
Chapter 2

A toy app
In this chapter, we’ll develop a toy demo application to show off some of the
power of Rails. The purpose is to get a high-level overview of Ruby on Rails
programming (and web development in general) by rapidly generating an appli-
cation using scaffold generators, which create a large amount of functionality
automatically. As discussed in Box 2.1, the rest of the book will take the oppo-
site approach, developing a full sample application incrementally and explain-
ing each new concept as it arises, but for a quick overview (and some instant
gratification) there is no substitute for scaffolding. The resulting toy app will
allow us to interact with it through its URLs, giving us insight into the struc-
ture of a Rails application, including a first example of the REST architecture
favored by Rails.

As with the forthcoming sample application, the toy app will consist of
users and their associated microposts (thus constituting a minimalist Twitter-
style app). The functionality will be utterly under-developed, and many of the
steps will seem like magic, but worry not: the full sample app will develop a
similar application from the ground up starting in Chapter 3, and I will provide
plentiful forward-references to later material. In the meantime, have patience
and a little faith—the whole point of this tutorial is to take you beyond this su-
perficial, scaffold-driven approach to achieve a deeper understanding of Rails.

71

72 CHAPTER 2. A TOY APP

Box 2.1. Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement,
starting with the famous 15-minute weblog video by Rails creator David Heine-
meier Hansson. That video and its successors are a great way to get a taste of
Rails’ power, and I recommend watching them. But be warned: they accomplish
their amazing fifteen-minute feat using a feature called scaffolding, which relies
heavily on generated code, magically created by the Rails generate scaffold
command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffold-
ing approach—it’s quicker, easier, more seductive. But the complexity and sheer
amount of code in the scaffolding can be utterly overwhelming to a beginning Rails
developer; you may be able to use it, but you probably won’t understand it. Fol-
lowing the scaffolding approach risks turning you into a virtuoso script generator
with little (and brittle) actual knowledge of Rails.

In the Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach:
although this chapter will develop a small toy app using scaffolding, the core of the
Rails Tutorial is the sample app, which we’ll start writing in Chapter 3. At each
stage of developing the sample application, we will write small, bite-sized pieces
of code—simple enough to understand, yet novel enough to be challenging. The
cumulative effect will be a deeper, more flexible knowledge of Rails, giving you a
good background for writing nearly any type of web application.

2.1 Planning the application
In this section, we’ll outline our plans for the toy application. As in Section 1.2,
we’ll start by generating the application skeleton using the rails new com-
mand with a specific Rails version number:

https://youtu.be/Gzj723LkRJY
https://youtu.be/y1hCMKav3LE

2.1. PLANNING THE APPLICATION 73

$ cd ~/environment

$ rails _6.0.1_ new toy_app

$ cd toy_app/

If you’re using the cloud IDE as recommended in Section 1.1.1, note that this
second app can be created in the same environment as the first. It is not neces-
sary to create a new environment. In order to get the files to appear, you may
need to click the gear icon in the file navigator area and select “Refresh File
Tree”.

Next, we’ll use a text editor to update the Gemfile needed by Bundler with
the contents of Listing 2.1.

Important note: For all the Gemfiles in this book, you should use the
version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

Listing 2.1: A Gemfile for the toy app.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'puma', '3.12.1'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.4', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

https://gemfiles-6th-ed.railstutorial.org/

74 CHAPTER 2. A TOY APP

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

end

group :production do

gem 'pg', '1.1.4'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Note that Listing 2.1 is identical to Listing 1.18.
As in Section 1.4.1, we’ll install the local gems while preventing the instal-

lation of production gems using the --without production option:

$ bundle install --without production

As noted in Section 1.2.1, you may need to run bundle update as well
(Box 1.2).

Finally, we’ll put the toy app under version control with Git:

$ git init

$ git add -A

$ git commit -m "Initialize repository"

You should also create a new repository at GitHub by following the same steps
as in Section 1.3.3 (taking care to make it private as in Figure 2.1), and then
push up to the remote repository:

$ git remote add origin https://github.com/<username>/toy_app.git

$ git push -u origin master

Finally, it’s never too early to deploy, which I suggest doing by following
the same “hello, world!” steps from Section 1.2.4, as shown in Listing 2.2 and
Listing 2.3.

https://github.com/new

2.1. PLANNING THE APPLICATION 75

Figure 2.1: Creating the toy app repository at GitHub.

76 CHAPTER 2. A TOY APP

Listing 2.2: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

def hello

render html: "hello, world!"

end

end

Listing 2.3: Setting the root route.
config/routes.rb

Rails.application.routes.draw do

root 'application#hello'

end

Then commit the changes and push up to Heroku, and, at the same time,
GitHub—it’s a good idea to keep the two copies in sync:

$ git commit -am "Add hello"

$ heroku create

$ git push && git push heroku master

Here we’ve used the double ampersand operator && (read “and”) to combine
the pushes to GitHub and Heroku; the second command will execute only if the
first one succeeds.1

As in Section 1.4, you may see some warning messages, which you should
ignore for now. We’ll deal with them in Section 7.5. Apart from the URL of
the Heroku app, the result should be the same as in Figure 1.31.

