
154 CHAPTER 3. MOSTLY STATIC PAGES

Page URL Base title Variable title
Home /static_pages/home "Ruby on Rails Tutorial Sample App" "Home"

Help /static_pages/help "Ruby on Rails Tutorial Sample App" "Help"

About /static_pages/about "Ruby on Rails Tutorial Sample App" "About"

Table 3.2: The (mostly) static pages for the sample app.

3.4 Slightly dynamic pages

Now that we’ve created the actions and views for some static pages, we’ll make
them slightly dynamic by adding some content that changes on a per-page ba-
sis: we’ll have the title of each page change to reflect its content. Whether a
changing title represents truly dynamic content is debatable, but in any case it
lays the necessary foundation for unambiguously dynamic content in Chapter 7.

Our plan is to edit the Home, Help, and About pages to make page titles
that change on each page. This will involve using the <title> tag in our
page views. Most browsers display the contents of the title tag at the top of the
browser window, and it is also important for search-engine optimization. We’ll
be using the full “Red, Green, Refactor” cycle: first by adding simple tests for
our page titles (red), then by adding titles to each of our three pages (green),
and finally using a layout file to eliminate duplication (Refactor). By the end
of this section, all three of our static pages will have titles of the form “<page
name> | Ruby on Rails Tutorial Sample App”, where the first part of the title
will vary depending on the page (Table 3.2).

The rails new command (Listing 3.1) creates a layout file by default, but
it’s instructive to ignore it initially, which we can do by changing its name:

$ mv app/views/layouts/application.html.erb layout_file # temporary change

You wouldn’t normally do this in a real application, but it’s easier to understand
the purpose of the layout file if we start by disabling it.

3.4. SLIGHTLY DYNAMIC PAGES 155

3.4.1 Testing titles (Red)
To add page titles, we need to learn (or review) the structure of a typical web
page, which takes the form shown in Listing 3.25. (This is covered in much
more depth in Learn Enough HTML to Be Dangerous.)

Listing 3.25: The HTML structure of a typical web page.
<!DOCTYPE html>

<html>

<head>

<title>Greeting</title>

</head>

<body>

<p>Hello, world!</p>

</body>

</html>

The structure in Listing 3.25 includes a document type, or doctype, declaration
at the top to tell browsers which version of HTML we’re using (in this case,
HTML5);10 a head section, in this case with “Greeting” inside a title tag;
and a body section, in this case with “Hello, world!” inside a p (paragraph)
tag. (The indentation is optional—HTML is not sensitive to whitespace, and
ignores both tabs and spaces—but it makes the document’s structure easier to
see.)

We’ll write simple tests for each of the titles in Table 3.2 by combining the
tests in Listing 3.17 with the assert_select method, which lets us test for
the presence of a particular HTML tag (sometimes called a “selector”, hence
the name):11

assert_select "title", "Home | Ruby on Rails Tutorial Sample App"

In particular, the code above checks for the presence of a <title> tag con-
taining the string “Home | Ruby on Rails Tutorial Sample App”. Applying this

10HTML changes with time; by explicitly making a doctype declaration we make it likelier that browsers will
render our pages properly in the future. The simple doctype <!DOCTYPE html> is characteristic of the latest
HTML standard, HTML5.

11For a list of common minitest assertions, see the table of available assertions in the Rails Guides testing article.

https://www.learnenough.com/html
https://en.wikipedia.org/wiki/HTML5
https://guides.rubyonrails.org/testing.html#available-assertions

156 CHAPTER 3. MOSTLY STATIC PAGES

idea to all three static pages gives the tests shown in Listing 3.26.

Listing 3.26: The Static Pages controller test with title tests. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Home | Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

end

With the tests from Listing 3.26 in place, you should verify that the test suite
is currently red:

Listing 3.27: red
$ rails test

3 tests, 6 assertions, 3 failures, 0 errors, 0 skips

3.4.2 Adding page titles (Green)
Now we’ll add a title to each page, getting the tests from Section 3.4.1 to pass
in the process. Applying the basic HTML structure from Listing 3.25 to the
custom Home page from Listing 3.12 yields Listing 3.28.

