak whiteoak

It would be useful to compute and plot a separate estimate of intensity for each type of tree.
This is possible using the functions density.splitppp and plot.listof. They are invoked
simply by typing

> plot(density(split(lansing)), ribbon = FALSE)

density(split(lansing))
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The relative proportions of intensity can then be computed using eval.im:

> Y <- density(split(lansing))

> attach(Y)
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> pBlackoak <- eval.im(blackoak/(blackoak + hickory + maple + misc +

+ redoak + whiteoak))

> plot(pBlackoak)

> detach(Y)

pBlackoak
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Parametric estimates of intensity can be obtained using ppm, fitting a Poisson model with
an intensity function that may depend on location and/or on the marks. See below.

23.2 Numeric marks: distribution and trend

For a point pattern with marks that are numeric (real numbers or integers) or logical values,
the mark values can be extracted using the marks function and inspected using the histogram
or kernel density estimate:

> data(longleaf)

> hist(marks(longleaf))

Histogram of marks(longleaf)

0
20

40
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80
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To assess spatial trend in the marks, one way is to form a kernel regression smoother. The
smoothed mark value at location u ∈ R

2 is

m̂(u) =

∑
i miκ(u − xi)∑

i κ(u − xi)

where k is the smoothing kernel, and mi is the mark value at data point xi. This is computed
by smooth.ppp:

> plot(smooth.ppp(longleaf))

smooth.ppp(longleaf)
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You can also use cut.ppp followed by split.ppp to look for spatial inhomogeneity of the
marks:

> data(spruces)

> plot(split(cut(spruces, 3)))

split(cut(spruces, 3))

(0.16,0.23] (0.23,0.3] (0.3,0.37]

23.3 Simple summaries of neighbouring marks

We are often interested in the marks that are attached to the close neighbours of a typical point.
For a multitype point pattern, the function marktable compiles a contingency table of the

marks of all points within a given radius of each data point:
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> data(amacrine)

> M <- marktable(amacrine, R = 0.1)

> M[1:10, ]

mark

point off on

1 1 1

2 2 2

3 4 3

4 3 1

5 4 1

6 2 3

7 3 2

8 1 1

9 3 1

10 3 2

More general summaries of the marks of neighbours can be obtained using the function
markstat. For example, to compute the average diameter of the 5 closest neighbours of each
tree in the Longleaf Pines dataset,

> md <- markstat(longleaf, mean, N = 5)

> md[1:10]

[1] 43.40 43.40 48.58 21.70 48.38 53.32 40.28 29.82 24.92 21.70

23.4 Summary functions

The summary functions F , G, J and K (and other functions derived from K, such as L and the
pair correlation function) have been extended to multitype point patterns.

Assume the multitype point process X is stationary. Let Xj denote the sub-pattern of points
of type j, with intensity λj . Then

• Fj(r) is the empty space function for Xj

• Gij(r) is the distribution function of the distance from a point of type i to the nearest
point of type j

• Kij(r) is 1/λj times the expected number of points of type j within a distance r of a
typical point of type i.

• Jij is defined as

Jij(r) =
1 − Gij(r)

1 − Fj(r)
.

The functions Gij ,Kij , Jij are called “cross-type” or “i-to-j” summary functions. They are com-
puted in spatstat by Gcross, Kcross and Jcross.

> data(amacrine)

> amacrine

> plot(Gcross(amacrine, "on", "off"))
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The command alltypes enables the user to compute the cross-type summary functions
between all pairs of types simultaneously. For example, to compute Gij(r) for all i and j in
the amacrine cells data, we would use alltypes(amacrine, "G"). The result is automatically
displayed as an array of plot panels.

> plot(alltypes(amacrine, "G"))
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Array of Gcross functions for amacrine.

The result of alltypes is a ‘function array’ (object of class "fasp") which can be indexed
by row and column subscripts. If the point pattern has a large number of possible types, you
can compute the array of all possible pairwise G functions, then use the subscript operator to
inspect a subset of the array.
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> data(lansing)

> a <- alltypes(lansing, "G")

> plot(a[2:3, 2:3])
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Array of Gcross functions for lansing.

Also defined are the “i-to-any” summaries

• Gi•(r), the distribution function of the distance from a point of type i to the nearest other
point of any type;

• Ki•(r) is 1/λ times the expected number of points of any type within a distance r of a
typical point of type i. Here λ =

∑
j λj is the intensity of the entire process X.

• Ji• defined by

Ji•(r) =
1 − Gi•

1 − F (r)

These are computing by Gdot, Kdot and Jdot respectively, or using alltypes.

> plot(Gdot(amacrine, "on"))
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> plot(alltypes(amacrine, "Gdot"))
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Array of Gdot functions for amacrine.

The pair correlation functions corresponding to the K-functions can also be computed, using
pcf.fasp.