2.1.1 A toy model for users
Now we’re ready to start making the app itself. The typical first step when
making a web application is to create a data model, which is a representation

1The && operator is described in Chapter 4 of Learn Enough Command Line to Be Dangerous.

https://en.wikipedia.org/wiki/Data_model
https://www.learnenough.com/r/learn_enough_command_line/directories/navigating_directories/combining_commands#aside-combining_commands
https://www.learnenough.com/r/learn_enough_command_line/directories
https://www.learnenough.com/command-line

2.1. PLANNING THE APPLICATION 77

email string

id
name string

integer
users

Figure 2.2: The data model for users.

of the structures needed by our application, including the relationships between
them. In our case, the toy app will be a Twitter-style microblog, with only users
and short (micro)posts. Thus, we’ll begin with a model for users of the app in
this section, and then we’ll add a model for microposts (Section 2.1.2).

There are as many choices for a user data model as there are different reg-
istration forms on the web; for simplicity, we’ll go with a distinctly minimalist
approach. Users of our toy app will have a unique identifier called id (of type
integer), a publicly viewable name (of type string), and an email address
(also of type string) that will double as a unique username. (Note that there
is no password attribute at this point, which is part of what makes this app a
“toy”. We’ll cover passwords starting in Chapter 6.) A summary of the data
model for users appears in Figure 2.2.

As we’ll see starting in Section 6.1.1, the label users in Figure 2.2 cor-
responds to a table in a database, and the id, name, and email attributes are
columns in that table.

2.1.2 A toy model for microposts

Recall from the introduction that a micropost is simply a short post, essentially
a generic term for the brand-specific “tweet” (with the prefix “micro” motivated
by Twitter’s original description as a “micro-blog”). The core of the micropost
data model is even simpler than the one for users: a micropost has only an

78 CHAPTER 2. A TOY APP

user_id integer

id
content text

integer
microposts

Figure 2.3: The data model for microposts.

id and a content field for the micropost’s text (of type text).2 There’s an
additional complication, though: we want to associate each micropost with a
particular user. We’ll accomplish this by recording the user_id of the owner
of the post. The results are shown in Figure 2.3.

We’ll see in Section 2.3.3 (and more fully in Chapter 13) how this user_id
attribute allows us to succinctly express the notion that a user potentially has
many associated microposts.

2.2 The Users resource
In this section, we’ll implement the users data model in Section 2.1.1, along
with a web interface to that model. The combination will constitute a Users
resource, which will allow us to think of users as objects that can be created,
read, updated, and deleted through the web via the HTTP protocol. As promised
in the introduction, our Users resource will be created by a scaffold generator
program, which comes standard with each Rails project. I urge you not to look
too closely at the generated code; at this stage, it will only serve to confuse you.

Rails scaffolding is generated by passing the scaffold command to the
2Because microposts are short by design, the string type might actually be big enough to contain them, but

using text better expresses our intent, while also giving us greater flexibility should we ever wish to relax the
length constraint. Indeed, Twitter’s change from allowing 140 to 280 characters in English-language tweets is a
perfect example of why such flexibility is important: a string typically allows 255 (28 − 1) characters, which
is big enough for 140-character tweets but not for 280-character ones. Using text allows a unified treatment of
both cases.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

2.2. THE USERS RESOURCE 79

rails generate script. The argument of the scaffold command is the sin-
gular version of the resource name (in this case, User), together with optional
parameters for the data model’s attributes:3

$ rails generate scaffold User name:string email:string

invoke active_record

create db/migrate/<timestamp>_create_users.rb

create app/models/user.rb

invoke test_unit

create test/models/user_test.rb

create test/fixtures/users.yml

invoke resource_route

route resources :users

invoke scaffold_controller

create app/controllers/users_controller.rb

invoke erb

create app/views/users

create app/views/users/index.html.erb

create app/views/users/edit.html.erb

create app/views/users/show.html.erb

create app/views/users/new.html.erb

create app/views/users/_form.html.erb

invoke test_unit

create test/controllers/users_controller_test.rb

create test/system/users_test.rb

invoke helper

create app/helpers/users_helper.rb

invoke test_unit

invoke jbuilder

create app/views/users/index.json.jbuilder

create app/views/users/show.json.jbuilder

create app/views/users/_user.json.jbuilder

invoke assets

invoke scss

create app/assets/stylesheets/users.scss

invoke scss

create app/assets/stylesheets/scaffolds.scss

By including name:string and email:string, we have arranged for the
User model to have the form shown in Figure 2.2. (Note that there is no need
to include a parameter for id; it is created automatically by Rails for use as the
primary key in the database.)

3The name of the scaffold follows the convention of models, which are singular, rather than resources and
controllers, which are plural. Thus, we have User instead of Users.

80 CHAPTER 2. A TOY APP

To proceed with the toy application, we first need to migrate the database
using rails db:migrate, as shown in Listing 2.4.

Listing 2.4: Migrating the database.
$ rails db:migrate

== CreateUsers: migrating ======================================

-- create_table(:users)

-> 0.0027s

== CreateUsers: migrated (0.0036s) =============================

The effect of Listing 2.4 is to update the database with our new users data
model. (We’ll learn more about database migrations starting in Section 6.1.1.)

