

Everyday Rails Testing with RSpec
A practical approach to test-driven development

Aaron Sumner

This book is for sale at http://leanpub.com/everydayrailsrspec

This version was published on 2014-10-03

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

©2012 - 2014 Aaron Sumner

http://leanpub.com/everydayrailsrspec
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Aaron Sumner by spreading the word about this book on Twitter!

The suggested hashtag for this book is #everydayrailsrspec.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

https://twitter.com/search?q=#everydayrailsrspec

http://twitter.com
https://twitter.com/search?q=%23everydayrailsrspec
https://twitter.com/search?q=%23everydayrailsrspec

Contents

Preface to this edition . i

Acknowledgements . ii

1. Introduction . 1
Why RSpec? . 2
Who should read this book . 2
My testing philosophy . 4
How the book is organized . 5
Downloading the sample code . 6
Code conventions . 8
Discussion and errata . 9
About the sample application . 9

2. Setting up RSpec . 11
Gemfile . 12
Test database . 13
RSpec configuration . 15
Generators . 16
Applying your database schema to test 18
Questions . 19
Exercises . 19

3. Model specs . 21
Anatomy of a model spec . 21
Creating a model spec . 23
The new RSpec syntax . 25

CONTENTS

Testing validations . 27
Testing instance methods . 31
Testing class methods and scopes . 32
Testing for failures . 33
More about matchers . 34
DRYer specs with describe, context, before and after 35
Summary . 42
Question . 43
Exercises . 43

4. Generating test data with factories . 44
Factories versus fixtures . 45
Adding factories to the application . 46
Simplifying our syntax . 50
Associations and inheritance in factories 51
Generating more realistic fake data . 53
Advanced associations . 55
How to abuse factories . 57
Summary . 58
Exercises . 58

5. Basic controller specs . 60
Why test controllers? . 61
Why not test controllers? . 62
Controller testing basics . 62
Organization . 63
Setting up test data . 65
Testing GET requests . 66
Testing POST requests . 70
Testing PATCH requests . 72
Testing DELETE requests . 75
Testing non-CRUD methods . 76
Testing nested routes . 77
Testing non-HTML controller output . 78
Summary . 80
Exercises . 81

CONTENTS

6. Advanced controller specs . 82
Getting ready . 82
Testing the admin and user roles . 83
Testing the guest role . 86
Summary . 89
Exercise . 90

7. Controller spec cleanup . 91
Shared examples . 91
Creating helper macros . 99
Using custom RSpec matchers . 101
Summary . 102
Exercises . 103

8. Feature specs . 104
Why feature specs? . 105
What about Cucumber? . 105
Additional dependencies . 106
A basic feature spec . 106
From requests to features . 109
Adding feature specs . 109
Debugging feature specs . 110
A little refactoring . 111
Including JavaScript interactions . 112
Capybara drivers . 116
Waiting for JavaScript . 117
Summary . 117
Exercises . 118

9. Speeding up specs . 119
Optional, terse syntax . 120
Mocks and stubs . 125
Automation with Guard and Spring . 127
Tags . 129
Other speedy solutions . 130
Summary . 131

CONTENTS

Exercises . 132

10. Testing the rest . 133
Testing email delivery . 133
Testing file uploads . 137
Testing the time . 138
Testing web services . 140
Testing your application’s API . 143
Testing rake tasks . 146
Summary . 148
Exercises . 148

11. Toward test-driven development . 149
Defining a feature . 149
From red to green . 151
Cleaning up . 161
Summary . 162
Exercises . 163

12. Parting advice . 164
Practice testing the small things . 164
Be aware of what you’re doing . 164
Short spikes are OK . 164
Write a little, test a little is also OK . 165
Strive to write feature specs first . 166
Make time for testing . 166
Keep it simple . 166
Don’t revert to old habits! . 166
Use your tests to make your code better 167
Sell others on the benefits of automated testing 167
Keep practicing . 167
Goodbye, for now . 168

More testing resources for Rails . 169
RSpec . 169
Rails testing . 170

CONTENTS

About Everyday Rails . 172

About the author . 173

Colophon . 174

Change log . 175

Preface to this edition
Here it is, the RSpec 3 edition of Everyday Rails Testing with RSpec! A lot has changed,
and I hope you’ll find it worth the wait.

As with previous updates, I’ve rebuilt the sample application to use current versions
of Rails, RSpec, and the other gems used throughout the book. I also expanded some
sections–most notably, chapter 10, Testing the Rest. I also updated as needed to take
advantage of new features in RSpec 3 and Rails 4.1. While I’ve gone through the text
and code multiple times to look for problems, you may come across something that’s
not quite right or that you’d do differently. If you find any errors or have suggestions,
please share in the GitHub issues¹ for this release and I’ll address them promptly.

Thanks to all of you for your support–hope you like this edition, and I hope to hear
from you soon on GitHub, Twitter or email.

¹https://github.com/everydayrails/rails-4-1-rspec-3-0/issues

https://github.com/everydayrails/rails-4-1-rspec-3-0/issues
https://github.com/everydayrails/rails-4-1-rspec-3-0/issues

Acknowledgements
First, thank you to why the lucky stiff, wherever he may be, for introducing me
to Ruby through his weird, fun projects and books. Thanks also to Ryan Bates for
creating Railscasts² and teaching me more about Rails than anyone else. The Ruby
community just isn’t the same without them.

Thanks also to all the other great minds in the Ruby community I haven’t met for
making me a better developer–even if it doesn’t always show in my code.

Thanks to the readers of the Everyday Rails blog for providing good feedback on my
original series of RSpec posts, and helping me realize they might make for a decent
book. Thanks to everyone who purchased an early copy of the book–the response
it’s received has been incredible, and your feedback has helped tremendously.

Thanks to David Gnojek for critiquing the dozen or so covers I designed for the
book and helping me pick a good one. Check out Dave’s work in art and design at
DESIGNOJEK³.

Thanks to Andor Chen, Junichi Ito, Toshiharu Akimoto, and Shinkou Gyo, for the
work they’ve done to translate the book to Chinese and Japanese. I’m happy that,
through their efforts, I’ve been able to reach countless more developers than I would
have been able to on my own.

Thanks to family and friends who wished me the best for this project, even though
they had no idea what I was talking about.

And finally, thank you to my wife for putting up with my obsession with making
new things, even when it keeps me up way too late or awake all night. And thanks
to the cats for keeping me company while doing so.

²http://railscasts.com/
³http://www.designojek.com/

http://railscasts.com/
http://www.designojek.com/
http://railscasts.com/
http://www.designojek.com/

1. Introduction
Ruby on Rails and automated testing go hand in hand. Rails ships with a built-in test
framework; if it’s not to your liking you can replace it with one of your liking. As I
write this, Ruby Toolbox lists 17 projects under the Unit Test Frameworks category⁴
alone. So, yeah, testing’s pretty important in Rails. Yet, many people developing in
Rails are either not testing their projects at all, or at best only adding a few token
specs on model validations.

In my opinion, there are several reasons for this. Perhaps working with Ruby or web
frameworks is a novel enough concept, and adding an extra layer of work seems
like just that–extra work. Or maybe there is a perceived time constraint–spending
time on writing tests takes time away from writing the features our clients or bosses
demand. Or maybe the habit of defining “test” as the practice of clicking links in the
browser is just too hard to break.

I’ve been there. Historically, I haven’t considered myself an engineer in the tra-
ditional sense–yet just like traditional engineers, I have problems to solve. And,
typically, I find solutions to these problems in building software. I’ve been developing
web applications since 1995, but usually as a solo developer on shoestring, public
sector projects. Aside from some structured exposure to BASIC as a kid, a little C++
in college, and a wasted week of Java training in my second grown-up job outside of
college, I’ve never had any honest-to-goodness schooling in software development.
In fact, it wasn’t until 2005, when I’d had enough of hacking ugly spaghetti-style⁵
PHP code, that I sought out a better way to write web applications.

I’d looked at Ruby before, but never had a serious use for it until Rails began gaining
steam. There was a lot to learn–a new language, an actual architecture, and a more
object-oriented approach (despite what you may think about Rails’ treatment of
object orientation, it’s far more object oriented than anything I wrote in my pre-
framework days). Even with all those new challenges, though, I was able to create

⁴https://www.ruby-toolbox.com/categories/testing_frameworks
⁵http://en.wikipedia.org/wiki/Spaghetti_code

https://www.ruby-toolbox.com/categories/testing_frameworks
http://en.wikipedia.org/wiki/Spaghetti_code
https://www.ruby-toolbox.com/categories/testing_frameworks
http://en.wikipedia.org/wiki/Spaghetti_code

1. Introduction 2

complex applications in a fraction of the time it took me in my previous framework-
less efforts. I was hooked.

That said, early Rails books and tutorials focused more on speed (build a blog in 15
minutes!) than on good practices like testing. If testing were covered at all, it was
generally reserved for a chapter toward the end. Now, to be fair, newer educational
resources on Rails have addressed this shortcoming, and now demonstrate how to test
applications from the beginning. In addition, a number of books have been written
specifically on the topic of testing. But without a sound approach to the testing side,
many developers–especially those in a similar boat to the one I was in–may find
themselves without a consistent testing strategy.

My goal with this book is to introduce you to a consistent strategy that works for
me–one that you can then, hopefully, adapt to make work consistently for you, too.

Why RSpec?

For the most part, I have nothing against the other test frameworks out there. If I’m
writing a standalone Ruby library, I usually rely on MiniTest. For whatever reason,
though, RSpec is the one that’s stuck with me when it comes to testing my Rails
applications.

Maybe it stems from my backgrounds in copywriting and software development,
but for me RSpec’s capacity for specs that are readable, without being cumbersome,
is a winner. I’ll talk more about this later in the book, but I’ve found that with a
little coaching even most non-technical people can read a spec written in RSpec and
understand what’s going on.

Who should read this book

If Rails is your first foray into a web application framework, and your past pro-
gramming experience didn’t involve any testing to speak of, this book will hopefully
help you get started. If you’re really new to Rails, you may find it beneficial to
review coverage of development and basic testing in the likes of Michael Hartl’s
Rails Tutorial (look for the Rails 4-specific version online⁶), Daniel Kehoe’s Learn

⁶http://ruby.railstutorial.org

http://ruby.railstutorial.org
http://ruby.railstutorial.org

1. Introduction 3

Ruby on Rails, or Sam Ruby’s Agile Web Development with Rails 4, before digging
into Everyday Rails Testing with RSpec–this book assumes you’ve got some basic
Rails skills under your belt. In other words, this book won’t teach you how to use
Rails, and it won’t provide a ground-up introduction to the testing tools built into the
framework–we’re going to be installing RSpec and a few extras to make the testing
process as easy as possible to comprehend and manage.

If you’ve been developing in Rails for a little while, and maybe even have an
application or two in production–but testing is still a foreign concept–this book is for
you! I was in your shoes for a long time, and the techniques I’ll share here helped me
improve my test coverage and think more like a test-driven developer. I hope they’ll
do the same for you.

Specifically, you should probably have a grasp of

• Model-View-Controller application architecture, as used in Rails
• Bundler for gem dependency management
• How to run Rake tasks
• Basic command line tools
• Enough Git to switch between branches of a repository

On the more advanced end, if you’re familiar with using Test::Unit, MiniTest, or
even RSpec itself, and already have a workflow in place that (a) you’re comfortable
with and (b) provides adequate coverage, you may be able to fine-tune some of your
approach to testing your applications. But to be honest, at this point you’re probably
on board with automated testing and don’t need this extra nudge. This is not a book
on testing theory; it also won’t dig too deeply into performance issues. Other books
may be of more use to you in the long run.

Refer to More Testing Resources for Rails at the end of this book for links
to these and other books, websites, and testing tutorials.

1. Introduction 4

My testing philosophy

Discussing the right way to test your Rails application can invoke major shouting
matches amongst programmers–not quite as bad as, say, the Vim versus Emacs
debate, but still not something to bring up in an otherwise pleasant conversation
with fellow Rubyists. In fact, David Heinemeier-Hansen’s keynote at Railsconf 2014,
in which he declared TDD as “dead,” has sparked a fresh round of debates on the
topic.

So, yes, there is a right way to do testing–but if you ask me, there are degrees of right
when it comes to testing.

At the risk of starting additional riots among the Ruby test-driven/behavior-driven
development communities, my approach focuses on the following foundation:

• Tests should be reliable.
• Tests should be easy to write.
• Tests should be easy to understand.

If you mind these three factors in your approach, you’ll go a long way toward
having a sound test suite for your application–not to mention becoming an honest-
to-goodness practitioner of Test-Driven Development. Whatever that means these
days.

Yes, there are some tradeoffs–in particular:

• We’re not focusing on speed (though we will talk about it later).
• We’re not focusing on overly DRY code in our tests, but in tests, that’s not
necessarily a bad thing. We’ll talk about this, too.

In the end, though, the most important thing is that you’ll have tests–and reliable,
understandable tests, even if they’re not quite as optimized as they could be, are
a great way to start. It’s the approach that finally got me over the hump between
writing a lot of application code, calling a round of browser-clicking “testing,” and
hoping for the best; versus taking advantage of a fully automated test suite and using
tests to drive development and ferret out potential bugs and edge cases.

And that’s the approach we’ll take in this book.

1. Introduction 5

How the book is organized

In Everyday Rails Testing with RSpec I’ll walk you through taking a basic Rails 4.1
application from completely untested to respectably tested with RSpec 3.1. The book
is organized into the following activities:

• You’re reading chapter 1, Introduction, now.
• In chapter 2, Setting Up RSpec, we’ll set up a new or existing Rails application
to use RSpec, along with a few extra, useful testing tools.

• In chapter 3,Model Specs, we’ll tackle testing our application’s models through
reliable unit testing.

• Chapter 4, Generating Test Data with Factories, covers factories, making test
data generation straightforward.

• We’ll take an initial look at testing controllers in chapter 5, Basic Controller
Specs.

• Chapter 6, Advanced Controller Specs, is about using controller specs to make
sure your authentication and authorization layers are doing their jobs–that is,
keeping your app’s data safe.

• Chapter 7, Controller Spec Cleanup, is our first round of spec refactoring,
reducing redundancy without removing readability.

• In chapter 8, Feature Specs, we’ll move on to integration testing with feature
specs, thus testing how the different parts of our application interact with one
another.

• In chapter 9, Speeding up specs, we’ll go over some techniques for refactoring
and running your tests with performance in mind.

• Chapter 10, Testing the Rest, covers testing those parts of our code we haven’t
covered yet–things like email, file uploads, time-specific functionality, and
APIs.

• I’ll go through a step-by-step demonstration of test-driven development in
chapter 11, Toward Test-driven Development.

• Finally, we’ll wrap things up in chapter 12, Parting Advice.

Each chapter contains the step-by-step process I used to get better at testing my own
software. Many chapters conclude with a question-and-answer section, followed by

1. Introduction 6

a few exercises to followwhen using these techniques on your own. Again, I strongly
recommend working through the exercises in your own applications–it’s one thing
to follow along with a tutorial; it’s another thing entirely to apply what you learn to
your own situation. We won’t be building an application together in this book, just
exploring code patterns and techniques. Take those techniques and make your own
projects better!

Downloading the sample code

Speaking of the sample code, you can find a completely tested application on GitHub.

Get the source!
https://github.com/everydayrails/rails-4-1-rspec-3-0

If you’re familiar with Git (and, as a Rails developer, you should be), you can clone
the source to your computer. Each chapter’s work has its own branch. Grab that
chapter’s source to see the completed code, or the previous chapter’s source if you’d
like to follow along with the book. Branches are labeled by chapter number, but I’ll
also tell you which branch to check out at the start of that chapter.

If you’re not familiar with Git, you may still download the sample code a given
chapter. To begin, open the project on GitHub. Then, locate the branch selector and
select that chapter’s branch:

https://github.com/everydayrails/rails-4-1-rspec-3-0

1. Introduction 7

Finally, click the ZIP download button to save the source to your computer:

1. Introduction 8

Git Immersion⁷ is an excellent, hands-on way to learn the basics of Git
on the command line. So is Try Git⁸. For a handy refresher of the basics,
check out Git Reference⁹.

Code conventions

I’m using the following setup for this application:

• Rails 4.1: The latest version of Rails is the big focus of this book; however, as
far as I know the techniques I’m using will apply to any version of Rails from
3.0 onward. Your mileage may vary with some of the code samples, but I’ll do
my best to let you know where things might differ.

• Ruby 2.1: I don’t think you’ll see any major differences if you’re using 1.9 or
2.0. At this point I don’t recommend trying to progress through the book if
you’re still using Ruby 1.8.

⁷http://gitimmersion.com/
⁸http://try.github.io
⁹http://gitref.org

http://gitimmersion.com/
http://try.github.io
http://gitref.org
http://gitimmersion.com/
http://try.github.io
http://gitref.org

1. Introduction 9

• RSpec 3.1: RSpec 3.0 was released in spring, 2014. RSpec 3.1 appeared a few
months later and is by and large compatible with the 3.0 release. It’s relatively
close in syntax to RSpec 2.14, though there are a few differences.

If something’s particular to these versions, I’ll do my best to point it out. If you’re
working from an older version of any of the above, previous versions of the book
are available as free downloads through Leanpub with your paid purchase of this
edition. They’re not feature-for-feature identical, but you should hopefully be able
to see some of the basic differences.

Again, this book is not a traditional tutorial! The code provided here isn’t intended
to walk you through building an application; rather, it’s here to help you understand
and learn testing patterns and habits to apply to your own Rails applications. In other
words, you can copy and paste, but it’s probably not going to do you a lot of good.
You may be familiar with this technique from Zed Shaw’s Learn Code the Hard Way
series¹⁰–Everyday Rails Testing with RSpec is not in that exact style, but I do agree
with Zed that typing things yourself as opposed to copying-and-pasting from the
interwebs or an ebook is a better way to learn.

Discussion and errata

Nobody’s perfect, especially not me. I’ve put a lot of time and effort into making
sure Everyday Rails Testing with RSpec is as error-free as possible, but you may
find something I’ve missed. If that’s the case, head on over to the issues section for
the source on GitHub to share an error or ask for more details: https://github.com/
everydayrails/rails-4-1-rspec-3-0/issues

About the sample application

Our sample application is an admittedly simple, admittedly ugly little contacts
manager, perhaps part of a corporate website. The application lists names, email
addresses, and phone numbers to anyonewho comes across the site, and also provides
a simple, first-letter search function. Users must log in to add new contacts or make

¹⁰http://learncodethehardway.org/

http://learncodethehardway.org/
http://learncodethehardway.org/
https://github.com/everydayrails/rails-4-1-rspec-3-0/issues
https://github.com/everydayrails/rails-4-1-rspec-3-0/issues
http://learncodethehardway.org/

1. Introduction 10

changes to existing ones. Finally, users must have an administrator ability to add
new users to the system.

Up to this point, though, I’ve been intentionally lazy and only used Rails’ default
generators to create the entire application (see the 01_untested branch of the sample
code). This means I have a test directory full of untouched test files and fixtures. I
could run rake test at this point, and perhaps some of these tests would even pass.
But since this is a book about RSpec, a better solution will be to dump this folder,
set up Rails to use RSpec instead, and build out a more respectable test suite. That’s
what we’ll walk through in this book.

First things first: We need to configure the application to recognize and use RSpec
and to start generating the appropriate specs (and a few other useful files) whenever
we employ a Rails generator to add code to the application.

Let’s get started!

2. Setting up RSpec
As I mentioned in chapter 1, our contacts manager is currently functioning. At least
we think it’s functioning–our only proof of that is we clicked through the links, made
a few dummy accounts, and added and edited data. Of course, this doesn’t scale as
we add features. (I’ve deployed apps with even less tests than that; I bet some of you
have, too.) Before we go any further toward adding new features to the application,
we need to stop what we’re doing and add an automated test suite to it, using RSpec
and a few helper gems to make it happen.

Before we dive into those specs, though, we need to do some configuring. Once
upon a time, RSpec and Rails took some coaxing to get to work together. That’s
not really the case anymore, but we’ll still need to install a few things and tweak
some configurations before we write any specs.

In this chapter, we’ll complete the following tasks:

• We’ll start by using Bundler to install RSpec and other gems useful in testing.
• We’ll check for a test database and install one, if necessary.
• Next we’ll configure RSpec to test what we want to test.
• Finally, we’ll configure a Rails application to automatically generate files for
testing as we add new features.

Check out the 02_setup branch of the sample source to see the completed
code for this chapter. Using the command line, type

git checkout -b 02_setup origin/02_setup

If you’d like to follow along, start with the previous chapter’s branch:

git checkout -b 01_untested origin/01_untested

See chapter 1 for additional details.

2. Setting up RSpec 12

Gemfile

First things first: Since RSpec isn’t included in a default Rails application, we’ll need
to take a moment to install it and a few other gems to help us build our test suite.
We’ll use Bundler to add these dependencies. Let’s open our Gemfile and add the
following code:

Gemfile

1 group :development, :test do

2 gem "rspec-rails", "~> 3.1.0"

3 gem "factory_girl_rails", "~> 4.4.1"

4 end

5

6 group :test do

7 gem "faker", "~> 1.4.3"

8 gem "capybara", "~> 2.4.3"

9 gem "database_cleaner", "~> 1.3.0"

10 gem "launchy", "~> 2.4.2"

11 gem "selenium-webdriver", "~> 2.43.0"

12 end

These are the current versions of each gem as I wrote the RSpec 3.1/Rails 4.1 edition
of the book, in summer, 2014. Of course, any and all may update frequently, so keep
tabs on them on Rubygems.org, GitHub, and your favorite Ruby news feeds.

You need to know Bundler
If this previous code sample is confusing, please set aside this book
and find a tutorial on Bundler. (Then come back, please!) Any Rails
tutorial covering version 3.0 or newer will have content on Bundler. I also
recommend reviewing Bundler’s getting started guide¹¹. As it goes with
pretty much every other aspect of Rails development these days, we’ll be
using Bundler heavily in this book.

¹¹http://bundler.io

http://bundler.io
http://bundler.io

2. Setting up RSpec 13

Why install in two separate groups?

rspec-rails and factory_girl_rails are used in both the development and test envi-
ronments. Specifically, they are used in development by generators we’ll be utilizing
shortly. The remaining gems are only used when you actually run your specs, so
they’re not necessary to load in development. This also ensures that gems used solely
for generating code or running tests aren’t installed in your production environment
when you deploy to your server.

Run bundle install from your command line to install the gems onto your system.

So what did we just install?

• rspec-rails includes RSpec itself in a wrapper to add some extra Rails-specific
features.

• factory_girl_rails replaces Rails’ default fixtures for feeding test data to the
test suite with much more preferable factories.

• faker generates names, email addresses, and other placeholders for factories.
• capybara makes it easy to programatically simulate your users’ interactions
with your web application.

• database_cleaner helps make sure each spec run in RSpec begins with a clean
slate, by–you guessed it–cleaning data from the test database.

• launchy does one thing, but does it well: It opens your default web browser
on demand to show you what your application is rendering. Very useful for
debugging tests.

• selenium-webdriver will let us test JavaScript-based browser interactions with
Capybara.

I’ll cover each of these in more detail in future chapters, but in the meantime our
application has access to all the basic supports necessary to build a solid test suite.
Next up: Creating our test database.

Test database

If you’re adding specs to an existing Rails application, there’s a chance you’ve already
got a test database on your computer. If not, here’s how to add one.

2. Setting up RSpec 14

Open the file config/database.yml to see which databases your application is ready
to talk to. If you haven’t made any changes to the file, you should see something like
the following if you’re using SQLite:

config/database.yml

1 test:

2 adapter: sqlite3

3 database: db/test.sqlite3

4 pool: 5

5 timeout: 5000

Or this if you’re using MySQL:

config/database.yml

1 test:

2 adapter: mysql2

3 encoding: utf8

4 reconnect: false

5 database: contacts_test

6 pool: 5

7 username: root

8 password:

9 socket: /tmp/mysql.sock

Or this if you’re using PostgreSQL:

2. Setting up RSpec 15

config/database.yml

1 test:

2 adapter: postgresql

3 encoding: utf8

4 database: contacts_test

5 pool: 5

6 username: root # or your system username

7 password:

If not, add the necessary code to config/database.yml now, replacing contacts_test
with the appropriate name for your application.

Finally, to ensure there’s a database to talk to, run the following rake task:

$ bin/rake db:create:all

If you’re using a version of Rails prior to 4.1, replace the previous
command with bundle exec rake db:create:all. In general, anywhere
in this book you see bin/ references in the command line, you’ll need to
replace it with bundle exec.

If you didn’t yet have a test database, you do now. If you did, the rake task politely
informs you that the database already exists–no need to worry about accidentally
deleting a previous database. Now let’s configure RSpec itself.

RSpec configuration

Now we can add a spec folder to our application and add some basic RSpec
configuration. We’ll install RSpec with the following command line directive:

$ bin/rails generate rspec:install

And the generator dutifully reports:

2. Setting up RSpec 16

create .rspec

create spec

create spec/spec_helper.rb

create spec/rails_helper.rb

We’ve now got a configuration file for RSpec (.rspec), a directory for our spec files as
we create them (spec), and two helper files where we’ll further customize how RSpec
will interact with our code (spec/spec_helper.rb and spec/rails_helper.rb).
These last two files include lots of comments to explain what each customization
provides. You don’t need to read through them right now, but as RSpec becomes a
regular part of your Rails toolkit, I strongly recommend reading through them and
experimenting with different settings.

Next–and this is optional–I like to change RSpec’s output from the default format to
the easy-to-read documentation format. This makes it easier to see which specs are
passing and which are failing as your suite runs. It also provides an attractive outline
of your specs for–you guessed it–documentation purposes. Open .rspec and add the
following lines:

.rspec

--format documentation

If you’re using RSpec 3.0 and not 3.1, you may also want to remove the line
--warnings from this file. When warnings are enabled, RSpec’s output will include
any and all warnings thrown by your application and gems it uses. This can be useful
when developing a real application–always pay attention to deprecation warnings
thrown by your tests–but for the purpose of learning to test, I recommend shutting
it off and reducing the chatter in your test output. You can always add it back later.

Generators

One more optional setup step: Telling Rails to generate spec files for us when we use
built-in generators for adding models, controllers, and scaffolds to our application.

2. Setting up RSpec 17

Thanks to Railties¹², just by loading the rspec-rails and factory_girl_rails gems
we’re all set. Rails’ stock generators will no longer generate the default Test::Unit
files in test; they’ll generate RSpec files in spec (and factories in spec/factories).
However, if you’d like you can manually specify settings for these generators. If you
use the scaffold generator to add code to your application, youmaywant to consider
this. The default generator adds a lot of specs we won’t cover with much depth in
this book, such view specs.

Open config/application.rb and include the following code inside the Application
class:

config/application.rb

1 config.generators do |g|

2 g.test_framework :rspec,

3 fixtures: true,

4 view_specs: false,

5 helper_specs: false,

6 routing_specs: false,

7 controller_specs: true,

8 request_specs: false

9 g.fixture_replacement :factory_girl, dir: "spec/factories"

10 end

Can you guess what this code is doing? Here’s a rundown:

• fixtures: true specifies to generate a fixture for each model (using a Factory
Girl factory, instead of an actual fixture)

• view_specs: false says to skip generating view specs. I won’t cover them in
this book; instead we’ll use feature specs to test interface elements.

• helper_specs: false skips generating specs for the helper files Rails generates
with each controller. As your comfort level with RSpec improves, consider
changing this option to true and testing these files.

¹²http://api.rubyonrails.org/classes/Rails/Railtie.html

http://api.rubyonrails.org/classes/Rails/Railtie.html
http://api.rubyonrails.org/classes/Rails/Railtie.html

2. Setting up RSpec 18

• routing_specs: false omits a spec file for your config/routes.rb file. If
your application is simple, as the one in this book will be, you’re probably safe
skipping these specs. As your application grows, however, and takes on more
complex routing, it’s a good idea to incorporate routing specs.

• request_specs: false skips RSpec’s defaults for adding integration-level
specs in spec/requests. We’ll cover this in chapter 8, at which time we’ll just
create our own files.