3.4. SLIGHTLY DYNAMIC PAGES 157

Listing 3.28: The view for the Home page with full HTML structure. red
app/views/static_pages/home.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Home | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

</body>

</html>

The corresponding web page appears in Figure 3.8. Note that the browser used
in the screenshots (Safari) displays the page title only if you include an addi-
tional tab, which explains the second tab shown in Figure 3.8.

Following this model for the Help page (Listing 3.13) and the About page
(Listing 3.23) yields the code in Listing 3.29 and Listing 3.30.

Listing 3.29: The view for the Help page with full HTML structure. red
app/views/static_pages/help.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Help | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help

page.

To get help on this sample app, see the

Ruby on Rails

Tutorial book.

</p>

</body>

</html>

158 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.8: The Home page with a title.

3.4. SLIGHTLY DYNAMIC PAGES 159

Listing 3.30: The view for the About page with full HTML structure. green
app/views/static_pages/about.html.erb

<!DOCTYPE html>

<html>

<head>

<title>About | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

</body>

</html>

At this point, the test suite should be back to green:

Listing 3.31: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.
Beginning in this section, we’ll start making modifications to the applica-

tions in the exercises that won’t generally be reflected in future code listings.
The reason is so that the text makes sense to readers who don’t complete the
exercises, but as a result your code will diverge from the main text if you do

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

160 CHAPTER 3. MOSTLY STATIC PAGES

solve them. Learning to resolve small discrepancies like this is an excellent
example of technical sophistication (Box 1.2).

1. You may have noticed some repetition in the Static Pages controller test
(Listing 3.26). In particular, the base title, “Ruby on Rails Tutorial Sam-
ple App”, is the same for every title test. Using the special function
setup, which is automatically run before every test, verify that the tests
in Listing 3.32 are still green. (Listing 3.32 uses an instance variable,
seen briefly in Section 2.2.2 and covered further in Section 4.4.5, com-
bined with string interpolation, which is covered further in Section 4.2.1.)

Listing 3.32: The Static Pages controller test with a base title. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

def setup

@base_title = "Ruby on Rails Tutorial Sample App"

end

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Home | #{@base_title}"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | #{@base_title}"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | #{@base_title}"

end

end

3.4. SLIGHTLY DYNAMIC PAGES 161

3.4.3 Layouts and embedded Ruby (Refactor)
We’ve achieved a lot already in this section, generating three valid pages using
Rails controllers and actions, but they are purely static HTML and hence don’t
show off the power of Rails. Moreover, they suffer from terrible duplication:

• The page titles are almost (but not quite) exactly the same.

• “Ruby on Rails Tutorial Sample App” is common to all three titles.

• The entire HTML skeleton structure is repeated on each page.

This repeated code is a violation of the important “Don’t Repeat Yourself”
(DRY) principle; in this section we’ll “DRY out our code” by removing the
repetition. At the end, we’ll re-run the tests from Section 3.4.2 to verify that the
titles are still correct.

Paradoxically, we’ll take the first step toward eliminating duplication by
first adding some more: we’ll make the titles of the pages, which are currently
quite similar, match exactly. This will make it much simpler to remove all the
repetition at a stroke.

The technique involves using embedded Ruby in our views. Since the
Home, Help, and About page titles have a variable component, we’ll use a spe-
cial Rails function called provide to set a different title on each page. We can
see how this works by replacing the literal title “Home” in the home.html.erb
view with the code in Listing 3.33.