> K <- alltypes(amacrine, "K")

> P <- pcf(K, method = "b", spar = 1)

> plot(P, lwd = 2)
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Array of pair correlation functions for amacrine

23.5 Mark correlation function

The mark correlation function ρf (r) of a stationary marked point process Y is a measure of
the dependence between the marks of two points of the process a distance r apart [42]. It is
informally defined as

ρf (r) =
E[f(M1,M2)]

E[f(M,M ′)]

where M1,M2 are the marks attached to two points of the process separated by a distance r,
while M,M ′ are independent realisations of the marginal distribution of marks.

Here f is any function f(m1,m2) with two arguments which are possible marks of the pattern,
and which returns a nonnegative real value. Common choices of f are:

• for continuous real-valued marks, f(m1,m2) = m1m2;

• for categorical marks (multitype point patterns), f(m1,m2) = 1 {m1 = m2};

• for marks taking values in [0, 2π], f(m1,m2) = sin(m1 − m2).

Note that ρf (r) is not a “correlation” in the usual statistical sense. It can take any nonneg-
ative real value. The value 1 suggests “lack of correlation”: under random labelling, ρf (r) ≡ 1.
The interpretation of values larger or smaller than 1 depends on the choice of function f .

The mark correlation function is computed in spatstat by markcorr. It has the syntax

> markcorr(X, f)

where X is a point pattern and f is an R language function. For example, for the amacrine

data, the natural function f is f(m1,m2) = 1 {m1 = m2} which we encode as

> eqfun <- function(m1, m2) {

+ m1 == m2

+ }
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Then simply

> M <- markcorr(amacrine, eqfun, correction = "translate", method = "density",

+ kernel = "epanechnikov")

> plot(M)
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23.6 Randomisation tests

Simulation envelopes of summary functions can be used to test various null hypotheses for
marked point patterns.

23.6.1 Poisson null

The null hypothesis of a homogeneous Poisson marked point process can be tested by direct
simulation, using envelope as before. For example, using the cross-type K function as the test
statistic,

> data(amacrine)

> E <- envelope(amacrine, Kcross, nsim = 39, i = "on", j = "off")

> plot(E, main = "test of marked Poisson model")
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Notice that the arguments i and j here do not match any of the formal arguments of
envelope, so they are passed to Kcross. This has the effect of calling Kcross(X, i="on", j="off")

for each of the simulated point patterns X. Each simulated pattern is generated by the homoge-
neous Poisson point process with intensities estimated from the dataset amacrine.

23.6.2 Independence of components

It’s also possible to test other null hypotheses by a randomisation test. We discussed two popular
null hypotheses:

• random labelling: given the locations X, the marks are conditionally independent and
identically distributed;

• independence of components: the sub-processes Xm of points of each mark m, are inde-
pendent point processes.

In a randomisation test of the independence-of-components hypothesis, the simulated pat-
terns X are generated from the dataset by splitting the data into sub-patterns of points of one
type, and randomly shifting these sub-patterns, independently of each other. The shifting is
performed by rshift:

> E <- envelope(amacrine, Kcross, nsim = 39, i = "on", j = "off",

+ simulate = expression(rshift(amacrine, radius = 0.25)))

> plot(E, main = "test of independent components")
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The independence-of-components hypothesis seems to be accepted in this example.
Under the independence hypothesis,

Kij(r) = πr2

Gij(r) = Fj(r)

Jij(r) ≡ 1.

while the “i-to-any” functions have complicated values. Thus, we would normally use Kij or Jij

to construct a test statistic for independence of components.

23.6.3 Random labelling

In a randomisation test of the random labelling null hypothesis, the simulated patterns X are
generated from the dataset by holding the point locations fixed, and randomly resampling the
marks, either with replacement (independent random sampling) or without replacement (ran-
domly permuting the marks). The resampling operation is performed by rlabel.

Under random labelling,

Ji•(r) = J(r)

Ki•(r) = K(r)

Gi•(r) = G(r)

(where G,K, J are the summary functions for the point process without marks) while the other,
cross-type functions have complicated values. Thus, we would normally use something like
Ki•(r) − K(r) to construct a test statistic for random labelling.

To do this, cook up a little function to evaluate Ji•(r) − J(r):

> Jdif <- function(X, ..., i) {

+ Jidot <- Jdot(X, ..., i = i)

+ J <- Jest(X, ...)

+ dif <- eval.fv(Jidot - J)

+ return(dif)

+ }

> E <- envelope(amacrine, Jdif, nsim = 39, i = "on", simulate = expression(rlabel(amacrine))

> plot(E, main = "test of random labelling")

Copyright c©CSIRO 2008



150 Methods 10: exploratory tools for marked point patterns

0.00 0.01 0.02 0.03 0.04 0.05

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

test of random labelling

r (one unit = 662 microns)

Jd
ot

(r
) 

−
 J

(r
)

The random labelling hypothesis also seems to be accepted.
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24 Methods 11: multitype Poisson models

This section covers multitype Poisson process models: basic properties, simulation, and fitting
models to data.