Having run the migration in Listing 2.4, we can run the local webserver in
a separate tab (Figure 1.15). Users of the cloud IDE should first add the same
configuration as in Section 1.2.2 to allow the toy app to be served (Listing 2.5).

Listing 2.5: Allowing connections to the local web server.
config/environments/development.rb

Rails.application.configure do

.

.

.

Allow Cloud9 connections.

config.hosts.clear

end

Then run the Rails server as in Section 1.2.2:

$ rails server

Now the toy application should be available on the local server as described in
Section 1.2.2. In particular, if we visit the root URL at / (read “slash”, as noted
in Section 1.2.4), we get the same “hello, world!” page shown in Figure 1.20.

2.2. THE USERS RESOURCE 81

URL Action Purpose
/users index page to list all users
/users/1 show page to show user with id 1

/users/new new page to make a new user
/users/1/edit edit page to edit user with id 1

Table 2.1: The correspondence between pages and URLs for the Users resource.

2.2.1 A user tour
In generating the Users resource scaffolding in Section 2.2, Rails created a large
number of pages for manipulating users. For example, the page for listing all
users is at /users, and the page for making a new user is at /users/new. The rest of
this section is dedicated to taking a whirlwind tour through these user pages. As
we proceed, it may help to refer to Table 2.1, which shows the correspondence
between pages and URLs.

We start with the page to show all the users in our application, called index
and located at /users. As you might expect, initially there are no users at all
(Figure 2.4).

To make a new user, we can click on the New User link in Figure 2.4 to
visit the new page at /users/new, as shown in Figure 2.5. In Chapter 7, this will
become the user signup page.
We can create a user by entering name and email values in the text fields and then
clicking the Create User button. The result is the user show page at /users/1,
as seen in Figure 2.6. (The green welcome message is accomplished using the
flash, which we’ll learn about in Section 7.4.2.) Note that the URL is /users/1;
as you might suspect, the number 1 is simply the user’s id attribute from Fig-
ure 2.2. In Section 7.1, this page will become the user’s profile page.

To change a user’s information, we click the Edit link to visit the edit page
at /users/1/edit (Figure 2.7). By modifying the user information and clicking the
Update User button, we arrange to change the information for the user in the toy
application (Figure 2.8). (As we’ll see in detail starting in Chapter 6, this user
data is stored in a database back-end.) We’ll add user edit/update functionality
to the sample application in Section 10.1.

Now we’ll create a second user by revisiting the new page at /users/new and

82 CHAPTER 2. A TOY APP

Figure 2.4: The initial index page for the Users resource (/users).

2.2. THE USERS RESOURCE 83

Figure 2.5: The new user page (/users/new).

84 CHAPTER 2. A TOY APP

Figure 2.6: The page to show a user (/users/1).

2.2. THE USERS RESOURCE 85

Figure 2.7: The user edit page (/users/1/edit).

86 CHAPTER 2. A TOY APP

Figure 2.8: A user with updated information.

2.2. THE USERS RESOURCE 87

Figure 2.9: The user index page (/users) with a second user.

submitting a second set of user information. The resulting user index is shown
in Figure 2.9. Section 7.1 will develop the user index into a more polished page
for showing all users.

Having shown how to create, show, and edit users, we come finally to de-
stroying them (Figure 2.10). You should verify that clicking on the link in Fig-
ure 2.10 destroys the second user, yielding an index page with only one user. (If
it doesn’t work, be sure that JavaScript is enabled in your browser; Rails uses
JavaScript to issue the request needed to destroy a user.) Section 10.4 adds user
deletion to the sample app, taking care to restrict its use to a special class of
administrative users.

88 CHAPTER 2. A TOY APP

Figure 2.10: Destroying a user.

2.2. THE USERS RESOURCE 89

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. (For readers who know CSS) Create a new user, then use your browser’s
HTML inspector to determine the CSS id for the text “User was success-
fully created.” What happens when you refresh your browser?

2. What happens if you try to create a user with a name but no email address?

3. What happens if you try create a user with an invalid email address, like
“@example.com”?

4. Destroy each of the users created in the previous exercises. Does Rails
display a message by default when a user is destroyed?

2.2.2 MVC in action
Now that we’ve completed a quick overview of the Users resource, let’s exam-
ine one particular part of it in the context of the Model-View-Controller (MVC)
pattern introduced in Section 1.2.3. Our strategy will be to describe the results
of a typical browser hit—a visit to the user index page at /users—in terms of
MVC (Figure 2.11).

Here is a summary of the steps shown in Figure 2.11:

1. The browser issues a request for the /users URL.

2. Rails routes /users to the index action in the Users controller.

3. The index action asks the User model to retrieve all users (User.all).

4. The User model pulls all the users from the database.

5. The User model returns the list of users to the controller.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

90 CHAPTER 2. A TOY APP

Controller
(users_controller.rb)

Rails
router

Model
(user.rb)

View
(index.html.erb)

index

@users HTML

HTML

User.all

/users1

2

7

4
3

6

5

Database8

Figure 2.11: A detailed diagram of MVC in Rails.

