
3.3. GETTING STARTED WITH TESTING 141

Listing 3.12: Custom HTML for the Home page.
app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

Listing 3.13: Custom HTML for the Help page.
app/views/static_pages/help.html.erb

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial Help page.

To get help on this sample app, see the

Ruby on Rails Tutorial

book.

</p>

The results of Listing 3.12 and Listing 3.13 are shown in Figure 3.5 and
Figure 3.6.

3.3 Getting started with testing
Having created and filled in the Home and Help pages for our sample app (Sec-
tion 3.2.2), now we’re going to add an About page as well. When making a
change of this nature, it’s a good practice to write an automated test to verify
that the feature is implemented correctly. Developed over the course of building
an application, the resulting test suite serves as a safety net and as executable
documentation of the application source code. When done right, writing tests
also allows us to develop faster despite requiring extra code, because we’ll end
up wasting less time trying to track down bugs. This is true only once we get
good at writing tests, though, which is one reason it’s important to start practic-
ing as early as possible.

142 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.5: A custom Home page.

3.3. GETTING STARTED WITH TESTING 143

Figure 3.6: A custom Help page.

144 CHAPTER 3. MOSTLY STATIC PAGES

Although virtually all Rails developers agree that testing is a good idea,
there is a diversity of opinion on the details. There is an especially lively debate
over the use of test-driven development (TDD),8 a testing technique in which
the programmer writes failing tests first, and then writes the application code to
get the tests to pass. The Ruby on Rails Tutorial takes a lightweight, intuitive
approach to testing, employing TDD when convenient without being dogmatic
about it (Box 3.3).

Box 3.3. When to test

When deciding when and how to test, it’s helpful to understand why to test. In
my view, writing automated tests has three main benefits:

1. Tests protect against regressions, where a functioning feature stops working
for some reason.

2. Tests allow code to be refactored (i.e., changing its form without changing
its function) with greater confidence.

3. Tests act as a client for the application code, thereby helping determine its
design and its interface with other parts of the system.

Although none of the above benefits require that tests be written first, there are
many circumstances where test-driven development (TDD) is a valuable tool to
have in your kit. Deciding when and how to test depends in part on how comfort-
able you are writing tests; many developers find that, as they get better at writing
tests, they are more inclined to write them first. It also depends on how difficult
the test is relative to the application code, how precisely the desired features are
known, and how likely the feature is to break in the future.

In this context, it’s helpful to have a set of guidelines on when we should test
first (or test at all). Here are some suggestions based on my own experience:

8See, e.g., “TDD is dead. Long live testing.” by Rails creator David Heinemeier Hansson.

https://dhh.dk/2014/tdd-is-dead-long-live-testing.html

3.3. GETTING STARTED WITH TESTING 145

• When a test is especially short or simple compared to the application code it
tests, lean toward writing the test first.

• When the desired behavior isn’t yet crystal clear, lean toward writing the
application code first, then write a test to codify the result.

• Because security is a top priority, err on the side of writing tests of the secu-
rity model first.

• Whenever a bug is found, write a test to reproduce it and protect against
regressions, then write the application code to fix it.

• Lean against writing tests for code (such as detailed HTML structure) likely
to change in the future.

• Write tests before refactoring code, focusing on testing error-prone code
that’s especially likely to break.

In practice, the guidelines above mean that we’ll usually write controller and
model tests first and integration tests (which test functionality across models,
views, and controllers) second. And when we’re writing application code that isn’t
particularly brittle or error-prone, or is likely to change (as is often the case with
views), we’ll often skip testing altogether.

Our main testing tools will be controller tests (starting in this section), model
tests (starting in Chapter 6), and integration tests (starting in Chapter 7). Inte-
gration tests are especially powerful, as they allow us to simulate the actions of
a user interacting with our application using a web browser. Integration tests
will eventually be our primary testing technique, but controller tests give us an
easier place to start.

146 CHAPTER 3. MOSTLY STATIC PAGES

3.3.1 Our first test
Now it’s time to add an About page to our application. As we’ll see, the test is
short and simple, so we’ll follow the guidelines from Box 3.3 and write the test
first. We’ll then use the failing test to drive the writing of the application code.