• And finally, g.fixture_replacement :factory_girl tells Rails to generate
factories instead of fixtures, and to save them in the spec/factories directory.

Don’t forget, just because RSpec won’t be generating some files for you doesn’t mean
you can’t add them by hand, or delete any generated files you’re not using. For
example, if you need to add a helper spec, just add it inside spec/helpers, following the
spec file naming convention. So if we wanted to test app/helpers/contacts_helper.rb,
we’d add spec/helpers/contacts_helper_spec.rb. If we wanted to test a hypothetical
library in lib/my_library.rb we’d add a spec file spec/lib/my_library_spec.rb. And so
on.

Applying your database schema to test

Rails versions prior to 4.1 required you to manually copy your development database
structure into your test database via rake db:test:prepare or rake db:test:clone.
Now, however, Rails handles this for your automatically anytime you run a migra-
tion.

With that, our application is now configured to test with RSpec! We can even give it
a first run:

$ bin/rspec

No examples found.

Finished in 0.00027 seconds (files took 0.06527 seconds to load)

0 examples, 0 failures

Looks good! In the next chapter we’ll start using it to actually test the application’s
functionality, starting with its model layer.

2. Setting up RSpec 19

Questions

• Can I delete my test folder? If you’re starting a new application from scratch,
yes. If you’ve been developing your application for awhile, first run rake test

to verify that there aren’t any tests contained within the directory that you
may want to transfer to RSpec’s spec folder.

• Why don’t you test views? Trust me, creating reliable view tests is a hassle.
Maintaining them is even worse. As I mentioned when I set up my generators
to crank out spec files, I try to relegate testing UI-related code tomy integration
tests. This is a common practice among Rails developers. That said, there are
times when it makes sense to test a specific view. See chapter 12 for more
details.

Exercises

If you’re working from an existing code base:

• Add RSpec and the other required gems to your Gemfile, and use Bundler to
install. Generally speaking the code and techniques provided in this book will
work with Rails 3.0 and newer.

• Make sure your application is properly configured to talk to your test database.
Create your test database, if necessary.

• Go ahead and configure Rails’ generator command to use RSpec and Factory
Girl for any new application code you may add moving forward. You can also
just use the default settings provided by the gems.

• Make a list of things you need to test in your application as it now exists.
This can include mission-critical functionality, bugs you’ve had to track down
and fix in the past, new features that broke existing features, or edge cases to
test the bounds of your application. We’ll cover these scenarios in the coming
chapters.

If you’re working from a new, pristine code base:

• Follow the instructions for installing RSpec and associates with Bundler.

2. Setting up RSpec 20

• Your database.yml file should already be configured to use a test database. If
you’re using a database besides SQLite you’ll probably need to create the actual
database, if you haven’t already, with bundle exec rake db:create:all.

• Optionally, configure Rails’ generators to use RSpec and Factory Girl, so that as
you add new models and controllers to your application you’ll automatically
be given starter files for your specs and factories.

Extra credit:

OK, I’m not actually handing out points for any of this–but if you create a lot of new
Rails applications, you can create a Rails application template to automatically add
RSpec and related configuration to your Gemfile and application config files, not to
mention create your test database. Daniel Kehoe’s excellent Rails Composer¹³ is a
great starting point for building application templates of your favorite tools.

¹³https://github.com/RailsApps/rails-composer

https://github.com/RailsApps/rails-composer
https://github.com/RailsApps/rails-composer

3. Model specs
We’ve got all the tools we need for building a solid, reliable test suite–now it’s time
to put them to work. We’ll get started with the app’s core building blocks–its models.

In this chapter, we’ll complete the following tasks:

• First we’ll create a model spec for an existing model–in our case, the actual
Contact model.

• Then, we’ll write passing tests for a model’s validations, class, and instance
methods, and organize our spec in the process.

We’ll create our first spec files for existing models by hand. If and when we add
new models to the application (OK, when we do in chapter 11), the handy RSpec
generators we configured in chapter 2 will generate placeholder files for us.

Check out the 03_models branch of the sample source to see the completed
code for this chapter. Using the command line, type

git checkout -b 03_models origin/03_models

If you’d like to follow along, start with the previous chapter’s branch:

git checkout -b 02_setup origin/02_setup

See chapter 1 for additional details.

Anatomy of a model spec

I think it’s easiest to learn testing at the model level, because doing so allows you to
examine and test the core building blocks of an application. Well-tested code at this
level is key–a solid foundation is the first step toward a reliable overall code base.

To get started, a model spec should include tests for the following:

3. Model specs 22

• The model’s create method, when passed valid attributes, should be valid.
• Data that fail validations should not be valid.
• Class and instance methods perform as expected.

This is a good time to look at the basic structure of an RSpec model spec. I find it
helpful to think of them as individual outlines. For example, let’s look at our main
Contact model’s requirements:

describe Contact do

it "is valid with a firstname, lastname and email"

it "is invalid without a firstname"

it "is invalid without a lastname"

it "is invalid without an email address"

it "is invalid with a duplicate email address"

it "returns a contact's full name as a string"

end

We’ll expand this outline in a few minutes, but this gives us quite a bit for starters.
It’s a simple spec for an admittedly simple model, but points to our first four best
practices:

• It describes a set of expectations–in this case, what the Contactmodel should
look like, and how it should behave.

• Each example (a line beginning with it) only expects one thing. Notice
that I’m testing the firstname, lastname, and email validations separately.
This way, if an example fails, I know it’s because of that specific validation,
and don’t have to dig through RSpec’s output for clues–at least, not as deeply.

• Each example is explicit. The descriptive string after it is technically optional
in RSpec. However, omitting it makes your specs more difficult to read.

• Each example’s description begins with a verb, not should. Read the expec-
tations aloud:Contact is invalid without a firstname,Contact is invalid without
a lastname, Contact returns a contact’s full name as a string. Readability is
important!

With these best practices in mind, let’s build a spec for the Contact model.

3. Model specs 23

Creating a model spec

First, we’ll open up the spec directory and, if necessary, create a subdirectory named
models. Inside that subdirectory let’s create a file named contact_spec.rb and add
the following:

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4 it "is valid with a firstname, lastname and email"

5 it "is invalid without a firstname"

6 it "is invalid without a lastname"

7 it "is invalid without an email address"

8 it "is invalid with a duplicate email address"

9 it "returns a contact's full name as a string"

10 end

Notice the require 'rails_helper' at the top, and get used to typing it–all of
your specs will include this line moving forward. This is a new addition to RSpec
3–previous version required spec_helper, but the Rails-specific details have been
extracted to make the main helper significantly lighter. We’ll touch on this a little
further in chapter 9.

Location, location, location
The name and location for your spec file is important! RSpec’s file
structure mirrors that of the app directory, as do the files within it. In the
case of model specs, contact_spec.rb should correspond to contact.rb.
This becomes more important later when we start automating tests to
run as soon as a spec’s corresponding application file is updated, and vice
versa.

We’ll fill in the details in a moment, but if we ran the specs right now from the
command line (using bundle exec rspec) the output would be similar to the
following:

3. Model specs 24

Contact

is valid with a firstname, lastname and email

(PENDING: Not yet implemented)

is invalid without a firstname

(PENDING: Not yet implemented)

is invalid without a lastname

(PENDING: Not yet implemented)

is invalid without an email address

(PENDING: Not yet implemented)

is invalid with a duplicate email address

(PENDING: Not yet implemented)

returns a contact's full name as a string

(PENDING: Not yet implemented)

Pending:

Contact is valid with a firstname, lastname

and email

Not yet implemented

./spec/models/contact_spec.rb:4

Contact is invalid without a firstname

Not yet implemented

./spec/models/contact_spec.rb:5

Contact is invalid without a lastname

Not yet implemented

./spec/models/contact_spec.rb:6

Contact is invalid without an email address

Not yet implemented

./spec/models/contact_spec.rb:7

Contact is invalid with a duplicate email address

Not yet implemented

./spec/models/contact_spec.rb:8

Contact returns a contact's full name as a string

Not yet implemented

./spec/models/contact_spec.rb:9

Finished in 0.00105 seconds (files took 2.42 seconds to load)

6 examples, 0 failures, 6 pending

3. Model specs 25

Great! Six pending specs–let’s write them and make them pass, starting with the first
example.

As we add additional models to the contacts manager, assuming we use
Rails’ model or scaffold generator to do so, the model spec file will be
added automatically. If it doesn’t go back and configure your application’s
generators now, or make sure you’ve properly installed the rspec-rails
gem, as shown in chapter 2. You’ll still need to fill in the details, though.

The new RSpec syntax

In June, 2012, the RSpec team announced a new, preferred alternative to the
traditional should, added to version 2.11. Of course, this happened just a few days
after I released the first complete version of this book–it can be tough to keep up
with this stuff sometimes!

This new approach alleviates some technical issues caused by the old should syntax¹⁴.
Instead of saying something should or should_not match expected output, you
expect something to or not_to be something else.

As an example, let’s look at this sample expectation. In this example, 2 + 1 should
always equal 3, right? In the old RSpec syntax, this would be written like this:

it "adds 2 and 1 to make 3" do

(2 + 1).should eq 3

end

The new syntax passes the test value into an expect()method, then chains amatcher
to it:

¹⁴http://myronmars.to/n/dev-blog/2012/06/rspecs-new-expectation-syntax

http://myronmars.to/n/dev-blog/2012/06/rspecs-new-expectation-syntax
http://myronmars.to/n/dev-blog/2012/06/rspecs-new-expectation-syntax

3. Model specs 26

it "adds 2 and 1 to make 3" do

expect(2 + 1).to eq 3

end

If you’re searching Google or Stack Overflow for help with an RSpec question, there’s
still a good chance you’ll find information using the old should syntax. This syntax
still technically works in RSpec 3, but you’ll get a deprecation warning when you
try to use it. You can configure RSpec to turn off these warnings, but in all honesty,
you’re better off learning to use the preferred expect() syntax.

So what does that syntax look like in a real example? Let’s fill out that first
expectation from our spec for the Contact model:

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4 it "is valid with a firstname, lastname and email" do

5 contact = Contact.new(

6 firstname: 'Aaron',

7 lastname: 'Sumner',

8 email: 'tester@example.com')

9 expect(contact).to be_valid

10 end

11

12 # remaining examples to come

13 end

This simple example uses RSpec’s be_validmatcher to verify that our model knows
what it has to look like to be valid. We set up an object (in this case, a new-but-
unsaved instance of Contact called contact), then pass that to expect to compare
to the matcher.

Now, if we run RSpec from the command line again (via rspec or bundle exec rspec,
depending on whether you installed the rspec binstub in the previous chapter) we
see one passing example! We’re on our way. Now let’s get into testing more of our
code.

3. Model specs 27

Testing validations

Validations are a good way to break into automated testing. These tests can usually
be written in just a line or two of code, especially when we leverage the convenience
of factories (next chapter). Let’s look at some detail to our firstname validation spec:

it “is invalid without a firstname” do contact = Contact.new(firstname: nil) con-
tact.valid? expect(contact.errors[:firstname]).to include(“can’t be blank”) end

This time, we expect that the new contact (with a firstname explicitly set to nil)
will not be valid, thus returning the shown error message on the contact’s firstname
attribute. We check for this using RSpec’s include matcher, which checks to see if a
value is included in an enumerable value. And when we run RSpec again, we should
be up to two passing specs.

To prove that we’re not getting false positives, let’s flip that expectation by changing
to to not_to:

spec/models/contact_spec.rb

1 it "is invalid without a firstname" do

2 contact = Contact.new(firstname: nil)

3 contact.valid?

4 expect(contact.errors[:firstname]).not_to include("can't be blank")

5 end

And sure enough, RSpec reports a failure:

1 Failures:

2

3 1) Contact is invalid without a firstname

4 Failure/Error: expect(contact.errors[:firstname]).not_to

5 include("can't be blank")

6 expected ["can't be blank"] not to include "can't be blank"

7 # ./spec/models/contact_spec.rb:15:in `block (2 levels) in

8 <top (required)>'

3. Model specs 28

This is an easy way to verify your tests are working correctly, especially as you
progress from testing simple validations to more complex logic. Just remember to
flip that not_to back to to before continuing.

If you’ve used an earlier version of RSpec, you may be used to using
the have matcher and errors_on helper method to check for validation
errors. These have been removed from RSpec 3’s core. You can still
use the have matcher by including rspec-collection_matchers in your
Gemfile’s :test group.

Now we can use the same approach to test the :lastname validation.

spec/models/contact_spec.rb

1 it "is invalid without a lastname" do

2 contact = Contact.new(lastname: nil)

3 contact.valid?

4 expect(contact.errors[:lastname]).to include("can't be blank")

5 end

You may be thinking that these tests are relatively pointless–how hard is it to make
sure validations are included in a model? The truth is, they can be easier to omit than
you might imagine. More importantly, though, if you think about what validations
your model should have while writing tests (ideally, and eventually, in a Test-Driven
Development style of coding), you are more likely to remember to include them.

Testing that email addresses must be unique is fairly simple as well:

3. Model specs 29

spec/models/contact_spec.rb

1 it "is invalid with a duplicate email address" do

2 Contact.create(

3 firstname: 'Joe', lastname: 'Tester',

4 email: 'tester@example.com'

5)

6 contact = Contact.new(

7 firstname: 'Jane', lastname: 'Tester',

8 email: 'tester@example.com'

9)

10 contact.valid?

11 expect(contact.errors[:email]).to include("has already been taken")

12 end

Notice a subtle difference here: In this case, we persisted a contact (calling create

on Contact instead of new) to test against, then instantiated a second contact as the
subject of the actual test. This, of course, requires that the first, persisted contact is
valid (with both a first and last name) and has an email address assigned to it. In
future chapters we’ll look at utilities to streamline this process.

Now let’s test a more complex validation. Say we want to make sure we don’t
duplicate a phone number for a user–their home, office, and mobile phones should
all be unique within the scope of that user. How might you test that?

Switching to the Phone model spec, we have the following example:

spec/models/phone_spec.rb

1 require 'rails_helper'

2

3 describe Phone do

4 it "does not allow duplicate phone numbers per contact" do

5 contact = Contact.create(

6 firstname: 'Joe',

7 lastname: 'Tester',

8 email: 'joetester@example.com'

9)

3. Model specs 30

10 contact.phones.create(

11 phone_type: 'home',

12 phone: '785-555-1234'

13)

14 mobile_phone = contact.phones.build(

15 phone_type: 'mobile',

16 phone: '785-555-1234'

17)

18

19 mobile_phone.valid?

20 expect(mobile_phone.errors[:phone]).to include('has already been taken')

21 end

22

23 it "allows two contacts to share a phone number" do

24 contact = Contact.create(

25 firstname: 'Joe',

26 lastname: 'Tester',

27 email: 'joetester@example.com'

28)

29 contact.phones.create(

30 phone_type: 'home',

31 phone: '785-555-1234'

32)

33 other_contact = Contact.new

34 other_phone = other_contact.phones.build(

35 phone_type: 'home',

36 phone: '785-555-1234'

37)

38

39 expect(other_phone).to be_valid

40 end

41 end

This time, since the Contact and Phone models are coupled via an Active Record
relationship, we need to provide a little extra information. In the case of the first
example, we’ve got a contact to which both phones are assigned. In the second, the
same phone number is assigned to two unique contacts. Note that, in both examples,

3. Model specs 31

we have to create the contact, or persist it in the database, in order to assign it to the
phones we’re testing.

And since the Phone model has the following validation:

app/models/phone.rb

validates :phone, uniqueness: { scope: :contact_id }

These specs will pass without issue.

Of course, validations can be more complicated than just requiring a specific scope.
Yours might involve a complex regular expression, or a custom validator. Get in the
habit of testing these validations–not just the happy paths where everything is valid,
but also error conditions. For instance, in the examples we’ve created so far, we tested
what happens when an object is initialized with nil values.

Testing instance methods

It would be convenient to only have to refer to @contact.name to render our contacts’
full names instead of concatenating the first and last names into a new string every
time, so we’ve got this method in the Contact class:

app/models/contact.rb

1 def name

2 [firstname, lastname].join(' ')

3 end

We can use the same basic techniques we used for our validation examples to create
a passing example of this feature:

3. Model specs 32

spec/models/contact_spec.rb

1 it "returns a contact's full name as a string" do

2 contact = Contact.new(firstname: 'John', lastname: 'Doe',

3 email: 'johndoe@example.com')

4 expect(contact.name).to eq 'John Doe'

5 end

RSpec prefers eq over == to indicate an expectation of equality.

Create test data, then tell RSpec how you expect it to behave. Easy, right? Let’s keep
going.

Testing class methods and scopes

Now let’s test the Contact model’s ability to return a list of contacts whose names
begin with a given letter. For example, if I click S then I should get Smith, Sumner,
and so on, but not Jones. There are a number of ways I could implement this–for
demonstration purposes I’ll show one.

The model implements this functionality in the following simple method:

app/models/contact.rb

1 def self.by_letter(letter)

2 where("lastname LIKE ?", "#{letter}%").order(:lastname)

3 end

To test this, let’s add the following to our Contact spec:

3. Model specs 33

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4

5 # earlier validation examples omitted ...

6

7 it "returns a sorted array of results that match" do

8 smith = Contact.create(

9 firstname: 'John',

10 lastname: 'Smith',

11 email: 'jsmith@example.com'

12)

13 jones = Contact.create(

14 firstname: 'Tim',

15 lastname: 'Jones',

16 email: 'tjones@example.com'

17)

18 johnson = Contact.create(

19 firstname: 'John',

20 lastname: 'Johnson',

21 email: 'jjohnson@example.com'

22)

23 expect(Contact.by_letter("J")).to eq [johnson, jones]

24 end

25 end

Note we’re testing both the results of the query and the sort order; jones will be
retrieved from the database first but since we’re sorting by last name then johnson

should be stored first in the query results.

Testing for failures

We’ve tested the happy path–a user selects a name for which we can return results–
but what about occasions when a selected letter returns no results? We’d better test
that, too. The following spec should do it:

3. Model specs 34

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4

5 # validation examples ...

6

7 it "omits results that do not match" do

8 smith = Contact.create(

9 firstname: 'John',

10 lastname: 'Smith',

11 email: 'jsmith@example.com'

12)

13 jones = Contact.create(

14 firstname: 'Tim',

15 lastname: 'Jones',

16 email: 'tjones@example.com'

17)

18 johnson = Contact.create(

19 firstname: 'John',

20 lastname: 'Johnson',

21 email: 'jjohnson@example.com'

22)

23 expect(Contact.by_letter("J")).not_to include smith

24 end

25 end

This spec uses RSpec’s include matcher to determine if the array returned by
Contact.by_letter("J")–and it passes! We’re testing not just for ideal results–the
user selects a letter with results–but also for letters with no results.

More about matchers

We’ve already seen three matchers in action. First we used be_valid, which is
provided by the rspec-rails gem to test a Rails model’s validity. eq and include

3. Model specs 35

come from rspec-expectations, installed alongside rspec-rails when we set up
our app to use RSpec in the previous chapter.

A complete list of RSpec’s default matchers may be found in the README for the
rspec-expectations repository on GitHub¹⁵. And in chapter 7, we’ll take a look at
creating custom matchers of our own.

DRYer specs with describe, context, before
and after

If you’re following along with the sample code, you’ve no doubt spotted a discrep-
ancy there with what we’ve covered here. In that code, I’m using yet another RSpec
feature, the before hook, to help simplify the spec’s code and reduce typing. Indeed,
the spec samples have some redundancy: We create the same three objects in each
example. Just as in your application code, the DRY principle applies to your tests
(with some exceptions, which I’ll talk about momentarily). Let’s use a few RSpec
tricks to clean things up.

The first thing I’m going to do is create a describe block within my describe

Contact block to focus on the filter feature. The general outline will look like this:

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4

5 # validation examples ...

6

7 describe "filter last name by letter" do

8 # filtering examples ...

9 end

10 end

Let’s break things down even further by including a couple of context blocks–one
for matching letters, one for non-matching:

¹⁵https://github.com/rspec/rspec-expectations

https://github.com/rspec/rspec-expectations
https://github.com/rspec/rspec-expectations

3. Model specs 36

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4

5 # validation examples ...

6

7 describe "filter last name by letter" do

8 context "matching letters" do

9 # matching examples ...

10 end

11

12 context "non-matching letters" do

13 # non-matching examples ...

14 end

15 end

16 end

While describe and context are technically interchangeable, I prefer to
use them like this–specifically, describe outlines general functionality of
my class; context outlines a specific state. In my case, I have a state of
a letter with matching results selected, and a state with a non-matching
letter selected.

As you may be able to spot, we’re creating an outline of examples here to help us
sort similar examples together. This makes for a more readable spec. Now let’s finish
cleaning up our reorganized spec with the help of a before hook:

3. Model specs 37

spec/models/contact_spec.rb

1 require 'spec_helper'

2

3 describe Contact do

4

5 # validation examples ...

6

7 describe "filter last name by letter" do

8 before :each do

9 @smith = Contact.create(

10 firstname: 'John',

11 lastname: 'Smith',

12 email: 'jsmith@example.com'

13)

14 @jones = Contact.create(

15 firstname: 'Tim',

16 lastname: 'Jones',

17 email: 'tjones@example.com'

18)

19 @johnson = Contact.create(

20 firstname: 'John',

21 lastname: 'Johnson',

22 email: 'jjohnson@example.com'

23)

24 end

25

26 context "matching letters" do

27 # matching examples ...

28 end

29

30 context "non-matching letters" do

31 # non-matching examples ...

32 end

33 end

34 end

RSpec’s before hooks are vital to cleaning up nasty redundancy from your specs.

3. Model specs 38

As you might guess, the code contained within the before block is run before
each example within the describe block–but not outside of that block. Since we’ve
indicated that the hook should be run before each example within the block, RSpec
will create them for each example individually. In this example, my before hook
will only be called within the describe "filter last name by letter" block–in
other words, my original validation specs will not have access to @smith, @jones,
and @johnson.

:each is the default behavior of before, andmany Rubyists use the shorter
before do to create before blocks. I prefer the explicitness of before

:each do and will use it throughout the book.

Speaking of my three test contacts, note that since they are no longer being created
within each example, we have to assign them to instance variables, so they’re
accessible outside of the before block, within our actual examples.

If a spec requires some sort of post-example teardown–disconnecting from an
external service, say–we can also use an after hook to clean up after the examples.
Since RSpec handles cleaning up the database by default, I rarely use after. before,
though, is indispensable.

Okay, let’s see that full, organized spec:

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4 it "is valid with a firstname, lastname and email" do

5 contact = Contact.new(

6 firstname: 'Aaron',

7 lastname: 'Sumner',

8 email: 'tester@example.com')

9 expect(contact).to be_valid

10 end

11

12 it "is invalid without a firstname" do

13 contact = Contact.new(firstname: nil)

3. Model specs 39

14 contact.valid?

15 expect(contact.errors[:firstname]).to include("can't be blank")

16 end

17

18 it "is invalid without a lastname" do

19 contact = Contact.new(lastname: nil)

20 contact.valid?

21 expect(contact.errors[:lastname]).to include("can't be blank")

22 end

23

24 it "is invalid without an email address" do

25 contact = Contact.new(email: nil)

26 contact.valid?

27 expect(contact.errors[:email]).to include("can't be blank")

28 end

29

30 it "is invalid with a duplicate email address" do

31 Contact.create(

32 firstname: 'Joe', lastname: 'Tester',

33 email: 'tester@example.com'

34)

35 contact = Contact.new(

36 firstname: 'Jane', lastname: 'Tester',

37 email: 'tester@example.com'

38)

39 contact.valid?

40 expect(contact.errors[:email]).to include("has already been taken")

41 end

42

43 it "returns a contact's full name as a string" do

44 contact = Contact.new(

45 firstname: 'John',

46 lastname: 'Doe',

47 email: 'johndoe@example.com'

48)

49 expect(contact.name).to eq 'John Doe'

50 end

51

3. Model specs 40

52 describe "filter last name by letter" do

53 before :each do

54 @smith = Contact.create(

55 firstname: 'John',

56 lastname: 'Smith',

57 email: 'jsmith@example.com'

58)

59 @jones = Contact.create(

60 firstname: 'Tim',

61 lastname: 'Jones',

62 email: 'tjones@example.com'

63)

64 @johnson = Contact.create(

65 firstname: 'John',

66 lastname: 'Johnson',

67 email: 'jjohnson@example.com'

68)

69 end

70

71 context "with matching letters" do

72 it "returns a sorted array of results that match" do

73 expect(Contact.by_letter("J")).to eq [@johnson, @jones]

74 end

75 end

76

77 context "with non-matching letters" do

78 it "omits results that do not match" do

79 expect(Contact.by_letter("J")).not_to include @smith

80 end

81 end

82 end

83 end

When we run the specs we’ll see a nice outline (since we told RSpec to use the
documentation format, in chapter 2) like this:

3. Model specs 41

Contact

is valid with a firstname, lastname and email

is invalid without a firstname

is invalid without a lastname

is invalid without an email address

is invalid with a duplicate email address

returns a contact's full name as a string

filter last name by letter

with matching letters

returns a sorted array of results that match

with non-matching letters

omits results that do not match

Phone

does not allow duplicate phone numbers per contact

allows two contacts to share a phone number

Finished in 0.51654 seconds (files took 2.24 seconds to load)

10 examples, 0 failures

Some developers prefer to use method names for the descriptions of nested
describe blocks. For example, I could have labeled filter last name

by letter as #by_letter. I don’t like doing this personally, as I believe
the label should define the behavior of the code and not the name of the
method. That said, I don’t have a strong opinion about it.

How DRY is too DRY?

We’ve spent a lot of time in this chapter organizing specs into easy-to-follow blocks.
Like I said, before blocks are key to making this happen–but they’re also easy to
abuse.

When setting up test conditions for your example, I think it’s okay to bend the DRY
principle in the interest of readability. If you find yourself scrolling up and down
a large spec file in order to see what it is you’re testing (or, later, loading too many

3. Model specs 42

external support files for your tests), consider duplicating your test data setup within
smaller describe blocks–or even within examples themselves.

That said, well-named variables and methods can go a long way–for example, in the
spec above we used @jones and @johnson as test contacts. These are much easier to
follow than @user1 and @user2 would have been, as part of these test objects’ value
to the tests was to make sure our first-letter search functionality was working as
intended. Even better might be variables like @admin_user and @guest_user, when
we get into testing users with specific roles in chapter 6. Be expressive with your
variable names!

Summary

This chapter focused on how I test models, but we’ve covered a lot of other important
techniques you’ll want to use in other types of specs moving forward:

• Use active, explicit expectations: Use verbs to explain what an example’s
results should be. Only check for one result per example.

• Test for what you expect to happen, and for what you expect to not
happen: Think about both paths when writing examples, and test accordingly.

• Test for edge cases: If you have a validation that requires a password be
between four and ten characters in length, don’t just test an eight-character
password and call it good. A good set of tests would test at four and ten, as
well as at three and eleven. (Of course, you might also take the opportunity to
ask yourself why you’d allow such short passwords, or not allow longer ones.
Testing is also a good opportunity to reflect on an application’s requirements
and code.)

• Organize your specs for good readability: Use describe and context to
sort similar examples into an outline format, and before and after blocks
to remove duplication. However, in the case of tests readability trumps DRY–
if you find yourself having to scroll up and down your spec too much, it’s okay
to repeat yourself a bit.

With a solid collection of model specs incorporated into your app, you’re well on
your way to more trustworthy code. In the next chapter we’ll apply and expand
upon the techniques covered here to application controllers.

3. Model specs 43

Question

When should I use describe versus context? From RSpec’s perspective, you can
use describe all the time, if you’d like. Like many other aspects of RSpec, context
exists to make your specs more readable. You could take advantage of this to match
a condition, as I’ve done in this chapter, or some other state¹⁶ in your application.