24.1 Theory

24.1.1 Complete spatial randomness and independence

A uniform Poisson marked point process in R
2 with marks in M can be defined in the following

equivalent ways.

• randomly marked Poisson process (Poisson [X], iid [M |X]): a Poisson point process of
locations X with intensity β is first generated. Then each point xi is labelled with a
random mark mi, independently of other points, with distribution P {Mi = m} = pm for
m ∈ M.

• superposition of independent Poisson processes (iid [M ], Poisson [X|M ]): for each possible
mark m ∈ M, a Poisson process Xm is generated, with intensity βm. The points of Xm

are tagged with the mark m. Then the processes Xm with different marks m ∈ M are
superimposed, to yield a marked point process.

• Poisson marked point process (jointly Poisson [X,M ]): a Poisson process on R
2 × M is

generated, with intensity function λ(u,m) = βm at location u and mark m.

These constructions are equivalent when βm = pmβ. See the lovely book by Kingman [28].

Since the established term CSR (‘complete spatial randomness’) is used to refer to the uniform
Poisson point process, I propose that the uniform marked Poisson point process should be called
‘complete spatial randomness and independence’ (CSRI).

24.1.2 Inhomogeneous Poisson marked point processes

A inhomogeneous Poisson marked point process Y with ‘joint’ intensity λ(u,m) for locations u
and mark values m is simply defined as an inhomogeneous Poisson point process on R

2 × M
with intensity function λ(u,m).

Let’s restrict attention to the case of categorical marks, where M is finite. Then the process
Y has the following properties:

• The locations X, obtained by removing the marks, constitute an inhomogeneous Poisson
process in R

2 with intensity function

β(u) =
∑

m

λ(u,m).

• Conditional on the locations X, the marks attached to the points are independent. For a
point xi the conditional distribution of the mark mi is P{Mi = m} = λ(xi,m)/β(xi).

• The sub-process Xm of points with mark m, is an inhomogeneous Poisson point process
with intensity βm(u) = λ(u,m).

• The sub-processes Xm of points with different marks m are independent processes.
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24.2 Simulation

Realisations of Poisson marked point processes can be generated using rmpoispp. The first
argument of this command specifies the intensity or intensity function λ(u,m). It can be a
constant, a vector of constants, or an R function.

> par(mfrow = c(1, 2))

> Xunif <- rmpoispp(100, types = c("A", "B"), win = square(1))

> plot(Xunif, main = "CSRI, intensity A=100, B=100")

> Xunif <- rmpoispp(c(100, 20), types = c("A", "B"), win = square(1))

> plot(Xunif, main = "CSRI, intensity A=100, B=20")

> par(mfrow = c(1, 1))

CSRI, intensity A=100, B=100 CSRI, intensity A=100, B=20

> X1 <- rmpoispp(function(x, y, m) {

+ 300 * exp(-3 * x)

+ }, types = c("A", "B"))

> lamb <- function(x, y, m) {

+ ifelse(m == "A", 300 * exp(-4 * x), 300 * exp(-4 * (1 - x)))

+ }

> X2 <- rmpoispp(lamb, types = c("A", "B"))

> par(mfrow = c(1, 2))

> plot(X1, main = "")

> plot(X2, main = "")

> par(mfrow = c(1, 1))
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24.3 Fitting Poisson models

Poisson marked point process models may be fitted to point pattern data using ppm. Currently
the methods are only available for multitype point processes (categorical marks).

24.3.1 Probability densities

Let W ⊂ R
2 be the study region, and M the (finite) set of possible marks. Then a marked point

pattern is a set

y = {(x1,m1), . . . , (xn,mn)}, xi ∈ W, mi ∈ M, n ≥ 0

of pairs (xi,mi) of locations xi with marks mi. It can be viewed as a point pattern in the
Cartesian product W ×M.

The probability density of a marked point process is a function f(y) defined for all marked
point patterns y including the empty pattern ∅.

The process with probability density f(y) ≡ 1 is the uniform Poisson marked point process
with intensity 1 for each mark. That is, for this model, the sub-process of points with mark
mi = m is a uniform Poisson process with intensity 1. If the marks are removed, we obtain a
Poisson point process with intensity equal to |M|, the number of possible types.

The uniform Poisson marked point process with intensity λ(u,m) = βm has probability
density

f(y) = exp

(
∑

m∈M

(1 − βm)|W |
)

n(y)∏

i=1

βmi

= exp

(
∑

m∈M

(1 − βm)|W |
)
∏

m∈M

βnm(y)
m

where nm(y) is the number of points in y having mark value m.