2.2. THE USERS RESOURCE 91

6. The controller captures the users in the @users variable, which is passed
to the index view.

7. The view uses embedded Ruby to render the page as HTML.

8. The controller passes the HTML back to the browser.4

Now let’s take a look at the above steps in more detail. We start with a
request issued from the browser—i.e., the result of typing a URL in the address
bar or clicking on a link (Step 1 in Figure 2.11). This request hits the Rails
router (Step 2), which dispatches the request to the proper controller action
based on the URL (and, as we’ll see in Box 3.2, the type of request). The code
to create the mapping of user URLs to controller actions for the Users resource
appears in Listing 2.6. This code effectively sets up the table of URL/action
pairs seen in Table 2.1. (The strange notation :users is a symbol, which we’ll
learn about in Section 4.3.3.)

Listing 2.6: The Rails routes, with a rule for the Users resource.
config/routes.rb

Rails.application.routes.draw do

resources :users

root 'application#hello'

end

While we’re looking at the routes file, let’s take a moment to associate the
root route with the users index, so that “slash” goes to /users. Recall from
Listing 2.3 that we added the root route

root 'application#hello'

so that the root route went to the hello action in the Application controller. In
the present case, we want to use the index action in the Users controller, which
we can arrange using the code shown in Listing 2.7.

4Some references indicate that the view returns the HTML directly to the browser (via a webserver such as
Apache or Nginx). Regardless of the implementation details, I find it helpful to think of the controller as a central
hub through which all the application’s information flows.

92 CHAPTER 2. A TOY APP

Listing 2.7: Adding a root route for users.
config/routes.rb

Rails.application.routes.draw do

resources :users

root 'users#index'

end

A controller contains a collection of related actions, and the pages from the
tour in Section 2.2.1 correspond to actions in the Users controller. The con-
troller generated by the scaffolding is shown schematically in Listing 2.8. Note
the code class UsersController < ApplicationController, which
is an example of a Ruby class with inheritance. (We’ll discuss inheritance
briefly in Section 2.3.4 and cover both subjects in more detail in Section 4.4.)

Listing 2.8: The Users controller in schematic form.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def index

.

.

.

end

def show

.

.

.

end

def new

.

.

.

end

def edit

.

.

.

2.2. THE USERS RESOURCE 93

end

def create

.

.

.

end

def update

.

.

.

end

def destroy

.

.

.

end

end

You might notice that there are more actions than there are pages; the index,
show, new, and edit actions all correspond to pages from Section 2.2.1, but
there are additional create, update, and destroy actions as well. These
actions don’t typically render pages (although they can); instead, their main
purpose is to modify information about users in the database.

This full suite of controller actions, summarized in Table 2.2, represents the
implementation of the REST architecture in Rails (Box 2.2), which is based on
the ideas of representational state transfer identified and named by computer
scientist Roy Fielding.5 Note from Table 2.2 that there is some overlap in the
URLs; for example, both the user show action and the update action corre-
spond to the URL /users/1. The difference between them is the HTTP request
method they respond to. We’ll learn more about HTTP request methods starting
in Section 3.3.

Box 2.2. REpresentational State Transfer (REST)

5Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doc-
toral dissertation, University of California, Irvine, 2000.

https://en.wikipedia.org/wiki/Roy_Fielding
https://en.wikipedia.org/wiki/HTTP_request#Request_methods
https://en.wikipedia.org/wiki/HTTP_request#Request_methods

94 CHAPTER 2. A TOY APP

HTTP request URL Action Purpose
GET /users index page to list all users
GET /users/1 show page to show user with id 1

GET /users/new new page to make a new user
POST /users create create a new user
GET /users/1/edit edit page to edit user with id 1

PATCH /users/1 update update user with id 1

DELETE /users/1 destroy delete user with id 1

Table 2.2: RESTful routes provided by the Users resource in Listing 2.6.

If you read much about Ruby on Rails web development, you’ll see a lot of
references to “REST”, which is an acronym for REpresentational State Transfer.
REST is an architectural style for developing distributed, networked systems and
software applications such as the World Wide Web and web applications. Although
REST theory is rather abstract, in the context of Rails applications REST means
that most application components (such as users and microposts) are modeled as
resources that can be created, read, updated, and deleted—operations that corre-
spond both to the CRUD operations of relational databases and to the four funda-
mental HTTP request methods: POST, GET, PATCH, and DELETE. (We’ll learn
more about HTTP requests in Section 3.3 and especially Box 3.2.)

As a Rails application developer, the RESTful style of development helps you
make choices about which controllers and actions to write: you simply structure the
application using resources that get created, read, updated, and deleted. In the case
of users and microposts, this process is straightforward, since they are naturally
resources in their own right. In Chapter 14, we’ll see an example where REST
principles allow us to model a subtler problem, “following users”, in a natural and
convenient way.

To examine the relationship between the Users controller and the User mo-
del, let’s focus on the index action, shown in Listing 2.9. (Learning how to
read code even when you don’t fully understand it is an important aspect of
technical sophistication (Box 1.2).)

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/HTTP_request#Request_methods

2.2. THE USERS RESOURCE 95

Listing 2.9: The simplified user index action for the toy application.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def index

@users = User.all

end

.

.

.

end

This index action has the line @users = User.all (Step 3 in Figure 2.11),
which asks the User model to retrieve a list of all the users from the database
(Step 4), and then places them in the variable @users (pronounced “at-users”)
(Step 5).