Getting started with testing can be challenging, requiring extensive knowl-
edge of both Rails and Ruby. At this early stage, writing tests might thus seem
hopelessly intimidating. Luckily, Rails has already done the hardest part for
us, because rails generate controller (Listing 3.7) automatically gen-
erated a test file to get us started:

$ ls test/controllers/

static_pages_controller_test.rb

Let’s take a look at it (Listing 3.14).

Listing 3.14: The default tests for the StaticPages controller. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

end

end

It’s not important at this point to understand the syntax in Listing 3.14 in de-
tail, but we can see that there are two tests, one for each controller action we
included on the command line in Listing 3.7. Each test simply gets a URL and
verifies (via an assertion) that the result is a success. Here the use of get indi-
cates that our tests expect the Home and Help pages to be ordinary web pages,

3.3. GETTING STARTED WITH TESTING 147

accessed using a GET request (Box 3.2). The response :success is an abstract
representation of the underlying HTTP status code (in this case, 200 OK). In
other words, a test like

test "should get home" do

get static_pages_home_url

assert_response :success

end

says “Let’s test the Home page by issuing a GET request to the Static Pages
home URL and then making sure we receive a ‘success’ status code in re-
sponse.”

To begin our testing cycle, we need to run our test suite to verify that the
tests currently pass. We can do this with the rails command as follows:

Listing 3.15: green
$ rails db:migrate # Necessary on some systems

$ rails test

2 tests, 2 assertions, 0 failures, 0 errors, 0 skips

As required, initially our test suite is passing (green). (Some systems won’t
actually display the color green unless you add the minitest reporters from the
optional Section 3.6.1, but the terminology is common even when literal colors
aren’t involved.) Note that here and throughout this tutorial, I’ll generally omit
some lines from the test output in order to highlight only the most imporant
parts.

By the way, on some systems you may see generated files of the form

/db/test.sqlite3-0

show up in the db directory. To prevent these generated files from being added
to the repository, I suggest adding a rule to the .gitignore file (Section 1.3.1)
to ignore them, as shown in Listing 3.16.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success

148 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.16: Ignoring generated database files.
.gitignore

.

.

.

Ignore db test files.

db/test.*

3.3.2 Red
As noted in Box 3.3, test-driven development involves writing a failing test
first, writing the application code needed to get it to pass, and then refactoring
the code if necessary. Because many testing tools represent failing tests with
the color red and passing tests with the color green, this sequence is sometimes
known as the “Red, Green, Refactor” cycle. In this section, we’ll complete the
first step in this cycle, getting to red by writing a failing test. Then we’ll get to
green in Section 3.3.3, and refactor in Section 3.4.3.9

Our first step is to write a failing test for the About page. By following the
models from Listing 3.14, can you guess what it should be? The answer appears
in Listing 3.17.

Listing 3.17: A test for the About page. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

9On some systems, rails test shows red when the tests fail but doesn’t show green when the tests pass. To
arrange for a true Red–Green cycle, see Section 3.6.1.

3.3. GETTING STARTED WITH TESTING 149

end

test "should get about" do

get static_pages_about_url

assert_response :success

end

end

We see from the highlighted lines in Listing 3.17 that the test for the About
page is the same as the Home and Help tests with the word “about” in place of
“home” or “help”.

As required, the test initially fails:

Listing 3.18: red
$ rails test

3 tests, 2 assertions, 0 failures, 1 errors, 0 skips

3.3.3 Green
Now that we have a failing test (red), we’ll use the failing test’s error messages
to guide us to a passing test (green), thereby implementing a working About
page.

We can get started by examining the error message output by the failing test:

Listing 3.19: red
$ rails test

NameError: undefined local variable or method `static_pages_about_url'

The error message here says that the Rails code for the About page URL is
undefined, which is a hint that we need to add a line to the routes file. We can
accomplish this by following the pattern in Listing 3.8, as shown in Listing 3.20.

150 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.20: Adding the about route. red
config/routes.rb

Rails.application.routes.draw do

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

root 'application#hello'

end

The highlighted line in Listing 3.20 tells Rails to route a GET request for the
URL /static_pages/about to the about action in the Static Pages controller. This
automatically creates a helper called

static_pages_about_url

Running our test suite again, we see that it is still red, but now the error
message has changed:

Listing 3.21: red
$ rails test

AbstractController::ActionNotFound:

The action 'about' could not be found for StaticPagesController

The error message now indicates a missing about action in the Static Pages
controller, which we can add by following the model provided by home and
help in Listing 3.9, as shown in Listing 3.22.