The inhomogeneous Poisson marked point process with intensity function λ(u,m), at location
u ∈ W and mark m ∈ M, has probability density
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f(y) = exp

(
∑

m∈M

∫

W
(1 − λ(u,m) du

)
n(y)∏

i=1

λ(xi,mi). (48)

24.3.2 Maximum likelihood

For the multitype Poisson process with intensity function λ(u,m) at location u ∈ W and mark
m ∈ M, the loglikelihood is, up to a constant,

log L =

n∑

i=1

log λ(xi,mi) −
∑

m∈M

∫

W
λ(u,m) du. (49)

where mi is the mark attached to data point xi. This is formally equivalent to the loglikelihood
of a Poisson loglinear regression, so the Berman-Turner algorithm can again be used to maximise
the loglikelihood.

24.3.3 Model-fitting in spatstat

Poisson marked point process models are fitted to data using ppm.
The trend formula in the call to ppm may involve the reserved name marks as a variable.

This refers to the marks of the points. Since the marks are categorical, marks is treated as a
factor variable for modelling purposes.

To fit the homogeneous multitype Poisson process (CSRI), equation (50), we call

> ppm(X, ~marks)

The formula ~marks indicates that the trend depends only on the marks, and not on spatial
location; since marks is a factor, the trend has a separate constant value for each level of marks.
This is the model (50).

Note that if we had typed

> ppm(X, ~1)

this would have fitted the special case of CSRI where the intensities βm are equal, βm ≡ α say,
for all possible marks. That model is only appropriate if we believe that all mark values are
equally likely.

For the Lansing Woods data, the minimal model that makes sense is (50), so we call

> ppm(lansing, ~marks)

Stationary multitype Poisson process

Possible marks:

blackoak hickory maple misc redoak whiteoak

Trend formula: ~marks

Intensities:

beta_blackoak beta_hickory beta_maple beta_misc beta_redoak

135 703 514 105 346

beta_whiteoak

448
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Since lansing is a multitype point pattern (its marks are categorical), the variable marks in
the formula is a factor. The model has one parameter/coefficient for each level of the factor, i.e.
one coefficient for each type of point. In other words, this is the homogeneous Poisson marked
point process with intensity βm for points of mark m.

You’ll notice that the parameter estimates β̂m coincide with those obtained from summary.ppp

above. That is a consequence of the fact that the maximum likelihood estimates (obtained by
ppm) are also the method-of-moments estimates (obtained by summary.ppp).

A more complicated example is

> ppm(lansing, ~marks + x)

Nonstationary multitype Poisson process

Possible marks:

blackoak hickory maple misc redoak whiteoak

Trend formula: ~marks + x

Fitted coefficients for trend formula:

(Intercept) markshickory marksmaple marksmisc marksredoak

4.94294727 1.65008211 1.33694849 -0.25131442 0.94116400

markswhiteoak x

1.19951845 -0.07581624

This is the marked Poisson process whose intensity function λ((x, y,m)) at location (x, y)
and mark m satisfies

log λ((x, y,m)) = αm + βx

where α1, . . . , α6 and β are parameters. The intensity is loglinear in x, with a different intercept
for each mark, but the same slope (“parallel loglinear regression”). In the printout above, the
fitted slope parameter β is β̂ =-0.07581624. As discussed in Section 11.3 on page 61, the fitted
coefficients αm for the categorical mark are interpreted in the light of the ‘contrasts’ in force.
The default is the treatment contrasts, and the first level of the mark is blackoak, so in this
case the fitted coefficient for m=blackoak is 4.942947, while the fitted coefficient for m=hickory
is 4.942947 + 1.650082 = 6.593029 and so on.

> ppm(lansing, ~marks * x)

Nonstationary multitype Poisson process

Possible marks:

blackoak hickory maple misc redoak whiteoak

Trend formula: ~marks * x

Fitted coefficients for trend formula:

(Intercept) markshickory marksmaple marksmisc marksredoak

5.2378062 1.4424915 0.6795604 -0.8482907 0.6916392

markswhiteoak x markshickory:x marksmaple:x marksmisc:x

1.0901772 -0.7063987 0.4511157 1.3243326 1.2138278

marksredoak:x markswhiteoak:x

0.5380413 0.2421379
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The symbol * here is an ‘interaction’ in the usual sense for linear models. The fitted model
is the marked Poisson process with

log λ((x, y,m)) = αm + βmx

where α1, . . . , α6 and β1, . . . , β6 are parameters. The intensity is loglinear in x with a different
slope and intercept for each mark.

The result of ppm is again an object of class "ppm" representing a fitted point process model.
To plot the fitted intensity and conditional intensity of the fitted model, use plot.ppm. For a
multitype point process you will get a separate plot for each possible mark value.

More complicated examples are:

> ppm(lansing, ~marks * polynom(x, y, 2))

> ppm(lansing, ~marks * harmonic(x, y, 2))
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25 Methods 12: Gibbs models for multitype point patterns

Gibbs point process models (section 18) are also available for marked point processes, and can
be fitted to data using ppm. Currently the methods are only implemented for multitype point
processes (categorical marks), so we restrict attention to this case.

