
3.6. ADVANCED TESTING SETUP 173

3.5.1 What we learned in this chapter
• For a third time, we went through the full procedure of creating a new

Rails application from scratch, installing the necessary gems, pushing it
up to a remote repository, and deploying it to production.

• The rails script generates a new controller with rails generate

controller ControllerName <optional action names>.

• New routes are defined in the file config/routes.rb.

• Rails views can contain static HTML or embedded Ruby (ERb).

• Automated testing allows us to write test suites that drive the development
of new features, allow for confident refactoring, and catch regressions.

• Test-driven development uses a “Red, Green, Refactor” cycle.

• Rails layouts allow the use of a common template for pages in our appli-
cation, thereby eliminating duplication.

3.6 Advanced testing setup
This optional section describes the testing setup used in the Ruby on Rails Tu-
torial screencast series. There are two main elements: an enhanced pass/fail
reporter (Section 3.6.1), and an automated test runner that detects file changes
and automatically runs the corresponding tests (Section 3.6.2). The code in this
section is advanced and is presented for convenience only; you are not expected
to understand it at this time.

The changes in this section should be made on the master branch:

$ git checkout master

https://screencasts.railstutorial.org/
https://screencasts.railstutorial.org/

174 CHAPTER 3. MOSTLY STATIC PAGES

3.6.1 minitest reporters
Although many systems, including the cloud IDE, will show the appropriate
colors for red and green test suites, adding minitest reporters lends a degree
of pleasant polish to the test outputs, so I recommend adding the code in List-
ing 3.46 to your test helper file,17 thereby making use of the minitest-re-
porters gem included in Listing 3.2.

Listing 3.46: Configuring the tests to show red and green.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

require_relative '../config/environment'

require 'rails/test_help'

require "minitest/reporters"

Minitest::Reporters.use!

class ActiveSupport::TestCase

Run tests in parallel with specified workers

parallelize(workers: :number_of_processors)

Setup all fixtures in test/fixtures/*.yml for all tests in alphabetical order.

fixtures :all

Add more helper methods to be used by all tests here...

end

The resulting transition from red to green in the cloud IDE appears as in Fig-
ure 3.10.

3.6.2 Automated tests with Guard
One annoyance associated with using the rails test command is having
to switch to the command line and run the tests by hand. To avoid this in-
convenience, we can use Guard to automate the running of the tests. Guard
monitors changes in the filesystem so that, for example, when we change the

17The code in Listing 3.46 mixes single- and double-quoted strings. This is because rails new generates
single-quoted strings, whereas the minitest reporters documentation uses double-quoted strings. This mixing of
the two string types is common in Ruby; see Section 4.2.1 for more information.

https://github.com/kern/minitest-reporters
https://github.com/kern/minitest-reporters
https://github.com/guard/guard
https://github.com/kern/minitest-reporters

3.6. ADVANCED TESTING SETUP 175

Figure 3.10: Going from red to green in the cloud IDE.

static_pages_controller_test.rb file, only those tests get run. Even
better, we can configure Guard so that when, say, the home.html.erb file is
modified, the static_pages_controller_test.rb automatically runs.

The Gemfile in Listing 3.2 has already included the guard gem in our
application, so to get started we just need to initialize it:

$ bundle exec guard init

Writing new Guardfile to /home/ec2-user/environment/sample_app/Guardfile

00:51:32 - INFO - minitest guard added to Guardfile, feel free to edit it

We then edit the resulting Guardfile so that Guard will run the right tests
when the integration tests and views are updated, which will look something
like Listing 3.47. For maximum flexibility, I recommend using the version of
the Guardfile listed in the reference application, which if you’re reading this
online should be identical to Listing 3.47:

• Reference Guardfile at railstutorial.org/guardfile

Listing 3.47: A custom Guardfile.
Defines the matching rules for Guard.

guard :minitest, spring: "bin/rails test", all_on_start: false do

https://www.railstutorial.org/guardfile

176 CHAPTER 3. MOSTLY STATIC PAGES

watch(%r{^test/(.*)/?(.*)_test\.rb$})

watch('test/test_helper.rb') { 'test' }

watch('config/routes.rb') { interface_tests }

watch(%r{app/views/layouts/*}) { interface_tests }

watch(%r{^app/models/(.*?)\.rb$}) do |matches|

"test/models/#{matches[1]}_test.rb"

end

watch(%r{^app/controllers/(.*?)_controller\.rb$}) do |matches|

resource_tests(matches[1])

end

watch(%r{^app/views/([^/]*?)/.*\.html\.erb$}) do |matches|

["test/controllers/#{matches[1]}_controller_test.rb"] +

integration_tests(matches[1])

end

watch(%r{^app/helpers/(.*?)_helper\.rb$}) do |matches|

integration_tests(matches[1])

end

watch('app/views/layouts/application.html.erb') do

'test/integration/site_layout_test.rb'

end

watch('app/helpers/sessions_helper.rb') do

integration_tests << 'test/helpers/sessions_helper_test.rb'

end

watch('app/controllers/sessions_controller.rb') do

['test/controllers/sessions_controller_test.rb',

'test/integration/users_login_test.rb']

end

watch('app/controllers/account_activations_controller.rb') do

'test/integration/users_signup_test.rb'

end

watch(%r{app/views/users/*}) do

resource_tests('users') +

['test/integration/microposts_interface_test.rb']

end

end

Returns the integration tests corresponding to the given resource.

def integration_tests(resource = :all)

if resource == :all

Dir["test/integration/*"]

else

Dir["test/integration/#{resource}_*.rb"]

end

end

Returns all tests that hit the interface.

def interface_tests

integration_tests << "test/controllers/"

end

Returns the controller tests corresponding to the given resource.

3.6. ADVANCED TESTING SETUP 177

def controller_test(resource)

"test/controllers/#{resource}_controller_test.rb"

end

Returns all tests for the given resource.

def resource_tests(resource)

integration_tests(resource) << controller_test(resource)

end

On the cloud IDE, there’s one additional step, which is to run the following
rather obscure commands to allow Guard to monitor all the files in the project:

$ echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf

$ sudo sysctl -p

Once Guard is configured, you should open a new terminal (as with the Rails
server in Section 1.2.2) and run it at the command line as follows (Figure 3.11):

$ bundle exec guard

The rules in Listing 3.47 are optimized for this tutorial, automatically running
(for example) the integration tests when a controller is changed. To run all the
tests, simply hit return at the guard> prompt.

To exit Guard, press Ctrl-D. To add additional matchers to Guard, refer to
the examples in Listing 3.47, the Guard README, and the Guard wiki.

If the test suite fails without apparent cause, try exiting Guard, stopping
Spring (which Rails uses to pre-load information to help speed up tests), and
restarting:

$ bin/spring stop # Try this if the tests mysteriously start failing.

$ bundle exec guard

Before proceeding, you should add your changes and make a commit:

https://github.com/guard/listen/wiki/Increasing-the-amount-of-inotify-watchers
https://github.com/guard/guard
https://github.com/guard/guard/wiki

178 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.11: Using Guard on the cloud IDE.

$ git add -A

$ git commit -m "Complete advanced testing setup"

