
Chapter 3

Mostly static pages

In this chapter, we will begin developing the professional-grade sample applica-
tion that will serve as our example throughout the rest of this tutorial. Although
the sample app will eventually have users, microposts, and a full login and au-
thentication framework, we will begin with a seemingly limited topic: the cre-
ation of static pages. Despite its apparent simplicity, making static pages is a
highly instructive exercise, rich in implications—a perfect start for our nascent
application.

Although Rails is designed for making database-backed dynamic websites,
it also excels at making the kind of static pages we might create using raw
HTML files. In fact, using Rails even for static pages yields a distinct advan-
tage: we can easily add just a small amount of dynamic content. In this chapter
we’ll learn how. Along the way, we’ll get our first taste of automated testing,
which will help us be more confident that our code is correct. Moreover, having
a good test suite will allow us to refactor our code with confidence, changing
its form without changing its function.

121

122 CHAPTER 3. MOSTLY STATIC PAGES

3.1 Sample app setup
As in Chapter 2, before getting started we need to create a new Rails project,
this time called sample_app, as shown in Listing 3.1.1

Listing 3.1: Generating a new sample app.
$ cd ~/environment

$ rails _6.0.1_ new sample_app

$ cd sample_app/

(As in Section 2.1, note that users of the cloud IDE can create this project in the
same environment as the applications from the previous two chapters. It is not
necessary to create a new environment.)

Note: For convenience, a reference implementation of the sample app is
available at GitHub,2 with a separate branch for each of chapter in the tutorial.

As in Section 2.1, our next step is to use a text editor to update the Gemfile
with the gems needed by our application. Listing 3.2 is identical to Listing 1.6
and Listing 2.1 apart from the gems in the test group, which are needed for
the optional advanced testing setup (Section 3.6) and integration testing starting
in Section 5.3.4. Note: If you would like to install all the gems needed for the
sample application, you should use the code in Listing 13.75 at this time.

Important note: For all the Gemfiles in this book, you should use the
version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

1If you’re using the cloud IDE, it’s often useful to use the “Go to Anything” command (under the “Go” menu),
which makes it easy to navigate the filesystem by typing in partial filenames. In this context, having the hello,
toy, and sample apps present in the same project can be inconvenient due to the many common filenames. For
example, when searching for a file called “Gemfile”, six possibilities will show up, because each project has
matching files called Gemfile and Gemfile.lock. Thus, you may want to consider removing the first two
apps before proceeding, which you can do by navigating to the environment directory and running rm -rf

hello_app/ toy_app/ (Table 1.1). (As long as you pushed the corresponding repositories up to GitHub, you
can always recover them later.)

2https://github.com/mhartl/sample_app_6th_ed

https://github.com/mhartl/sample_app_6th_ed
https://gemfiles-6th-ed.railstutorial.org/

3.1. SAMPLE APP SETUP 123

Listing 3.2: A Gemfile for the sample app.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'puma', '3.12.1'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.4', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

gem 'rails-controller-testing', '1.0.4'

gem 'minitest', '5.11.3'

gem 'minitest-reporters', '1.3.8'

gem 'guard', '2.15.0'

gem 'guard-minitest', '2.4.6'

end

group :production do

gem 'pg', '1.1.4'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

As in the previous two chapters, we run bundle install to install and
include the gems specified in the Gemfile, while skipping the installation of
production gems using the option --without production:3

3It’s worth noting that --without production is a “remembered option”, which means it will be included

124 CHAPTER 3. MOSTLY STATIC PAGES

$ bundle install --without production

This arranges to skip the pg gem for PostgreSQL in development and use
SQLite for development and testing. Heroku recommends against using dif-
ferent databases in development and production, but for the sample application
it won’t make any difference, and SQLite is much easier than PostgreSQL to
install and configure locally.4 In case you’ve previously installed a version of
a gem (such as Rails itself) other than the one specified by the Gemfile, it’s a
good idea to update the gems with bundle update to make sure the versions
match:

$ bundle update

With that, all we have left is to initialize the Git repository:

$ git init

$ git add -A

$ git commit -m "Initialize repository"

As with the first application, I suggest updating the README file to be
more helpful and descriptive by replacing the default contents of README.md
with the Markdown shown in Listing 3.3. The README includes instructions
for getting started with the application.5 (We won’t actually need to run rails
db:migrate until Chapter 6, but it does no harm to include it now.)

Note: For convenience, the full reference app README contains additional
advanced information not present in Listing 3.3.
automatically the next time we run bundle install.

4Generally speaking, it’s a good idea for the development and production environments to match as closely as
possible, which includes using the same database, so I recommend eventually learning how to install and configure
PostgreSQL in development—but now is not that time. When the time comes, Google “install configure postgresql
<your system>” and “rails postgresql setup”, and prepare for a challenge. (On the cloud IDE, <your system> is
Linux.)