Exercises

So far we’ve assumed our specs aren’t returning false positives–they’ve all gone from
pending to passing without failing somewhere in the middle. Verify specs by doing
the following:

• Comment out the application code you’re testing. For example, in our
example that validates the presence of a contact’s first name, we could
comment out validates :firstname, presence: true, run the specs, and
watch it "is invalid without a firstname" fail. Uncomment it to see the
spec pass again.

• Edit the parameters passed to the create method within the expectation.
This time, edit it "is invalid without a firstname" and give :firstname
a non-nil value. The spec should fail; replace it with nil to see it pass again.

¹⁶http://lmws.net/describe-vs-context-in-rspec

http://lmws.net/describe-vs-context-in-rspec
http://lmws.net/describe-vs-context-in-rspec

4. Generating test data with
factories
So far we’ve been using plain old Ruby objects to create temporary data for our
tests. And so far, our tests haven’t been so complex that much more than that has
been necessary. As we test more complex scenarios, though, it sure would be nice
to simplify that aspect of the process and focus more on the test instead of the data.
Luckily, a handful of Ruby libraries exist to make test data generation easy. In this
chapter we’ll focus on Factory Girl, the preferred approach for many developers.
Specifically:

• We’ll talk about the benefits and drawbacks of using factories as opposed to
other methods.

• Then we’ll create a basic factory and apply it to our existing specs.
• Following that, we’ll edit our factories to make them even more convenient to
use.

• Next we’ll create more realistic test data using the Faker gem.
• We’ll look at more advanced factories relying on Active Record associations.
• Finally, we’ll talk about the risks of taking factory implementation too far in
your applications.

Check out the 04_factories branch of the sample source to see the com-
pleted code for this chapter. Using the command line, type

git checkout -b 04_factories origin/04_factories

If you’d like to follow along, start with the previous chapter’s branch:

git checkout -b 03_models origin/03_models

See chapter 1 for additional details.

If you haven’t done so already, make sure you’ve got the factory_girl_rails and faker
gems installed in your application, as outlined in chapter 2.

4. Generating test data with factories 45

Factories versus fixtures

Out of the box, Rails provides a means of quickly generating sample data called
fixtures. A fixture is essentially a YAML-formatted file which helps create sample
data. For example, a fixture for our Contact model might look like

contacts.yml

1 aaron:

2 firstname: "Aaron"

3 lastname: "Sumner"

4 email: "aaron@everydayrails.com"

5

6 john:

7 firstname: "John"

8 lastname: "Doe"

9 email: "johndoe@nobody.org"

Then, by referencing contacts(:aaron) in a test, I’ve instantly got a fresh Contact

with all attributes set. Pretty nice, right?

Fixtures have their place, but also have their drawbacks. I won’t spend a lot of time
speaking ill of fixtures–frankly, it’s already been done by plenty of people smarter
than me in the Rails testing community. Long story short, there are two issues
presented by fixtures I’d like to avoid: First, fixture data can be brittle and easily
broken (meaning you spend about as much timemaintaining your test data as you do
your tests and actual code); and second, Rails bypasses Active Record when it loads
fixture data into your test database. What does that mean? It means that important
things like your models’ validations are ignored. This is bad!

Enter factories: Simple, flexible, building blocks for test data. If I had to point to a
single component that helped me see the light toward testing more than anything
else, it would be Factory Girl¹⁷, an easy-to-use and easy-to-rely-on gem for creating
test data without the brittleness of fixtures.

Of course, the Ruby community is always up for a good debate on best practices,
and Factory Girl also has its naysayers. In summer of 2012 an online debate over

¹⁷https://github.com/thoughtbot/factory_girl

https://github.com/thoughtbot/factory_girl
https://groups.google.com/forum/?fromgroups#!topic/rubyonrails-core/_lcjRRgyhC0
https://groups.google.com/forum/?fromgroups#!topic/rubyonrails-core/_lcjRRgyhC0

4. Generating test data with factories 46

the merit of factories¹⁸ sprung up. A number of vocal opponents, including Rails’
creator David Heinemeier Hansson, pointed out that factories are a primary cause
of slow test suites, and that factories can be particularly cumbersome with complex
associations.

While I see their point and acknowledge that the ease of using factories can come
with a cost in terms of speed, I still believe that a slow test is better than no test, and
that a factory-based approach simplifies things for people who are just learning how
to test to begin with. You can always swap out factories for more efficient approaches
later once you’ve got a suite built and are more comfortable with testing.

In the meantime, let’s put factories to work in our application. Since the factory_-
girl_rails gem installed Factory Girl for us as a dependency (see chapter 2), we’re
ready to roll.

Adding factories to the application

Back in the spec directory, add another subdirectory named factories; within it, add
the file contacts.rb with the following content:

spec/factories/contacts.rb

1 FactoryGirl.define do

2 factory :contact do

3 firstname "John"

4 lastname "Doe"

5 sequence(:email) { |n| "johndoe#{n}@example.com"}

6 end

7 end

This chunk of code gives us a factory we can use throughout our specs. Essentially,
whenever we create test data via FactoryGirl.create(:contact), that contact’s
name will be John Doe. His email address? We’re using a handy feature provided
by Factory Girl, called sequences. As you might have guessed from reading the
Ruby code, a sequence will automatically increment n inside the block, yielding

¹⁸https://groups.google.com/forum/?fromgroups#!topic/rubyonrails-core/_lcjRRgyhC0

https://groups.google.com/forum/?fromgroups#!topic/rubyonrails-core/_lcjRRgyhC0

4. Generating test data with factories 47

johndoe1@example.com, johndoe2@example.com, and so on as the factory is used to
generate new contacts. Sequences are essential for any model that has a uniqueness
validation. (Later in this chapter, we’ll look at a nice alternative to generating things
like email addresses and names, called Faker.)

Although this example’s attributes are all strings, you can pass along whatever an
attribute’s data type expects to see, including integers, booleans, and dates. You can
even pass in Ruby code to dynamically assign values; just remember to do so within
a block (as shown in the sequence example above). For example, if we stored our
contacts’ birthdays, we could easily generate those dates from factories by using
Ruby datetime methods such as 33.years.ago or Date.parse('1980-05-13').

Filenames for factories aren’t as particular as those for specs. In fact, if you
wanted to you could include all of your factories in a single file. However,
the Factory Girl generator stores them in spec/factories as convention,
with a filename that’s the plural of the model it corresponds to (so,
spec/factories/contacts.rb for the Contact model). I tend to just stick with
that approach, too. Bottom line: As long as your factory definitions are
syntactically correct and located in spec/factories/, you should be fine.

With a solid factory in place, let’s return to the contact_spec.rb file we set up in the
previous chapter and add a quick example to it:

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4 it "has a valid factory" do

5 expect(FactoryGirl.build(:contact)).to be_valid

6 end

7

8 ## more specs

9 end

This instantiates (but does not save) a new contact with attributes as assigned by the
factory. It then tests that new contact’s validity. Compare that to our spec from the
previous chapter, which required including all required attributes to pass:

4. Generating test data with factories 48

1 it "is valid with a firstname, lastname and email" do

2 contact = Contact.new(

3 firstname: 'Aaron',

4 lastname: 'Sumner',

5 email: 'tester@example.com')

6 expect(contact).to be_valid

7 end

Let’s revisit our existing specs, now using Factory Girl to streamline building our
data. This time we’ll override one or more attributes to generate data from factories,
but with specific attributes:

spec/models/contact_spec.rb

it "is invalid without a firstname" do

contact = FactoryGirl.build(:contact, firstname: nil)

contact.valid?

expect(contact.errors[:firstname]).to include("can't be blank")

end

it "is invalid without a lastname" do

contact = FactoryGirl.build(:contact, lastname: nil)

contact.valid?

expect(contact.errors[:lastname]).to include("can't be blank")

end

it "is invalid without an email address" do

contact = FactoryGirl.build(:contact, email: nil)

contact.valid?

expect(contact.errors[:email]).to include("can't be blank")

end

it "returns a contact's full name as a string" do

contact = FactoryGirl.build(:contact,

firstname: "Jane",

lastname: "Smith"

)

4. Generating test data with factories 49

expect(contact.name).to eq 'Jane Smith'

end

These examples are pretty straightforward. As in our earlier example, all use Factory
Girl’s buildmethod to create a new, yet non-persisted, Contact. The first example’s
spec assigns contact to a Contact with no firstname assigned. The second follows
suit, replacing the factory’s default lastname with nil. Since our Contact model
validates presence of both firstname and lastname, both of these examples expect
to see errors. Follow the same pattern to test the validation for email.

The fourth spec is a little different, but uses the same basic tools. This time, we’re
creating a new Contactwith specific values for firstname and lastname. Then, we’re
making sure that the name method on the assigned contact returns the string we
expect.

The next spec throws in a minor wrinkle:

spec/models/contact_spec.rb

it "is invalid with a duplicate email address" do

FactoryGirl.create(:contact, email: 'aaron@example.com')

contact = FactoryGirl.build(:contact, email: 'aaron@example.com')

contact.valid?

expect(contact.errors[:email]).to include('has already been taken')

end

In this example, we’re making sure the test object’s email attribute is not duplicate
data. In order to do this, we need another Contact persisted in the database–so before
running the expectation, we use FactoryGirl.create to first persist a contact with
the same email address.

Remember: Use FactoryGirl.build to store a new test object in mem-
ory, and use FactoryGirl.create to persist it in your application’s test
database.

4. Generating test data with factories 50

Simplifying our syntax

Most programmers I know hate typing any more than they have to. And typing
FactoryGirl.build(:contact) each time we need a new contact is already getting
cumbersome. Luckily, Factory Girl version 3.0 and newer makes the Rails program-
mer’s life a bit simpler with a little configuration. Add it anywhere inside the the
RSpec.configure block located in rails_helper.rb:

spec/rails_helper.rb

1 RSpec.configure do |config|

2 # Include Factory Girl syntax to simplify calls to factories

3 config.include FactoryGirl::Syntax::Methods

4

5 # other configurations omitted ...

6 end

While you’re there, you can delete or comment out the configuration for config.fixture_-
path–we’re using factories, not fixtures!

Now our specs can use the shorter build(:contact) syntax. This one line of
configuration also gives us create(:contact), which we’ve already used; and
attributes_for(:contact) and build_stubbed(:contact), which we’ll use in sub-
sequent chapters.

Here’s a look at our updated, leaner model spec:

spec/models/contact_spec.rb

1 require 'rails_helper'

2

3 describe Contact do

4 it "is has a valid factory" do

5 expect(build(:contact)).to be_valid

6 end

7

8 it "is invalid without a firstname" do

9 contact = build(:contact, firstname: nil)

4. Generating test data with factories 51

10 contact.valid?

11 expect(contact.errors[:firstname]).to include("can't be blank")

12 end

13

14 it "is invalid without a lastname" do

15 contact = build(:contact, lastname: nil)

16 contact.valid?

17 expect(contact.errors[:lastname]).to include("can't be blank")

18 end

19

20 # remaining examples omitted ...

21 end

Much more readable, if you ask me, but entirely optional in your own code.

Associations and inheritance in factories

If we were to create a factory for our Phone model, given what we know so far, it
might look something like this.

spec/factories/phones.rb

1 FactoryGirl.define do

2 factory :phone do

3 association :contact

4 phone '123-555-1234'

5 phone_type 'home'

6 end

7 end

New here is the call to :association; that tells Factory Girl to create a new Contact

on the fly for this phone to belong to, if one wasn’t specifically passed into the build
(or create) method.

However, a contact can have three types of phones–home, office, and mobile. So far,
if we wanted to specify a non-home phone in a spec we’ve done it like this:

4. Generating test data with factories 52

spec/models/phone_spec.rb
1 it "allows two contacts to share a phone number" do

2 create(:phone,

3 phone_type: 'home',

4 phone: "785-555-1234")

5 expect(build(:phone,

6 phone_type: 'home',

7 phone: "785-555-1234")).to be_valid

8 end

Let’s do some refactoring to clean this up. Factory Girl provides us the ability
to create inherited factories, overriding attributes as necessary. In other words, if
we specifically want an office phone in a spec, we should be able to call it with
build(:office_phone) (or the longer FactoryGirl.build(:office_phone), if you
prefer). Here’s how it looks:

spec/factories/phones.rb
1 FactoryGirl.define do

2 factory :phone do

3 association :contact

4 phone { '123-555-1234' }

5

6 factory :home_phone do

7 phone_type 'home'

8 end

9

10 factory :work_phone do

11 phone_type 'work'

12 end

13

14 factory :mobile_phone do

15 phone_type 'mobile'

16 end

17 end

18 end

And the spec can be simplified to

4. Generating test data with factories 53

spec/models/phone_spec.rb

1 require 'rails_helper'

2

3 describe Phone do

4 it "does not allow duplicate phone numbers per contact" do

5 contact = create(:contact)

6 create(:home_phone,

7 contact: contact,

8 phone: '785-555-1234'

9)

10 mobile_phone = build(:mobile_phone,

11 contact: contact,

12 phone: '785-555-1234'

13)

14

15 mobile_phone.valid?

16 expect(mobile_phone.errors[:phone]).to include('has already been taken')

17 end

18

19 it "allows two contacts to share a phone number" do

20 create(:home_phone,

21 phone: '785-555-1234'

22)

23 expect(build(:home_phone, phone: "785-555-1234")).to be_valid

24 end

25 end

This technique will come in handy in subsequent chapters when we need to
create different user types (administrators versus non-administrators) for testing
authentication and authorization mechanisms.

Generating more realistic fake data

Earlier in this chapter, we used a sequence to make sure the contacts factory yielded
unique email addresses. We can improve on this by providing more realistic test data

4. Generating test data with factories 54

to our app, using a fake data generator called–what else?–Faker. Faker is a Ruby port
of a time-honored Perl library for generating fake names, addresses, sentences, and
more–excellent for testing purposes.

Let’s incorporate some fake data into our factories:

spec/factories/contacts.rb

1 FactoryGirl.define do

2 factory :contact do

3 firstname { Faker::Name.first_name }

4 lastname { Faker::Name.last_name }

5 email { Faker::Internet.email }

6 end

7 end

Now our specs will use a random email address each time the phone factory is
used. (To see for yourself, check out log/test.log after running specs to see the email
addresses that were inserted into the database in contact_spec.rb.) Two important
things to observe here: First, we’ve required the Faker library to load in the first line
of my factory; and second, that we pass the Faker::Internet.emailmethod inside a
block–Factory Girl considers this a “lazy attribute” as opposed to the statically-added
string the factory previously had.

Let’s wrap up this exercise by returning to that phone factory. Instead of giving every
new phone a default number, let’s give them all unique, random, realistic ones:

spec/factories/phones.rb

1 FactoryGirl.define do

2 factory :phone do

3 association :contact

4 phone { Faker::PhoneNumber.phone_number }

5

6 # child factories omitted ...

7 end

8 end

4. Generating test data with factories 55

Yes, this isn’t strictly necessary. I could keep using sequences and my specs would
still pass. But Faker does give us a bit more realistic data with which to test (not to
mention, some of the data generated by Faker can be pretty fun).

Faker can generate other types of random data such as addresses, phony business
names and slogans, and lorem placeholder text–refer to the documentation¹⁹ for
more.

Check out Forgery²⁰ as an alternative to Faker. Forgery performs a similar
function but has a bit different syntax. There’s also ffaker²¹, a rewrite of
Faker running up to 20 times faster than the original. And these gems
aren’t just useful for testing–see how to use Faker to obfuscate data for
screenshots²² in the Everyday Rails blog.

Advanced associations

The validation specs we’ve created so far have, for the most part, tested relatively
simple aspects of our data. They haven’t required us to look at anything but the
models in question–in other words, we haven’t validated that when we create a
contact, three phone numbers also get created. How do we test that? And how do we
make a factory to make sure our test contacts continue to represent realistic ones?

The answer is to use callbacks, built into Factory Girl, to add additional code to a
given factory. These callbacks are particularly useful in testing nested attributes, as
in the way our user interface allows phone numbers to be entered upon creating
or editing a contact. For example, this modification to our contact factory uses the
after callback to make sure that a new contact built with the factory will also have
one each of the three phone types assigned to it:

¹⁹http://rubydoc.info/gems/faker/1.4.3/frames
²⁰https://github.com/sevenwire/forgery
²¹https://github.com/emmanueloga/ffaker
²²http://everydayrails.com/2013/05/20/obfuscated-data-screenshots.html

http://rubydoc.info/gems/faker/1.4.3/frames
https://github.com/sevenwire/forgery
https://github.com/emmanueloga/ffaker
http://everydayrails.com/2013/05/20/obfuscated-data-screenshots.html
http://everydayrails.com/2013/05/20/obfuscated-data-screenshots.html
http://rubydoc.info/gems/faker/1.4.3/frames
https://github.com/sevenwire/forgery
https://github.com/emmanueloga/ffaker
http://everydayrails.com/2013/05/20/obfuscated-data-screenshots.html

4. Generating test data with factories 56

spec/factories/contacts.rb

1 FactoryGirl.define do

2 factory :contact do

3 firstname { Faker::Name.first_name }

4 lastname { Faker::Name.last_name }

5 email { Faker::Internet.email }

6

7 after(:build) do |contact|

8 [:home_phone, :work_phone, :mobile_phone].each do |phone|

9 contact.phones << FactoryGirl.build(:phone,

10 phone_type: phone, contact: contact)

11 end

12 end

13 end

14 end

Note that after(:build) takes a block, and within that block, an array of our three
phone types is used to also build a contact’s phone numbers. We can make sure this
is working with the following example:

spec/models/contact_spec.rb

1 it "has three phone numbers" do

2 expect(create(:contact).phones.count).to eq 3

3 end

This example passes, and existing examples pass as well, so changing the factory
didn’t break any of our existing work. We can even take this a step further, and add
a validation inside the Contact model itself to make sure this happens:

app/models/contact.rb

validates :phones, length: { is: 3 }

4. Generating test data with factories 57

As an experiment, try changing the value in the validation to some other number,
and run the test suite again. All of the examples that were expecting a valid contact
will fail. As a second experiment, comment out the after block in the contact factory
and run the test suite–again, a whole lot of red.

While our example is specific to the nature of a contact’s three phone
numbers, Factory Girl callbacks are by no means as limited. Check out
the post Get Your Callbacks On with Factory Girl 3.3²³ from Thoughtbot,
for more on how to take advantage of this feature.

While this example may seem somewhat contrived, it does represent something
you’ll sooner or later encounter in a complex application. In fact, this example is
based on a scheduling system I once built, requiring a user to add a minimum
of two attendees to a meeting. It took me awhile to dig through the Factory Girl
documentation, code, and Internet at large to get my factories working correctly
with this requirement.

after(:build) is just one callback now at our disposal–as you might guess, we
can also use before(:build), before(:create), and after(:create). They all work
similarly.

How to abuse factories

Factories are great, except when they’re not. As mentioned at the beginning of this
chapter, unchecked factory usage can cause a test suite to slow down in a hurry–
especially when the complexities of associations are introduced. In fact, I’d say that
our last factory’s creation of three additional objects every time it is called is pushing
it–but at least at this point, the convenience of generating that data with one method
call instead of several outweighs any drawbacks.

While generating associations with factories is an easy way to ramp up tests, it’s also
an easy feature to abuse–and often a culprit when test suites’ running times slow to a
crawl. When that happens, it’s better to remove associations from factories and build

²³http://robots.thoughtbot.com/post/23039827914/get-your-callbacks-on-with-factory-girl-3-3

http://robots.thoughtbot.com/post/23039827914/get-your-callbacks-on-with-factory-girl-3-3
http://robots.thoughtbot.com/post/23039827914/get-your-callbacks-on-with-factory-girl-3-3

4. Generating test data with factories 58

up test data manually. You can also fall back to the Plain Old Ruby Objects approach
we used in chapter 3, or even a hybrid approach combining them with factories.

If you’ve looked at other resources for testing in general or RSpec specifically, you’ve
no doubt run across the terms mocks and stubs. If you’ve already got a bit of testing
experience under your belt, you may wonder why I’ve been using factories all this
time and not mocks and stubs. The answer is because, from my experience, basic
objects and factories are easier for getting developers started and comfortable with
testing–not to mention, overuse of mocks and stubs can lead to a separate set of
problems.

Since at this stage our application is pretty small, any speed increase we’d see with a
fancier approach would be negligible. That said, mocks and stubs do have their roles
in testing; we’ll talk more about them in chapters 9 and 10.

Summary

Factory Girl’s been of good use to us in this chapter. We’ve now got less syntax to
clutter up our specs, a flexible way to create specific types of data, more realistic
fake data, and a way to build more complex associations as needed. What you now
know should get you through most testing tasks, but refer also to Factory Girl’s
documentation²⁴ for additional usage examples–Factory Girl could almost warrant
its own short book.

And while it’s not perfect, we’ll be using Factory Girl throughout the remainder
of the book–the convenience it provides as we become more proficient in testing
outweighs the issue of speed. In fact, it will play an important role in testing our
next batch of code: The controllers that keep data moving betweenmodels and views.
That will be the focus of the next chapter.

Exercises

• Add factories to your application, if you haven’t done so already.

²⁴https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md

https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md
https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md
https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md

4. Generating test data with factories 59

• Configure RSpec to use the shorter Factory Girl syntax in specs. How does
doing so affect the readability of your examples?

• Take a look at your application’s factories. How can you refactor them with
inherited factories?

• Do your models lend themselves to data types supported by Faker? Take
another look at the Faker documentation if necessary, then apply Faker
methods to your factories where applicable. Do your specs still pass?

• Do any models in your application use nested attributes? Would using the
after(:build) callback result in more realistic test data?

5. Basic controller specs
Poor controllers. As Rails developers we keep them skinny (which is a good thing)
and often don’t give them due attention in our tests (which can be a bad thing; more
on that in a moment). As you continue to improve your application’s test coverage,
though, controllers are the next logical chunk of code to tackle.

Part of the challenge of testing controllers is they can be dependent on a number of
other factors–how your models are configured to relate to one another, for example,
or how you have your application’s routing set up. Hang on, we’re going to address
some of these challenges in this chapter–and once you’ve made it through, you’ll
have a clearer understanding of how to build controller specs in your own software.

In this chapter, we’ll begin covering a little more ground:

• First, we’ll discuss why you should test controllers at all.
• We’ll follow that discussion with the very basics (or, controller specs are just
unit specs).

• Next we’ll begin organizing controller specs in an outline-like format.
• We’ll then use factories to set up data for specs.
• Then we’ll test the seven CRUD methods included in most controllers, along
with a non-CRUD example.

• Next, we’ll look at testing nested routes.
• We’ll wrap up with testing a controller method with non-HTML output, such
as CSV or JSON.

Check out the 05_controller_basics branch of the sample source to see the
completed code for this chapter. Using the command line, type

git checkout -b 05_controller_basics origin/05_controller_-

basics

If you’d like to follow along, start with the previous chapter’s branch:

git checkout -b 04_factories origin/04_factories

See chapter 1 for additional details.

5. Basic controller specs 61

For this exercise, we need to make a slight modification to our application’s
contacts_controller.rb file. In order to focus on the basics of controller testing,
let’s bypass the application’s authentication layer for the duration of the chapter.
The quickest way to do that is to comment it out:

app/controllers/contacts_controller.rb

1 class ContactsController < ApplicationController

2 # before_action :authenticate, except: [:index, :show]

3 before_action :set_contact, only: [:show, :edit, :update, :destroy]

4

5 # etc.

Why test controllers?

There are a few good reasons to explicitly test your controller methods:

• Controllers are classes with methods, too, as Piotr Solnica indicated in an
excellent blog post²⁵. And in Rails applications, they’re pretty important classes
(and methods)–so it’s a good idea to put them on equal footing, spec-wise, as
your Rails models.

• Controller specs can often be written more quickly than their integration
spec counterparts. For me, this becomes critical when I encounter a bug that’s
residing at the controller level, or I want to add additional specs to verify some
refactoring. Writing a solid controller spec is a comparatively straightforward
process, since I can generate very specific input to the method I’m testing
without the overhead of feature specs. This also means that

• Controller specs usually run more quickly than integration specs, making
them very valuable during bug fixing and checking the bad paths your users
can take (in addition to the good ones, of course).

²⁵http://solnic.eu/2012/02/02/yes-you-should-write-controller-tests.html

http://solnic.eu/2012/02/02/yes-you-should-write-controller-tests.html
http://solnic.eu/2012/02/02/yes-you-should-write-controller-tests.html
http://solnic.eu/2012/02/02/yes-you-should-write-controller-tests.html

5. Basic controller specs 62

Why not test controllers?

So why is it you don’t see controller specs used heavily in many open source Rails
projects? Here are some thoughts:

• Controllers should be skinny–so skinny, some suggest, that testing them is
fruitless.

• Controller specs, while faster than feature specs, are still slower than
specs of Rails models and plain Ruby objects. This will be mitigated
somewhat when we look at ways to speed up our specs in chapter 9, but it’s a
very valid point.

• One feature spec can accomplish the work of multiple controller specs–so
maybe it’s simpler to write and maintain a single spec instead of several.

In the end, I suspect, the true answer lies somewhere in the middle. In earlier editions
of this book, I talked about my own ongoing internal struggle with controller specs.
When I was learning RSpec and TDD, understanding controller specs were integral
to my overall understanding of the tools and the process. And that’s why I want to
take a long look at them here: They’re a great way to practice using a lot of RSpec
features we typically wouldn’t use at the model or feature layers. In addition, they
are still good for testing controller nuances without the overhead of feature specs.

Controller testing basics

Scaffolds, when done correctly, are a great way to learn coding techniques. The spec
files generated for controllers, at least as of RSpec 2.8, are pretty nice and provide a
good template to help you build your own specs. Look at the scaffold generator in
rspec-rails’ source²⁶, or generate a scaffold in your properly-configured-for-RSpec-
Rails application to begin getting a sense of these tests.

A controller spec is broken down by controller method–each example is based off of
a single action and, optionally, any parameters passed to it. Here’s a simple example:

²⁶https://github.com/rspec/rspec-rails/tree/3-1-maintenance/lib/generators/rspec/scaffold

https://github.com/rspec/rspec-rails/tree/3-1-maintenance/lib/generators/rspec/scaffold
https://github.com/rspec/rspec-rails/tree/3-1-maintenance/lib/generators/rspec/scaffold

5. Basic controller specs 63

it "redirects to the home page upon save" do

post :create, contact: FactoryGirl.attributes_for(:contact)

expect(response).to redirect_to root_url

end

You may spot similarities to earlier specs we’ve written:

• The description of the example is written in explicit, active language.
• The example only expects one thing: After the post request is processed, a
redirect should be returned to the browser.

• A factory generates test data to pass to the controller method; note the use
of Factory Girl’s attributes_for option, which generates a hash of values
as opposed to a Ruby object. Yes, you can provide a plain old hash without
invoking an extra dependency; however, for convenience we’ll stick with
Factory Girl.

However, there are also a couple of new things to look at:

• The basic syntax of a controller spec–its HTTP method (post), controller
method (:create), and, optionally, parameters being passed to the method.
This functionality is provided by the Rack::Test gem, and will also come in
useful later when testing APIs.

• The aforementioned attributes_for call to Factory Girl–not rocket science,
but worth mentioning again because I had a habit early on of forgetting to use
it versus default factories. As a reminder, attributes_for() generates a hash
of attributes, not an object.