Listing 3.33: The view for the Home page with an embedded Ruby title. green
app/views/static_pages/home.html.erb

<% provide(:title, "Home") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Sample App</h1>

<p>

162 CHAPTER 3. MOSTLY STATIC PAGES

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

</body>

</html>

Listing 3.33 is our first example of embedded Ruby, also called ERb (or ERB).
(Now you know why HTML views have the file extension .html.erb.) ERb
is the primary template system for including dynamic content in web pages.12

The code

<% provide(:title, "Home") %>

indicates using <% ... %> that Rails should call the provide function and
associate the string "Home" with the label :title.13 Then, in the title, we
use the closely related notation <%= ... %> to insert the title into the template
using Ruby’s yield function:14

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

(The distinction between the two types of embedded Ruby is that <% ... %>

executes the code inside, while <%= ... %> executes it and inserts the result
into the template.) The resulting page is exactly the same as before, only now
the variable part of the title is generated dynamically by ERb.

We can verify that all this works by running the tests from Section 3.4.2 and
see that they are still green:

12There is a second popular template system called Haml (note: not “HAML”), which I personally love, but it’s
not quite standard enough for use in an introductory tutorial.

13Experienced Rails developers might have expected the use of content_for at this point, but it doesn’t work
well with the asset pipeline. The provide function is its replacement.

14If you’ve studied Ruby before, you might suspect that Rails is yielding the contents to a block, and your
suspicion would be correct. But you don’t need to know this to develop applications with Rails.

http://haml.info/

3.4. SLIGHTLY DYNAMIC PAGES 163

Listing 3.34: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

Then we can make the corresponding replacements for the Help and About
pages (Listing 3.35 and Listing 3.36).

Listing 3.35: The view for the Help page with an embedded Ruby title. green
app/views/static_pages/help.html.erb

<% provide(:title, "Help") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help

section.

To get help on this sample app, see the

Ruby on Rails

Tutorial book.

</p>

</body>

</html>

Listing 3.36: The view for the About page with an embedded Ruby title.
green
app/views/static_pages/about.html.erb

<% provide(:title, "About") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>About</h1>

<p>

164 CHAPTER 3. MOSTLY STATIC PAGES

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

</body>

</html>

Now that we’ve replaced the variable part of the page titles with ERb, each
of our pages looks something like this:

<% provide(:title, "Page Title") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

Contents

</body>

</html>

In other words, all the pages are identical in structure, including the contents of
the title tag, with the sole exception of the material inside the body tag.

In order to factor out this common structure, Rails comes with a special lay-
out file called application.html.erb, which we renamed in the beginning
of this section (Section 3.4) and which we’ll now restore:

$ mv layout_file app/views/layouts/application.html.erb

To get the layout to work, we have to replace the default title with the em-
bedded Ruby from the examples above:

3.4. SLIGHTLY DYNAMIC PAGES 165

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

The resulting layout appears in Listing 3.37.

Listing 3.37: The sample application site layout. green
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

Note here the special line

<%= yield %>

This code is responsible for inserting the contents of each page into the layout.
It’s not important to know exactly how this works; what matters is that using this
layout ensures that, for example, visiting the page /static_pages/home converts
the contents of home.html.erb to HTML and then inserts it in place of <%=
yield %>.

It’s also worth noting that the default Rails layout includes several additional
lines:

166 CHAPTER 3. MOSTLY STATIC PAGES

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag ... %>

<%= javascript_pack_tag "application", ... %>

This code arranges to include the application stylesheet and JavaScript, which
are part of the asset pipeline (Section 5.2.1), together with the Rails method
csp_meta_tag, which implements Content Security Policy (CSP) to miti-
gate cross-site scripting (XSS) attacks, and csrf_meta_tags, which mitigates
cross-site request forgery (CSRF) attacks. (One huge advantage of using a ma-
ture framework like Rails is that it worries about such things so that we don’t
have to.)

Even though the tests are passing, there one detail left to deal with: the
views in Listing 3.33, Listing 3.35, and Listing 3.36 are still filled with all the
HTML structure included in the layout. Since it’s redundant (and indeed leads
to invalid HTML markup) we should remove it and leave only the interior con-
tents. The resulting cleaned-up views appear in Listing 3.38, Listing 3.39, and
Listing 3.40.