25.1 Gibbs models

Much of the theory of Gibbs models described in Section 18 carries over immediately to multitype
point processes.

25.1.1 Conditional intensity

The conditional intensity λ(u,X) of an (unmarked) point process X at a location u was defined
in section 18.5. Roughly speaking λ(u,x) du is the conditional probability of finding a point
near u, given that the rest of the point process X coincides with x.

For a marked point process Y the conditional intensity is a function λ((u,m),Y) giving a
value at a location u for each possible mark m. For a finite set of marks M , we can interpret
λ((u,m),y) du as the conditional probability finding a point with mark m near u, given the rest
of the marked point process.

The conditional intensity is related to the probability density f(y) by

λ((u,m),y) =
f(y ∪ {u})

f(y)

for (u,m) 6∈ y.
For Poisson processes, the conditional intensity λ((u,m),y) coincides with the intensity

function λ(u,m) and does not depend on the configuration y. For example, the homogeneous
Poisson multitype point process or “CSRI” (Section 24.1.1) has conditional intensity

λ((u,m),y) = βm (50)

where βm ≥ 0 are constants which can be interpreted in several equivalent ways (section 18.5).
The sub-process consisting of points of type m only is Poisson with intensity βm. The process
obtained by ignoring the types, and combining all the points, is Poisson with intensity β =∑

m βm. The marks attached to the points are i.i.d. with distribution pm = βm/β.

25.1.2 Pairwise interactions

A multitype pairwise interaction process is a Gibbs process with probability density of the form

f(y) = α




n(y)∏

i=1

bmi
(xi)





∏

i<j

cmi,mj
(xi, xj)


 (51)

where bm(u),m ∈ M are functions determining the ‘first order trend’ for points of each type,
and cm,m′(u, v),m,m′ ∈ M are functions determining the interaction between a pair of points of
given types m and m′. The interaction functions must be symmetric, cm,m′(u, v) = cm,m′(v, u)
and cm,m′ ≡ cm′,m. The conditional intensity is

λ((u,m);y) = bm(u)

n(y)∏

i=1

cm,mi
(u, xi). (52)
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25.1.3 Pairwise interactions not depending on marks

The simplest examples of multitype pairwise interaction processes are those in which the inter-
action term cm,m′(u, v) does not depend on the marks m,m′. For example, we can take any of
the interaction functions c(u, v) described in section 18.3 and use it to construct a marked point
process.

Such processes can be constructed equivalently as follows [8]:

• an unmarked Gibbs process is generated with first order term b(u) =
∑

m∈M bm(u) and
pairwise interaction c(u, v).

• each point xi of this unmarked process is labelled with a mark mi with probability distri-
bution P{mi = m} = bi(xi)/b(xi) independent of other points.

If additionally the intensity functions are constant, bm(u) ≡ βm, then such a point process
has the random labelling property.

25.1.4 Mark-dependent pairwise interactions

Various complex kinds of behaviour can be created by postulating a pairwise interaction that
does depend on the marks.

A simple example is the multitype hard core process in which βm(u) ≡ β and

cm,m′(u, v) =

{
1 if ||u − v|| > rm,m′

0 if ||u − v|| ≤ rm,m′

(53)

where rm,m′ = rm′,m > 0 is the hard core distance for type m with type m′. In this process, two
points of type m and m′ respectively can never come closer than the distance rm,m′ .

By setting rm,m′ = ∞ for a particular pair of marks m,m′ we effectively remove the in-
teraction term between points of these types. If there are only two types, say M = {1, 2},
then setting r1,2 = ∞ implies that the sub-processes X1 and X2, consisting of points of types
1 and 2 respectively, are independent point processes. In other words the process satisfies the
independence-of-components property.

The multitype Strauss process has pairwise interaction term

cm,m′(u, v) =

{
1 if ||u − v|| > rm,m′

γm,m′ if ||u − v|| ≤ rm,m′

(54)

where rm,m′ > 0 are interaction radii as above, and γm,m′ ≥ 0 are interaction parameters.
In contrast to the unmarked Strauss process, which is well-defined only when its interaction

parameter γ is between 0 and 1, the multitype Strauss process allows some of the interaction
parameters γm,m′ to exceed 1 for m 6= m′, provided one of the relevant types has a hard core
(γm,m = 0 or γm′,m′ = 0).

If there are only two types, say M = {1, 2}, then setting γ1,2 = 1 implies that the sub-
processes X1 and X2, consisting of points of types 1 and 2 respectively, are independent Strauss
processes.