Organization

Let’s start with a top-down approach. As Imentioned earlier during our look atmodel
specs, it’s helpful to think about a spec as an outline of things we need our Ruby class
to do. We’ll start with a spec for our sample application’s contacts controller (again,
ignoring authorization for now):

5. Basic controller specs 64

spec/controllers/contacts_controller_spec.rb

1 require 'rails_helper'

2

3 describe ContactsController do

4

5 describe 'GET #index' do

6 context 'with params[:letter]' do

7 it "populates an array of contacts starting with the letter"

8 it "renders the :index template"

9 end

10

11 context 'without params[:letter]' do

12 it "populates an array of all contacts"

13 it "renders the :index template"

14 end

15 end

16

17 describe 'GET #show' do

18 it "assigns the requested contact to @contact"

19 it "renders the :show template"

20 end

21

22 describe 'GET #new' do

23 it "assigns a new Contact to @contact"

24 it "renders the :new template"

25 end

26

27 describe 'GET #edit' do

28 it "assigns the requested contact to @contact"

29 it "renders the :edit template"

30 end

31

32 describe "POST #create" do

33 context "with valid attributes" do

34 it "saves the new contact in the database"

35 it "redirects to contacts#show"

36 end

5. Basic controller specs 65

37

38 context "with invalid attributes" do

39 it "does not save the new contact in the database"

40 it "re-renders the :new template"

41 end

42 end

43

44 describe 'PATCH #update' do

45 context "with valid attributes" do

46 it "updates the contact in the database"

47 it "redirects to the contact"

48 end

49

50 context "with invalid attributes" do

51 it "does not update the contact"

52 it "re-renders the #edit template"

53 end

54 end

55

56 describe 'DELETE #destroy' do

57 it "deletes the contact from the database"

58 it "redirects to users#index"

59 end

60 end

As in our model specs, we can use RSpec’s describe and context blocks to organize
examples into a clean hierarchy, based on a controller’s actions and the context
we’re testing–in this case, the happy path (a method received valid attributes to
the controller) and the unhappy path (a method received invalid or incomplete
attributes).

Setting up test data

Just as in model specs, controller specs need data. Here again we’ll use factories to
get started–once you’ve got the hang of it you can swap these out with more efficient

5. Basic controller specs 66

means of creating test data, but for our purposes (and this small app) factories will
work great.

Here’s the factory we already created for contacts; let’s add to it to include an invalid
contact child factory:

spec/factories/contacts.rb

1 FactoryGirl.define do

2 factory :contact do

3 firstname { Faker::Name.first_name }

4 lastname { Faker::Name.last_name }

5 email { Faker::Internet.email }

6

7 after(:build) do |contact|

8 [:home_phone, :work_phone, :mobile_phone].each do |phone|

9 contact.phones << FactoryGirl.build(:phone,

10 phone_type: phone, contact: contact)

11 end

12 end

13

14 factory :invalid_contact do

15 firstname nil

16 end

17 end

18 end

Remember how we used factory inheritance to create a :home_phone, :office_-
phone, and :mobile_phone from a parent :phone factory? We can use that same
technique to create an :invalid_contact from the base :contact factory. It replaces
the specified attributes (in this case, firstname) with its own; everything else will
defer to the original :contact factory.

Testing GET requests

A standard, CRUD-based Rails controller is going to have four GET-based methods:
index, show, new, and edit. These methods are generally the easiest to test. In the
interest of simplicity, let’s start with show:

5. Basic controller specs 67

spec/controllers/contacts_controller_spec.rb

1 describe 'GET #show' do

2 it "assigns the requested contact to @contact" do

3 contact = create(:contact)

4 get :show, id: contact

5 expect(assigns(:contact)).to eq contact

6 end

7

8 it "renders the :show template" do

9 contact = create(:contact)

10 get :show, id: contact

11 expect(response).to render_template :show

12 end

13 end

Let’s break this down. We’re checking for two things here: First, that a persisted
contact is found by the controller method and properly assigned to the specified
instance variable. To accomplish this, we’re taking advantage of the assigns()

method–checking that the value (assigned to @contact) is what we expect to see.

The second expectation may be self-explanatory, thanks to RSpec’s clean, readable
syntax: The response sent from the controller back up the chain toward the browser
will be rendered using the show.html.erb template.

These two simple expectations demonstrate the following key concepts of controller
testing:

• The basic DSL for interacting with controller methods: Each HTTP verb has its
own method (in these cases, get), which expects the controller method name
as a symbol (here, :show), followed by any params (id: contact).

• Variables instantiated by the controllermethod can be evaluated using assigns(:variable_-
name).

• The finished product returned from the controller method can be evaluated
through response.

Now let’s visit the slightly trickier index method.

5. Basic controller specs 68

spec/controllers/contacts_controller_spec.rb

1 describe 'GET #index' do

2 context 'with params[:letter]' do

3 it "populates an array of contacts starting with the letter" do

4 smith = create(:contact, lastname: 'Smith')

5 jones = create(:contact, lastname: 'Jones')

6 get :index, letter: 'S'

7 expect(assigns(:contacts)).to match_array([smith])

8 end

9

10 it "renders the :index template" do

11 get :index, letter: 'S'

12 expect(response).to render_template :index

13 end

14 end

15

16 context 'without params[:letter]' do

17 it "populates an array of all contacts" do

18 smith = create(:contact, lastname: 'Smith')

19 jones = create(:contact, lastname: 'Jones')

20 get :index

21 expect(assigns(:contacts)).to match_array([smith, jones])

22 end

23

24 it "renders the :index template" do

25 get :index

26 expect(response).to render_template :index

27 end

28 end

29 end

Let’s break this down, starting with the first context. We’re checking for two things
here: First, that an array of contacts matching the first-letter search is created and
assigned to @contacts. Once again using the assigns() method, we check that the
collection (assigned to @contacts) is what we’d expect it to be with RSpec’s match_-
array matcher. In this case, it’s looking for a single-item array containing the smith

5. Basic controller specs 69

created within the example, but not jones. The second example makes sure that the
view template index.html.erb is rendered, via response.

match_array looks for an array’s contents, but not their order. If order
matters, use the eq matcher instead.

The second context follows the same basic constructs; the only real difference is we’re
not passing a letter as a parameter to the method. As a result, in the first expectation
both of the generated contacts are returned. Yes, I know there is some repetition here.
Please work with it for now; typing it will help you learn the syntax. We’ll clean this
up soon, I promise.

new and edit are all that are left of the GET methods; let’s add them now:

spec/controllers/contacts_controller_spec.rb

1 describe 'GET #new' do

2 it "assigns a new Contact to @contact" do

3 get :new

4 expect(assigns(:contact)).to be_a_new(Contact)

5 end

6

7 it "renders the :new template" do

8 get :new

9 expect(response).to render_template :new

10 end

11 end

12

13 describe 'GET #edit' do

14 it "assigns the requested contact to @contact" do

15 contact = create(:contact)

16 get :edit, id: contact

17 expect(assigns(:contact)).to eq contact

18 end

19

20 it "renders the :edit template" do

21 contact = create(:contact)

5. Basic controller specs 70

22 get :edit, id: contact

23 expect(response).to render_template :edit

24 end

25 end

Read through these examples–as you can see, once you know how to test one typical
GET-based method, you can test most of them with a standard set of conventions.

Testing POST requests

Time to move on to our controller’s createmethod, accessed via POST in our RESTful
app. One key difference from the GET methods: Instead of the :id we passed to the
GET methods, we need to pass the equivalent of params[:contact]–the contents
of the form in which a user would enter a new contact. As mentioned earlier, we’ll
use Factory Girl’s attributes_for() for this, creating a hash containing a contact’s
attributes and passing them to the controller. Here’s the basic approach:

it "does something upon post#create" do

post :create, contact: attributes_for(:contact)

end

With that in mind, here are some specs for the method in questions. First, with valid
attributes:

spec/controllers/contacts_controller_spec.rb

1 describe "POST #create" do

2 before :each do

3 @phones = [

4 attributes_for(:phone),

5 attributes_for(:phone),

6 attributes_for(:phone)

7]

8 end

9

5. Basic controller specs 71

10 context "with valid attributes" do

11 it "saves the new contact in the database" do

12 expect{

13 post :create, contact: attributes_for(:contact,

14 phones_attributes: @phones)

15 }.to change(Contact, :count).by(1)

16 end

17

18 it "redirects to contacts#show" do

19 post :create, contact: attributes_for(:contact,

20 phones_attributes: @phones)

21 expect(response).to redirect_to contact_path(assigns[:contact])

22 end

23 end

And close out the block with invalid attributes:

spec/controllers/contacts_controller_spec.rb

1 context "with invalid attributes" do

2 it "does not save the new contact in the database" do

3 expect{

4 post :create,

5 contact: attributes_for(:invalid_contact)

6 }.to_not change(Contact, :count)

7 end

8

9 it "re-renders the :new template" do

10 post :create,

11 contact: attributes_for(:invalid_contact)

12 expect(response).to render_template :new

13 end

14 end

15 end

There are a handful of things to take note of in this code:

5. Basic controller specs 72

First, check out the use of context blocks, as first introduced in chapter 3. Remember,
although describe and context may be used interchangeably, it’s considered best
practice to use context when describing different states–in this case, one state
with valid attributes, and one with invalid attributes. The examples using invalid
attributes use the :invalid_contact factory we set up way back at the beginning of
this chapter.

Second, look at the before hook at the beginning of the describe block. Given the
validation requirement we included in our Contact model (that is, that an instance
of Contact must have three phones associated with it in order to be valid), we’ve got
to make sure to pass some phone attributes, too. This is one way to do it, by creating
an array of three sets of phone attributes to pass into the POST request. Later we’ll
take a look at other, more efficient options. Ultimately, this may point to a code smell
within the actual application, but let’s work with it for now.

If you really want to get fancier with attributes_for and associations,
check out custom strategies and custom callbacks²⁷, from the Factory Girl
README.

Finally, take a look at the slight difference in how we’re using expect in the first
example. This time, we’re passing the full HTTP request to expect in a block. This is
slightly more complex than howwe’ve been using expect so far. The HTTP request is
passed in as a Proc, and the results are evaluated before and after, making it simple to
determine whether the anticipated change happened–or in the case of this example,
did not happen.

As usual, though, RSpec’s readability shines here–expect this code to (or to not)
do something. This one little example succinctly tests that an object is created and
stored. Become familiar with this technique, as it’ll be very useful in testing a variety
of methods in controllers, models, and eventually at the integration level.

Testing PATCH requests

On to our controller’s updatemethod, where we need to check on a couple of things–
first, that the attributes passed into the method get assigned to the model we want

²⁷https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md#custom-strategies

https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md#custom-strategies
https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md#custom-strategies

5. Basic controller specs 73

to update; and second, that the redirect works as we want. Let’s take advantage of
Rails 4.1’s use of the HTTP verb PATCH.

Versions of Rails prior to Rails 4.0 will use PUT instead of PATCH.

spec/controllers/contacts_controller_spec.rb

1 describe 'PATCH #update' do

2 before :each do

3 @contact = create(:contact,

4 firstname: 'Lawrence',

5 lastname: 'Smith')

6 end

7

8 context "valid attributes" do

9 it "locates the requested @contact" do

10 patch :update, id: @contact, contact: attributes_for(:contact)

11 expect(assigns(:contact)).to eq(@contact)

12 end

13

14 it "changes @contact's attributes" do

15 patch :update, id: @contact,

16 contact: attributes_for(:contact,

17 firstname: 'Larry',

18 lastname: 'Smith')

19 @contact.reload

20 expect(@contact.firstname).to eq('Larry')

21 expect(@contact.lastname).to eq('Smith')

22 end

23

24 it "redirects to the updated contact" do

25 patch :update, id: @contact, contact: attributes_for(:contact)

26 expect(response).to redirect_to @contact

27 end

28 end

29

5. Basic controller specs 74

30 # ...

31 end

Then, as we did in the previous POST examples, we need to test that those things
don’t happen if invalid attributes are passed through the params:

spec/controllers/contacts_controller_spec.rb

1 describe 'PATCH #update' do

2 # ...

3

4 context "with invalid attributes" do

5 it "does not change the contact's attributes" do

6 patch :update, id: @contact,

7 contact: attributes_for(:contact,

8 firstname: 'Larry',

9 lastname: nil)

10 @contact.reload

11 expect(@contact.firstname).to_not eq('Larry')

12 expect(@contact.lastname).to eq('Smith')

13 end

14

15 it "re-renders the edit template" do

16 patch :update, id: @contact,

17 contact: attributes_for(:invalid_contact)

18 expect(response).to render_template :edit

19 end

20 end

21 end

Points of interest:

• Since we’re updating an existing Contact, we need to persist something first.
We take care of that in the before hook, making sure to assign the persisted
Contact to @contact to access it later. (Again, we’ll look at more appropriate
ways to do this in later chapters.)

5. Basic controller specs 75

• The two examples that verify whether or not an object’s attributes are actually
changed by the update method–we can’t use the expect{} Proc here. Instead,
we have to call reload on @contact to check that our updates are actually
persisted. Otherwise, these examples follow a similar pattern to the one we
used in the POST-related specs.

Testing DELETE requests

After all that, testing the destroy method is relatively straightforward:

spec/controllers/contacts_controller_spec.rb

1 describe 'DELETE #destroy' do

2 before :each do

3 @contact = create(:contact)

4 end

5

6 it "deletes the contact" do

7 expect{

8 delete :destroy, id: @contact

9 }.to change(Contact,:count).by(-1)

10 end

11

12 it "redirects to contacts#index" do

13 delete :destroy, id: @contact

14 expect(response).to redirect_to contacts_url

15 end

16 end

By now you should be able to correctly guess what everything’s doing. The first
expectation checks to see if the destroy method in the controller actually deleted
the object (using the now-familiar expect{} Proc); the second expectation confirms
that the user is redirected back to the index upon success.

5. Basic controller specs 76

Testing non-CRUD methods

Testing a controller’s other methods isn’t much different from testing the standard,
out-of-the-box RESTful resources Rails gives us. Let’s use the hypothetical example
of a hide_contact method on ContactsController, which provides administrators
with a convenient means of hiding contacts from view without deleting them (I’ll
leave it to you to implement this functionality, if you’d like).

We could test this at the controller level with something like

1 describe "PATCH hide_contact" do

2 before :each do

3 @contact = create(:contact)

4 end

5

6 it "marks the contact as hidden" do

7 patch :hide_contact, id: @contact

8 expect(@contact.reload.hidden?).to be_true

9 end

10

11 it "redirects to contacts#index" do

12 patch :hide_contact, id: @contact

13 expect(response).to redirect_to contacts_url

14 end

15 end

See what we’re doing? We’re using the PATCH method–since we’re editing an
existing contact–along with :hide_contact to indicate the controller method to
access. Everything else works similarly to testing the update method, with the
exception that we’re not passing a hash of user-entered attributes–in this example,
the hidden? boolean is set server-side.

expect(@contact.reload.hidden?).to be_true is a good candidate for
a custom matcher. We’ll visit this concept in chapter 7.

If your method uses one of the other HTTP request methods, just follow along with
its respective CRUD-based approach to test it.

5. Basic controller specs 77

Testing nested routes

If your application uses nested routes–that is, a route that looks something like
/contacts/34/phones/22, you’ll need to provide your examples with a little more
information.

See Rails Routing from the Outside In²⁸ for an excellent overview of nested
routes.

In another hypothetical example, let’s say we implemented phones with nested
routes instead of nested attributes. This means that, instead of inputting each phone’s
attributes within its associated contact’s form, we need a separate controller/views
combination to gather and process phone data. The route configuration in con-
fig/routes.rb would look something like:

config/routes.rb

1 resources :contacts do

2 resources :phones

3 end

If you were to look at the routes for the app (with rake routes, via the command
line) you’d see that the path to PhoneController’s :show method translates to
/contacts/:contact_id/phones/:id–so we need to pass in a phone’s :id and a
:contact_id for its parent contact. Here’s how that would look in a spec:

²⁸http://guides.rubyonrails.org/routing.html#nested-resources

http://guides.rubyonrails.org/routing.html#nested-resources
http://guides.rubyonrails.org/routing.html#nested-resources

5. Basic controller specs 78

1 describe 'GET #show' do

2 it "renders the :show template for the phone" do

3 contact = create(:contact)

4 phone = create(:phone, contact: contact)

5 get :show, id: phone, contact_id: contact.id

6 expect(response).to render_template :show

7 end

8 end

The key thing to remember is you need to pass the parent route to the server in
the form of :parent_id–in this case, :contact_id. The controller will handle things
from there, as directed by your routes.rb file. This same basic technique applies to
any method in a nested controller.

Testing non-HTML controller output

So far we’ve just been testing a controller method’s HTML output. Of course, Rails
lets us send multiple data types from a single controller method in addition to–or
instead of–HTML.

Continuing with our hypothetical examples, let’s say we need to export contacts
to a CSV file. If you’re already returning content in a non-HTML format in your
own applications, you probably know how to override the HTML default in a given
method’s route:

link_to 'Export', contacts_path(format: :csv)

This would assume a controller method along these lines:

5. Basic controller specs 79

1 def index

2 @contacts = Contact.all

3

4 respond_to do |format|

5 format.html # index.html.erb

6 format.csv do

7 send_data Contact.to_csv(@contacts),

8 type: 'text/csv; charset=iso-8859-1; header=present',

9 disposition: 'attachment; filename=contacts.csv'

10 end

11 end

12 end

A simple means of testing this, then, is to verify the data type:

1 describe 'CSV output' do

2 it "returns a CSV file" do

3 get :index, format: :csv

4 expect(response.headers['Content-Type']).to match 'text/csv'

5 end

6

7 it 'returns content' do

8 create(:contact,

9 firstname: 'Aaron',

10 lastname: 'Sumner',

11 email: 'aaron@sample.com')

12 get :index, format: :csv

13 expect(response.body).to match 'Aaron Sumner,aaron@sample.com'

14 end

15 end

Note the use of RSpec’s match matcher here, used whenever a regular expression is
being compared to the actual results.

This will verify that the controller is returning the CSV data with the proper content
type. However, given the structure we’re using to actually generate CSV content–
that is, with a class method on Contact, testing that functionality at the model level
(as opposed to the controller layer) is perhaps the ideal way to go:

5. Basic controller specs 80

1 it "returns comma separated values" do

2 create(:contact,

3 firstname: 'Aaron',

4 lastname: 'Sumner',

5 email: 'aaron@sample.com')

6 expect(Contact.to_csv).to match /Aaron Sumner,aaron@sample.com/

7 end

Generating CSV data is outside of the scope of this book. To see the
general approach I’ve used, see Railscasts episode 362, Exporting to CSV
and Excel²⁹.

You can also test JSON or XML output with relative ease at the controller level:

1 it "returns JSON-formatted content" do

2 contact = create(:contact)

3 get :index, format: :json

4 expect(response.body).to have_content contact.to_json

5 end

We’ll talk more about testing your API in chapter 10.

Summary

In a nutshell, that’s how you test your application’s controllers. The key is to break
down what you need to test, and then incrementally build those tests until you’ve
got your functionality covered.

Unfortunately, controller specs aren’t always this straightforward. Often you’ll
need to contend with user logins, additional, non-scaffolded code, or models with
particular validation requirements. That’s what we’ll cover next.

²⁹http://railscasts.com/episodes/362-exporting-csv-and-excel

http://railscasts.com/episodes/362-exporting-csv-and-excel
http://railscasts.com/episodes/362-exporting-csv-and-excel
http://railscasts.com/episodes/362-exporting-csv-and-excel

5. Basic controller specs 81

Exercises

• Thinking back to chapter 4, how would you test the :invalid_contact

factory?
• The astute reader may spot a design flaw in the example controller’s index
method. Can you see what it is? Can you refactor the code to reduce logic in
the controller? See the next exercise for a hint.

• If you’re noticing you’ve got to do quite a bit of setup just to test a single
controller method, it could be a sign that your controller needs refactoring.
Perhaps there’s code contained within the controller method that would be
better-suited in a model or helper method. Take opportunities to clean up your
code as they present themselves–move the offending code to a model, spec it
there as needed, and simplify your controller spec–which should still pass.

6. Advanced controller specs
With the basics of controller testing out of the way, let’s now look at how RSpec
helps make sure our application’s controllers are doing what we expect them to do.
This time, though, we’ll build onto the vanilla CRUD specs by accounting for our
application’s authentication and authorization layers. In a bit more detail:

• We’ll start by setting up a more complicated spec.
• Next we’ll cover testing authentication, or login requirements, through the
controller.

• We’ll follow that by testing authorization, or roles; also through the controller.
• We’ll also look at a technique for making sure controller specs are properly
handling any additional setup requirements your application might have.

Check out the 06_advanced_controllers branch of the sample source to see
the completed code for this chapter. Using the command line, type

git checkout -b 06_advanced_controllers origin/06_advanced_-

controllers

If you’d like to follow along, start with the previous chapter’s branch:

git checkout -b 05_controller_basics origin/05_controller_-

basics

See chapter 1 for additional details.

Getting ready

In the previous chapter, we commented out the before_action to authenticate
ContactsController. Uncomment the line to re-enable authentication. Run RSpec and
look at how many specs are now breaking!

6. Advanced controller specs 83

Finished in 1.11 seconds (files took 3.15 seconds to load)

32 examples, 13 failures

We need a way to mimic the authorization process in the controller specs to continue.
In particular, we’ve got to contend with whether a user is logged in or not, and the
logged-in user’s role. As a reminder, you must be a user to add or edit, and you must
be an administrative user to add other users. We’ll use a basic mechanism in our
application controller to handle this authorization layer in the app itself, and test the
settings at the controller level.

Testing the admin and user roles

We’re going to take a different approach to walking through the controller spec this
time. We’ll go through each possible role–guest, user, and administrator. Let’s start
by fixing those currently-failing specs. In our application, users and administrators
(users with the :admin boolean enabled) have identical permissions for contacts: Any
user who has signed in with a valid account can create, edit, and delete any contact.

First, let’s establish a new factory for users:

spec/factories/users.rb

1 FactoryGirl.define do

2 factory :user do

3 email { Faker::Internet.email }

4 password 'secret'

5 password_confirmation 'secret'

6

7 factory :admin do

8 admin true

9 end

10 end

11 end

This will allow us to quickly create a new user object with create(:user) (or
FactoryGirl.create(:user) when not using shorthand); it also creates a child

6. Advanced controller specs 84

factory called admin for creating users with the administrator role, by setting the
admin boolean to true.

Now, back to the controller spec, let’s use the factory to test administrator access.
Pay close attention to the first few lines:

spec/controllers/contacts_controller_spec.rb

1 describe "administrator access" do

2 before :each do

3 user = create(:admin)

4 session[:user_id] = user.id

5 end

6

7 describe 'GET #index' do

8 context 'with params[:letter]' do

9 it "populates an array of contacts starting with the letter" do

10 smith = create(:contact, lastname: 'Smith')

11 jones = create(:contact, lastname: 'Jones')

12 get :index, letter: 'S'

13 expect(assigns(:contacts)).to match_array([smith])

14 end

15

16 it "renders the :index template" do

17 get :index, letter: 'S'

18 expect(response).to render_template :index

19 end

20 end

21

22 context 'without params[:letter]' do

23 it "populates an array of all contacts" do

24 smith = create(:contact, lastname: 'Smith')

25 jones = create(:contact, lastname: 'Jones')

26 get :index

27 expect(assigns(:contacts)).to match_array([smith, jones])

28 end

29

30 it "renders the :index template" do

31 get :index

6. Advanced controller specs 85

32 expect(response).to render_template :index

33 end

34 end

35 end

36

37 describe 'GET #show' do

38 it "assigns the requested contact to @contact" do

39 contact = create(:contact)

40 get :show, id: contact

41 expect(assigns(:contact)).to eq contact

42 end

43

44 it "renders the :show template" do

45 contact = create(:contact)

46 get :show, id: contact

47 expect(response).to render_template :show

48 end

49 end

50

51 # and so on ...

52 end

What’s going on here? It’s pretty simple, really: I start by wrapping all of my existing
examples in the spec inside a new describe block, then add a before block inside
it to mimic logging in as an administrator. This is done by first instantiating an
administrator object with the new :admin factory, then by assigning it to the session
value directly.

In this case, that’s all there is to it. With a valid login being simulated, our controller
specs are passing again.

For the sake of brevity, I’m not going to include a full non-administrator’s permission
specs. Review the sample code for this chapter for a complete implementation–aside
from before :each block the expectations are exactly the same.

6. Advanced controller specs 86

spec/controllers/contacts_controller_spec.rb

1 describe "user access" do

2 before :each do

3 user = create(:user)

4 session[:user_id] = user.id

5 end

6

7 # specs are the same as administrator

Yes, this is a lot of redundant code. Don’t worry, RSpec has a feature to deal with
this. We’ll get to it in the next chapter. For now, just focus on the different use cases
we need to test.

Testing the guest role

It may often be easy to overlook the guest role–that is, a user who’s not logged in at
all. However, in a public-facing application like ours, that may be the most common
role! Let’s add it to the spec. Unlike specs for our other roles, we’ll need to make some
changes to these–they’re not direct copy-and-paste jobs, but they are pretty easy to
write:

spec/controllers/contacts_controller_spec.rb

1 describe "guest access" do

2 # GET #index and GET #show examples are the same as those for

3 # administrators and users

4

5 describe 'GET #new' do

6 it "requires login" do

7 get :new

8 expect(response).to redirect_to login_url

9 end

10 end

11

12 describe 'GET #edit' do

6. Advanced controller specs 87

13 it "requires login" do

14 contact = create(:contact)

15 get :edit, id: contact

16 expect(response).to redirect_to login_url

17 end

18 end

19

20 describe "POST #create" do

21 it "requires login" do

22 post :create, id: create(:contact),

23 contact: attributes_for(:contact)

24 expect(response).to redirect_to login_url

25 end

26 end

27

28 describe 'PUT #update' do

29 it "requires login" do

30 put :update, id: create(:contact),

31 contact: attributes_for(:contact)

32 expect(response).to redirect_to login_url

33 end

34 end

35

36 describe 'DELETE #destroy' do

37 it "requires login" do

38 delete :destroy, id: create(:contact)

39 expect(response).to redirect_to login_url

40 end

41 end

42 end

Nothing new until we hit the new block, the first method the controller’s before_-
action requires a login to access. This time, we need to make sure guests can’t do the
things in the controller method–instead, they should be redirected to the login_url,
at which point they will be asked to sign in. As you can see, we can use this technique
on any method that requires login.

Running the specs again, they should now pass. As an experiment, comment out the

6. Advanced controller specs 88

before_action :authenticate line in the controller again, and run the specs to see
what happens. You can also change expect(response).to redirect_to login_url

to expect(response).not_to redirect_to login_url, or change login_url to a
different path.

It’s a good idea to intentionally break things like this, to help reduce the
chance a false positive in a test gets past you.

Testing a given role’s authorization

Finally, we’ll need to consider a different controller to see how to spec a given user’s
authorization–that is, what he or she is allowed to do upon successful login. In the
sample application, only administrators may add new users. Regular users–those
without the :admin boolean switched on–should be denied access.

The approach is basically the same onewe’ve followed so far: Set up a user to simulate
in a before :each block, simulate the login by assigning the user_id to a session
variable in the before :each block, then write the specs. This time, though, instead
of redirecting to the login form, users should be redirected back to the application’s
root URL. This behavior defined in app/controllers/application_controller.rb.
Here are some specs for this scenario:

spec/controllers/users_controller_spec.rb

1 describe 'user access' do

2 before :each do

3 @user = create(:user)

4 session[:user_id] = @user.id

5 end

6

7 describe 'GET #index' do

8 it "collects users into @users" do

9 user = create(:user)

10 get :index

11 expect(assigns(:users)).to match_array [@user,user]

12 end

6. Advanced controller specs 89

13

14 it "renders the :index template" do

15 get :index

16 expect(response).to render_template :index

17 end

18 end

19

20 it "GET #new denies access" do

21 get :new

22 expect(response).to redirect_to root_url

23 end

24

25 it "POST#create denies access" do

26 post :create, user: attributes_for(:user)

27 expect(response).to redirect_to root_url

28 end

29 end

Summary

We’ve covered an awful lot in the past couple of chapters–but the fact is, you can
test an awful lot of your application’s functionality by applying good test coverage
at the controller level.

As I shared in the previous chapter, I don’t always test my own controllers with such
thoroughness. I tend to leverage controller specs on a case-by-case basis (typically,
for non-boilerplate code). That said, as you can see from RSpec’s generated examples,
there are several things you can–and should–test at the controller level.

And with thoroughly tested controllers, you’re well on your way to thorough test
coverage in your application as a whole. By now you should be getting a handle on
good practices and techniques for the practical use of RSpec, Factory Girl, and other
helpers to make your tests and code more reliable.

We can still do better, though–in the next chapter, we’ll go through this spec one
more time and clean it up through helper methods and shared examples.

