
3.2. STATIC PAGES 129

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that GitHub renders the Markdown for the README in List-
ing 3.3 as HTML (Figure 3.2).

2. By visiting the root route on the production server, verify that the deploy-
ment to Heroku succeeded.

3.2 Static pages
With all the preparation from Section 3.1 finished, we’re ready to get started
developing the sample application. In this section, we’ll take a first step toward
making dynamic pages by creating a set of Rails actions and views contain-
ing only static HTML.6 Rails actions come bundled together inside controllers
(the C in MVC from Section 1.2.3), which contain sets of actions related by a
common purpose. We got a glimpse of controllers in Chapter 2, and will come
to a deeper understanding once we explore the REST architecture more fully
(starting in Chapter 6). In order to get our bearings, it’s helpful to recall the
Rails directory structure from Section 1.2 (Figure 1.11). In this section, we’ll
be working mainly in the app/controllers and app/views directories.

Recall from Section 1.3.4 that, when using Git, it’s a good practice to do our
work on a separate topic branch rather than the master branch. If you’re using
Git for version control, you should run the following command to checkout a
topic branch for static pages:

6Our method for making static pages is probably the simplest, but it’s not the only way. The optimal method
really depends on your needs; if you expect a large number of static pages, using a Static Pages controller can get
quite cumbersome, but in our sample app we’ll only need a few. If you do need a lot of static pages, take a look at
the high_voltage gem from thoughtbot.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Representational_State_Transfer
https://github.com/thoughtbot/high_voltage
https://thoughtbot.com/

130 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.2: The sample app README at GitHub.

3.2. STATIC PAGES 131

$ git checkout -b static-pages

3.2.1 Generated static pages
To get started with static pages, we’ll first generate a controller using the same
Rails generate script we used in Chapter 2 to generate scaffolding. Since
we’ll be making a controller to handle static pages, we’ll call it the Static Pages
controller, designated by the CamelCase name StaticPages. We’ll also plan
to make actions for a Home page, a Help page, and an About page, designated
by the lower-case action names home, help, and about. The generate script
takes an optional list of actions, so we’ll include actions for the Home and Help
pages directly on the command line, while intentionally leaving off the action
for the About page so that we can see how to add it (Section 3.3). The resulting
command to generate the Static Pages controller appears in Listing 3.7.

Listing 3.7: Generating a Static Pages controller.
$ rails generate controller StaticPages home help

create app/controllers/static_pages_controller.rb

route get 'static_pages/home'

get 'static_pages/help'

invoke erb

create app/views/static_pages

create app/views/static_pages/home.html.erb

create app/views/static_pages/help.html.erb

invoke test_unit

create test/controllers/static_pages_controller_test.rb

invoke helper

create app/helpers/static_pages_helper.rb

invoke test_unit

invoke assets

invoke scss

create app/assets/stylesheets/static_pages.scss

Incidentally, it’s worth noting that rails g is a shortcut for rails gener-
ate, which is only one of several shortcuts supported by Rails (Table 3.1). For
clarity, this tutorial always uses the full command, but in real life most Rails

https://en.wikipedia.org/wiki/CamelCase

132 CHAPTER 3. MOSTLY STATIC PAGES

Full command Shortcut
$ rails server $ rails s

$ rails console $ rails c

$ rails generate $ rails g

$ rails test $ rails t

$ bundle install $ bundle

Table 3.1: Some Rails shortcuts.

developers use one or more of the shortcuts shown in Table 3.1.7
Before moving on, if you’re using Git it’s a good idea to add the files for

the Static Pages controller to the remote repository:

$ git add -A

$ git commit -m "Add a Static Pages controller"

$ git push -u origin static-pages

The final command here arranges to push the static-pages topic branch up
to GitHub. Subsequent pushes can omit the other arguments and write simply

$ git push

The commit and push sequence above represents the kind of pattern I would
ordinarily follow in real-life development, but for simplicity I’ll typically omit
such intermediate commits from now on. (When following this tutorial, a good
rule of thumb is to make a Git commit at the end of each section.)

In Listing 3.7, note that we have passed the controller name as CamelCase
(so called because it resembles the humps of a Bactrian camel), which leads
to the creation of a controller file written in snake case, so that a controller
called StaticPages yields a file called static_pages_controller.rb. This
is merely a convention, and in fact using snake case at the command line also
works: the command

7In fact, many Rails developers also add an alias (as described in Learn Enough Text Editor to Be Dangerous)
for the rails command, typically shortening it to just r. This allows us to run, e.g., a Rails server using the
compact command r s.

https://en.wikipedia.org/wiki/Bactrian_camel
https://en.wikipedia.org/wiki/Snake_case
https://www.learnenough.com/r/learn_enough_text_editor/vim/saving_and_quitting_files#sec-saving_and_quitting_files
https://www.learnenough.com/text-editor

3.2. STATIC PAGES 133

$ rails generate controller static_pages ...

also generates a controller called static_pages_controller.rb. Because
Ruby uses CamelCase for class names (Section 4.4), my preference is to refer
to controllers using their CamelCase names, but this is a matter of taste. (Since
Ruby filenames typically use snake case, the Rails generator converts Camel-
Case to snake case using the underscore method.)