The multitype Strauss-hard core process has pairwise interaction term

cm,m′(u, v) =





0 if ||u − v|| < hm,m′

γm,m′ if hm,m′ ≤ ||u − v|| ≤ rm,m′

1 if ||u − v|| > rm,m′

(55)

where rm,m′ > 0 are interaction distances and γm,m′ ≥ 0 are interaction parameters as above,
and hm,m′ are hard core distances satisfying hm,m′ = hm′,m and 0 < hm,m′ < rm,m′ .
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25.2 Pseudolikelihood for multitype Gibbs processes

Models can be fitted by maximum pseudolikelihood. For a multitype Gibbs point process with
conditional intensity λ((u,m);y), the log pseudolikelihood is

log PL =

n(y)∑

i=1

log λ((xi,mi);y) −
∑

m∈M

∫

W
λ((u,m);y) du. (56)

The pseudolikelihood can be maximised using an extension of the Berman-Turner device [3].

25.3 Fitting Gibbs models to multitype data

Marked point process models may be fitted to point pattern data using ppm. Currently the
methods are only available for multitype point processes (categorical marks).

25.3.1 Interactions not depending on marks

The model-fitting function ppm expects an argument interaction that specifies the interpoint
interaction structure of the point process. The default is ‘no interaction’, corresponding to a
Poisson process.

On page 118 there is a list of interpoint interactions for modelling unmarked point patterns.
These interactions can also be used, without modification, to fit models to multitype point
patterns.

For example

> ppm(lansing, ~marks, Strauss(0.07))

fits a multitype version of the Strauss process (section 18.3.2) in which the conditional intensity
is

λ((u,m),y) = βmγt(u,y).

Here βm are constants which account for the unequal abundance of the different species of tree.
The other quantities are the same as in (42). The interaction between two trees is assumed to be
the same for all species, and is controlled by the interaction parameter γ and interaction radius
r = 0.07. For example, this includes the case γ = 0 where no two trees (whatever species they
belong to) come closer than 0.07 units apart, a ‘multitype hard core process’.

25.3.2 Interactions depending on marks

There are two additional interpoint interactions defined in spatstat for multitype point pat-
terns:

MultiStrauss the multitype Strauss process
MultiStraussHard multitype hybrid hard core / Strauss process

In these models, the interaction between two points depends on the types of the points as
well as their separation. For example, in the multitype Strauss process, for each pair of types i
and j there is an interaction radius rij and interaction parameter γij.

To fit the stationary multitype Strauss process to the dataset betacells:

> data(betacells)

> r <- 30 * matrix(c(1, 2, 2, 1), nrow = 2, ncol = 2)

> ppm(betacells, ~1, MultiStrauss(c("off", "on"), r), rbord = 60)

Copyright c©CSIRO 2008



160 Methods 12: Gibbs models for multitype point patterns

Stationary Multitype Strauss process

Possible marks:

off on

First order terms:

beta_off beta_on

0.0001373652 0.0001373652

Interaction: Pairwise interaction family

Interaction: Multitype Strauss process

2 types of points

Possible types:

[1] "off" "on"

Interaction radii:

off on

off 30 60

on 60 30

Fitted interaction parameters gamma_ij:

off on

off 0.0000 0.8303

on 0.8303 0.0000

Relevant coefficients:

markoffxoff markoffxon markonxon

-17.2378706 -0.1860184 -17.2138383

To fit a nonstationary multitype Strauss process with log-cubic polynomial trend:

> ppm(betacells, ~polynom(x, y, 3), MultiStrauss(c("off", "on"),

+ r), rbord = 60)

For more detailed explanation and examples of modelling and the interpretation of model
formulae for point processes, see [5].

25.3.3 Plotting the fitted interaction

The fitted pairwise interaction in a point process model can be plotted using fitin. The value
returned by fitin is a function array (class "fasp").

> model <- ppm(betacells, ~polynom(x, y, 3), MultiStrauss(c("off",

+ "on"), r), rbord = 60)

> plot(fitin(model))
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26 Line segment data

spatstat also has some facilities for handling spatial patterns of line segments.

For example, the copper dataset in spatstat contains a dataset copper$Lines that records
the locations of geological faults in a survey region.

> data(copper)

> L <- copper$Lines

> L <- rotate(L, pi/2)

> plot(L)

L

A spatial pattern of line segments is represented by an object of class "psp". It consists of
a list of line segments (given by the coordinates of their two endpoints), and a window in which
the line segments were observed. The line segments may also carry marks.

Objects of class "psp" can be created by the function psp or obtained by converting other
data using the function as.psp.