6. Advanced controller specs 90

Exercise

For a given controller in your application, sketch a table of which methods should be
accessible to which users. For example, say I have a blogging application for premium
content–users must become members to access content, but can get a feel for what
they’re missing by seeing a list of titles. Actual users have different levels of access
based on their respective roles. The hypothetical app’s Posts controller might have
the following permissions:

Role Index Show Create Update Destroy
Admin Full Full Full Full Full
Editor Full Full Full Full Full
Author Full Full Full Full None
Member Full Full None None None
Guest Full None None None None

Use this table to help figure out the various scenarios that need to be tested. In this
example I merged new and create into one column (since it doesn’t make much
sense to render the new form if it can’t be used to create anything), as well as
edit and update, while splitting index and show. How would these compare to your
application’s authentication and authorization requirements? What would you need
to change?

7. Controller spec cleanup
If you’ve been applying what you’ve learned so far to your own code, you’re well
on your way to a solid test suite. However, in the last chapter we introduced a lot
of repetition–and potentially brittle tests. What would happen, say, if instead of
redirecting unauthorized requests to root_path, we created a specific denied_path
route? We’ve have a lot of individual specs to clean up.

Just as you would your application code, you should take opportunities to clean
up your specs. In this chapter we’ll look at three ways to reduce redundancy and
brittleness, without sacrificing readability:

• To start, we’ll share examples across multiple describe and context blocks.
• Next we’ll reduce more repetition with helper macros.
• We’ll finish up by creating custom RSpec matchers.

Check out the 07_controller_cleanup branch of the sample source to see
the completed code for this chapter. Using the command line, type

git checkout -b 07_controller_cleanup origin/07_controller_-

cleanup

If you’d like to follow along, start with the previous chapter’s branch:

git checkout -b 06_advanced_controllers origin/06_advanced_-

controllers

See chapter 1 for additional details.

Shared examples

Way back in chapter 1, when discussing my general approach to testing, I said a
readable spec is ultimately more important than a 100 percent DRY spec. I stand by

7. Controller spec cleanup 92

that–but looking at contacts_controller_spec.rb, something’s got to give. As it
stands right now, we’ve got many examples included twice (once for administrators;
once for regular users). Some examples are included thrice–guests, admins, and
regular users may all access the :index and :show methods. That’s a lot of code,
and it jeopardizes readability and long-term maintainability.

RSpec gives us a nice way to clean up this replication with shared examples. Setting
up a shared example is pretty simple–first, create a block for the examples as follows:

spec/controllers/contacts_controller_spec.rb

1 shared_examples 'public access to contacts' do

2 before :each do

3 @contact = create(:contact,

4 firstname: 'Lawrence',

5 lastname: 'Smith'

6)

7 end

8

9 describe 'GET #index' do

10 it "populates an array of contacts" do

11 get :index

12 expect(assigns(:contacts)).to match_array [@contact]

13 end

14

15 it "renders the :index template" do

16 get :index

17 expect(response).to render_template :index

18 end

19 end

20

21 describe 'GET #show' do

22 it "assigns the requested contact to @contact" do

23 get :show, id: @contact

24 expect(assigns(:contact)).to eq @contact

25 end

26

27 it "renders the :show template" do

28 get :show, id: @contact

7. Controller spec cleanup 93

29 expect(response).to render_template :show

30 end

31 end

32 end

Then include them in any describe or context block in which you’d like to use the
examples, like this (actual code removed for clarity here; refer to the file in the sample
source for context):

spec/controllers/contacts_controller_spec.rb

1 describe "guest access" do

2 it_behaves_like "public access to contacts"

3

4 # rest of specs for guest access ...

5 end

Let’s keep going with a second set of shared examples. This time, we’ll create one
that covers the administrator and user roles.

As a result of this exercise, our contacts_controller_spec.rb is much cleaner, as
you can see in this outline:

spec/controllers/contacts_controller_spec.rb

1 require 'spec_helper'

2

3 describe ContactsController do

4 shared_examples 'public access to contacts' do

5 describe 'GET #index' do

6 context 'with params[:letter]' do

7 it "populates an array of contacts starting with the letter"

8 it "renders the :index template"

9 end

10

11 context 'without params[:letter]' do

12 it "populates an array of all contacts"

7. Controller spec cleanup 94

13 it "renders the :index template"

14 end

15 end

16

17 describe 'GET #show' do

18 it "assigns the requested contact to @contact"

19 it "renders the :show template"

20 end

21 end

22

23 shared_examples 'full access to contacts' do

24 describe 'GET #new' do

25 it "assigns a new Contact to @contact"

26 it "assigns a home, office, and mobile phone to the new contact"

27 it "renders the :new template"

28 end

29

30 describe 'GET #edit' do

31 it "assigns the requested contact to @contact"

32 it "renders the :edit template"

33 end

34

35 describe "POST #create" do

36 context "with valid attributes" do

37 it "creates a new contact"

38 it "redirects to the new contact"

39 end

40

41 context "with invalid attributes" do

42 it "does not save the new contact"

43 it "re-renders the new method"

44 end

45 end

46

47 describe 'PATCH #update' do

48 context "valid attributes" do

49 it "located the requested @contact"

50 it "changes @contact's attributes"

7. Controller spec cleanup 95

51 it "redirects to the updated contact"

52 end

53

54 context "invalid attributes" do

55 it "locates the requested @contact"

56 it "does not change @contact's attributes"

57 it "re-renders the edit method"

58 end

59 end

60

61 describe 'DELETE #destroy' do

62 it "deletes the contact"

63 it "redirects to contacts#index"

64 end

65 end

66

67 describe "admin access to contacts" do

68 before :each do

69 set_user_session(create(:admin))

70 end

71

72 it_behaves_like "public access to contacts"

73 it_behaves_like "full access to contacts"

74 end

75

76 describe "user access to contacts" do

77 before :each do

78 set_user_session(create(:user))

79 end

80

81 it_behaves_like "public access to contacts"

82 it_behaves_like "full access to contacts"

83 end

84

85 describe "guest access to contacts" do

86 it_behaves_like "public access to contacts"

87

88 describe 'GET #new' do

7. Controller spec cleanup 96

89 it "requires login"

90 end

91

92 describe "POST #create" do

93 it "requires login"

94 end

95

96 describe 'PATCH #update' do

97 it "requires login"

98 end

99

100 describe 'DELETE #destroy' do

101 it "requires login"

102 end

103 end

104 end

And when we run bundle exec rspec spec/controllers/contacts_controller_-

spec.rb, the documentation output is just as readable:

1 ContactsController

2 administrator access

3 behaves like public access to contacts

4 GET #index

5 with params[:letter]

6 populates an array of contacts starting with the letter

7 renders the :index template

8 without params[:letter]

9 populates an array of all contacts

10 renders the :index template

11 GET #show

12 assigns the requested contact to @contact

13 renders the :show template

14 behaves like full access to contacts

15 GET #new

16 assigns a new Contact to @contact

17 assigns a home, office, and mobile phone to the new contact

7. Controller spec cleanup 97

18 renders the :new template

19 GET #edit

20 assigns the requested contact to @contact

21 renders the :edit template

22 POST #create

23 with valid attributes

24 saves the new contact in the database

25 redirects to contacts#show

26 with invalid attributes

27 does not save the new contact in the database

28 re-renders the :new template

29 PATCH #update

30 valid attributes

31 locates the requested @contact

32 changes the contact's attributes

33 redirects to the updated contact

34 invalid attributes

35 locates the requested @contact

36 does not change the contact's attributes

37 re-renders the edit method

38 DELETE #destroy

39 deletes the contact

40 redirects to contacts#index

41 user access

42 behaves like public access to contacts

43 GET #index

44 with params[:letter]

45 populates an array of contacts starting with the letter

46 renders the :index template

47 without params[:letter]

48 populates an array of all contacts

49 renders the :index template

50 GET #show

51 assigns the requested contact to @contact

52 renders the :show template

53 behaves like full access to contacts

54 GET #new

55 assigns a new Contact to @contact

7. Controller spec cleanup 98

56 assigns a home, office, and mobile phone to the new contact

57 renders the :new template

58 GET #edit

59 assigns the requested contact to @contact

60 renders the :edit template

61 POST #create

62 with valid attributes

63 saves the new contact in the database

64 redirects to contacts#show

65 with invalid attributes

66 does not save the new contact in the database

67 re-renders the :new template

68 PATCH #update

69 valid attributes

70 locates the requested @contact

71 changes the contact's attributes

72 redirects to the updated contact

73 invalid attributes

74 locates the requested @contact

75 does not change the contact's attributes

76 re-renders the edit method

77 DELETE #destroy

78 deletes the contact

79 redirects to contacts#index

80 guest access

81 behaves like public access to contacts

82 GET #index

83 with params[:letter]

84 populates an array of contacts starting with the letter

85 renders the :index template

86 without params[:letter]

87 populates an array of all contacts

88 renders the :index template

89 GET #show

90 assigns the requested contact to @contact

91 renders the :show template

92 GET #new

93 requires login

7. Controller spec cleanup 99

94 GET #edit

95 requires login

96 POST #create

97 requires login

98 PUT #update

99 requires login

100 DELETE #destroy

101 requires login

Creating helper macros

Now let’s turn our attention to another bit of code we’ve used several times in
our controllers. Whenever we’re testing what a logged-in user can or can’t do, we
simulate that login by setting a session value to a factory-generated user’s :id. Let’s
move this functionality to a macro in RSpec. Macros are an easy way to create
methods which may be used across your entire test suite. Macros conventionally go
into the spec/support directory as a module to be included in RSpec’s configuration.

First, here’s a macro for setting that session variable:

spec/support/login_macros.rb

1 module LoginMacros

2 def set_user_session(user)

3 session[:user_id] = user.id

4 end

5 end

Just a simple Ruby module and method–it accepts a user object and assigns
session[:user_id] to that user’s own :id.

Before we can use this new helper in our specs, we’ve got to let RSpec know where
to find it. Inside the RSpec.configure block in spec/rails_helper.rb, we’ll add the line
config.include LoginMacros as shown below:

7. Controller spec cleanup 100

spec/rails_helper.rb

1 Dir[Rails.root.join("spec/support/**/*.rb")].each {|f| require f}

2

3 RSpec.configure do |config|

4 # other RSpec configuration omitted ...

5

6 config.include LoginMacros

7 end

Authentication options like Devise offer similar functionality. If you’re
using such a solution in your project, refer to its documentation for
instructions on incorporating it into your test suite.

With that in place, let’s apply it to a controller spec. In a before block, we’ll create a
new admin user, then set the session to that user–all in a single line:

spec/controllers/contacts_controller_spec.rb

1 describe "admin access" do

2 before :each do

3 set_user_session create(:admin)

4 end

5

6 it_behaves_like "public access to contacts"

7 it_behaves_like "full access to contacts"

8 end

It might seem silly to create a whole separate helper method for just one line of code,
but in reality it could come to be that we change up our whole authentication system,
and need to simulate login in a different fashion. By simulating login in this manner,
we just have to make the change in one place.

When we get to integration testing in the next chapter, this technique might help us
reuse several lines of code, as we simulate each step of a user login.

7. Controller spec cleanup 101

Using custom RSpec matchers

So far we’ve gotten a lot of mileage out of RSpec’s built-in matchers–and truth be
told, you could probably test an entire application without ever straying from the
standards. (I know; I have.) However, just as we reviewed when building some helper
macros in the last section, adding a few custom matchers for your application can
boost your test suite’s long-term reliability. In the case of our address book, what if
we changed the route for the login form or where we direct users who try to access
more than they’re allowed? As it is. we’d have a lot of examples to switch out to
the new route–or we could set up a custom matcher and just change the route in
one place. If you store custom matchers in spec/support/matchers, one matcher per
file, the default RSpec configuration will automatically pick them up for use in your
specs.

Here’s an example:

spec/support/matchers/require_login.rb

1 RSpec::Matchers.define :require_login do |expected|

2 match do |actual|

3 expect(actual).to redirect_to \

4 Rails.application.routes.url_helpers.login_path

5 end

6

7 failure_message do |actual|

8 "expected to require login to access the method"

9 end

10

11 failure_message_when_negated do |actual|

12 "expected not to require login to access the method"

13 end

14

15 description do

16 "redirect to the login form"

17 end

18 end

7. Controller spec cleanup 102

Let’s take a quick tour of this code: the match block is what we expect to happen–
essentially, replacing the code after expect(something).to in a given spec. Note that
RSpec doesn’t load Rails’ UrlHelpers library, so we’ll give the matcher a little help by
calling its full path. We check to see if the actual value we’re passing to the matcher
(in this case, response) does what we expect it to (redirect to our login form). If it
does, the matcher reports success.

Next, we can provide some helpful messages to return if an example using the
matcher doesn’t pass–the first one is a message for when we expect the matcher to
return true, and the second for when it should return false. In other words, a single
matcher covers both expect(:foo).to and expect(:foo).not_to–no need to write
two matchers.

Now, replacing the matcher in our examples is easy:

spec/controllers/contacts_controller_spec.rb

1 describe 'GET #new' do

2 it "requires login" do

3 get :new

4 expect(response).to require_login

5 end

6 end

This is just one example of what we can do with custom matchers. Coming up with
a fancier example at this point in our application would be contrived (and possibly
confusing), so I suggest reviewing the sample matchers in RSpec’s documentation³⁰.

Summary

If left unkempt, controller specs can sprawl out of control pretty quickly–but with
a little management (and some help from RSpec’s useful support methods) you can
keep things in check for solid long-term maintenance. Just as you shouldn’t ignore
control specs, please also don’t ignore your responsibility of keeping these specs
pruned and tidy. Your future self will thank you for it.

³⁰https://www.relishapp.com/rspec/rspec-expectations/v/3-1/docs/custom-matchers

https://www.relishapp.com/rspec/rspec-expectations/v/3-1/docs/custom-matchers
https://www.relishapp.com/rspec/rspec-expectations/v/3-1/docs/custom-matchers

7. Controller spec cleanup 103

We’ve spent a lot of time testing controllers. As I said back at the beginning of chapter
5, testing at this level is an economical way to build confidence in a large swath
of your code base–and is good practice for testing at other levels, since many of
the same concepts can apply to other levels of testing. By keeping these tests clean
and readable, you’ll be sure to make that confidence last for the lifetime of your
application.

One more level of testing to go: Integration. The work we’ve done so far has given
us comfort in our application’s building blocks–next let’s make sure they fit nicely
together into a cohesive structure.

Exercises

• Examine your own test suite and look for places to tidy up. Controller specs
are a prime target, but check your model specs, too. What are the best methods
for cleaning up each section–shared examples? A custom matcher? A helper
macro? Update your specs as needed, making sure they continue to pass along
the way.

• Back in chapter 5, I mentioned that expect(@contact.reload.hidden?).to
be_true could be streamlined with a custom matcher. What would that look
like?

8. Feature specs
So far we’ve added a good amount of test coverage to our contacts manager. We got
RSpec installed and configured, set up some unit tests on models and controllers,
and used factories to generate test data. Now it’s time to put everything together
for integration testing–in other words, making sure those models and controllers all
play nicely with other models and controllers in the application. These tests are called
feature specs in RSpec. You may also hear them called acceptance tests. Once you get
the hang of them, they can be used to test a wide range of functionality within a Rails
application. They may also be used to replicate bug reports from your application’s
users.

The good news is you know almost everything you need to know to write solid
feature specs–they follow a similar structure you’ve been using in models and
controllers, and you can use Factory Girl to generate test data for them. The star
of the show, though, is Capybara, an extremely useful Ruby library to help define
steps of a feature spec and simulate real-world use of your application.

In this chapter, we’ll look at the nuts and bolts of an RSpec feature spec:

• We’ll start with some thoughts on when and why feature specs make sense
versus other options.

• Next, we’ll cover a few additional dependencies to aid in integration testing.
• Then we’ll look at a basic feature spec.
• After that, we’ll tackle a slightly more advanced approach, with JavaScript
requirements incorporated.

• Finally, we’ll close with some discussion on best practices for feature specs.

8. Feature specs 105

Check out the 08_features branch of the sample source to see the com-
pleted code for this chapter. Using the command line, type

git checkout -b 08_features origin/08_features

If you’d like to follow along, start with the previous chapter’s branch:

git checkout -b 07_controller_cleanup origin/07_controller_-

cleanup

See chapter 1 for additional details.

Why feature specs?

We just spent a lot of time going over controller testing. After all that, why are we
doing another layer of tests? Because controller tests are relatively simple unit tests
and, while they test an important component of your software, they are only testing
a small part of an application. A feature spec covers more ground, and represents
how actual users will interact with your code. In other words, it tests how all those
different units that make up your application integrate with one another.

What about Cucumber?

Cucumber³¹ is a popular alternative to the type of tests we’ll be working on in this
chapter. To be honest, I ran hot and cold with it for a few years, but do not use it
now. Cucumber’s definitely got its uses–but it’s also got a lot of overhead. Unless
you know how to use it correctly, it can lead to brittle and ultimately useless tests.

I can understand wanting to use Cucumber if you’re working directly with a non-
programmer product owner who doesn’t want to look at a lot of code, but from my
experience, Capybara’s DSL is understandable enough that non-programmers can
still read through a feature spec and understand what’s going on. And if you’re
not working with a non-programmer, then the extra overhead incumbent with
Cucumber may not be worth the effort.

³¹http://cukes.info

http://cukes.info
http://cukes.info

8. Feature specs 106

Of course, Cucumber does have its ardent supporters. It’s a staple in many develop-
ment shops, so you’ll probably need to become familiar with it eventually, too. The
good news is, if you do want or need to use Cucumber down the road, understanding
how Capybara and RSpec work at the feature spec level will make things easier to
understand.

If you do go the Cucumber route, be mindful of any tutorial that existed
prior to December, 2011. That’s when it was revealed that Cucumber’s
web_steps.rb file–the helpers that let you add steps like When I fill

in "Email" with "aaron@everydayrails.com"–were deemed “training
wheels.”³² Post-December 2011, it’s recommended that you make your
Cucumber scenarios more direct, and leave the heavy lifting to custom
step definitions using Capybara.

Additional dependencies

Back in chapter 2, we included Capybara³³, DatabaseCleaner³⁴, and Launchy³⁵ in our
Gemfile’s test group. If you haven’t added them yet, do so now–we’re finally going
to put them to use.

DatabaseCleaner will also need some additional configuration to do its job, but first
let’s look at a simple spec that doesn’t require DatabaseCleaner.

A basic feature spec

Capybara lets you simulate how a user would interact with your application through
aweb browser, using a series of easy-to-understandmethods like click_link, fill_-
in, and visit. What these methods let you do, then, is describe a test scenario for
your app. Can you guess what this feature spec does?

³²http://aslakhellesoy.com/post/11055981222/the-training-wheels-came-off
³³https://github.com/jnicklas/capybara
³⁴https://github.com/bmabey/database_cleaner
³⁵http://rubygems.org/gems/launchy

http://aslakhellesoy.com/post/11055981222/the-training-wheels-came-off
http://aslakhellesoy.com/post/11055981222/the-training-wheels-came-off
https://github.com/jnicklas/capybara
https://github.com/bmabey/database_cleaner
http://rubygems.org/gems/launchy
http://aslakhellesoy.com/post/11055981222/the-training-wheels-came-off
https://github.com/jnicklas/capybara
https://github.com/bmabey/database_cleaner
http://rubygems.org/gems/launchy

8. Feature specs 107

spec/features/users_spec.rb

1 require 'rails_helper'

2

3 feature 'User management' do

4 scenario "adds a new user" do

5 admin = create(:admin)

6

7 visit root_path

8 click_link 'Log In'

9 fill_in 'Email', with: admin.email

10 fill_in 'Password', with: admin.password

11 click_button 'Log In'

12

13 visit root_path

14 expect{

15 click_link 'Users'

16 click_link 'New User'

17 fill_in 'Email', with: 'newuser@example.com'

18 find('#password').fill_in 'Password', with: 'secret123'

19 find('#password_confirmation').fill_in 'Password confirmation',

20 with: 'secret123'

21 click_button 'Create User'

22 }.to change(User, :count).by(1)

23 expect(current_path).to eq users_path

24 expect(page).to have_content 'New user created'

25 within 'h1' do

26 expect(page).to have_content 'Users'

27 end

28 expect(page).to have_content 'newuser@example.com'

29 end

30 end

Walking through the steps of this spec, you should be able to see that the spec first
creates a new administrator (a user who can create other users), then uses the login
form to sign in as that administrator and create a new user using the same web form
our application’s administrators would use. This is an important distinction between

8. Feature specs 108

feature specs and controller specs. In controller specs, we bypass the user interface
and send parameters directly to the controller method–which, in this case, would
bemultiple controllers and actions–contacts#index, sessions#new, users#new, and
users#create. However, the results should be the same. A new user is created, the
application redirects to a listing of all users, a flash message is rendered to let us
know the process was successful, and the new user is listed on the page.

You may also recognize some techniques from previous chapters–feature is used
in place of describe to structure the spec, scenario describes a given example in
place of it, and the expect{} Proc we checked out in chapter 5 plays the same role
here–we expect that certain things will change when a user completes the scripted
actions when interacting with the site.

See the use of find('#password') and find('#password_confirmation) here? As
you may guess, this method finds elements on the rendered page, using whatever
you pass into it as an argument (not to be confused with ActiveRecord’s own find

method). In this case it’s finding by CSS–<div> elements by their ids. We could also
find elements by XPath location, or just plain text as shown for click_link 'Users',
fill_in 'Email', and so on. However, a spec will fail if a match is ambiguous–in
other words, if I’d tried the following:

fill_in 'Password', with: 'secret'

fill_in 'Password confirmation', with: 'secret'

Capybara would have returned an Ambiguous match error, because the word
password is present in both labels. If you receive such an error, fire up the view
file rendering your HTML and look for alternative ways to locate the field you want
to manipulate. (Prior to Capybara 2.0, such use of fill_in wouldn’t have resulted
in this error.)

If possible, I prefer to stick with plain text matchers, then CSS. If neither of those
matches exactly what I want I’ll defer to XPath-based matchers. Refer to Capybara’s
README file for more information.

The find method also comes useful when testing interfaces with
JavaScript. More on that later in this chapter.

8. Feature specs 109

Following expect{}, we run a series of tests to make sure the resulting view is
displayed in a way we’d expect, using the Capybara DSL. As you can see, it’s not
quite plain English, but still easy to follow. Check out, too, the within block used
to specify where to look on a page for specific content–in this case, within the <h1>
tag in the index view for users. This is an alternative to the find() approach used
to locate the password and password confirmation fields. You can get pretty fancy
with this if you’d like–more on that in just a moment.

One final thing to point out here: Within feature specs, it’s perfectly reasonable to
have multiple expectations in a given example or scenario. Feature specs typically
have much greater overhead than the smaller examples we’ve written so far models
and controllers, and as such can take a lot longer to set up and run. You may also add
expectations mid-test. For example, in the previous spec I may want to verify that
the user is notified of successful login via a flash message–though in reality, such an
expectation might be more appropriate in a feature spec dedicated to nuances of our
application’s login mechanism.

From requests to features

In November, 2012, Capybara 2.0 introduced a few changes to the DSL, including the
aforementioned use of the term feature instead of request. Request specs still have
a place, but are now intended to test any public API your application might serve.

In addition to moving the location of these specs, Capybara 2.0 introduced a few
aliases to help feature specs feel a little more like acceptance tests written in other
frameworks (read: Cucumber). These aliases–namely, the aforementioned feature

and scenario–are exclusive to feature specs. Other aliases include background for
before and given for let (which we’ll cover in chapter 9).

Strictly speaking, you can use describe and it in your feature specs, but for best
results, I recommend using the new Capybara DSL. That’s how we’ll write our
examples for our address book application moving forward.

Adding feature specs

The quickest way to add a new feature spec to your application is to create a new
file inside spec/features, beginning with the following template:

8. Feature specs 110

1 require 'rails_helper'

2

3 feature 'my feature' do

4 background do

5 # add setup details

6 end

7

8 scenario 'my first test' do

9 # write the example!

10 end

11 end

As of this writing, if using Rails’ scaffold generator to create models and
their associated controllers, views, migrations, and specs, the correspond-
ing feature spec will be added to spec/requests. Delete the generated
file, or move it to spec/features and edit. You can also make sure
the scaffold generator doesn’t create these files for you by making sure
request_specs: false is included in your application.rb file’s RSpec
generator configuration.

Debugging feature specs

I’ve already mentioned that it’s typical to see a given scenario in a feature have
multiple expectations. However, that can sometimes lead you to wonder why a
scenario might be failing at a certain point. For the most part, you can use the same
tools you use to debug any Ruby application within RSpec–but one of the easiest to
use is Launchy. Launchy is included with Capybara as a dependency, and does just
one thing when called: It saves the feature spec’s current HTML to a temporary file
and renders it in your default browser.

To use Launchy in a spec, add the following line anywhere you’d like to see the
results of the previous step:

8. Feature specs 111

save_and_open_page

For example, in the feature spec shown earlier in this chapter, I could use Launchy
to look at the results of my new user form:

spec/features/users_spec.rb

1 require 'spec_helper'

2

3 feature 'User management' do

4 scenario "adds a new user" do

5 admin = create(:admin)

6 sign_in admin

7

8 visit root_path

9 expect{

10 click_link 'Users'

11 click_link 'New User'

12 fill_in 'Email', with: 'newuser@example.com'

13 find('#password').fill_in 'Password', with: 'secret123'

14 find('#password_confirmation').fill_in 'Password confirmation',

15 with: 'secret123'

16 click_button 'Create User'

17 }.to change(User, :count).by(1)

18

19 save_and_open_page

20

21 # remainder of scenario

22 end

23 end

Remove the save_and_open_page line, of course, when you don’t need it anymore.

A little refactoring

Before we move on, let’s take another look at that feature spec for creating new
users. There’s at least one thing we can refactor. As you may recall, in chapter 7 we

8. Feature specs 112

extracted the simulated user login into a helper macro. We can do the same thing for
feature specs.

Why not just use the same technique we’ve used in controller specs? Because, at the
feature level, we’re testing that things work the way users would interact with them.
This includes logging in! However, that doesn’t mean we can’t extract the login steps
into a helper. Let’s do that now:

spec/support/login_macros.rb
1 module LoginMacros

2 # controller login helper omitted ...

3

4 def sign_in(user)

5 visit root_path

6 click_link 'Log In'

7 fill_in 'Email', with: user.email

8 fill_in 'Password', with: user.password

9 click_button 'Log In'

10 end

11 end

And we can use the helper in our feature spec like this:

spec/features/users_spec.rb
1 feature 'User management' do

2 scenario "adds a new user" do

3 admin = create(:admin)

4 sign_in admin

5

6 # remaining steps omitted ...

7 end

8 end

Including JavaScript interactions

So we’ve verified, with a passing spec, that our user interface for adding contacts is
working as planned. Now let’s test the About link in the application’s navigation bar.

8. Feature specs 113

While on the surface it seems incredibly basic, it in fact introduces a new wrinkle to
our tests.

The spec looks something like this:

spec/features/about_us_spec.rb

1 require 'rails_helper'

2

3 feature "About BigCo modal" do

4 scenario "toggles display of the modal about display" do

5 visit root_path

6

7 expect(page).not_to have_content 'About BigCo'

8 expect(page).not_to \

9 have_content 'BigCo produces the finest widgets in all the land'

10

11 click_link 'About Us'

12

13 expect(page).to have_content 'About BigCo'

14 expect(page).to \

15 have_content 'BigCo produces the finest widgets in all the land'

16

17 within '#about_us' do

18 click_button 'Close'

19 end

20

21 expect(page).not_to have_content 'About BigCo'

22 expect(page).not_to \

23 have_content 'BigCo produces the finest widgets in all the land'

24 end

25 end

Nothing too complex–but there’s a problem. As-is, we’re running the feature spec
using Capybara’s default web driver. This driver, Rack::Test, can’t do JavaScript,
so it ignores it. Therefore, the very first expectation in the example fails because,
without JavaScript to hide the inline #about_us div in our application.html.haml
file, Rack::Test sees the div and reports the failure.