Listing 3.38: The Home page with HTML structure removed. green
app/views/static_pages/home.html.erb

<% provide(:title, "Home") %>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

Listing 3.39: The Help page with HTML structure removed. green
app/views/static_pages/help.html.erb

<% provide(:title, "Help") %>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_request_forgery

3.4. SLIGHTLY DYNAMIC PAGES 167

Rails Tutorial Help page.

To get help on this sample app, see the

Ruby on Rails Tutorial

book.

</p>

Listing 3.40: The About page with HTML structure removed. green
app/views/static_pages/about.html.erb

<% provide(:title, "About") %>

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

With these views defined, the Home, Help, and About pages are the same as
before, but they have much less duplication.

Experience shows that even fairly simple refactoring is error-prone and can
easily go awry. This is one reason why having a good test suite is so valuable.
Rather than double-checking every page for correctness—a procedure that isn’t
too hard early on but rapidly becomes unwieldy as an application grows—we
can simply verify that the test suite is still green:

Listing 3.41: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

This isn’t a proof that our code is still correct, but it greatly increases the prob-
ability, thereby providing a safety net to protect us against future bugs.

168 CHAPTER 3. MOSTLY STATIC PAGES

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Make a Contact page for the sample app.15 Following the model in List-
ing 3.17, first write a test for the existence of a page at the URL /static_-
pages/contact by testing for the title “Contact | Ruby on Rails Tutorial
Sample App”. Get your test to pass by following the same steps as when
making the About page in Section 3.3.3, including filling the Contact page
with the content from Listing 3.42.

Listing 3.42: Code for a proposed Contact page.
app/views/static_pages/contact.html.erb

<% provide(:title, "Contact") %>

<h1>Contact</h1>

<p>

Contact the Ruby on Rails Tutorial about the sample app at the

contact page.

</p>

3.4.4 Setting the root route
Now that we’ve customized our site’s pages and gotten a good start on the test
suite, let’s set the application’s root route before moving on. As in Section 1.2.4
and Section 2.2.2, this involves editing the routes.rb file to connect / to a
page of our choice, which in this case will be the Home page. (At this point,
I also recommend removing the hello action from the Application controller
if you added it in Section 3.1.) As shown in Listing 3.43, this means changing
the root route from

15This exercise is solved in Section 5.3.1.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

3.4. SLIGHTLY DYNAMIC PAGES 169

root 'application#hello'

to

root 'static_pages#home'

This arranges for requests for / to be routed to the home action in the Static
Pages controller. The resulting routes file is shown in Figure 3.9.

Listing 3.43: Setting the root route to the Home page.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

end

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Adding the root route in Listing 3.43 leads to the creation of a Rails helper
called root_url (in analogy with helpers like static_pages_home_-
url). By filling in the code marked FILL_IN in Listing 3.44, write a test
for the root route.

2. Due to the code in Listing 3.43, the test in the previous exercise is al-
ready green. In such a case, it’s harder to be confident that we’re actually
testing what we think we’re testing, so modify the code in Listing 3.43
by commenting out the root route to get to red (Listing 3.45). (We’ll talk
more about Ruby comments in Section 4.2.) Then uncomment it (thereby
restoring the original Listing 3.43) and verify that you get back to green.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

170 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.9: The Home page at the root route.

3.5. CONCLUSION 171

Listing 3.44: A test for the root route. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get root" do

get FILL_IN

assert_response FILL_IN

end

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

end

test "should get about" do

get static_pages_about_url

assert_response :success

end

end

Listing 3.45: Commenting out the root route to get a failing test. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

end

3.5 Conclusion
Seen from the outside, this chapter hardly accomplished anything: we started
with static pages, and ended with… mostly static pages. But appearances are