5The README also makes reference to a LICENSE file, which I’ve added by hand to the official reference
implementation, but it isn’t present by default. You can download a copy from the reference implementation repo
if you want it for completeness, but it’s not necessary for completing the tutorial.

https://github.com/mhartl/sample_app_6th_ed/blob/master/README.md
https://github.com/railstutorial/sample_app_6th_ed
https://github.com/railstutorial/sample_app_6th_ed
https://github.com/mhartl/sample_app_6th_ed/blob/master/LICENSE.md

3.1. SAMPLE APP SETUP 125

Listing 3.3: An improved README file for the sample app.
README.md

Ruby on Rails Tutorial sample application

This is the sample application for

[*Ruby on Rails Tutorial:

Learn Web Development with Rails*](https://www.railstutorial.org/)

(6th Edition)

by [Michael Hartl](https://www.michaelhartl.com/).

License

All source code in the [Ruby on Rails Tutorial](https://www.railstutorial.org/)

is available jointly under the MIT License and the Beerware License. See

LICENSE.md for details.

Getting started

To get started with the app, clone the repo and then install the needed gems:

```

$ bundle install --without production

```

Next, migrate the database:

```

$ rails db:migrate

```

Finally, run the test suite to verify that everything is working correctly:

```

$ rails test

```

If the test suite passes, you'll be ready to run the app in a local server:

```

$ rails server

```

For more information, see the

[*Ruby on Rails Tutorial* book](https://www.railstutorial.org/book).

Then commit the changes as follows:

126 CHAPTER 3. MOSTLY STATIC PAGES

$ git commit -am "Improve the README"

You may recall from Section 1.3.4 that we used the Git command git commit
-a -m "Message", with flags for “all changes” (-a) and a message (-m). As
shown in the second command above, Git also lets us roll the two flags into one
using git commit -am "Message".

You should also create a new repository at GitHub by following the same
steps as in Section 1.3.3 (taking care to make it private as in Figure 3.1), and
then push up to the remote repository:

$ git remote add origin https://github.com/<username>/sample_app.git

$ git push -u origin master

If you’re using the cloud IDE, you’ll need to prepare the application to be
served locally by editing the development.rb file as in the previous two chap-
ters (Listing 3.4).

Listing 3.4: Allowing connections to the local web server.
config/environments/development.rb

Rails.application.configure do

.

.

.

Allow connections to local server.

config.hosts.clear

end

To avoid integration headaches later on, it’s also a good idea to deploy the
app to Heroku even at this early stage. As in Chapter 1 and Chapter 2, I suggest
following the “hello, world!” steps in Listing 3.5 and Listing 3.6. (The main
reason for this is that the default Rails page typically breaks at Heroku, which
makes it hard to tell if the deployment was successful or not.)

https://github.com/new

3.1. SAMPLE APP SETUP 127

Figure 3.1: Creating the main sample app repository at GitHub.

128 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.5: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

def hello

render html: "hello, world!"

end

end

Listing 3.6: Setting the root route.
config/routes.rb

Rails.application.routes.draw do

root 'application#hello'

end

Then commit the changes and push up to GitHub and Heroku:

$ git commit -am "Add hello"

$ git push

$ heroku create

$ git push heroku master

As in Section 1.4, you may see some warning messages, which you should
ignore for now. We’ll deal with them in Section 7.5. Apart from the address of
the Heroku app, the result should be the same as in Figure 1.31.

As you proceed through the rest of the book, I recommend pushing and
deploying the application regularly, which automatically makes remote backups
and lets you catch any production errors as soon as possible. If you run into
problems at Heroku, make sure to take a look at the production logs to try to
diagnose the problem:

$ heroku logs # to see the most recent events

$ heroku logs --tail # to see events as they happen, Ctrl-C to quit

Note: If you do end up using Heroku for a real-life application, be sure to follow
the production webserver configuration in Section 7.5.

3.2. STATIC PAGES 129

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that GitHub renders the Markdown for the README in List-
ing 3.3 as HTML (Figure 3.2).

2. By visiting the root route on the production server, verify that the deploy-
ment to Heroku succeeded.

3.2 Static pages
With all the preparation from Section 3.1 finished, we’re ready to get started
developing the sample application. In this section, we’ll take a first step toward
making dynamic pages by creating a set of Rails actions and views contain-
ing only static HTML.6 Rails actions come bundled together inside controllers
(the C in MVC from Section 1.2.3), which contain sets of actions related by a
common purpose. We got a glimpse of controllers in Chapter 2, and will come
to a deeper understanding once we explore the REST architecture more fully
(starting in Chapter 6). In order to get our bearings, it’s helpful to recall the
Rails directory structure from Section 1.2 (Figure 1.11). In this section, we’ll
be working mainly in the app/controllers and app/views directories.

Recall from Section 1.3.4 that, when using Git, it’s a good practice to do our
work on a separate topic branch rather than the master branch. If you’re using
Git for version control, you should run the following command to checkout a
topic branch for static pages:

6Our method for making static pages is probably the simplest, but it’s not the only way. The optimal method
really depends on your needs; if you expect a large number of static pages, using a Static Pages controller can get
quite cumbersome, but in our sample app we’ll only need a few. If you do need a lot of static pages, take a look at
the high_voltage gem from thoughtbot.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Representational_State_Transfer
https://github.com/thoughtbot/high_voltage
https://thoughtbot.com/