8. Feature specs 114

Luckily, Capybara bundles support for the Selenium web driver out of the box. With
Selenium, you can simulate more complex web interactions, including JavaScript,
through your computer’s installation of Firefox. Selenium makes this possible by
running your test code through a lightweight web server, and automating the
browser’s interactions with that server.

Unfortunately, Selenium adds a non-Ruby dependency to the test suite:
Firefox. The Mozilla Foundation’s policy to frequently update the browser
may, at some point, break your tests in some way. When that happens, try
updating to the current version of the selenium-webdriver gem³⁶.

To use Selenium, we just need to make one small change to the example:

spec/features/about_us_spec.rb

1 require 'spec_helper'

2

3 feature "About BigCo modal" do

4 scenario "toggles display of the modal about display", js: true do

5 # the example ...

6 end

7 end

Notice what’s different: We’ve added js: true to the scenario, to tell Capybara to
use a JavaScript-capable driver (Selenium, by default). That’s all there is to it! Run the
spec again and watch as Firefox launches and runs through the steps of the scenario.

Admittedly, that’s a very simple example. For the sake of demonstration, let’s take
a look at an example involving a little more user interaction, running through
Selenium. Although the first scenario we created in this chapter doesn’t require
JavaScript to perform, let’s enable JavaScript anyway and see what happens.

³⁶http://rubygems.org/gems/selenium-webdriver

http://rubygems.org/gems/selenium-webdriver
http://rubygems.org/gems/selenium-webdriver

8. Feature specs 115

spec/features/users_spec.rb

1 feature 'User management' do

2 scenario "adds a new user", js: true do

3 # scenario steps ...

4 end

5 end

We also need to configure Database Cleaner to help with database transactions in
our tests. First, change RSpec’s default settings for database transactions, and tell
it to use DatabaseCleaner’s :truncation method when running specs through the
Selenium driver. Let’s make the following changes to spec/rails_helper.rb:

spec/rails_helper.rb

1 RSpec.configure do |config|

2

3 # earlier configurations omitted ...

4

5 # Set config.use_transactional_fixtures to false

6 config.use_transactional_fixtures = false

7

8 config.before(:suite) do

9 DatabaseCleaner.strategy = :truncation

10 end

11

12 config.before(:each) do

13 DatabaseCleaner.start

14 end

15

16 config.after(:each) do

17 DatabaseCleaner.clean

18 end

Second, we need to monkey patch ActiveRecord to use threads. Add an additional
file in spec/support with the following alterations to ActiveRecord::Base:

8. Feature specs 116

spec/support/shared_db_connection.rb

1 class ActiveRecord::Base

2 mattr_accessor :shared_connection

3 @@shared_connection = nil

4

5 def self.connection

6 @@shared_connection || retrieve_connection

7 end

8 end

9 ActiveRecord::Base.shared_connection = ActiveRecord::Base.connection

Why is this necessary? The short answer is it’s due to how Selenium handles database
transactions. We need to share data state across the Selenium web server and the test
code itself. Without DatabaseCleaner and the above patch, we’re apt to get sporadic
error messages resulting from tests not properly cleaning up after themselves.

For a more complete description of this setup, check out Avdi Grimm’s
Virtuous Code blog³⁷. Thank you to reader Chris Peters for pointing this
fix out to me.

With those changes, the feature spec will run through Firefox, and you’re one step
closer to a well-tested application.

Capybara drivers

So far, we’ve put two drivers to use in our feature specs. The default driver,
RackTest, is a reliable solution for testing basic browser interactions. It’s headless,
so these interactions are all simulated in the background. Selenium is provided for
more complicated interactions, including those requiring JavaScript or redirections
(including redirections away from your application).

Selenium’s added functionality comes at a price, however–you’ll no doubt tire of
waiting for Firefox to launch and run your specs every time, especially as your

³⁷http://devblog.avdi.org/2012/08/31/configuring-database_cleaner-with-rails-rspec-capybara-and-selenium/

http://devblog.avdi.org/2012/08/31/configuring-database_cleaner-with-rails-rspec-capybara-and-selenium/
http://devblog.avdi.org/2012/08/31/configuring-database_cleaner-with-rails-rspec-capybara-and-selenium/
http://devblog.avdi.org/2012/08/31/configuring-database_cleaner-with-rails-rspec-capybara-and-selenium/

8. Feature specs 117

test suite grows. Fortunately, there are headless options supporting JavaScript. Two
popular headless drivers for Capybara include capybara-webkit³⁸ and Poltergeist³⁹.
Both of these drivers may require additional dependencies and can take some time
to set up, but if your application has a lot of feature specs requiring more than the
basics offered by RackTest it will be worth the extra setup time. Refer to Capybara’s
README⁴⁰ for details on setting up alternate drivers.

Waiting for JavaScript

Earlier in this chapter, I mentioned that Capybara’s findmethod has additional util-
ity when testing JavaScript. findwill wait until an item matching your specification
appears before attempting to interact with it. For example, we could use the following
variation of find to wait for a button to appear:

find_button('Close').click

By default, Capybara will wait two seconds before giving up. You can adjust this to
any time you’d like:

Capybara.default_wait_time = 15

would set the wait time to 15 seconds.

You can include this inside your rails_helper.rb file to apply the setting across your
entire test suite, or on a per-example basis.

Summary

This wasn’t a long chapter–especially compared to the amount of time spent on
controllers–but it does introduce a lot of new concepts while building upon what

³⁸https://github.com/thoughtbot/capybara-webkit
³⁹https://github.com/jonleighton/poltergeist
⁴⁰https://github.com/jnicklas/capybara

https://github.com/thoughtbot/capybara-webkit
https://github.com/jonleighton/poltergeist
https://github.com/jnicklas/capybara
https://github.com/jnicklas/capybara
https://github.com/thoughtbot/capybara-webkit
https://github.com/jonleighton/poltergeist
https://github.com/jnicklas/capybara

8. Feature specs 118

you’ve learned so far. In fact, its brevity can be attributed to the fact that it simply
builds upon skills you acquired in the previous six chapters. Review it a few times
if you have to, and keep practicing. If you get stuck, it’s not against the rules to fire
up your web browser and see if what you’re expecting to happen in your tests is
actually happening in the browser. (Launchy can help with this, too.)

At this point you’ve been exposed to the key tools and techniques you’ll use to test
your Rails applications. We’ve still got a few things to cover before we wrap up,
though. In the next chapter we’ll look at techniques to help keep your growing test
suite running as quickly as possible.

Exercises

• Write some feature specs andmake them pass! Start with simple user activities,
moving on to the more complex as you get comfortable with the process.

• As you did with your controller specs, use this time to note places where your
code could use refactoring. Again, if your app requires you to do a lot of setup
to get everything just right for a test, it’s a sign that you could be simplifying
things in your code base. Clean up your code and run your feature specs again.
Do they still pass?

• As you write the steps required for a given feature example, think about
your users–they’re the ones who work through these steps in their browsers
when they need to get something done. Are there steps you could simplify–or
even remove–to make the overall user experience for your application more
pleasant?

9. Speeding up specs
Back in chapter 7, we did a round of refactoring on controller specs to make them
easier to read and maintain. Specifically, we accomplished three tasks:

• We reduced redundancy with shared examples.
• We moved frequently-used functionality into helper macros.
• We built custom matchers to simplify expectations within our examples.

Now that we’ve got a relatively complete test suite, let’s look again at how we can
refactor–but this time for speed.

By speed I mean two things: One, of course, is the amount of time it takes your
specs to run. Our little app’s tests are already getting on the slow side. As it grows–
assuming the test suite grows with it–that will only get worse unless we keep
things in check. The goal is to keep it the speed reasonable, without sacrificing the
readability afforded us by RSpec. The second thing I mean by speed is how quickly
you as a developer can create meaningful, clear specs.

We’ll touch on both of these aspects in this chapter. Specifically, we’ll cover:

• RSpec’s options for terse, but clean, syntax for shorter specs.
• Simplified specs with Shoulda’s custom matchers.
• More efficient data for testing with mocks and stubs.
• Using tags to filter out slow specs
• Automating test execution and preloading Rails.
• Techniques for speeding up the suite as a whole.

9. Speeding up specs 120

Check out the 09_speedup branch of the sample source to see the com-
pleted code for this chapter. Using the command line, type

git checkout -b 09_speedup origin/09_speedup

If you’d like to follow along, start with the previous chapter’s branch:

git checkout -b 08_features origin/08_features

See chapter 1 for additional details.

Optional, terse syntax

One critique of our specs so far might be that they’re too wordy–we’ve been
following some best practices and providing clear labels for each test, and one
expectation per example. It’s all been on purpose. The explicit approach we’ve taken
so far mirrors the approach I used when learning to test, and I think it helps to
understand what’s going on. However, RSpec provides techniques to continue these
best practices while reducing your keystrokes. They may be used together to really
streamline things, or individually to clean up longer specs as needed.

let()

Up to this point we’ve been using before :each blocks to assign frequently-used test
data to instance variables. An alternative to this, preferred by many RSpec users, is
to use let(). let() gives us two advantages:

1. It caches the value without assigning it to an instance variable.
2. It is lazily evaluated, meaning that it doesn’t get assigned until a spec calls

upon it.

Here’s how we can use let() in a controller spec:

9. Speeding up specs 121

spec/controllers/contacts_controller_spec.rb

1 require 'spec_helper'

2

3 describe ContactsController do

4 let(:contact) do

5 create(:contact, firstname: 'Lawrence', lastname: 'Smith')

6 end

7

8 # rest of spec file omitted ...

Then, instead of working with the contact via @contact, we can just use contact like
so:

spec/controllers/contacts_controller_spec.rb

1 describe 'GET #show' do

2 it "assigns the requested contact to contact" do

3 get :show, id: contact

4 expect(:contact).to eq contact

5 end

6

7 it "renders the :show template" do

8 get :show, id: contact

9 expect(response).to render_template :show

10 end

11 end

However, this causes a problem in the example testing whether the controller’s
destroy()method actually deletes data from persistence. Here’s the currently failing
spec:

9. Speeding up specs 122

spec/controllers/contacts_controller_spec.rb

1 describe 'DELETE destroy' do

2 it "deletes the contact" do

3 expect{

4 delete :destroy, id: contact

5 }.to change(Contact,:count).by(-1)

6 end

7 end

The count doesn’t change, because the example doesn’t know about contact until
after we’re in the expect{} Proc. To fix this, we’ll just call contact before the Proc:

spec/controllers/contacts_controller_spec.rb

1 describe 'DELETE destroy' do

2 it "deletes the contact" do

3 contact

4 expect{

5 delete :destroy, id: contact

6 }.to change(Contact,:count).by(-1)

7 end

8 end

We could also use let!() (note the exclamation mark!), which forces contact to be
assigned prior to each example. Or we could include let() within a before block–
which may begin to defeat the purpose of using let() to begin with.

subject{}

subject{} lets you declare a test subject, then reuse it implicitly in any number of
subsequent examples. Read on to see it in action.

it{} and specify{}

it{} and specify{} are synonymous–they are simple blocks that wrap an expecta-
tion. We’ve been using it{} since chapter 3, in a longer form. In other words, you
could change

9. Speeding up specs 123

subject { build(:user, firstname: 'John', lastname: 'Doe') }

it 'returns a full name' do

should be_named 'John Doe'

end

to

subject { build(:user, firstname: 'John', lastname: 'Doe') }

specify { should be_named 'John Doe' }

And get the same results. Trivial here, perhaps, but as specs grow these one-liners can
make a difference. Note, too, that even though we’ve been using the expect syntax
in tests, these one-liners still use should. This is by design: As mentioned by RSpec’s
developers, should reads better in these examples.

Read your specs aloud as you write them, and use the term that makes the
most sense–there are not hard rules about when to use one or the other.

Shoulda

Shoulda⁴¹ is an extensive library of helpers to make testing common functionality
a breeze. By including one additional gem, we can reduce some of our specs from
three or four or five lines down to one or two.

subject(), it{} and specify{} really shine when used in conjunction with the
shoulda-matchers gem. Include shoulda-matchers in the :test group of your
Gemfile, and you’ll automatically have access to a number of useful matchers–for
example:

⁴¹http://rubygems.org/gems/shoulda

http://rubygems.org/gems/shoulda
http://rubygems.org/gems/shoulda

9. Speeding up specs 124

subject{ Contact.new }

specify { should validate_presence_of :firstname }

Nice and readable, with a good amount of coverage. We can also apply our own
custom matchers to streamline even more. For example, the following custom
matcher:

1 RSpec::Matchers.define :be_named do |expected|

2 match do |actual|

3 actual.name eq expected

4 end

5

6 description do

7 "return a full name as a string"

8 end

9 end

Can easily be called with the following it{} block:

it { should be_named 'John Doe' }

Yes, this example might be overkill, but hopefully it gives you an idea of the different
ways you can streamline your specs–without sacrificing readability. For example:

Contact

should return a full name as a string

should have 3 phones

should require firstname to be set

should require lastname to be set

And so on.

9. Speeding up specs 125

Mocks and stubs

Mocking and stubbing, and the concepts behind them, can be the subjects of lengthy
chapters (if not whole books) of their own. Search them online and you’ll inevitably
come to an occasionally contentious debate on the right andwrongways to use them.
You’ll also find any number of people attempting to define the two terms–to varying
degrees of success. My best definitions of each:

• Amock is some object that represents a real object, for testing purposes. These
are also known as test doubles. These are sort of what we’ve using Factory Girl
to accomplish, with the exception that a mock doesn’t touch the database–and
thus takes less time to set up in a test.

• A stub overrides a method call on a given object and returns a predetermined
value for it. In other words, a stub is a fake method which, when called upon,
will return a real result for use in our tests. You’ll commonly use this to override
the default functionality for a method, particularly in database or network-
intensive activity.

Here are a couple of loose examples:

• To create a mock contact, you can use the Factory Girl build_stubbed()
method to generate a fully-stubbed fake, knowing how to respond to various
methods like firstname, lastname, and fullname. It does not, however, persist
in the database.

• To stub a method in the Contact model itself, you’d use a stub along the lines of
allow(Contact).to receive(:order).with('lastname, firstname').and_-

return([contact]). In this case, we’re overriding the order scope on the
Contact model. We pass a string to specify the SQL order (in this case, the
lastname and firstname fields), then tell it what we want back–a single-
element array containing a contactwe presumably created earlier in the spec.

In many cases, you’re more likely to find RSpec’s built-in mocking libraries⁴² or an
external library like Mocha⁴³ used in projects, or one of a number of other options

⁴²http://rubydoc.info/gems/rspec-mocks/frames
⁴³http://rubygems.org/gems/mocha

http://rubydoc.info/gems/rspec-mocks/frames
http://rubygems.org/gems/mocha
https://www.ruby-toolbox.com/categories/mocking
https://www.ruby-toolbox.com/categories/mocking
http://rubygems.org/gems/mocha

9. Speeding up specs 126

available⁴⁴. For the sake of a beginner’s perspective here, they all operate similarly,
albeit with subtle tradeoffs.

It may make more sense to view these in the context of a controller spec.

spec/controllers/contacts_controller_spec.rb

1 describe 'GET #show' do

2 let(:contact) { build_stubbed(:contact,

3 firstname: 'Lawrence', lastname: 'Smith') }

4

5 before :each do

6 allow(Contact).to receive(:persisted?).and_return(true)

7 allow(Contact).to \

8 receive(:order).with('lastname, firstname').and_return([contact])

9 allow(Contact).to \

10 receive(:find).with(contact.id.to_s).and_return(contact)

11 allow(Contact).to receive(:save).and_return(true)

12

13 get :show, id: contact

14 end

15

16 it "assigns the requested contact to @contact" do

17 expect(assigns(:contact)).to eq contact

18 end

19

20 it "renders the :show template" do

21 expect(response).to render_template :show

22 end

23 end

Walking through the spec, we first use let() to assign a stubbed mock contact
to contact. Then, we add some stubbed methods to both the Contact model and
the contact instance. Since the controller will expect both Contact and contact to
respond to several ActiveRecordmethods, we need to stub themethods we’ll be using
in the actual controller, returning what we’d expect ActiveRecord to provide back

⁴⁴https://www.ruby-toolbox.com/categories/mocking

https://www.ruby-toolbox.com/categories/mocking

9. Speeding up specs 127

to the controller. Finally, we use it blocks for the examples themselves, as we’ve
been doing throughout the book. In this case, though, all of our test data are based
on mocks and stubs, and not actual calls to the database or the Contact model itself.

On the plus side, this example is more isolated than specs we’ve written previously–
its only concern is the controller method in question; it doesn’t care about the model
layer or the database or anything else. On the down side, this isolation is leading to
additional code (and questionable readability) in the specs.

With all that said, if you don’t want to mess with mocks and stubs too much, don’t
worry–you can go a long way with using Ruby objects for basic stuff, and factories
for more complex setups, as we have throughout this book. Stubs can also get you
into trouble, anyway. One could easily stub out important functionality, resulting in
tests that, well, don’t actually test anything.

Unless things get very slow, or you need to test against data that is difficult to
recreate (such as an external API or other web service, which we’ll cover in a bit
more practical tones in the next chapter) then prudent use of objects and factories
may be all you need.

Automation with Guard and Spring

Forgetting to run specs early and often can result in lots of lost time. If you don’t
realize there’s an issue somewhere, and keep piling new code on top of that issue,
you may waste valuable minutes–or even hours. But switching to a terminal and
running rspec from the command line can get tedious (and chip away at our time,
too). Guard to the rescue!

Guard⁴⁵ watches files you specify, and does things based on what it sees. In our case,
we want it to watch files in our app and spec directories, and run the relevant specs
when those files change. For example, if I make a change to app/models/contact.rb,
then spec/models/contact_spec.rb should run. If it fails, it should keep running until
it passes.

To use Guard, first make sure guard-rspec is included in your Gemfile’s :test and
:development groups (see chapter 2). guard-rspec will include Guard itself.

Then, create a Guardfile from the command line:

⁴⁵https://github.com/guard/guard

https://github.com/guard/guard
https://github.com/guard/guard

9. Speeding up specs 128

bundle exec guard init rspec

This will generate a Guardfile in your Rails application’s root, serving as Guard’s
configuration for your app. It’s pretty useful out of the box, but you’ll probably want
to tweak it to your own preferences. I typically set the following:

• notification: false: I prefer to keep an eye my specs running on a terminal
window instead of receiving pop-ups messages.

• all_on_start: false and all_on_pass: false: I’ve been doing this for
awhile; I know to run my full test suite before committing any changes I’ve
made. If I want to run my specs at any time after firing up Guard I can just
press return. Same with running all specs upon passing; I like having control
of the situation.

• Run feature specs upon changes to views: Since I avoid RSpec view specs, I rely
on Capybara feature specs to test this layer of my apps. Generally speaking,
I don’t run feature specs when changing my models or controllers. As with
anything, though, it depends on the situation.

The generated Guardfile doesn’t particularly lend itself to display in a
book format. See the Guardfile in the sample source to see it more like it
would look in an application.

Run bundle exec guard to get things going. Guard will run your full test suite, then
dutifully observe for changes and run specs as needed. You can add other options
as well–for example, I usually prefer to only run the full test suite on demand. The
following additions to the Guardfile accomplish this:

Guardfile
1 guard :rspec, cmd: 'rspec --color --format documentation',

2 all_on_start: false, all_after_pass: false do

Guard’s not just for watching and running your specs. It can compile Sass
and LESS into CSS, run Cucumber features, minify JavaScript, run code
metrics, reboot development servers, and more. Check out a full list of
Guards⁴⁶ on GitHub.

⁴⁶https://github.com/guard

https://github.com/guard
https://github.com/guard
https://github.com/guard

9. Speeding up specs 129

Once our tests get started, they run pretty quickly. However, at this point we’ve got
a lag each time we start a test run–the lag caused by the Rails application needing
to spin up each time. With Spring, built into Rails as of version 4.1, we can limit the
lag to just the first time we fire up the test suite–after that, specs will run with much
more immediacy. Combined with Guard, Spring is one of the better ways to reduce
your testing time without re-engineering your tests.

We need to do a little extra setup to get RSpec and Spring to work together. First,
let’s add support for the rspec command in Spring, via the spring-commands-rspec
gem:

Gemfile

group :development, :test do

gem 'spring-commands-rspec', '~> 1.0.2'

...

end

Next, make sure the new rspec command is made available as a binstub:

$ bundle exec spring binstub rspec

$ spring stop

Now we can use it in our Guardfile to load RSpec via Spring:

Guardfile

1 guard :rspec, cmd: 'spring rspec --color --format documentation',

2 all_on_start: false, all_after_pass: false do

Tags

Whether or not you opt to add Guard to your workflow, RSpec’s tags feature⁴⁷ can
help you fine-tune which specs to run at a given time. To apply a tag, add it to a
given example:

⁴⁷https://www.relishapp.com/rspec/rspec-core/v/2-4/docs/command-line/tag-option

https://www.relishapp.com/rspec/rspec-core/v/2-4/docs/command-line/tag-option
https://www.relishapp.com/rspec/rspec-core/v/2-4/docs/command-line/tag-option

9. Speeding up specs 130

it "processes a credit card", focus: true do

details of example

end

You can then run only the specs with the focus tag from the command line:

$ bundle exec rspec --tag focus

You can also configure RSpec to only run (or never run) examples with specific tags;
for example:

spec/rails_helper.rb

RSpec.configure do |config|

config.filter_run focus: true

config.filter_run_excluding slow: true

end

This is particularly useful when using Guard, as you can turn a given tag on or off in
your rails_helper.rb file, allow Guard to reload itself, and keep working. I don’t
use this feature often, but find it invaluable when I need it.

Other speedy solutions

Remove unnecessary tests

If a test has served its purpose, and you’re confident you don’t need it for regression
testing, delete it. If you do want to hold onto it for some reason, mark it as a pending
spec:

9. Speeding up specs 131

1 it "loads a lot of data" do

2 pending "no longer necessary"

3 # your spec's code; it will not be run

4 end

I recommend this over commenting out the test–since pending specs are still listed
when you run the test suite you’ll be less apt to forget they’re there. That said, I
ultimately recommend just deleting the unnecessary code–but only when you’re
comfortable doing so.

Take Rails out of the equation

The changes we’ve made above will all play a part in reducing the amount of time
it takes the suite to run, but ultimately one of the biggest slowdowns is Rails itself–
whenever you run tests, some or all of the framework needs to be fired up. If you
really want to speed up your test suite, you can go all out and remove Rails from
the equation entirely. Whereas Spring still loads the framework–but limits itself to
loading once–these solutions go one step further.

This is a little more advanced than the scope of this book, as it requires a hard look
at your application’s overall architecture. It also breaks a personal rule I have when
working with newer Rails developers–that is, avoid breaking convention whenever
possible. If youwant to learnmore, though, I recommend checking out Corey Haines’
talk on the subject⁴⁸ and the Destroy All Software⁴⁹ screencast series from Gary
Bernhardt.

Summary

We looked at some pretty weighty topics in this chapter. Up until now, I didn’t talk
about varying techniques to get the testing job done–but now you’ve got options.
You can choose the best way for you and your team to provide clear documentation
through your specs–either by using a verbose technique as we did in chapter three,
or in a more terse fashion as shared here. You can also choose different ways to load

⁴⁸http://confreaks.com/videos/641-gogaruco2011-fast-rails-tests
⁴⁹https://www.destroyallsoftware.com/screencasts

http://confreaks.com/videos/641-gogaruco2011-fast-rails-tests
http://confreaks.com/videos/641-gogaruco2011-fast-rails-tests
https://www.destroyallsoftware.com/screencasts
http://confreaks.com/videos/641-gogaruco2011-fast-rails-tests
https://www.destroyallsoftware.com/screencasts

9. Speeding up specs 132

and work with test data–mocks and stubs, or factories, or basic Ruby objects, or any
combination thereof. Finally, you now know a few different techniques for loading
and running your test suite. You’re on your way to making RSpec your own.

We’re in the home stretch now! Just a few more things to cover, then we’ll wrap
up with some big picture thinking on the testing process in general and how to
avoid pitfalls. Before that, though, let’s look at some of the corners of a typical web
application we haven’t tested yet.

Exercises

• Find specs in your suite that could be cleaned up with let(), subject{}, and
it{}. By how much does this exercise reduce your spec’s footprint? Is it still
readable?Which method–terse or verbose–do you prefer? (Hint: There’s really
no right answer for that last question.)

• Install shoulda-matchers in your application and find places you can use it
to clean up your specs (or test things you haven’t been testing). Look into the
gem’s source on GitHub to learn about all of the matchers Shoulda offers to
RSpec users.

• Using RSpec tags, identify your slow specs. Run your test suite including and
excluding the tests. What kind of performance gains do you see?

10. Testing the rest
At this point, we’ve got decent test coverage across the address book application.
We’ve tested our models and controllers, and also tested them in tandem with views
via feature specs. For this basic application we should be covered pretty well with
these core testing techniques. However, most Rails applications (including yours,
probably) aren’t this simple. Maybe your app sends email to users, or handles file
uploads. Maybe it interacts with an external web service–or provides its own, via an
API. Maybe it performs certain functionality based on the date or time. We can test
these facets, too!

In this chapter we’ll survey:

• How to test for email delivery.
• Testing file uploads.
• Manipulating the time within specs.
• Testing against external web services.
• How to test your application’s API.
• Testing rake tasks.

No code samples for this chapter–everything I tried to come up with as a
feature for the address book seemed contrived, though I’m not ruling out
some code samples for a future release of the book.

Testing email delivery

Testing that your application’s mailers are doing their job is relatively easy. You can
use a gem, or you can handle it yourself using plain Ruby and RSpec.

10. Testing the rest 134

The gem is Email Spec⁵⁰–a useful set of custom matchers to test a given message’s
recipients, subject, headers, and content. Once you’ve added the gem to your
Gemfile’s :test group and run bundle install, you’ll just need to add a few more
configuration lines to spec/spec_helper.rb:

spec/spec_helper.rb

1 require "email_spec"

2 config.include(EmailSpec::Helpers)

3 config.include(EmailSpec::Matchers)

With these lines you may now add expectations like the following:

some setup done to trigger email delivery ...

expect(open_last_email).to be_delivered_from sender.email

expect(open_last_email).to have_reply_to sender.email

expect(open_last_email).to be_delivered_to recipient.email

expect(open_last_email).to have_subject message.subject

expect(open_last_email).to have_body_text message.message

In this example, open_last_email is a helper that opens the most recently-sent email
and gives you access to its attributes. As outlined in the library’s documentation⁵¹,
you can also create a new mail object and work directly with it:

email = MessageMailer.create_friend_request("aaron@everydayrails.com")

expect(email).to deliver_to("aaron@everydayrails.com")

expect(email).to have_subject "Friend Request"

As you can see, the custom matchers provided by Email Spec are nice and readable–
see a complete list of of matchers in the documentation. While there, take a look at
the list of helpers made available to you. I like to use open_last_email in particular
when testing mail delivery at the integration (feature) level. In general, Email Spec

⁵⁰http://rubygems.org/gems/email_spec
⁵¹http://rubydoc.info/gems/email_spec/1.5.0/frames

http://rubygems.org/gems/email_spec
http://rubydoc.info/gems/email_spec/1.5.0/frames
http://rubygems.org/gems/email_spec
http://rubydoc.info/gems/email_spec/1.5.0/frames

10. Testing the rest 135

works great at the model and controller levels as well–use it where it makes the most
sense within your application.