By the way, if you ever make a mistake when generating code, it’s useful to
know how to reverse the process. See Box 3.1 for some techniques on how to
undo things in Rails.

Box 3.1. Undoing things

Even when you’re very careful, things can sometimes go wrong when devel-
oping Rails applications. Happily, Rails has some facilities to help you recover.

One common scenario is wanting to undo code generation—for example, when
you change your mind on the name of a controller and want to eliminate the gener-
ated files. Because Rails creates a substantial number of auxiliary files along with
the controller (as seen in Listing 3.7), this isn’t as easy as removing the controller
file itself; undoing the generation means removing not only the principal generated
file, but all the ancillary files as well. (In fact, as we saw in Section 2.2 and Sec-
tion 2.3, rails generate can make automatic edits to the routes.rb file,
which we also want to undo automatically.) In Rails, this can be accomplished with
rails destroy followed by the name of the generated element. In particular,
these two commands cancel each other out:

$ rails generate controller StaticPages home help

$ rails destroy controller StaticPages home help

Similarly, in Chapter 6 we’ll generate a model as follows:

$ rails generate model User name:string email:string

https://api.rubyonrails.org/classes/ActiveSupport/Inflector.html#method-i-underscore

134 CHAPTER 3. MOSTLY STATIC PAGES

This can be undone using

$ rails destroy model User

(In this case, it turns out we can omit the other command-line arguments. When
you get to Chapter 6, see if you can figure out why.)

Another technique related to models involves undoing migrations, which we
saw briefly in Chapter 2 and will see much more of starting in Chapter 6. Migra-
tions change the state of the database using the command

$ rails db:migrate

We can undo a single migration step using

$ rails db:rollback

To go all the way back to the beginning, we can use

$ rails db:migrate VERSION=0

As you might guess, substituting any other number for 0 migrates to that version
number, where the version numbers come from listing the migrations sequentially.

With these techniques in hand, we are well-equipped to recover from the in-
evitable development snafus.

The Static Pages controller generation in Listing 3.7 automatically updates
the routes file (config/routes.rb), which we first saw in Section 1.2.4 when
we edited the root route for the hello app (Listing 1.11), and which we most
recently saw in Listing 3.6. The routes file is responsible for implementing
the router (seen in Figure 2.11) that defines the correspondence between URLs
and web pages. The routes file is located in the config directory, where Rails
collects files needed for the application configuration (Figure 3.3).

Since we included the home and help actions in Listing 3.7, the routes file

https://en.wiktionary.org/wiki/SNAFU

3.2. STATIC PAGES 135

Figure 3.3: Contents of the sample app’s config directory.

136 CHAPTER 3. MOSTLY STATIC PAGES

already has a rule for each one, as seen in Listing 3.8.

Listing 3.8: The routes for the home and help actions in the Static Pages
controller.
config/routes.rb

Rails.application.routes.draw do

get 'static_pages/home'

get 'static_pages/help'

root 'application#hello'

end

Here the rule

get 'static_pages/home'

maps requests for the URL /static_pages/home to the home action in the Static
Pages controller. Moreover, by using get we arrange for the route to respond
to a GET request, which is one of the fundamental HTTP verbs supported by
the Hypertext Transfer Protocol (Box 3.2). In our case, this means that when
we generate a home action inside the Static Pages controller we automatically
get a page at the address /static_pages/home. To see the result, start a Rails
development server as described in Section 1.2.2:

$ rails server

Then navigate to /static_pages/home (Figure 3.4).

Box 3.2. GET, et cet.

The Hypertext Transfer Protocol (HTTP) defines the basic operations GET,
POST, PATCH, and DELETE. These refer to operations between a client com-
puter (typically running a web browser such as Chrome, Firefox, or Safari) and a

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

3.2. STATIC PAGES 137

Figure 3.4: The raw home view (/static_pages/home).

138 CHAPTER 3. MOSTLY STATIC PAGES

server (typically running a webserver such as Apache or Nginx). (It’s important
to understand that, when developing Rails applications on a local computer, the
client and server are the same physical machine, but in general they are different.)
An emphasis on HTTP verbs is typical of web frameworks (including Rails) influ-
enced by the REST architecture, which we saw briefly in Chapter 2 and will start
learning more about in Chapter 7.