Capabilities available for this class include:

[.psp subset operator (also performs clipping)
marks.psp extract marks
endpoints.psp extract midpoints of line segments
midpoints.psp compute midpoints of line segments
lengths.psp compute lengths of line segments
angles.psp compute angles of orientation for line segments
rotate.psp rotate a line segment pattern
shift.psp shift a line segment pattern
affine.psp apply affine transformation
pairdist.psp distances between line segments
crossdist.psp distances between line segments
nndist.psp closest distances between line segments
density.psp kernel-smoothed intensity image
crossing.psp find intersection points between line segments
selfcrossing.psp find intersection points between line segments
unitname.psp determine units of length
rescale.psp change units of length
rshift.psp apply random shift to each line segment
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There are also the usual methods

plot.psp plot a line segment pattern
print.psp print information on a line segment pattern
summary.psp compute summary of a line segment pattern

> summary(L)

146 line segments

Lengths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.09242 6.61400 12.18000 15.02000 19.95000 65.48000

Total length: 2192.57251480451 km

Length per unit area: 0.196937548404655

Angles (radians):

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.008107 0.549500 1.747000 1.378000 2.113000 2.912000

Window: polygonal boundary

single connected closed polygon with 4 vertices

enclosing rectangle: [-158.23, -0.19] x [-0.335, 70.11] km

Window area = 11133.3 square km

Unit of length: 1 km

> plot(distmap(L))

> plot(L, add = TRUE)

distmap(L)
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27 Further information on spatstat

Help files

For information on a particular command in spatstat, consult the online help file by typing
help(command). The help files are detailed and extensive. The complete manual is over 500
pages.

For examples of the use of a particular command, read the examples section in the help file,
or type example(command) to see the examples executed.

Quick reference

Type help(spatstat) for a quick-reference overview of all the functions available in the package.
For a demonstration of many of the capabilities of spatstat, type demo(spatstat).
For a visual display of all the datasets supplied in spatstat, type demo(data).

Website

The website www.spatstat.org contains information on recent updates to the package, frequently-
asked questions, bug fixes, literature and other developments.

Modelling

For examples on fitting point process models, see [5].

Citation

If you use spatstat in a research publication, it would be much appreciated if you could cite
the paper [4], or mention spatstat in the acknowledgements.

In doing so, you will help us to justify the expenditure of time and effort on maintaining and
developing the package.

Citation details are also available in the package by typing citation(package="spatstat").

Queries and requests

If you have difficulty in getting the package to do what you want, or if you have a suggestion for
additional features that could be added, please contact the package authors, adrian@maths.uwa.edu.au
and r.turner@auckland.ac.nz, or email the R special interest group in spatial and geographical
statistics, r-sig-geo@stat.math.ethz.ch.
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Number 22 in Jyväskylä Studies in Computer Science, Economics and Statistics. University
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analysis of deviance, 65

binary mask, 26, 42

circular windows, 40

classes, 25
in R, 25
in spatstat, 25

clickppp, 24

complete spatial randomness, 53
and independence, 130, 151
definition, 53
Kolmogorov-Smirnov test, 56

quadrat counting test, 55
conditional intensity, 113

for marked point processes, 157

contrasts, 61, 155
covariate effects, 8
covariates, 6, 15, 61

in ppm, 61

Cox process, 80
CSRI, 130, 151

conditional intensity, 157
fitting to data, 154

simulating, 152

data entry, 31
at the terminal, 31

basic, 31, 32
checking, 34
from file, 32

marked point patterns, 133
marks, 32
point-and-click, 24

datasets

inspecting, 19
provided in spatstat, 24

dispatching, 25
distance methods, 83

distances
empty space, 83, 84
nearest neighbour, 83, 90

pairwise, 83, 92
distmap, 83

edge effects, 85

empty space distances, 83, 84

empty space function, 85
envelopes, 98

and Monte Carlo tests, 98
for any fitted model, 101
for any simulation procedure, 101
in spatstat, 98
of summary functions, 98

exploratory data analysis, 20
for marked point patterns, 138

fitted model, 119
goodness-of-fit, 67, 125
interpretation of coefficients, 61
methods for, 63
residuals, 68, 127
simulation of, 66

fitting models
by Huang-Ogata method, 124
maximum pseudolikelihood, 116
to marked point patterns, 154, 159
via summary statistics, 98, 102

fv, 30

geometrical transformations, 49
Gibbs models, 109

area-interaction, 112
Diggle-Gates-Stibbard, 112
Diggle-Gratton, 112
fitting, 116

by Huang-Ogata method, 124
maximum pseudolikelihood, 116
ppm, 116

fitting to marked point patterns, 159
goodness-of-fit, 125
hard core process, 110
in spatstat, 118
infinite order interaction, 112
multitype, 157

maximum pseudolikelihood, 159
multitype pairwise interaction, 157
pairwise interaction, 112
residuals, 127
simulation, 114
simulation of fitted model, 121
soft core, 112
Strauss process, 111
Strauss-hard core, 112
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goodness-of-fit, 67
for fitted Gibbs model, 125