If you’d prefer to not add an extra dependency to your application, you can cover
the same functionality with RSpec and Ruby. All it takes is a little knowledge
of the Rails ActionMailer library. Each time a message is sent, it gets pushed to
ActionMailer::Base.deliveries–so looking at ActionMailer::Base.deliveries.last
will show you the most recent message. With that in mind, you can add expectations
about email messages inside your feature specs. For example, to verify that the
message’s To header includes a user’s email address:

expect(ActionMailer::Base.deliveries.last.to).to include user.email

We can improve on this by applying some knowledge from chapter 7. Let’s create a
helper macro to clean this up:

spec/support/mailer_macros.rb

1 module MailerMacros

2 def last_email

3 ActionMailer::Base.deliveries.last

4 end

5

6 def reset_email

7 ActionMailer::Base.deliveries = []

8 end

9 end

This makes the spec more readable:

expect(last_email.to).to include user.email

I’ve also included a second helper method, to reset the deliveries array. Let’s
include MailerMacros in our RSpec configuration, and make sure reset_email runs
before every spec in our suite:

10. Testing the rest 136

spec/rails_helper.rb

RSpec.configure do |config|

config.include MailerMacros

config.before(:each) { reset_email }

end

You can also use this knowledge to unit-test your mailers, as in this example:

RSpec.describe UserMailer, :type ⇒ :mailer do describe “friend reqeust message”
do let(:user) { FactoryGirl.create(:user) let(:mail) { UserMailer.friend_request(user,
friend) }

1 it "sends user a friend request" do

2 expect(mail.subject).to eq "New friend request from #{friend.name}"

3 expect(mail.to).to eq [user.email]

4 expect(mail.from).to eq ["from@example.com"]

5 expect(mail.body.encoded).to match edit_friendship_path(user, friend)

6 end

7 end

end

As you can see in the example above, pretty much any part of an email message
is available to be tested. I recommend reading over the Rails Guide⁵² and API
documentation⁵³ for ActionMailer to get a full understanding of the parts of an email
message, so you’ll know what to test.

The macros in this section are taken from one of my favorite episodes
of Railscasts, entitled “How I Test”⁵⁴. This particular episode helped me
understand TDD more than perhaps any other resource I’ve watched or
read. Even though it’s a few years old now, and some of the syntax has
changed, I still strongly recommend watching it as you learn to test your
own software.

⁵²http://guides.rubyonrails.org/action_mailer_basics.html
⁵³http://api.rubyonrails.org/classes/ActionMailer/Base.html
⁵⁴http://railscasts.com/episodes/275-how-i-test

http://guides.rubyonrails.org/action_mailer_basics.html
http://api.rubyonrails.org/classes/ActionMailer/Base.html
http://api.rubyonrails.org/classes/ActionMailer/Base.html
http://railscasts.com/episodes/275-how-i-test
http://guides.rubyonrails.org/action_mailer_basics.html
http://api.rubyonrails.org/classes/ActionMailer/Base.html
http://railscasts.com/episodes/275-how-i-test

10. Testing the rest 137

Testing file uploads

Making sure file uploads worked the way I’d intended was a sticking point in my
testing routine for a long time. In particular, how does a fake file get included into a
spec? Where does it get stored in the meantime? Even though Rails provides a means
of uploading files from the fixtures directory, I’ve found it to be hit or miss. Instead,
I tend to use this more straightforward method. Place a small dummy file (ideally
representative of your real-world data) in your spec/factories directory. Then you
can refer to it in a factory like so:

1 FactoryGirl.define do

2 factory :user do

3 # other user attributes

4

5 factory :user_with_avatar do

6 avatar { File.new("#{Rails.root}/spec/factories/avatar.png") }

7 end

8 end

9 end

If your model requires the attached file to be present, you’ll probably want
to make sure it gets stored when using a factory to generate test data.

More importantly, you can also access the file explicitly in specs, such as the
following feature example:

10. Testing the rest 138

1 it "creates a new user" do

2 visit new_user_url

3 fill_in 'Username', with: 'aaron'

4 fill_in 'Password', with: 'secret'

5 attach_file 'Avatar',

6 File.new("#{Rails.root}/spec/factories/avatar.png")

7 click_button 'Sign up'

8 expect(User.last.avatar_file_name).to eq 'avatar.png'

9 end

Using the factory above, we can also test this at the controller level like this:

1 it "uploads an avatar" do

2 post :create, user: create(:user_with_avatar)

3 expect(assigns(:user).avatar_file_name).to eq 'avatar.png'

4 end

If you’re using a popular file upload library like Paperclip or Carrierwave, you’re apt
to have some built-in testing conveniences at your disposal–consult the documenta-
tion for the respective gem to learn more.

Testing the time

What if your application has expectations based on the time or date? For example,
say we want to wish visitors a Happy New Year when they visit our site, but only
on January 1. We can use Timecop⁵⁵ to freeze time, making it possible to test such
things without resorting to heavy-duty Ruby date manipulation. All you need to do
is include the Timecop gem in your Gemfile, then use it like I am in this hypothetical
feature spec:

⁵⁵http://rubygems.org/gems/timecop

http://rubygems.org/gems/timecop
http://rubygems.org/gems/timecop

10. Testing the rest 139

1 it "wishes the visitor a Happy New Year on January 1" do

2 Timecop.travel Time.parse("January 1")

3 visit root_url

4 expect(page).to have_content "Happy New Year!"

5 Timecop.return

6 end

Take note of the call to Timecop.return in these code samples. This resets
the clock to your system’s time and helps RSpec properly report the
amount of time your tests take to run.

Timecop is also useful in situations where you need to impose a deadline–for
example, maybe you need to make sure people have filed their taxes on time:

1 it "doesn't allow taxpayers to file after April 15" do

2 Timecop.travel Time.parse("April 16")

3 visit pay_taxes_path

4 expect(page).to have_content "Sorry, you're too late!"

5 Timecop.return

6 end

or

1 it "gives taxpayers up until the 15th to file" do

2 Timecop.travel Time.parse("April 15")

3 visit pay_taxes_path

4 expect(page).to have_content "There's still time to file, but hurry!"

5 Timecop.return

6 end

That’s how I usually use Timecop, but another common usage is when you want
to stop time during the test. For example, maybe you want to be really sure Rails’
default timestamps are working. You could do something like this in a model spec:

10. Testing the rest 140

1 it "stamps the model's created at with the current time" do

2 Timecop.freeze

3 user = create(:user)

4 expect(user.created_at).to eq Time.now

5 Timecop.return

6 end

Without Timecop.freeze in the example, the split-second difference between when
the data was persisted and when the spec checks its value would be just enough to
cause it to fail.

Testing web services

These days, it’s common for a Rails application to reach out to services on the web
for support. So far, we’ve covered everything you need to add tests covering this
functionality. However, if you’ve already started down this path, you may have
noticed a couple of issues. First, these tests tend to run much more slowly than those
that only access local resources. That stands to reason, as one of these tests must wait
for a network request to a remote server to be sent, processed, and returned. Second,
if calls to the service are rate-limited, it doesn’t take too long to hit that limit if you’re
running your test suite frequently.

The VCR⁵⁶ gem is a great tool for mitigating these issues, keeping your tests speedy
and your API request calls at a minimum. VCRworks bywatching for external HTTP
requests coming from your Ruby code. When it comes across a test that requires such
a request, it causes the test to fail. In order to make it pass, you’ll need to create a
“cassette” onto which to record the HTTP transaction. Run the test again, and VCR
captures the request and response into a file. Now, future tests making the same
request will use data from the file, instead of making another network request to the
external API.

Here’s a real example from a recent project of mine. This code uses the Geocoder⁵⁷
gem to find the latitude and longitude of a given address, prior to persisting that
address. It does so by reaching out to the Google Maps API. Here’s the code:

⁵⁶https://github.com/vcr/vcr
⁵⁷http://www.rubygeocoder.com

https://github.com/vcr/vcr
http://www.rubygeocoder.com
https://github.com/vcr/vcr
http://www.rubygeocoder.com

10. Testing the rest 141

1 class Address < ActiveRecord::Base

2 geocoded_by :address

3 before_save :geocode

4

5 def address

6 "#{street}, #{city} #{state}"

7 end

8 end

And here’s the model spec I wrote for it. See where I define a cassette, in line 6:

1 require 'rails_helper'

2

3 RSpec.describe Address, :type => :model do

4 describe 'geocoding' do

5 it 'geocodes a new address' do

6 VCR.use_cassette('allen_fieldhouse') do

7 address = FactoryGirl.create(:address,

8 street: '1651 Naismith Drive',

9 city: 'Lawrence',

10 state: 'KS'

11)

12 expect(address.latitude).to eq 38.9541438

13 expect(address.longitude).to eq -95.2527379

14 end

15 end

16 end

17 end

VCR also works in your feature specs. Here’s an example for the actual address UI.
This time, I use a cassette inside a let block (line 6), to mock out the network call
while creating test data. I then use a second cassette (line 26) to handle a second
call to the geocoding serviceâ€”this time, to re-process the latitude and longitude on
update.

10. Testing the rest 142

1 require 'rails_helper'

2

3 feature 'Addresses' do

4 let(:user) { FactoryGirl.create(:user) }

5 let(:address) {

6 VCR.use_cassette('busch_stadium') do

7 FactoryGirl.create(:address,

8 user: user,

9 street: '700 Clark Avenue',

10 city: 'St. Louis',

11 state: 'MO',

12 zip: '63102'

13)

14 end

15 }

16

17 scenario 'user edits a address' do

18 old_address = address

19 sign_in_as(user)

20 visit user_path(user)

21

22 within '#addresses' do

23 click_link 'Edit'

24 end

25

26 VCR.use_cassette('allen_fieldhouse') do

27 fill_in 'Street', with: '1651 Naismith Drive'

28 fill_in 'City', with: 'Lawrence'

29 select 'KS', from: 'State'

30 click_button 'Update Address'

31 end

32

33 expect(current_path).to eq user_path(user)

34 expect(page).to have_content 'Successfully updated address.'

35 expect(page).to have_content '1651 Naismith Drive'

36 expect(page).not_to have_content old_address.street

37 # Etc.

38 end

10. Testing the rest 143

39 end

VCR is easy to set up and is well-documented. After adding the dependency to your
Gemfile and including it in spec/rails_helper.rb, VCR will be ready to record.

Testing your application’s API

We’ve looked at retrieving information from external services, but what about when
your application is at the receiving end from the likes of a native mobile app,
JavaScript-based web frontend, or third party add-on? You’ll need an API for your
application–and since you (and the people using your API) want it to be reliable,
you’ll want to test it.

How to write a robust, programmer-friendly public API is beyond the scope of this
book, but testing one isn’t. The good news is, if you’ve gone through the chapters on
controller testing and feature testing, you’ve got the basic tools you need to test your
API.

To begin, where should these tests go? As mentioned in chapter 5, you can test for
expected JSON (or XML) output directly in your controller specs. For simple, one-off
methods used only by your application, this may suffice. On the other hand, a full
API calls for integration testing, like the feature specs covered in chapter 8. There
are a couple of differences, however. With RSpec, the best place for these new, API-
specific tests is inside the spec/requests directory, separate from the feature specs
we’ve written so far. We also won’t use Capybara for these specs. Capybara mimicks
browser interactions, not programmatic interactions. Instead, we’ll use the simple
methods we previously used to test controllers’ responses to HTTP verbs–get, post,
delete, and patch.

Here are a couple of examples. Here’s what an API call to look up a contact might
look like:

10. Testing the rest 144

spec/requests/api/v1/contacts_spec.rb

1 require 'rails_helper'

2

3 describe 'Contacts API', type: :request do

4 it 'sends an individual contact' do

5 contact = FactoryGirl.create(:contact)

6

7 get "/api/contacts/#{contact.id}", nil, \

8 { 'HTTP_ACCEPT' => 'application/vnd.contacts.v1' }

9

10 expect(response.code).to eq 200

11

12 json = JSON.parse(response.body)

13 expect(json['firstname']).to eq contact.firstname

14 expect(json['lastname']).to eq contact.lastname

15 expect(json['email']).to eq contact.email

16 # Etc.

17 end

18 end

Let’s walk through this. First, we persist a new contact for use in our test. Next, we
use the get method to hit our API and request the contact. In this example, we’ve
specified that this is a GET request to a specific endpoint, with no parameters (nil),
and an API version via an HTTP accept header. If you define your API version in the
URL, this line can be changed to something like

get "/api/v1/contacts/#{contact.id}"

The API’s output gets returned to the spec in an object called response, which we
can then use to complete our test. Since this is an integration test, we can check for
a lot of things in a single spec. At minimum, I suggest checking two things. First,
ensure that the API returns the correct status code. Here, we’re verifying that the
API reports success with a 200 status code. Next, we parse the API’s JSON output
(response.body) and verify that it contain the correct data.

Let’s look at a second example, using the API to update a contact via a PUT request.

10. Testing the rest 145

1 describe 'PUT /api/contacts/:id' do

2 it 'updates a contact' do

3 contact = FactoryGirl.create(:contact)

4 new_attributes = {

5 contact: {

6 firstname: 'Aaron',

7 lastname: 'Sumner',

8 email: 'aaron@everydayrails.com',

9 }

10 }

11

12 put "/api/contacts/#{contact.id}", new_attributes, \

13 {'HTTP_ACCEPT' => 'application/vnd.contacts.v1' }

14

15 expect(response).to be_success

16 json = JSON.parse(response.body)

17 expect(json['id']).to eq contact.id

18 expect(json['firstname']).to eq 'Aaron'

19 expect(json['lastname']).to eq 'Sumner'

20 expect(json['email']).to eq 'aaron@everydayrails.com'

21 end

22 end

This looks a lot like the controller specs from chapter 5. We’re just accessing a
different endpoint and looking at the returned results a little differently.

Of course, a real API that makes changes to the database would likely require some
sort of authentication, such as a secret token passed along in the header or as a
parameter. Again, since the goal here isn’t to discuss API design philosophies, we’ll
leave that out for now–either approach is easily added to the example. The most
important thing to remember here is that, by combining what you know about
controller specs and feature specs, you’ve already got the skills you need to write
good tests for your APIs!

10. Testing the rest 146

There are at least two opportunities to clean up these specs. First, we could
create a custom matcher to make our status code checks a little more
readable–for example, expect(response).to have_status_code 200.
Second, a macro might reduce duplication when parsing response.body.
Both of these techniques are covered in chapter 7. I’ll leave those as
exercises for you to try on your own.

Testing rake tasks

If you’ve been developing in Rails for awhile, you’ve probably written at least one
Rake command line utility for your application. I often use Rake tasks for things like
legacy data transfers or scheduled operations. Legacy transfers in particular can get
pretty gnarly, so just like the rest of my code I like to build tests to make sure I won’t
get any surprises.

In my experience, the best way to do this is to abstract any code you’ve got in a given
Rake task into a class or module, then call that method within the task. For example,
imagine that we’ve got a Rake task to move information from a legacy Person class
to the Contact class we’ve been using throughout the book. A procedural approach
to this might look something like this:

1 namespace :legacy do

2 desc "Move Persons to Contacts"

3 task person: :environment do

4 Person.all.each do |person|

5 Contact.create!(

6 firstname: person.firstname,

7 lastname: person.lastname,

8 email: person.email

9)

10 end

11 end

12 end

In this case, I might create a Legacy class lib/legacy.rb and move the bulk of the task
to a class method within it:

10. Testing the rest 147

1 class Legacy

2 def self.move_people

3 Person.all.each do |person|

4 Contact.create!(

5 firstname: person.firstname,

6 lastname: person.lastname,

7 email: person.email

8)

9 end

10 end

11 end

And update my original Rake task:

1 namespace :legacy do

2 desc "Move Persons to Contacts"

3 task person: :environment do

4 Legacy.move_people

5 end

6 end

Now I can easily test the task by testing the Legacy class. To mirror the application
structure, let’s first create the directory spec/lib, then add legacy_spec.rb to it and
test:

1 require 'spec_helper'

2

3 describe Legacy do

4 it 'creates a contact from a person'

5 # etc.

6 end

You can use the same techniques we’ve covered throughout the book to test Rake-
related code just like you would any other code in your application.

10. Testing the rest 148

Summary

Even though things like email, file uploads, timestamps, web services, APIs, and
utility tasks may be on the fringes of your application, take the time to test them
as needed–because you never know, one day that web service may become more
central to your app’s functionality, or your next app may rely heavily on email.
There’s never a bad time to practice, practice, practice.

You now know how to test everything I test on a regular basis. It may not always
be the most elegant means of testing, but ultimately, it provides me enough coverage
that I feel comfortable adding features to my projects without the fear of breaking
functionality–and if I do break something, I can use my tests to isolate the situation
and fix the problem accordingly.

As we wind down our discussion of RSpec and Rails, I’d like to talk about how to
take what you know and use it to develop software in a more test-driven fashion.
That’s what we’ll cover in the next chapter.

Exercises

• If your application has any mailer functionality, get some practice testing it
now. Common candidates might be password reset messages and notifications.

• Does your application have any file upload functionality or time-sensitive
functions? Again, it’s a great idea to practice testing these functions, using
the utilities shared in this chapter. It’s easy to forget about these requirements
until one early morning or late night when they don’t work.

• Have youwritten any specs against an external authorization service, payment
processor, or other web service? How could you speed things up with VCR?

11. Toward test-driven
development
Whew. We’ve come a long way with our address book application. At the beginning
of the book it had the functionality we were after, but zero tests. Now it’s reasonably
tested, and we’ve got the skills necessary to go in and plug any remaining holes.

But have we been doing test-driven development?

Strictly speaking, no. The code existed long before we added a single spec. What
we’ve been doing is closer to exploratory testing–using tests to better understand
the application. To legitimately practice TDD, we’ll need to change our thinking–
tests come first, then the code to make those tests pass, then refactoring to make our
code more resilient for the long haul. Let’s try it now in our sample application!

Check out the 11_tdd branch of the sample source to see the completed
code for this chapter. Using the command line, type

git checkout -b 11_tdd origin/11_tdd

If you’d like to follow along, start with chapter 9’s branch:

git checkout -b 09_speedup origin/09_speedup

See chapter 1 for additional details.

Defining a feature

Throughout this book, we’ve been developing a contacts directory for a fictitious
company. Now, this company needs a place to post news releases, and has requested
a link for these items be added to the application’s menu bar. In the interest of keeping
this exercise simple, let’s say that anybody with an account can add a news release,
and they’re available immediately for site guests to view.

11. Toward test-driven development 150

Those are the two basic scenarios:

• As a user, I want to add a news release so that the world can see how great our
company is.

• As a site visitor (guest), I want to read news releases so that I can learn more
about the company.

In this chapter, we’ll tackle that first scenario. I’ll let you take on the second as an
exercise on your own. There are, of course, several other scenarios to consider here–
updating or deleting news releases, for example, or establishing an editorial workflow
in which administrators must approve news prior to making it public. I’m going to
leave those to you, too, should you want some additional practice.

With the initial story in mind, let’s begin. Fire up Guard, and if necessary press
<return> to run all specs and make sure nothing’s broken before we start adding
features. If anything isn’t passing, use the skills you’ve learned throughout this book
to make it pass–it’s important to work from a clean slate before starting further
development on a project.

Next, we’ll outline our work in a new feature spec. In your editor, add a new file:

spec/features/news_releases_spec.rb

1 require 'rails_helper'

2

3 feature "News releases" do

4 context "as a user" do

5 scenario "adds a news release"

6 end

7

8 context "as a guest" do

9 scenario "reads a news release"

10 end

11 end

Save the file, and Guard will run just its specs automatically. As you should hopefully
expect by now, we get the following feedback from RSpec:

11. Toward test-driven development 151

2 examples, 0 failures, 2 pending

Let’s add some steps to that first scenario:

spec/features/news_releases_spec.rb

1 require 'rails_helper'

2

3 feature "News releases" do

4 context "as a user" do

5 scenario "adds a news release" do

6 user = create(:user)

7 sign_in(user)

8 visit root_path

9 click_link "News"

10

11 expect(page).to_not have_content "BigCo switches to Rails"

12 click_link "Add News Release"

13

14 fill_in "Date", with: "2013-07-29"

15 fill_in "Title", with: "BigCo switches to Rails"

16 fill_in "Body",

17 with: "BigCo has released a new website built with open source."

18 click_button "Create News release"

19

20 expect(current_path).to eq news_releases_path

21 expect(page).to have_content "Successfully created news release."

22 expect(page).to have_content "2013-07-29: BigCo switches to Rails"

23 end

24 end

25

26 # ...

27 end

From red to green

Check back in your terminal. Guard should have noticed the change in the spec and
run it automatically. And we’ve got a failure! Remember, in test-driven development,

11. Toward test-driven development 152

this is a good thing–it gives us a goal to work toward. RSpec has given us a clear
indication of what failed:

1) News releases as a user adds a news release

Failure/Error: click_link "News"

Capybara::ElementNotFound:

Unable to find link "News"

Let’s fix it and move forward. Open our application’s layout view template and add
the missing link to the navbar:

app/views/layouts/application.html.erb

<%= link_to "News", news_releases_path %>

We’ve made a couple of design decisions here–the link guests will click on will be
labeled News, and we’ll need a news_releases_path to render a list of available news
releases. In most cases, these decisions will have been made up front–it will be up to
you to convert them into an automated test with Capybara.

Return to the terminal, and–wait, why didn’t the feature spec automatically run with
the file change? Because Guard isn’t set to watch to the layout file we just edited, it
doesn’t trigger any specs to run. We’ve got a few options to consider:

• We could edit the Guardfile to watch the template and run one or more specs.
• We could just press return to force Guard to run all specs, including slow ones.
• We could take advantage of RSpec’s tagging feature to only run specs with the
focus tag set to true.

I like the last option best. In fact, I’m going to take advantage of it throughout the rest
of the chapter, as tests dart up and down other levels of the application. Referring back
to chapter 9 if necessary, add a filter_run configuration line to spec/rails_helper.rb:

11. Toward test-driven development 153

spec/rails_helper.rb

RSpec.configure do |config|

...

config.filter_run focus: true

end

and a focus tag to the spec we’re working on:

spec/features/news_releases_spec.rb

feature "News releases", focus: true do

...

Give Guard a moment to reload itself with the new configuration, and then watch
only the scenario we’re working on run. In this case, saving the feature file when
we added the focus tag triggered the spec to run. However, if we press return at the
guard(main)> prompt we can run just the spec(s) we’re interested in and not those
for other components of the site. We’ll come back to those later before calling the
feature complete.

If for whatever reason it doesn’t seem like Guard is automatically reload-
ing your RSpec settings, just enter reload at the prompt.

Moving on, back in the terminal we’ve still got red–but it’s a new failure:

1) News releases as a user adds a news release

Failure/Error: sign_in(user)

ActionView::Template::Error:

undefined local variable or method `news_releases_path' for

#<#<Class:0x007fb90d506b08>:0x007fb90d50e498>

Rails is complaining, by way of RSpec, that we haven’t defined a route for news_-
releases_path. Decision time again–do we:

11. Toward test-driven development 154

• Explicitly add the route to the application, thus doing the simplest thing
possible to make the spec pass?

• Take advantage of Rails’ scaffolding to generate the route for us, as well as a
bunch of other code we may or may not need?

In this case, I’m going with the second option. I know that for this feature to
eventually be complete, we’re going to need to allow not only listing existing news
releases, but also showing, adding, editing, and deleting them. A scaffold provides
solid code to work from for all of actions, allowing us to spend less time writing
boilerplate code and more time fine-tuning for our own application.

Open a new terminal into the application, if necessary, and generate the scaffold
now:

$ rails g scaffold news_release title released_on:date body:text

Among all the files generated–some of which we’ll use, some of which we won’t–
observe the following:

invoke rspec

create spec/models/news_release_spec.rb

invoke factory_girl

create spec/factories/news_releases.rb

...

invoke rspec

create spec/controllers/news_releases_controller_spec.rb

Way back in chapter 2, we configured the scaffold generator to provide these starter
files for model and controller specs, and an initial factory with which to work as we
plow forward.

Back to Guard, press return to run the specs. Rails 4.1 recognizes that we’ve yet to
run migrations, so do that now:

11. Toward test-driven development 155

$ rake db:migrate

Another new failure–but believe it or not, we’re making progress:

Failures:

1) News releases as a user adds a news release

Failure/Error: click_link "Add News Release"

Capybara::ElementNotFound:

Unable to find link "Add News Release"

./spec/features/news_releases_spec.rb:12:in \

`block (3 levels) in <top (required)>'

-e:1:in `<main>'

Looking through the scenario, the failure occurs after clicking the News link in
the navbar, and after RSpec confirms that the returned page (rendered by news_-
releases_path) does not contain the title of the news release we haven’t added yet.
This new failure must be due to something in the index template for news releases.
Load that file, and sure enough, the link to creating news releases, as generated by
the scaffold, has different wording than what we’ve got in the spec. Let’s fix that
now, and add a little Bootstrap style while we’re there:

app/views/news_releases/index.html.erb

<%= link_to 'Add News Release', new_news_release_path,

class: 'btn btn-primary' %>

The next error suggests that the Date text field can’t be found. Again, easily fixed:

app/views/news_releases/_form.html.erb

<%= f.label :released_on, 'Date' %>

<%= f.text_field :released_on %>

Looks like the spec is passing through the form now–the next error suggests we need
to set the desired path to redirect to upon successfully posting a news release:

11. Toward test-driven development 156

1) News releases as a user adds a news release

Failure/Error: expect(current_path).to eq news_releases_path

expected: "/news_releases"

got: "/news_releases/1"

(compared using ==)

./spec/features/news_releases_spec.rb:18:in `block (3 levels)

in <top (required)>'

This is because our preferred behavior deviates from the Rails scaffold’s defaults. It’s
easily addressed by fixing the controller:

app/controllers/news_releases_controller.rb

def create

@news_release = NewsRelease.new(news_release_params)

respond_to do |format|

if @news_release.save

format.html { redirect_to news_releases_url,

notice: 'News release was successfully created.' }

...

We’re getting close. To address the next failing step, change the value for the :notice
symbol to Successfully created news release.

app/controllers/news_releases_controller.rb

def create

@news_release = NewsRelease.new(news_release_params)

respond_to do |format|

if @news_release.save

format.html { redirect_to news_releases_url,

notice: 'Successfully created news release.' }

...

One last step to complete the scenario and make it pass!

11. Toward test-driven development 157

Failures:

1) News releases as a user adds a news release

Failure/Error: expect(page).to have_content \

"2013-07-29: BigCo switches to Rails"

...

./spec/features/news_releases_spec.rb:20:in

`block (3 levels) in <top (required)>'

The simplest way to make this pass is to add some code to the view template. Soon
we’ll consider ways to refactor this into cleaner code, but in the meantime:

app/views/news_releases/index.html.erb

1 <h1>News releases</h1>

2

3

4 <% @news_releases.each do |news_release| %>

5

6 <%= link_to "#{news_release.released_on.strftime('%Y-%m-%d')}:

7 #{news_release.title}", news_release %>

8

9 <% end %>

10

11

12 <p>

13 <%= link_to 'Add News Release', new_news_release_path,

14 class: 'btn btn-primary' %>

15 </p>

And with that, the first scenario passes!

Nice work, but we’re not done–we’ve got some things we can clean up.We’ve arrived
at the refactor stage of red-green-refactor. It can get quite involved if you allow it,
but here we’ll keep things relatively simple, as heavy-duty refactoring is beyond the
scope of this book.

We can tackle at least one item: As alluded to earlier, the line we added to link to an
individual news release is pretty ugly. A very simple refactoring might move this to

11. Toward test-driven development 158

the NewsRelease model. Of course, we should write a quick test for that first, in the
NewsRelease model:

spec/models/news_release_spec.rb

1 require 'rails_helper'

2

3 describe NewsRelease, type: :model, focus: true do

4 it "returns the formatted date and title as a string" do

5 news_release = NewsRelease.new(

6 released_on: '2013-07-31',

7 title: 'BigCo hires new CEO')

8 expect(news_release.title_with_date).to \

9 eq '2013-07-31: BigCo hires new CEO'

10 end

11 end

And make it pass by updating the model:

app/models/news_release.rb

1 class NewsRelease < ActiveRecord::Base

2 def title_with_date

3 "#{released_on.strftime('%Y-%m-%d')}: #{title}"

4 end

5 end

And a quick edit to our view, to use the new method:

app/views/news_releases/index.html.erb

<%= link_to news_release.title_with_date, news_release %>

And we’re still green. That’s they key to the refactoring step: Any changes you make
should result in the tests still passing. You’ll also find yourself darting up and down,
from feature spec down to model, controller, and/or library. It depends on where it
makes the most sense to keep the code in your application.