The User model itself appears in Listing 2.10. Although it is rather plain,
it comes equipped with a large amount of functionality because of inheritance
(Section 2.3.4 and Section 4.4). In particular, by using the Rails library called
Active Record, the code in Listing 2.10 arranges for User.all to return all the
users in the database.

Listing 2.10: The User model for the toy application.
app/models/user.rb

class User < ApplicationRecord

end

Once the @users variable is defined, the controller calls the view (Step 6),
shown in Listing 2.11. Variables that start with the @ sign, called instance vari-
ables, are automatically available in the views; in this case, the index.html.-
erb view in Listing 2.11 iterates through the @users list and outputs a line of
HTML for each one. (Remember, you aren’t supposed to understand this code
right now. It is shown only for purposes of illustration.)

96 CHAPTER 2. A TOY APP

Listing 2.11: The view for the users index.
app/views/users/index.html.erb

<p id="notice"><%= notice %></p>

<h1>Users</h1>

<table>

<thead>

<tr>

<th>Name</th>

<th>Email</th>

<th colspan="3"></th>

</tr>

</thead>

<tbody>

<% @users.each do |user| %>

<tr>

<td><%= user.name %></td>

<td><%= user.email %></td>

<td><%= link_to 'Show', user %></td>

<td><%= link_to 'Edit', edit_user_path(user) %></td>

<td><%= link_to 'Destroy', user, method: :delete,

data: { confirm: 'Are you sure?' } %></td>

</tr>

<% end %>

</tbody>

</table>

<%= link_to 'New User', new_user_path %>

The view converts its contents to HTML (Step 7), which is then returned by the
controller to the browser for display (Step 8).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By referring to Figure 2.11, write out the analogous steps for visiting the
URL /users/1/edit.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

2.3. THE MICROPOSTS RESOURCE 97

2. Find the line in the scaffolding code that retrieves the user from the data-
base in the previous exercise. Hint: It’s in a special location called set_-
user.

3. What is the name of the view file for the user edit page?

2.2.3 Weaknesses of this Users resource
Though good for getting a general overview of Rails, the scaffold Users re-
source suffers from a number of severe weaknesses.

• No data validations. Our User model accepts data such as blank names
and invalid email addresses without complaint.

• No authentication. We have no notion of logging in or out, and no way
to prevent any user from performing any operation.

• No tests. This isn’t technically true—the scaffolding includes rudimen-
tary tests—but the generated tests don’t test for data validation, authenti-
cation, or any other custom requirements.

• No style or layout. There is no consistent site styling or navigation.

• No real understanding. If you understand the scaffold code, you prob-
ably shouldn’t be reading this book.

2.3 The Microposts resource
Having generated and explored the Users resource, we turn now to the asso-
ciated Microposts resource. Throughout this section, I recommend comparing
the elements of the Microposts resource with the analogous user elements from
Section 2.2; you should see that the two resources parallel each other in many
ways. The RESTful structure of Rails applications is best absorbed by this sort
of repetition of form—indeed, seeing the parallel structure of Users and Micro-
posts even at this early stage is one of the prime motivations for this chapter.

98 CHAPTER 2. A TOY APP

2.3.1 A micropost microtour
As with the Users resource, we’ll generate scaffold code for the Microposts
resource using rails generate scaffold, in this case implementing the
data model from Figure 2.3:6

$ rails generate scaffold Micropost content:text user_id:integer

invoke active_record

create db/migrate/<timestamp>_create_microposts.rb

create app/models/micropost.rb

invoke test_unit

create test/models/micropost_test.rb

create test/fixtures/microposts.yml

invoke resource_route

route resources :microposts

invoke scaffold_controller

create app/controllers/microposts_controller.rb

invoke erb

create app/views/microposts

create app/views/microposts/index.html.erb

create app/views/microposts/edit.html.erb

create app/views/microposts/show.html.erb

create app/views/microposts/new.html.erb

create app/views/microposts/_form.html.erb

invoke test_unit

create test/controllers/microposts_controller_test.rb

create test/system/microposts_test.rb

invoke helper

create app/helpers/microposts_helper.rb

invoke test_unit

invoke jbuilder

create app/views/microposts/index.json.jbuilder

create app/views/microposts/show.json.jbuilder

create app/views/microposts/_micropost.json.jbuilder

invoke assets

invoke scss

create app/assets/stylesheets/microposts.scss

invoke scss

identical app/assets/stylesheets/scaffolds.scss

To update our database with the new data model, we need to run a migration as
in Section 2.2:

6As with the User scaffold, the scaffold generator for microposts follows the singular convention of Rails
models; thus, we have generate Micropost.

2.3. THE MICROPOSTS RESOURCE 99

HTTP request URL Action Purpose
GET /microposts index page to list all microposts
GET /microposts/1 show page to show micropost with id 1

GET /microposts/new new page to make a new micropost
POST /microposts create create a new micropost
GET /microposts/1/edit edit page to edit micropost with id 1

PATCH /microposts/1 update update micropost with id 1

DELETE /microposts/1 destroy delete micropost with id 1

Table 2.3: RESTful routes provided by the Microposts resource in Listing 2.12.