Listing 3.22: The Static Pages controller with added about action. red
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

end

3.3. GETTING STARTED WITH TESTING 151

def help

end

def about

end

end

As before, our test suite is still red, but the error message has changed again:

$ rails test

ActionController::UnknownFormat: StaticPagesController#about is missing

a template for this request format and variant.

This indicates a missing template, which in the context of Rails is essentially
the same thing as a view. As described in Section 3.2.1, an action called home

is associated with a view called home.html.erb located in the app/views/-
static_pages directory, which means that we need to create a new file called
about.html.erb in the same directory.

The way to create a file varies by system setup, but most text editors will
let you control-click inside the directory where you want to create the file to
bring up a menu with a “New File” menu item. Alternately, you can use the
File menu to create a new file and then pick the proper directory when saving
it. Finally, you can use my favorite trick by applying the Unix touch command
as follows:

$ touch app/views/static_pages/about.html.erb

As mentioned in Learn Enough Command Line to Be Dangerous, touch is
designed to update the modification timestamp of a file or directory without
otherwise affecting it, but as a side-effect it creates a new (blank) file if one
doesn’t already exist. (If using the cloud IDE, you may have to refresh the
file tree as described in Section 1.2.1. This is a good example of technical
sophistication (Box 1.2).)

Once you’ve created the about.html.erb file in the right directory, you
should fill it with the contents shown in Listing 3.23.

https://en.wikipedia.org/wiki/Touch_(Unix)
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files/listing#sec-listing
https://www.learnenough.com/command-line

152 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.23: Code for the About page. green
app/views/static_pages/about.html.erb

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

At this point, running rails test should get us back to green:

Listing 3.24: green
$ rails test

3 tests, 3 assertions, 0 failures, 0 errors, 0 skips

Of course, it’s never a bad idea to take a look at the page in a browser to make
sure our tests aren’t leading us astray (Figure 3.7).

3.3.4 Refactor
Now that we’ve gotten to green, we are free to refactor our code with confi-
dence. When developing an application, often code will start to “smell”, mean-
ing that it gets ugly, bloated, or filled with repetition. The computer doesn’t
care what the code looks like, of course, but humans do, so it is important to
keep the code base clean by refactoring frequently. Although our sample app is
a little too small to refactor right now, code smell seeps in at every crack, and
we’ll get started refactoring in Section 3.4.3.

https://en.wikipedia.org/wiki/Code_smell

3.3. GETTING STARTED WITH TESTING 153

Figure 3.7: The new About page (/static_pages/about).

154 CHAPTER 3. MOSTLY STATIC PAGES

Page URL Base title Variable title
Home /static_pages/home "Ruby on Rails Tutorial Sample App" "Home"

Help /static_pages/help "Ruby on Rails Tutorial Sample App" "Help"

About /static_pages/about "Ruby on Rails Tutorial Sample App" "About"

Table 3.2: The (mostly) static pages for the sample app.

3.4 Slightly dynamic pages

Now that we’ve created the actions and views for some static pages, we’ll make
them slightly dynamic by adding some content that changes on a per-page ba-
sis: we’ll have the title of each page change to reflect its content. Whether a
changing title represents truly dynamic content is debatable, but in any case it
lays the necessary foundation for unambiguously dynamic content in Chapter 7.

Our plan is to edit the Home, Help, and About pages to make page titles
that change on each page. This will involve using the <title> tag in our
page views. Most browsers display the contents of the title tag at the top of the
browser window, and it is also important for search-engine optimization. We’ll
be using the full “Red, Green, Refactor” cycle: first by adding simple tests for
our page titles (red), then by adding titles to each of our three pages (green),
and finally using a layout file to eliminate duplication (Refactor). By the end
of this section, all three of our static pages will have titles of the form “<page
name> | Ruby on Rails Tutorial Sample App”, where the first part of the title
will vary depending on the page (Table 3.2).

The rails new command (Listing 3.1) creates a layout file by default, but
it’s instructive to ignore it initially, which we can do by changing its name:

$ mv app/views/layouts/application.html.erb layout_file # temporary change

You wouldn’t normally do this in a real application, but it’s easier to understand
the purpose of the layout file if we start by disabling it.