11. Toward test-driven development 159

As long as we’ve got the model spec for NewsRelease open, let’s think a bit about
what other requirements the model might have. A couple of validations come to
mind–in particular, a news release isn’t of much use without a release date, title, or
body. Let’s throw in some expectations, using the matchers provided by the custom
matchers provided by Shoulda (see chapter 9):

spec/models/news_release_spec.rb

1 it { should validate_presence_of :released_on }

2 it { should validate_presence_of :title }

3 it { should validate_presence_of :body }

Add the validations to the NewsRelease model to make these pass and continue.

There’s one more aspect of this new feature we haven’t paid attention to yet:
Authentication. We know that a user can log in and add a news release with no
problem, but what about guests? It should be no surprise that, if we were to comment
out the two lines of our scenario that handles creating a test user and logging in with
that user, it would still pass. That’s not good.

Of course, we need to apply our authentication filter to the news releases controller.
Instead of meticulously testing every controller method, let’s focus on the important
ones here: We want to make sure guests are denied access to the new and create

methods, so let’s turn our attention to the scaffolded controller spec we generated a
little while ago. The scaffold generates a lot of extra code, but we can delete it all and
replace it with the following:

spec/controllers/news_releases_controller_spec.rb

1 require 'rails_helper'

2

3 describe NewsReleasesController, focus: true do

4 describe 'GET #new' do

5 it "requires login" do

6 get :new

7 expect(response).to require_login

8 end

9 end

11. Toward test-driven development 160

10

11 describe "POST #create" do

12 it "requires login" do

13 post :create, news_release: attributes_for(:news_release)

14 expect(response).to require_login

15 end

16 end

17 end

require_login is a custom matcher we created back in chapter 7.

I’m going to add a factory to help that second expectation pass:

spec/factories/news_releases.rb

1 require 'faker'

2

3 FactoryGirl.define do

4 factory :news_release do

5 title "Test news release"

6 released_on 1.day.ago

7 body { Faker::Lorem.paragraph }

8 end

9 end

The spec fails:

11. Toward test-driven development 161

Failures:

1) NewsReleasesController GET #new requires login

Failure/Error: expect(response).to require_login

expected to require login to access the method

./spec/controllers/news_releases_controller_spec.rb:7:in

`block (3 levels) in <top (required)>'

-e:1:in `<main>'

2) NewsReleasesController POST #create requires login

Failure/Error: expect(response).to require_login

expected to require login to access the method

./spec/controllers/news_releases_controller_spec.rb:14:in

`block (3 levels) in <top (required)>'

-e:1:in `<main>'

We’ll add the authentication filter to lock things down, and pass the specs:

app/controllers/news_releases_controller.rb

class NewsReleasesController < ApplicationController

before_action :authenticate, except: [:index, :show]

...

Cleaning up

The tests are passing, and the new feature is implemented. Before we wrap things up,
though, we’ve got a little more code cleanup to do. In this case, our initial decision
to go with a scaffold has added a lot of extra code our application doesn’t need right
now, so we might as well delete it.

Among the files we have added or modified, the following sit untouched since we
generated the scaffold:

• app/assets/javascripts/news_releases.js.coffee
• app/assets/stylesheets/news_releases.css.scss

11. Toward test-driven development 162

• app/helpers/news_releases_helper.rb

They’re not used, so let’s delete them.We can always add them back later if necessary.

Finally, we need to make sure our new feature hasn’t interfered with previous work.
Remove the focus tag from our new specs in spec/features/news_releases_spec.rb,
spec/models/news_release_spec.rb, and spec/controllers/news_releases_controller_-
spec.rb. Get rid of the tag filter in spec/spec_helper:

spec/spec_helper.rb

get rid of this line or at least comment it out:

config.filter_run focus: true

Check back in the terminal window in which Guard is running, and press <return>
to run the whole test suite. Looks good! All of our specs are passing, except for that
pending spec to drive guests reading news releases–and you’re handling that one,
right?

One more thing: Even though everything looks good in the test suite, be sure to spot-
check your work in your browser before you commit (and especially before you
deploy). If possible, have someone else look over your work as well. You’re apt to
notice things you wouldn’t have otherwise. In fact, we’ve got a rather glaring issue
to address in that next scenario: The Add News Release button on our list of news
releases is visible to guests and signed-in users alike! Maybe, when you get to work
on that next scenario, you might want to expect(page).to_not have_content 'Add

News Release' (hint).

Just kidding–if you check out the source for this chapter on GitHub, you’ll find that
I’ve begun a scenario for you to make pass.

Summary

That’s how I use RSpec to drive new features in my own Rails applications. While
it may seem like a lot of steps on paper, in reality it’s not that much extra work in
the short term–and in the long term, writing tests and refactoring early saves much
more time in the long haul. You’ve got the tools you need to do the same in your
own projects!

11. Toward test-driven development 163

Exercises

• If you’re following along with the sample code, go ahead and work through
that next scenario. Make the steps I’ve written in the pending scenario pass!
Remember to consider specs at other levels of the application as needed–that
is, are there any additional cases which might be more straightforward to test
at the controller or model level?

• For further practice, see what you can do with other aspects of this general
feature–what about editing and deleting news releases?

12. Parting advice
You’ve done it! If you’ve been adding tests to your application as youworked through
the patterns and techniques outlined in this book, you should have the beginnings of
a well-tested Rails application. I’m glad you’ve stuck with it this far, and hope that
by now you’re not only comfortable with tests, but maybe even beginning to think
like a true test-driven developer and using your specs to influence your applications’
actual under-the-hood design. And dare I say, you might even find this process fun!

To wrap things up, here are a few things to keep in mind as you continue down this
path:

Practice testing the small things

Diving into TDD through complex new features is probably not the best way to
get comfortable with the process. Focus instead on some of the lower-hanging fruit
in your application. Bug fixes, basic instance methods, controller-level specs–these
are typically straightforward tests, usually requiring a little bit of setup and a single
expectation. Just remember to write the spec before tackling the code!

Be aware of what you’re doing

As you’re working, think about the processes you’re using. Take notes. Have you
written a spec for what you’re about to do? Does the spec cover edge cases and fail
states? Keep a checklist handy as you work, making sure you’re covering what needs
to be covered as you go.

Short spikes are OK

Test-driven development doesn’t mean you can only write code once it’s got a test to
back it. It means you should only write production code after you’ve got the specs.

12. Parting advice 165

Spikes are perfectly fine! Depending on the scope of a feature, I’ll often spin up a
new Rails application or create a temporary branch in Git to tinker with an idea. I’ll
typically do this when I’m experimenting with a library or some relatively wholesale
change.

For example, I once worked on a data mining application in which I needed to
completely overhaul the application’s model layer, without adversely affecting the
end user interface. I knew what my basic model structure would look like, but I
needed to tinker with some of the finer points to fully understand the problem. By
spiking this in a standalone application, I was free to hack and experiment within
the scope of the actual problem I’m trying to solve–then, once I’d determined that I
understood the problem and have a good solution for it, I opened up my production
application, wrote specs based on what I learned in my tests, then wrote code to
make those specs pass.

For smaller-scale problems I’ll work in a feature branch of the application, doing the
same type of experimentation and keeping an eye on which files are getting changed.
Going back to my data mining project, I also had a feature to add involving how
users would view already-harvested data. Since I already had the data in my system,
I created a branch in Git and spiked a simple solution to make sure I understood the
problem. Once I had my solution, I removed my temporary code, wrote my specs,
and then systematically reapplied my work.

As a general rule, I try to retype my work as opposed to just uncommenting it (or
copying and pasting); I often find ways to refactor or otherwise improve what I did
the first time.

Write a little, test a little is also OK

If you’re still struggling with writing specs first, it is acceptable to code, then test;
code, then test–as long as the two practices are closely coupled. I’d argue, though,
that this approach requires more discipline than just writing tests first (after untested
spikes). In other words, while I say it’s OK, I don’t think it’s ideal. But if it helps you
get used to testing then go for it.

12. Parting advice 166

Strive to write feature specs first

Once you get comfortable with the basic process and the different levels at which to
test your application, it’s time to turn everything upside down: Instead of building
model specs and then working up to controller and feature specs, you’ll start with
feature specs, thinking through the steps an end user will follow to accomplish a
given task in your application. This is essentially what’s referred to as outside-in
testing, and is the general approach we followed in chapter 11.

As you work to make the feature spec pass, you’ll recognize facets that are better-
tested at other levels–in the previous chapter, for example, we tested validations at
the model level; authorization nuances at the controller level. A good feature spec
can serve as an outline for all of the tests pertaining to a given feature, so learning
to begin by writing them is a valuable skill to have.

Make time for testing

Yes, tests are extra code for you to maintain; that extra care takes time. Plan
accordingly, as a feature youmay have been able to complete in an hour or two before
might take a whole day now. This especially applies when you’re getting started with
testing. However, in the long run you’ll recover that time by working from a more
trustworthy code base.

Keep it simple

If you don’t get some aspects of testing right away–in particular, feature specs or
mocking and stubbing–don’t worry about it. They require some additional setup
and thinking to not just work, but actually test what you need to test. Don’t stop
testing the simpler parts of your app, though–building skills at that level will help
you grasp more complicated specs sooner rather than later.

Don’t revert to old habits!

It’s easy to get stuck on a failing test that shouldn’t be failing. If you can’t get a test
to pass, make a note to come back to it–and then come back to it. Remember, point-

12. Parting advice 167

and-click testing in your browser will only get slower and more tedious as your
application grows. Why not use the time you’ll save on getting better at writing
specs?

Use your tests to make your code better

Don’t neglect the Refactor stage of Red-Green-Refactor. Learn to listen to your tests–
they’ll let you know when something isn’t quite right in your code, and help you
clean house without breaking important functionality.

Sell others on the benefits of automated
testing

I still know far too many developers who don’t think they have time to write test
suites for their applications. (I even know a few who think that being the only person
in the world who understands how a brittle, spaghetti-coded application works is
actually a form of job security–but I know you’re smarter than that.) Or maybe your
boss doesn’t understand why it’s going to take a little longer to get that next feature
out the door.

Take a little time to educate these people. Tell them that tests aren’t just for
development; they’re for your applications’ long-term stability and everyone’s long-
term sanity. Show them how the tests work–I’ve found that showing off a feature
spec with JavaScript dependencies, as we put together in chapter 8, provides a wow
factor to help these people understand how the extra time involved in writing these
specs is time well-spent.

Keep practicing

Finally, it might go without saying, but you’ll get better at the process with lots of
practice. Again, I find throwaway Rails applications to be great for this purpose–
create a new app (say, a blogging app or to-do list), and practice TDD as you build a
feature set. What determines your features? Whatever testing skill you’re building.

12. Parting advice 168

Want to get better at specs for email? Make that to-do list send a project’s tasks to
its owner with the click of a button. Don’t wait for a feature request to arise in a
production project.

Goodbye, for now

You’ve now got all the tools you need to do basic automated testing in your Rails
projects, using RSpec, Factory Girl, Capybara, and DatabaseCleaner to help. These
are the core tools I use daily as a Rails developer, and the techniques I’ve presented
here show how I learned to effectively use them to increase my trust in my code. I
hope I’ve been able to help you get started with these tools as well.

That’s the end of Everyday Rails Testing with RSpec, but I hope you’ll keep me posted
as you work toward becoming a test-driven developer. If you have any comments,
insights, suggestions, revelations, complaints, or corrections to make to the book, feel
free to send them my way:

• Email: aaron@everydayrails.com
• Twitter: https://twitter.com/everydayrails
• Facebook: http://facebook.com/everydayrails
• GitHub: https://github.com/everydayrails/rails-4-1-rspec-3-0/issues

I also hope you’ll follow alongwith new posts at Everyday Rails (http://everydayrails.
com/).

Thanks again for reading,

Aaron

mailto:aaron@everydayrails.com
https://twitter.com/everydayrails
http://facebook.com/everydayrails
https://github.com/everydayrails/rails-4-1-rspec-3-0/issues
http://everydayrails.com/
http://everydayrails.com/

More testing resources for Rails
While not exhaustive, the resources listed below have all been reviewed by yours
truly and can each play a role in giving you a better overall understanding of Rails
application testing.

RSpec

RSpec official documentation

We’ve focused on using RSpec with Rails in this book, but if you’re interested in
using it in non-Rails projects, the Relish docs are a great place to start. You’ll find
documentation on the latest RSpec releases, all the way back to version 2.13. https:
//www.relishapp.com/rspec

Better Specs

Better Specs is a really nice collection of illustrated best practices to employ in your
test suite. http://betterspecs.org

RSpec the Right Way

Geoffrey Grosenbach of Pluralsight and Peepcode demonstrates the TDD process,
using many of the same tools discussed in this book. Requires a Pluralsight subscrip-
tion. http://beta.pluralsight.com/courses/rspec-the-right-way

The RSpec Book: Behaviour-Driven Development with RSpec,
Cucumber, and Friends

Written by RSpec’s original lead developer, David Chelimsky, this book provides a
thorough look at the entire RSpec ecosystem. I recommend reading this book after
you’ve got the basics down or if you’re interested in using RSpec outside of Rails.
The code is a little out-of-date, but the philosophies are the same. http://pragprog.
com/book/achbd/the-rspec-book

https://www.relishapp.com/rspec
https://www.relishapp.com/rspec
http://betterspecs.org
http://beta.pluralsight.com/courses/rspec-the-right-way
http://pragprog.com/book/achbd/the-rspec-book
http://pragprog.com/book/achbd/the-rspec-book

More testing resources for Rails 170

Railscasts

I don’t know a single Rails developer who’s not familiar with Ryan Bates’ top-notch
screencast series, Railscasts. Ryan has done a number of episodes on testing; many
either focus on RSpec or include it as part of a larger exercise. Be sure to watch the
episode “How I Test,” which in part inspired this book. http://railscasts.com/?tag_id=7

Code School

Code School’s Testing with RSpec is a video/hands-on tutorial combination. The
course includes content and activities covering configuration, hooks and tags, mocks
and stubs, and custommatchers. For a look at Rails’ default testing framework, check
out Rails Testing for Zombies, too. http://www.codeschool.com/courses/

The RSpec Google Group

The RSpec Google Group is a fairly active mix of release announcements, guidance,
and general support for RSpec. This is your best place to go with RSpec-specific
questions when you can’t find answers on your own. http://groups.google.com/
group/rspec

Rails testing

Rails 4 Test Prescriptions: Keeping Your Application Healthy

This book by Noel Rappin is my favorite book on Rails testing. Noel does a fine job
covering a wide swath of the Rails testing landscape, from Test::Unit to RSpec to
Cucumber to client-side JavaScript testing, as well as components and concepts to
bring everything together into a cohesive, robust test suite. An update for Rails 4 and
RSpec 3 is currently available as a beta release. https://pragprog.com/book/nrtest2/
rails-4-test-prescriptions

Another good resource from Noel is his talk from Rubyconf 2012, titled Testing
Should Be Fun. Watch it when you notice your test suite running slow or get-
ting difficult to manage–or better yet, before you’ve reached that point so you
know how to avoid it in the first place. Video available at http://confreaks.com/

http://railscasts.com/?tag_id=7
http://www.codeschool.com/courses/
http://groups.google.com/group/rspec
http://groups.google.com/group/rspec
https://pragprog.com/book/nrtest2/rails-4-test-prescriptions
https://pragprog.com/book/nrtest2/rails-4-test-prescriptions
http://confreaks.com/videos/1306-rubyconf2012-testing-should-be-fun

More testing resources for Rails 171

videos/1306-rubyconf2012-testing-should-be-fun; slides at https://speakerdeck.com/
noelrap/testing-should-be-fun

Rails Tutorial

The book I wish had been around when I was learning Rails, Michael Hartl’s Rails
Tutorial, does the best job of any Rails introduction I’ve seen of presenting Rails in
the way you’ll be developing in it–that is, in a test-driven fashion. Also available as
a series of screencasts, if that’s your learning preference. http://ruby.railstutorial.org

Agile Web Development with Rails

Agile Web Development with Rails by Sam Ruby (with Dave Thomas and David
Heinemeier-Hansson) is the book that was available when I got started with Rails.
Back in its first edition I thought testing was treated like an afterthought; however,
more recent versions do a much better job of weaving tests into the development
process. http://pragprog.com/book/rails4/agile-web-development-with-rails

Learn Ruby on Rails

Daniel Kehoe’s Learn Ruby on Rails focuses on getting started with programming in
Rails, but includes a nice chapter on testing with MiniTest, an alternative to RSpec
that’s built into Rails. http://learn-rails.com

http://confreaks.com/videos/1306-rubyconf2012-testing-should-be-fun
http://confreaks.com/videos/1306-rubyconf2012-testing-should-be-fun
https://speakerdeck.com/noelrap/testing-should-be-fun
https://speakerdeck.com/noelrap/testing-should-be-fun
http://ruby.railstutorial.org
http://pragprog.com/book/rails4/agile-web-development-with-rails
http://learn-rails.com

About Everyday Rails
Everyday Rails is a blog about using the Ruby on Rails web application framework
to get stuff done as a web developer. It’s about finding the best gems and techniques
to get the most from Rails and help you get your apps to production. Everyday Rails
can be found at http://everydayrails.com/

http://everydayrails.com/

About the author
Aaron Sumner is a Ruby developer in the heart of Django country. He’s developed
web applications since the mid-1990s. In that time he’s gone from developing CGI
with AppleScript (seriously) to Perl to PHP to Ruby and Rails. When off the clock
and away from the text editor, Aaron enjoys photography, baseball (go Cards), college
basketball (Rock Chalk Jayhawk), outdoor cooking, woodworking, and bowling. He
lives with his wife, Elise, along with five cats and a dog in rural Kansas.

Aaron’s personal blog is at http://www.aaronsumner.com/. Everyday Rails Testing
with RSpec is his first book.

http://www.aaronsumner.com/

Colophon
The cover image of a practical, reliable, red pickup truck⁵⁸ is by iStockphoto
contributor Habman_18⁵⁹. I spent a lot of time reviewing photos for the cover–too
much time, probably–but picked this one because it represents my approach to Rails
testing–not flashy, and maybe not always the fastest way to get there, but solid and
dependable. And it’s red, like Ruby. Maybe it should have been green, like a passing
spec? Hmm.

⁵⁸http://www.istockphoto.com/stock-photo-16071171-old-truck-in-early-morning-light.php?st=1e7555f
⁵⁹http://www.istockphoto.com/user_view.php?id=4151137

http://www.istockphoto.com/stock-photo-16071171-old-truck-in-early-morning-light.php?st=1e7555f
http://www.istockphoto.com/user_view.php?id=4151137
http://www.istockphoto.com/stock-photo-16071171-old-truck-in-early-morning-light.php?st=1e7555f
http://www.istockphoto.com/user_view.php?id=4151137

Change log
October 2, 2014

• Release major update for RSpec 3.x and Rails 4.1 and beyond.
• Add content to chapter 10 to cover external service testing, API testing, and
more.

• Drop the chapter on RSpec 2.99. If you need it, download the previous edition.
• Format changes for the PDF edition, to prepare for a possible print release at
some point.

• Address various punctuation and grammatical issues that were bugging me.

April 25, 2014

• Add preview of chapter 12, upgrading to RSpec 2.99.

February 23, 2014

• Replace dropped end in “Anatomy of a model spec,” chapter 3.
• Use correct title for chapter 4, in book organization section of chapter 1.
• Clarify what I mean by “automating things,” chapter 3.
• Attempt to fix syntax highlighting throughout the book. This isn’t foolproof
and is beyond my control at the moment, but I’ve done what I can.

• Mention that before do is the same as before :each do, chapter 3.
• Clarify what I mean by CSS compilation, chapter 9.
• Remove extra before :each block in chapter 9’s mocking/stubbing example.
• Clarify step of changing the flash message in TDD example, chapter 11.
• Attribute eq and include? to rspec-expectations, chapter 3.
• Fix path to nested phones, chapter 5.
• Change link to custom matcher examples, chapter 7.

Change log 176

January 24, 2014

• Remove a few remaining references to reqeust specs (now feature specs).
• Other minor typo and language corrections throughout the book.
• Update selenium-webdriver version in chapter 8 to address incompatability
with latest Firefox.

• Add note about discrepancies between book samples and GitHub project.

January 14, 2014

• Clarify what I mean by “current versions of gems” in chapter 2. I do not update
the book or sample application every time a gem is updated. The gems used in
the examples were current in summer, 2013.

• Remove unused variable assignment to home_phone is the phone_spec.rb
example, chapters 3 and 4.

• Change lean syntax example to use build() throughout, instead of create, to
match sample project source in chapter 4.

• Fix HTTP verbs in chapter 5.
• Other minor typo and language corrections throughout the book.

October 28, 2013

• Fix minor typo in chapter 1.

October 7, 2013

• Fix typo in chapter 3 (incorrect number of best practices listed).

September 4, 2013

• Clarify issue with spork-rails gem and workaround in Chapter 9.
• Update dependency on selenium-webdriver to 2.35.1 to remove dependency
on ruby-zip 1.0.0.

Change log 177

August 27, 2013

• Remove unused examples from previous edition from chapters 5 and 7.
• Add ffaker as alternative to Faker in chapter 4.
• Remove premature reference to factories in chapter 3.

August 21, 2013

• Edited chapters 6-12 and testing resources.
• Switched stub examples to use the new allow() syntax.

August 8, 2013

• Edited chapters 1-5.

August 1, 2013

• Updated content for Rails 4.0 and RSpec 2.14.0.
• Replaced chapter 11 with a step-by-step TDD example.

May 15, 2013

• Clarified the state of the sample source for each chapter; each chapter’s branch
represents the completed source.

• Fixed the custom matcher in chapter 7 to properly look for an attribute passed
to it.

May 8, 2013

• Corrected reference to bundle exec rspec in chapter 2.
• Corrected instructions for grabbing git branches in chapters 3 and 6.
• Fixed Markdown formatting for links to source code and URLs at the very end
of the book.

Change log 178

April 15, 2013

• Moved sample code and discussion to GitHub; see chapter 1.
• Updated chapters 9 and 10.
• Reworked the JavaScript/Selenium example in chapter 9.

March 9, 2013

• Fixed stray references to should in multiple places.
• Fixed errant model spec for phones in chapter 3.
• Added the changelog to the end of the book.

February 20, 2013

• Fixed formatting error in user feature spec, chapter 8.
• Correctly test for the required lastname on a contact, chapter 3.
• Fixed minor typos.

February 13, 2013

• Replaced use of should with the now-preferred expect() syntax throughout
most of the book (chapters 9 and 10 excepted; see below).

• Covered the newCapybara 2.0 DSL; chapter 8 now covers feature specs instead
of request specs.

• Reworked initial specs from chapter 3 to skip factories and focus on already
available methods. Chapter 4 is now dedicated to factories.

• Copy edits throughout.

December 11, 2012

• Added new resources to the resources section.
• Added warnings about the overuse of of Factory Girl’s ability to create
association data to chapter 4.

Change log 179

November 29, 2012

• Reformatted code samples using Leanpub’s improved highlighting tools.
• Added mention of changes in Capybara 2.0 (chapter 8).
• Added warning about using Timecop.return to reset the time in specs (chapter
10).

August 3, 2012

• Added the change log back to the book.
• Replaced usage of == to eq throughout the book tomirror best practice in RSpec
expectations.

• Added clarification that you need to re-clone your development database to
test every time you make a database change (chapter 3).

• Added a note on the great factory debate of 2012 (chapter 3).
• Added a section about the new RSpec expect() syntax (chapter 3).
• Fixed incomplete specs for the #edit method (chapter 5).
• Added an example of testing a non-CRUD method in a controller (chapter 5).
• Added tips on testing non-HTML output (chapter 5).
• Fixed a typo in the :message factory (chapter 5).
• Fixed typo in spelling of transactions (chapter 8).
• Added a simple technique for testing Rake tasks (chapter 10).

July 3, 2012

• Corrected code for sample factory in chapter 5.

June 1, 2012

• Updated copy throughout the book.
• Added “Testing the Rest” chapter (chapter 10), covering email specs, time-
sensitive functionality, testing HTTP services, and file uploads.

Change log 180

May 25, 2012

• Revised chapter 8 on request specs.
• Added chapter 9, covering ways to speed up the testing process and tests
themselves.

• Added chapter 11, with tips for becoming a test-driven developer.
• Corrected typos as indicated by readers.

May 18, 2012

• Added chapter 4, which expands coverage on Factory Girl.
• Refactored controller testing into 3 chapters (basic, advanced, cleanup). Ad-
vanced includes testing for authentication and authorization.

• Added acknowledgements and colophon.
• Moved resources chapter to an appendix.
• Corrected typos as indicated by readers.

May 11, 2012

• Added sample application code for chapters 1,2, and 3.
• Revised introduction chapter with more information about source code down-
load and purpose.

• Revised setup chapter with changes to generator configuration and Factory
Girl system requirements, and other minor changes.

• Revised models chapter to follow along with the sample code better, explain
some uses of Factory Girl, and move Faker usage out of chapter (to be added
back in chapter 4).

• Switched to using bundle exec when calling rake, rspec, etc. from the
command line.

• Added specific gem versions in Gemfile examples.
• Corrected typos as indicated by readers.

May 7, 2012

• Initial release.

	Table of Contents
	Preface to this edition
	Acknowledgements
	1. Introduction
	Why RSpec?
	Who should read this book
	My testing philosophy
	How the book is organized
	Downloading the sample code
	Code conventions
	Discussion and errata
	About the sample application

	2. Setting up RSpec
	Gemfile
	Test database
	RSpec configuration
	Generators
	Applying your database schema to test
	Questions
	Exercises

	3. Model specs
	Anatomy of a model spec
	Creating a model spec
	The new RSpec syntax
	Testing validations
	Testing instance methods
	Testing class methods and scopes
	Testing for failures
	More about matchers
	DRYer specs with describe, context, before and after
	Summary
	Question
	Exercises

	4. Generating test data with factories
	Factories versus fixtures
	Adding factories to the application
	Simplifying our syntax
	Associations and inheritance in factories
	Generating more realistic fake data
	Advanced associations
	How to abuse factories
	Summary
	Exercises

	5. Basic controller specs
	Why test controllers?
	Why not test controllers?
	Controller testing basics
	Organization
	Setting up test data
	Testing GET requests
	Testing POST requests
	Testing PATCH requests
	Testing DELETE requests
	Testing non-CRUD methods
	Testing nested routes
	Testing non-HTML controller output
	Summary
	Exercises

	6. Advanced controller specs
	Getting ready
	Testing the admin and user roles
	Testing the guest role
	Summary
	Exercise

	7. Controller spec cleanup
	Shared examples
	Creating helper macros
	Using custom RSpec matchers
	Summary
	Exercises

	8. Feature specs
	Why feature specs?
	What about Cucumber?
	Additional dependencies
	A basic feature spec
	From requests to features
	Adding feature specs
	Debugging feature specs
	A little refactoring
	Including JavaScript interactions
	Capybara drivers
	Waiting for JavaScript
	Summary
	Exercises

	9. Speeding up specs
	Optional, terse syntax
	Mocks and stubs
	Automation with Guard and Spring
	Tags
	Other speedy solutions
	Summary
	Exercises

	10. Testing the rest
	Testing email delivery
	Testing file uploads
	Testing the time
	Testing web services
	Testing your application's API
	Testing rake tasks
	Summary
	Exercises

	11. Toward test-driven development
	Defining a feature
	From red to green
	Cleaning up
	Summary
	Exercises

	12. Parting advice
	Practice testing the small things
	Be aware of what you're doing
	Short spikes are OK
	Write a little, test a little is also OK
	Strive to write feature specs first
	Make time for testing
	Keep it simple
	Don't revert to old habits!
	Use your tests to make your code better
	Sell others on the benefits of automated testing
	Keep practicing
	Goodbye, for now

	More testing resources for Rails
	RSpec
	Rails testing

	About Everyday Rails
	About the author
	Colophon
	Change log