$ rails db:migrate

== CreateMicroposts: migrating ===

-- create_table(:microposts)

-> 0.0023s

== CreateMicroposts: migrated (0.0026s) ======================================

Now we are in a position to create microposts in the same way we created
users in Section 2.2.1. As you might guess, the scaffold generator has updated
the Rails routes file with a rule for Microposts resource, as seen in Listing 2.12.7
As with users, the resources :microposts routing rule maps micropost
URLs to actions in the Microposts controller, as seen in Table 2.3.

Listing 2.12: The Rails routes, with a new rule for Microposts resources.
config/routes.rb

Rails.application.routes.draw do

resources :microposts

resources :users

root 'users#index'

end

The Microposts controller itself appears in schematic form in Listing 2.13.
Note that, apart from having MicropostsController in place of Users-
Controller, Listing 2.13 is identical to the code in Listing 2.8. This is a
reflection of the REST architecture common to both resources.

7The scaffold code may have extra blank lines compared to Listing 2.12. This is not a cause for concern, as
Ruby ignores such extra space.

100 CHAPTER 2. A TOY APP

Listing 2.13: The Microposts controller in schematic form.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

.

.

.

def index

.

.

.

end

def show

.

.

.

end

def new

.

.

.

end

def edit

.

.

.

end

def create

.

.

.

end

def update

.

.

.

end

def destroy

.

.

.

end

end

2.3. THE MICROPOSTS RESOURCE 101

Figure 2.12: The micropost index page (/microposts).

To make some actual microposts, we click on New Micropost on the mi-
cropost index page (Figure 2.12) and enter information at the new microposts
page, /microposts/new, as seen in Figure 2.13.

At this point, go ahead and create a micropost or two, taking care to make
sure that at least one has a user_id of 1 to match the id of the first user created
in Section 2.2.1. The result should look something like Figure 2.14.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

102 CHAPTER 2. A TOY APP

Figure 2.13: The new micropost page (/microposts/new).

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

2.3. THE MICROPOSTS RESOURCE 103

Figure 2.14: The micropost index page with a couple of posts.

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

104 CHAPTER 2. A TOY APP

Tutorial course or to the Learn Enough All Access Bundle.

1. (For readers who know CSS) Create a new micropost, then use your
browser’s HTML inspector to determine the CSS id for the text “Micro-
post was successfully created.” What happens when you refresh your
browser?

2. Try to create a micropost with empty content and no user id.

3. Try to create a micropost with over 140 characters of content (say, the
first paragraph from the Wikipedia article on Ruby).

4. Destroy the microposts from the previous exercises.

2.3.2 Putting the micro in microposts
Any micropost worthy of the name should have some means of enforcing the
length of the post. Implementing this constraint in Rails is easy with valida-
tions; to accept microposts with at most 140 characters (à la the original design
of Twitter), we use a length validation. At this point, you should open the file
app/models/micropost.rb in your text editor or IDE and fill it with the
contents of Listing 2.14.

Listing 2.14: Constraining microposts to be at most 140 characters.
app/models/micropost.rb

class Micropost < ApplicationRecord

validates :content, length: { maximum: 140 }

end

The code in Listing 2.14 may look rather mysterious—we’ll cover valida-
tions more thoroughly starting in Section 6.2—but its effects are readily appar-
ent if we go to the new micropost page and enter more than 140 characters for
the content of the post. As seen in Figure 2.15, Rails renders error messages in-
dicating that the micropost’s content is too long. (We’ll learn more about error
messages in Section 7.3.3.)

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Ruby_(programming_language)

2.3. THE MICROPOSTS RESOURCE 105

Figure 2.15: Error messages for a failed micropost creation.

106 CHAPTER 2. A TOY APP

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Try to create a micropost with the same long content used in a previous
exercise (Section 2.3.1). How has the behavior changed?

2. (For readers who know CSS) Use your browser’s HTML inspector to
determine the CSS id of the error message produced by the previous ex-
ercise.

2.3.3 A user has_many microposts
One of the most powerful features of Rails is the ability to form associations
between different data models. In the case of our User model, each user poten-
tially has many microposts. We can express this in code by updating the User
and Micropost models as in Listing 2.15 and Listing 2.16.

Listing 2.15: A user has many microposts.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts

end

Listing 2.16: A micropost belongs to a user.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :content, length: { maximum: 140 }

end

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

2.3. THE MICROPOSTS RESOURCE 107

foo@bar.com

email
mhartl@example.com

2 Foo Bar

id
1 Michael Hartl

name
users

2Another post3
1

user_id
1

2 Second post

id
1 First post!

content
microposts

Figure 2.16: The association between microposts and users.

We can visualize the result of this association in Figure 2.16. Because of
the user_id column in the microposts table, Rails (using Active Record)
can infer the microposts associated with each user.