for Poisson models, 67

hard core process, 110
multitype, 158

Huang-Ogata method, 124

im, 25, 74
images, 74

computing with, 78
creating, 74

from raw data, 74
exploratory inspection of, 76
extracting subset, 77

plotting, 76
returned by a function, 75

independence of components, 130, 148
intensity

function, 37
kernel estimator, 37

homogeneous, 36
inhomogeneous, 37

investigation of, 36
measure, 37
of marked point process, 138

interaction, 7, 10
distance methods, 83

in spatstat, 118
multitype, 157, 159

in spatstat, 159
plotting a fitted interaction, 160

Q–Q plot, 73
simple models, 79
summary functions, 83

K function, 21, 92

for multitype point pattern, 142
inhomogeneous, 105

kernel estimator of intensity, 37, 38
kernel smoothing of marks, 140

Kolmogorov-Smirnov test
of CSR, 56
of inhomogeneous Poisson, 68

line segments, 162
lurking variable plot, 70

mark correlation function, 146

marked point patterns

cutting marks into bands, 136

data entry, 133
exploratory data analysis, 138

exploring marks, 140
inspecting, 134
joint and conditional analysis, 130

manipulating, 136
methodological issues, 130

model-fitting, 154, 159
probabilistic formulation, 129

randomisation tests, 130
separating into types, 136
summary functions, 142

marked point process
intensity, 138

marks, 5, 14, 129
categorical, 33

data entry, 31, 32
exploratory data analysis, 140

manipulating, 136
operations on, 48
smoothing, 140

spatial trend in, 140
versus covariates, 14

markstat, 142
marktable, 141

Matern cluster process, 79
maximum likelihood, 58
maximum pseudolikelihood, 116, 159

for multitype Gibbs models, 159
improvements over, 124

methods, 25
default method, 27

dispatch, 25
minimum contrast, 98, 102
model validation, 67, 125

Monte Carlo test, 98
pointwise, 98

simultaneous, 99
multitype hard core process, 158

multitype point pattern, 9, 10, 21, 33
multitype point patterns

separating into types, 136
summary functions, 142

multitype Strauss process, 158

nearest neighbour distances, 83, 90
nndist, 83

nuisance parameters, 122
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owin, 25, 40

pairdist, 83

pairwise distances, 83, 92

pairwise interaction process, 110

point pattern, 5

marked, 129

marks, 5, 14

multitype, 9, 10

needs window, 47

point process model for, 12

standard model, 13

point process, 12

point process models

area-interaction, 112

Diggle-Gates-Stibbard, 112

Diggle-Gratton, 112

Gibbs, 109

hard core, 110

infinite order interaction, 112

pairwise interaction, 110, 112

soft core, 112

Strauss, 111

Strauss-hard core, 112

Poisson cluster processes, 79

Poisson models

fitting, 59

goodness-of-fit, 67

homogeneous, 53

inhomogeneous, 58

log-likelihood, 59

marked, 151

maximum likelihood, 58

residuals, 68

Poisson point process

homogeneous

definition, 53

simulation, 53

inhomogeneous

definition, 58

fitting, 59

likelihood, 59

motivation, 58

simulation, 58

Poisson-derived models, 79

polygonal windows, 26, 41

ppm, 63, 119

marked Gibbs point process models, 159

marked Poisson point process models,
154

methods for, 63
ppp, 25

combining several, 49
extracting subset, 47
format, 45
geometrical transformations, 49
in arbitrary window, 44
manipulating, 45
needs window, 47
operations on, 47
ways to make, 35

probability density, 109
profile pseudolikelihood, 122
pseudolikelihood, 116

profile pseudolikelihood, 122

quadrat counting, 20, 37
quadrat counting test

of CSR, 55
quadrat test

of inhomogeneous Poisson, 67

R, 16
contributed packages, 17
where to get, 16

random labelling, 130, 149
random thinning, 58
randomisation tests, 130, 147

for marked point patterns, 147
rectangular windows, 26, 40
residuals, 68, 127

for fitted Gibbs model, 127
for Poisson models, 68
lurking variable plot, 70
Q–Q plot, 72
smoothed residual field, 70

return value, 28
rpoispp, 53, 58
runifpoint, 54

sequential models, 81
simulation

of fitted Gibbs model, 121
of fitted Poisson model, 66

smoothed residual field, 70
spatstat, 18, 164

citing, 18
getting started, 18
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installing, 18
split, 23
standard model, 13
Strauss process, 111

fitting to data, 117
multitype, 158

summary functions, 83
and Monte Carlo tests, 98
critique, 96
edge effects, 85
envelopes, 98
F , 85
for multitype point patterns, 142
G, 90
inference using, 98
inhomogeneous K, 105
J , 95
K, 92
L, 93
mark correlation, 146
model-fitting with, 102
pair correlation, 93

tests
χ2 quadrat counting, 55
Kolmogorov-Smirnov, 56, 68
Monte Carlo, 98

thinning, 80
Thomas process, 79
tips, 25, 29, 34, 48, 84, 87, 99, 133
treatment contrasts, 61

unitname, 35
units of length, 35

validation, 67, 125

windows, 40
binary mask, 26, 42
circular, 40
needed in any point pattern, 47
operations on, 44
polygonal, 26, 41
rectangular, 26, 40
returned by functions, 43

χ2 quadrat counting test, 55
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