GET is the most common HTTP operation, used for reading data on the web;
it just means “get a page”, and every time you visit a site like https://www.
google.com/ or https://www.wikipedia.org/ your browser is sub-
mitting a GET request. POST is the next most common operation; it is the request
sent by your browser when you submit a form. In Rails applications, POST re-
quests are typically used for creating things (although HTTP also allows POST to
perform updates). For example, the POST request sent when you submit a registra-
tion form creates a new user on the remote site. The other two verbs, PATCH and
DELETE, are designed for updating and destroying things on the remote server.
These requests are less common than GET and POST since browsers are inca-
pable of sending them natively, but some web frameworks (including Ruby on
Rails) have clever ways of making it seem like browsers are issuing such requests.
As a result, Rails supports all four of the request types GET, POST, PATCH, and
DELETE.

To understand where this page comes from, let’s start by taking a look at the
Static Pages controller in a text editor, which should look something like List-
ing 3.9. You may note that, unlike the demo Users and Microposts controllers
from Chapter 2, the Static Pages controller does not use the standard REST ac-
tions. This is normal for a collection of static pages: the REST architecture
isn’t the best solution to every problem.

Listing 3.9: The Static Pages controller made by Listing 3.7.
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

https://www.google.com/
https://www.google.com/
https://www.wikipedia.org/

3.2. STATIC PAGES 139

end

def help

end

end

We see from the class keyword in Listing 3.9 that static_pages_con-
troller.rb defines a class, in this case called StaticPagesController.
Classes are simply a convenient way to organize functions (also called meth-
ods) like the home and help actions, which are defined using the def key-
word. As discussed in Section 2.3.4, the angle bracket < indicates that Static-
PagesController inherits from the Rails class ApplicationController;
as we’ll see in a moment, this means that our pages come equipped with a large
amount of Rails-specific functionality. (We’ll learn more about both classes
and inheritance in Section 4.4.)

In the case of the Static Pages controller, both of its methods are initially
empty:

def home

end

def help

end

In plain Ruby, these methods would simply do nothing. In Rails, the situation
is different—StaticPagesController is a Ruby class, but because it in-
herits from ApplicationController the behavior of its methods is specific
to Rails: when visiting the URL /static_pages/home, Rails looks in the Static
Pages controller and executes the code in the home action, and then renders the
view (the V in MVC from Section 1.2.3) corresponding to the action. In the
present case, the home action is empty, so all visiting /static_pages/home does
is render the view. So, what does a view look like, and how do we find it?

If you take another look at the output in Listing 3.7, you might be able to
guess the correspondence between actions and views: an action like home has
a corresponding view called home.html.erb. We’ll learn in Section 3.4 what
the .erb part means; from the .html part you probably won’t be surprised that
it basically looks like HTML (Listing 3.10).

140 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.10: The generated view for the Home page.
app/views/static_pages/home.html.erb

<h1>StaticPages#home</h1>

<p>Find me in app/views/static_pages/home.html.erb</p>

The view for the help action is analogous (Listing 3.11).

Listing 3.11: The generated view for the Help page.
app/views/static_pages/help.html.erb

<h1>StaticPages#help</h1>

<p>Find me in app/views/static_pages/help.html.erb</p>

Both of these views are just placeholders: they have a top-level heading (inside
the h1 tag) and a paragraph (p tag) with the full path to the corresponding file.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Generate a controller called Foo with actions bar and baz.

2. By applying the techniques described in Box 3.1, destroy the Foo con-
troller and its associated actions.

3.2.2 Custom static pages
We’ll add some (very slightly) dynamic content starting in Section 3.4, but as
they stand the files shown in Listing 3.10 and Listing 3.11 underscore an im-
portant point: Rails views can simply contain static HTML. This means we can
begin customizing the Home and Help pages even with no knowledge of Rails,
as shown in Listing 3.12 and Listing 3.13.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

3.3. GETTING STARTED WITH TESTING 141

Listing 3.12: Custom HTML for the Home page.
app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

Listing 3.13: Custom HTML for the Help page.
app/views/static_pages/help.html.erb

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial Help page.

To get help on this sample app, see the

Ruby on Rails Tutorial

book.

</p>

The results of Listing 3.12 and Listing 3.13 are shown in Figure 3.5 and
Figure 3.6.

3.3 Getting started with testing
Having created and filled in the Home and Help pages for our sample app (Sec-
tion 3.2.2), now we’re going to add an About page as well. When making a
change of this nature, it’s a good practice to write an automated test to verify
that the feature is implemented correctly. Developed over the course of building
an application, the resulting test suite serves as a safety net and as executable
documentation of the application source code. When done right, writing tests
also allows us to develop faster despite requiring extra code, because we’ll end
up wasting less time trying to track down bugs. This is true only once we get
good at writing tests, though, which is one reason it’s important to start practic-
ing as early as possible.