In Chapter 13 and Chapter 14, we will use the association of users and mi-
croposts both to display all of a user’s microposts and to construct a Twitter-
like micropost feed. For now, we can examine the implications of the user-
micropost association by using the console, which is a useful tool for interact-
ing with Rails applications. We first invoke the console with rails console
at the command line, and then retrieve the first user from the database using
User.first (putting the results in the variable first_user), as shown in
Listing 2.17.8 (I include exit in the last line just to demonstrate how to exit
the console. On most systems, you can also use Ctrl-D for the same purpose.)9

Listing 2.17: Investigating the state of the application using the Rails console.
$ rails console

>> first_user = User.first

(0.5ms) SELECT sqlite_version(*)

User Load (0.2ms) SELECT "users".* FROM "users" ORDER BY "users"."id" ASC

LIMIT ? [["LIMIT", 1]]

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",

created_at: "2019-08-20 00:39:14", updated_at: "2019-08-20 00:41:24">

>> first_user.microposts

Micropost Load (3.2ms) SELECT "microposts".* FROM "microposts" WHERE

"microposts"."user_id" = ? LIMIT ? [["user_id", 1], ["LIMIT", 11]]

=> #<ActiveRecord::Associations::CollectionProxy [#<Micropost id: 1, content:

8Your console prompt might be something like 2.6.3 :001 >, but the examples use >> since Ruby versions
will vary.

9As in the case of Ctrl-C, the capital “D” refers to the key on the keyboard, not the capital letter, so you don’t
have to hold down the Shift key along with the Ctrl key.

108 CHAPTER 2. A TOY APP

"First micropost!", user_id: 1, created_at: "2019-08-20 02:04:13", updated_at:

"2019-08-20 02:04:13">, #<Micropost id: 2, content: "Second micropost",

user_id: 1, created_at: "2019-08-20 02:04:30", updated_at: "2019-08-20

02:04:30">]>

>> micropost = first_user.microposts.first

Micropost Load (0.2ms) SELECT "microposts".* FROM "microposts" WHERE

"microposts"."user_id" = ? ORDER BY "microposts"."id" ASC LIMIT ?

[["user_id", 1], ["LIMIT", 1]]

=> #<Micropost id: 1, content: "First micropost!", user_id: 1, created_at:

"2019-08-20 02:04:13", updated_at: "2019-08-20 02:04:13">

>> micropost.user

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",

created_at: "2019-08-20 00:39:14", updated_at: "2019-08-20 00:41:24"

>> exit

There’s a lot going on in Listing 2.17, and teasing out the relevant parts is a good
exercise in technical sophistication (Box 1.2). The output includes the actual
return values, which are raw Ruby objects, as well as the Structured Query
Language (SQL) code that produced them.

In addition to retrieving the first user with User.first, Listing 2.17 shows
two other things: (1) how to access the first user’s microposts using the code
first_user.microposts, which automatically returns all the microposts
with user_id equal to the id of first_user (in this case, 1); and (2) how
to return the user corresponding to a particular post using micropost.user.
We’ll learn much more about the Ruby involved in Listing 2.17 in Chapter 4,
and more about the association facilities in Active Record in Chapter 13 and
Chapter 14.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Edit the user show page to display the content of the user’s first micropost.
(Use your technical sophistication (Box 1.2) to guess the syntax based on
the other content in the file.) Confirm by visiting /users/1 that it worked.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

2.3. THE MICROPOSTS RESOURCE 109

2. The code in Listing 2.18 shows how to add a validation for the presence
of micropost content in order to ensure that microposts can’t be blank.
Verify that you get the behavior shown in Figure 2.17.

3. Update Listing 2.19 by replacing FILL_IN with the appropriate code to
validate the presence of name and email attributes in the User model (Fig-
ure 2.18).

Listing 2.18: Code to validate the presence of micropost content.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :content, length: { maximum: 140 },

presence: true

end

Listing 2.19: Adding presence validations to the User model.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts

validates FILL_IN, presence: true # Replace FILL_IN with the right code.

validates FILL_IN, presence: true # Replace FILL_IN with the right code.

end

2.3.4 Inheritance hierarchies
We end our discussion of the toy application with a brief description of the
controller and model class hierarchies in Rails. This discussion will only make
much sense if you have some experience with object-oriented programming
(OOP), particularly classes. Don’t worry if it’s confusing for now; we’ll discuss
these ideas more thoroughly in Section 4.4.

We start with the inheritance structure for models. Comparing Listing 2.20
and Listing 2.21, we see that both the User model and the Micropost model in-
herit (via the left angle bracket <) from ApplicationRecord, which in turn

110 CHAPTER 2. A TOY APP

Figure 2.17: The effect of a micropost presence validation.

2.3. THE MICROPOSTS RESOURCE 111

Figure 2.18: The effect of presence validations on the User model.

112 CHAPTER 2. A TOY APP

inherits from ActiveRecord::Base, which is the base class for models pro-
vided by Active Record; a diagram summarizing this relationship appears in
Figure 2.19. It is by inheriting from ActiveRecord::Base that our model
objects gain the ability to communicate with the database, treat the database
columns as Ruby attributes, and so on.

Listing 2.20: The User class, highlighting inheritance.
app/models/user.rb

class User < ApplicationRecord

.

.

.

end

Listing 2.21: The Micropost class, highlighting inheritance.
app/models/micropost.rb

class Micropost < ApplicationRecord

.

.

.

end

The inheritance structure for controllers is essentially the same as that for
models. Comparing Listing 2.22 and Listing 2.23, we see that both the Users
controller and the Microposts controller inherit from the Application controller.
Examining Listing 2.24, we see that ApplicationController itself inherits
from ActionController::Base, which is the base class for controllers pro-
vided by the Rails library Action Pack. The relationships between these classes
is illustrated in Figure 2.20.

Listing 2.22: The UsersController class, highlighting inheritance.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

end

2.3. THE MICROPOSTS RESOURCE 113

ActiveRecord::Base

User Micropost

ApplicationRecord

Figure 2.19: The inheritance hierarchy for the User and Micropost models.

Listing 2.23: The MicropostsController class, highlighting inheritance.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

.

.

.

end

Listing 2.24: The ApplicationController class, highlighting inheri-
tance.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

.

.

.

end

As with model inheritance, both the Users and Microposts controllers gain
a large amount of functionality by inheriting from a base class (in this case,
ActionController::Base), including the ability to manipulate model ob-

114 CHAPTER 2. A TOY APP

ActionController::Base

UsersController MicropostsController

ApplicationController

Figure 2.20: The inheritance hierarchy for the Users and Microposts controllers.

jects, filter inbound HTTP requests, and render views as HTML. Since all Rails
controllers inherit from ApplicationController, rules defined in the Ap-
plication controller automatically apply to every action in the application. For
example, in Section 9.1 we’ll see how to include helpers for logging in and
logging out of all of the sample application’s controllers.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By examining the contents of the Application controller file, find the
line that causes ApplicationController to inherit from Action-

Controller::Base.

2. Is there an analogous file containing a line where ApplicationRecord
inherits from ActiveRecord::Base? Hint: It would probably be a file
called something like application_record.rb in the app/models

directory.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

2.3. THE MICROPOSTS RESOURCE 115

2.3.5 Deploying the toy app
With the completion of the Microposts resource, now is a good time to push the
repository up to GitHub:

$ git status # It's a good habit to check the status before adding

$ git add -A

$ git commit -m "Finish toy app"

$ git push

Ordinarily, you should make smaller, more frequent commits, but for the pur-
poses of this chapter a single big commit at the end is fine.

At this point, you can also deploy the toy app to Heroku as in Section 1.4:

$ git push heroku

(This assumes you created the Heroku app in Section 2.1. Otherwise, you
should run heroku create and then git push heroku master.)

At this point, visiting the page at Heroku yields an error message, as shown
in Figure 2.21.

We can track down the problem by inspecting the Heroku logs:

$ heroku logs

Scrolling up in the logs, you should see a line that includes something like this:

ActionView::Template::Error (PG::UndefinedTable: ERROR: relation "users" does

not exist

This a big hint that there is a missing users table. Luckily, we learned how
to handle that way back in Listing 2.4: all we need to do is run the database
migrations (which will create the microposts table as well).

The way to execute this sort of command at Heroku is to prefix the usual
Rails command with heroku run, like this:

116 CHAPTER 2. A TOY APP

Figure 2.21: An error page at Heroku.

2.4. CONCLUSION 117

$ heroku run rails db:migrate

This updates the database at Heroku with the user and micropost data models
as required. After running the migration, you should be able to use the toy app
in production, with a real PostgreSQL database back-end (Figure 2.22).10

Finally, if you completed the exercises in Section 2.3.3, you will have to
remove the code to display the first user’s micropost in order to get the app
to load properly. In this case, simply delete the offending code, make another
commit, and push again to Heroku.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Create a few users on the production app.

2. Create a few production microposts for the first user.

3. By trying to create a micropost with content over 140 characters, confirm
that the validation from Listing 2.14 works on the production app.

2.4 Conclusion
We’ve come now to the end of the high-level overview of a Rails application.
The toy app developed in this chapter has several strengths and a host of weak-
nesses.

Strengths

• High-level overview of Rails
10The production database should work without any additional configuration, but in fact some configuration is

recommended by the official Heroku documentation. We’ll take care of this detail in Section 7.5.3.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://devcenter.heroku.com/articles/getting-started-with-rails5

118 CHAPTER 2. A TOY APP

Figure 2.22: Running the toy app in production.

2.4. CONCLUSION 119

• Introduction to MVC

• First taste of the REST architecture

• Beginning data modeling

• A live, database-backed web application in production

Weaknesses

• No custom layout or styling

• No static pages (such as “Home” or “About”)

• No user passwords

• No user images

• No logging in

• No security

• No automatic user/micropost association

• No notion of “following” or “followed”

• No micropost feed

• No meaningful tests

• No real understanding

The rest of this tutorial is dedicated to building on the strengths and eliminating
the weaknesses.

120 CHAPTER 2. A TOY APP

2.4.1 What we learned in this chapter
• Scaffolding automatically creates code to model data and interact with it

through the web.

• Scaffolding is good for getting started quickly but is bad for understand-
ing.

• Rails uses the Model-View-Controller (MVC) pattern for structuring web
applications.

• As interpreted by Rails, the REST architecture includes a standard set of
URLs and controller actions for interacting with data models.

• Rails supports data validations to place constraints on the values of data
model attributes.

• Rails comes with built-in functions for defining associations between dif-
ferent data models.

• We can interact with Rails applications at the command line using the
Rails console.

